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The theoretical studies on depolarized molecular light scattering are reviewed. Chapter 2 is devoted
to the phenomenological theories, mainly the relaxation theories of M. A. Leontovich and S. M.
Rytov. The general symmetry properties of the scattering cross sections are treated. The theory of
the depolarized component ΙΥΗ(ω) is presented in detail on the basis of the fluctuation-dissipation
theorem, with account taken of two internal relaxation parameters. This theory permits one to
explain the experimentally observed fine structure of the tail of the Rayleigh line. A generalization of
the theory for taking account of the antisymmetric part of the tensor of the dielectric-constant
fluctuations is discussed. Chapter 3 is devoted to statistical-mechanical methods. The development is
traced of ideas on the molecular mechanisms of scattering and depolarization of light, and methods
are treated of determining the scattering cross sections in terms of the characteristics of individual
particles or groups of them. The results of Mori's linear reaction theory are briefly presented, and it

is used to establish the form of the equations that determine the evolution of the parameters that

enter into the scattering cross section. It is shown that the statistical theories give results that agree

with the phenomenological theory of S. M. Rytov, and they permit one to give a molecular-kinetic

interpretation of the relaxation parameters that figure in it.
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1. INTRODUCTION

Less than ten yjears have elapsed since the publica-
tion of Fabelinskii's book'11, in which he gave a thorough
presentation of the problems of molecular light scat-
tering. Yet, owing to the widespread use of precision
laser technique, these are precisely the years that have
brought a number of major advances in the experimen-
tal study of scattered light.

Fabelinskii, Starunov, and Tiganov discovered123 and
then studied13"10' 1 4 7 ] the fine structure of the tail of the
Rayleigh line (the depolarized component of the scat-
tered light), which has the form of a doublet in liquids
of low viscosity. As is well known (see[ i :), the fine
structure of the polarized component of the light scat-
tered in an isotropic medium (the Mandel'shtam-Bril-
louin doublet) is closely associated with the character-
istics of propagation of longitudinal hypersound (of
frequencies ~ 1010 Hz). Thus, the displacement of the
components of the doublet from the frequency of the
exciting light determines (according to the Bragg con-
dition) the speed of hypersound, and their half-width
determines the absorption coefficient. M. A. Leonto-
vich has shown that depolarization of scattered light in
a liquid can involve shear deformations that thermal
fluctuations generate in it. A theory t u l based on the hy-
pothesis that one can describe both the shear viscosity
and the anisotropy responsible for the scattering by a
single relaxation time has indicated the existence of a
fine structure in the depolarized spectrum as well.
However, detailed experimental studies of the
fine structure of the tail region in liquids of low viscos-
ity have shown13 9 l that the latter is produced by a more
complex mechanism than that treated in , and one can
explain it by assuming at least two relaxation
t i m e s . 1 5 ' 6 > 2 3 ' 3 1 ' 3 2 ]
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Intensive study of depolarized light scattering by
systems of spherically-symmetrical particles has been
conducted in recent years. This was started by the
studies of Thibeau, Oksengorn, and Vodart l 2 ] and of
McTague and Birnbaum , which involved scattering
in argon and krypton. Depolarization of light scattered
by such systems had been observed long ago.C l 4 ) How-
ever, before the invention of lasers, not only did it
seem impossible to study it quantitatively, owing to the
small size of the effect, but there was no assurance
that the phenomenon of depolarization itself had been
actually observed. The situation was also aggravated by
the fact that the depolarization could not be ascribed to
optical anisotropy of the scattering particles (owing to
the absence of the latter). In order to explain it, the
theoretical studies'-15"181 treated an interaction that was
poorly amenable to calculation between the dipole mo-
ments induced by the wave of the incident light in dif-
ferent particles.

Experimental advances stimulated interest in further
development of the theory of molecular light scattering.
First we should mention the studies'2 3 ' 3 1 ' ], which
critically reexamined and generalized the known pheno-
menological theory1 1 1 ' 3 0 ] in line with the attained experi-
mental results. Other studies[ 3 e' 5 3>5 8 ' "»«·· ·-· · . 121"128

" ι ι Ha] h a y e p a i d t h e i r m a j o r attention to further devel-
opment of molecular-statistical concepts of light scat-
tering.

Yet no studies are currently known in which the
above-mentioned investigations have been generalized
and the advances in the phenomenological and statis-
tical theories have been correlated. Moreover, the
results of some studies that have been performed by
using the methods of non-equilibrium statistical me-
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chanics are sometimes contrasted without adequate
grounds with the conclusions of the phenomenological
theory. This explains why it now seems expedient to
give a review of the new studies on molecular light
scattering that would be useful to a broad set of physi-
cists interested in molecular optics, molecular acou-
stics, and statistical physics.

This review does not aim to encompass the entire set
of problems of molecular light scattering. Fundamental
attention will be paid to depolarized scattering, however,
the polarized component will be treated only insofar as
it is needed for determining the depolarization coeffi-
cient. The fine structure of this component and the con-
tour of the Mandel'shtam-Brillouin lines will not be
discussed, and all the more, since Mountain and other
authors (seet l 9*2 1 ] and the literature cited there) have
presented these questions in rather full detail. We have
also not deemed it possible to take up such important
problems as the effect on light scattering of critical
phenomena and concentration fluctuations, or light
scattering by crystals, liquid crystals, and macromole-
cules. Moreover, the review covers only effects that are
linear with respect to the primary field, and hence, it
does not treat phenomena of frequency multiplication of
the incident light upon scattering, etc. (see, e.g.[ 2 2').

The conceptual basis of the review is the idea of the
scattering cross-section, both in the phenomenological
and in the statistical theories, in terms of space-time
correlation functions, whose analysis in turn is based on
the fluctuation-dissipation theorem. This permits one
systematically to establish the relationship between the
different approaches in studying light scattering, and to
evaluate the final results from unified viewpoints,
broadly adducing here symmetry considerations.

The first part of the review is devoted to the pheno-
menological theories, mainly the relaxation theory of
Leontovich[u] and Rytov's theory ^12\ which permits a
correct description of the experimental data with ac-
count of only two relaxation processes. A generaliza-
tion of the theory is also treated here to the case in
which the internal rotational degrees of freedom are
taken into account in the hydrodynamics of the medium.
This makes it possible, while remaining within the
framework of the phenomenological theory, to study the
effect on light scattering of a possible asymmetry of the
tensor of the fluctuations of the dielectric constant.

The second part reviews the statistical theories,
which treat the scattering medium as a system of
many particles, and which permit one to establish the
relation of the scattering cross-sections to the charac-
teristics of the individual particles and of groups of
them. It discusses how one can establish the form of
the relaxation equations for the parameters that figure
in the scattering cross-section by using the methods of
modern non-equilibrium statistical mechanics. It dis-
cusses the relationship between these statistical me-
thods and the relaxational phenomenological theories of
M. A. Leontovich and S. M. Rytov.

2. PHENOMENOLOGICAL THEORIES

The interest that arose in the thirties in sound ab-
sorption in liquids involved, in particular, the possi-
bility of comparing the results of acoustic measure-
ments with the fine structure of the Rayleigh light-
scattering line. Mandel'shtam and Leontovich developed

a relaxational theory of sound absorption1 2 4'2 5 J based on
introducing internal parameters that characterize the
deviation of the state of the material from equilibrium.
A natural extension of it was the theory that Leontovich
devised on Rayleigh light scattering[ 1 1\ which used as
its basis the idea of thermal fluctuations as the cause of
scattering, and which was the first theory that permit-
ted one to describe from a unified standpoint the spectra
of both the polarized and the depolarized components of
the scattered light by taking account of one relaxing
internal parameter and assuming that the fluctuations
are isothermal.

The early fifties were marked by the appearance of
general and extremely powerful methods of calculating
thermal fluctuations. They led Kallen and Welton to
prove the fluctuation-dissipation theorem (FDT),t26]

which is one of the most important theorems of non-
equilibrium statistical thermodynamics (seeC27]). The
extension of the FDT, which was initially proved for
systems having a finite number of degrees of freedom,
to a continuous medium^28'29] made it possible to for-
mulate the equations of fluctuational hydrodynamics. On
this basis Rytov[30] generalized Leontovich's scattering
theory by extending it to the case not only of liquids,
but also of a solid isotropic medium with account taken
of temperature fluctuations, and with an arbitrary num-
ber of relaxing parameters.

This initial theory of Rytov assumed that the fre-
quency dispersion that arises from the kinetics of the
internal parameters can be accounted for formally
simply by assuming that the thermal and elastic moduli
of the medium are frequency-dependent. It did not ex-
plicitly introduce equations for the relaxing parameters,
nor assume the tensor of the dielectric-constant fluc-
tuations to be explicitly dependent on them. The theory
was reflected in this form also in Fabelinskif's book[1].
However, subsequently Romanov, Solov'ev, and
Filatova1·311 pointed out that the theory of light scattering
requires a so-called complete description of the thermal
fluctuations in the scattering medium. That is, one must
account explicitly for all the internal parameters on
which the fluctuations of the dielectric constant are as-
sumed to depend. The effect of these parameters on
light scattering only in terms of the dispersion of the
hydrodynamic and mechanooptical coefficients does not
exhaust their role. The first detailed experimental
studies'-3' 5"7 ] pointed out the difficulties of interpreting
the temperature-dependence of the characteristics of
the fine structure of the tail of the Rayleigh line, and
attempts were quickly undertaken to eliminate them^!)

e > 3 2 ] . Then Rytov[23] (and in a somewhat less general
form, Romanov and Solov'ev[33]) constructed a general
relaxatioi theory of molecular light scattering that
satisfied the requirement for a complete description
of the fluctuations.

Let us examine the fundamental concepts and sim-
plifications that permit one to derive a general expres-
sion for the light-scattering cross-section. In describ-
ing the scattered light one usually restricts the treat-
ment to the dipole approximation. Then the solution of
Maxwell's equations for the Fraunhofer zone, i.e., at
distances R » l2/\, where / is the dimension of the
scattering volume and λ is the wavelength of the light,
with also the condition that / » λ , gives the following
expression for the field intensity E(R, Ω) of the scat-
tered wave:
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E(R,

Here q is the radius vector of a point within the scat-
tering volume V, R is the radius vector of the point at
which the field of the scattered wave is observed (the
origin of the coordinate system is usually set within
the scattering volume), Ω and c are respectively the
frequency of the scattered wave and the velocity of
propagation of light, and I is the unit tensor. The scalar
product is denoted by the dot.

Eq. (1) is an approximate solution of the purely
electrodynamic problem. Of course, one can use it
both in the statistical and the phenomenological treat-
ment of light scattering. The distinction between these
approaches consists primarily in the methods of
finding the volume density of the dipole moment p(q,t).

The fundamental idea of the phenomenological theory,
which was used already in the studies of Smoluchowski
and Einstein[ 3 4 ], and then also in the studies of Leonto-
vich [ u ] and Rytov[ 2 3 > 3 0\ consists in representing the
fluctuating part of the dipole-moment density that is of
interest to us in terms of the tensor of the dielectric-
constant fluctuations (as is well known, this is precisely
the part of the dipole moment that governs light scat-
tering^'). In turn, this is determined by the fluctuations
in the parameters that describe the thermodynamic
state of the medium (see (10)). This idea has proved
fruitful, precisely because the complex problem of de-
termining the fluctuations of the dielectric constant
has been reduced to the far simpler problem of calcu-
lating the fluctuations of the thermodynamic parame-
ters. Accordingly, we shall write the following expres-
sion for the density of the induced dipole moment:

t),

t), ή,
(2)

Here e is the equilibrium dielectric constant, Δεαβ is
the tensor of the dielectric-constant fluctuations, and
Eo(q,t) is the field intensity of the incident light wave:

Eo (q, t) = £„ exp [i (k i q - Ωοί)]ί; (3)

Here i, ki, and Ωο are respectively the polarization unit
vector, the wave vector, and the frequency of the inci-
dent wave.

Consequently, the spectral intensity of the scattered
light having the polarization Β can be determined in
terms of the space-time correlation function of the
dielectric-constant fluctuations:
/•i5(R, Q) =

jdq
ν

i)>exp[i (kq-ωί)],

(4)

Here

— Ω ο ,
where kg is the wave vector of the scattered light, and
the angle brackets denote averaging over the ensemble.
The differential (in terms of frequency) scattering
cross-section1' is determined by the ratio IiS(R, 0)/Io.

In deriving (4), we assumed statistical homogeneity
of the medium and fluctuations that are steady-state in
time, so that the correlation function of the dielectric-
constant fluctuations depends only on the distance be-
tween the points Q = q"- q' at which the tensors Δε*δ

and Δεαβ are determined, and only on the interval be-
tween the instants of time t = t " - t ' . We have also used
the transverse nature of the scattered wave, β · R = 0.
Thus, the intensity of the scattered light in the pheno-
menological theory is fully determined by the scattering
tensor:

ώ<ΔβαΙι(0, 0)^'yi( (5)

One can derive a number of useful results by ana-
lyzing the symmetry properties of the scattering cross-
section. Placzek'351 has studied the symmetry proper-
ties of the integral scattering cross-section for an
arbitrary form of the tensor Δβαβ, but without account-
ing for the spatial dispersion of the medium. Ben-Reu-
ven and Gershon[3e]have studied the symmetry proper-
ties of the differential scattering cross-section by
using an expression for it in terms of symmetric po-
larizability tensors of the particles of the medium (see
(58)). Subsequently the symmetry properties of magnetic
dipolet37>38] and electric quadrupole[39] scattering have
been studied, as well as scattering by multipoles of
arbitrary orderC 4 0 ]. The symmetry properties of the
scattering cross-section of (4) were studied in [ 4 1 ] by
expanding the symmetric tensor Δεαβ in terms of irre-
ducible representations of the rotation group. For the
sake of brevity, we shall use here the well-known repre-
sentations of the tensors (up to the fourth order inclu-
sive) in terms of invariants of the corresponding sym-
metry group1-425.

If we restrict the treatment to the symmetric tensor
Δ€α0, then the fourth-order tensor ?« J g (ω, k) must be
symmetric with respect to permutation of indices within
the pairs αβ and γδ,,owing to Onsager's symmetry prin-
ciple. For an isotropic medium having a center of sym-
metry, the tensor σ αβν5 ^ s o satisfies the symmetry
properties of group °°-m (according to Shbunikov;
there is a unique direction determined by the vector k).
Hence it can be represented as a linear combination with
five independent coefficients. It is convenient to select
this representation in the form

ω · k ) =
where

, = σ;(ω, λ·2) (/= 1, 2, . . . , 5), n e S = fca/cp-y*!6ap,

Μ-αβν δ = ~2

Ύ ( №

Βν

(6)

(7)

Naturally, the number of independent coefficients here
is the same as in [ 4 1 ] , although the representation of the
tensor σ ^ ^ ϊ η itself differs. The conditions that the
incident and scattered waves are transverse can reduce
the number of independent coefficients in Eq. (4) as
compared with the representation in (6). However, sub-
stitution of k = k s - ki and Eq. (6) into (4) and applica-
tion of the conditions k s · β = 0 and kj · i = 0 show that
all five independent coefficients are preserved. Light
scattering in an isotropic medium lacking a center of
symmetry (which corresponds to the symmetry group
°°) with a symmetric Δεαβ tensor is characterized by
six independent coefficients[41].

The symmetric tensor of the dielectric-constant
fluctuations can be represented as the sum of a spheri-
cally-symmetric part and of one having zero trace:

. (8)
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In Eq. (6), the coefficient at arises from the fluctuations
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of the scalar part of (8), and it describes pure polarized
scattering; σ3 describes the correlational coupling be-
tween the scalar and tensor components, and the rest
of the coefficients arise only from the tensor component
The results of direct calculation of ν*§\γκ in [ 2 3 ] are
represented precisely in the form of (6). This permits
one to find the important relation of the independent
coefficients Oj that describe the light scattering to the
hydrodynamic characteristics of the medium.

The basis of the phenomenological calculation[11>23]

of the scattering tensor <4f ̂ , 0 is the hypothesis that the
thermodynamic description of the state of the medium is
complete[25>44]. According to this hypothesis, any state
of the medium that differs from the initial equilibrium
state that is defined by the density p0 and the tempera-
ture To can be fully described in quasistatic processes
by the deformation tensor u ^ referred to the equili-
brium values, by the temperature change T!
= (T -To)/To, and by a certain set of internal parame-
ters, which can have different tensor dimensions. In
other words, all of the thermodynamic functions are
fully determined by assigning u«0, Ti, and the stated
set of internal parameters. One assumes that the
dielectric constant is also determined by the thermo-
dynamic state of the medium, and hence, its variation
upon small deviations from equilibrium is expressed
as a linear combination of all the stated parameters.
Evidently, when one describes depolarized scattering,
one must include in the treatment at least one tensor
parameter. This is just the problem that Leontovich1·111

first solved.

Leontovich's theory implies that the frequency inter-
val between the displaced components of the triplet (the
low-temperature branch of the fine structure of the tail
of the Rayleigh line), which is

Α·. (9)
must decline with increasing temperature. This is be-
cause theoretical considerations and direct statistical
estimates1 4 5 1 show that the high-frequency shear mo-
dulus μ,ο slowly declines with increasing temperature.
Observation of the fine structure of the tail in highly-
viscous liquids (~ 10—109 poise) reveals just this rela-
tionship

[5,9]
However Ao>m slowly increases with tem-

perature at low viscosities (~ ΙΟ"2—10"3 poise), in spite
of the theoretical predictions. They pointed out in [ 5 '
that the features of behavior of Acom at any viscosity
can be explained by introducing two relaxation times (a
Maxwellian one, and one for the anisotropy). The theo-
ries'-6'321 that take account of two relaxation processes
(although not in most general form) have confirmed
this possibility.

Rytov's study [ 2 3 1 introduced a set comprising an
arbitrary number of relaxing scalars (ξ^^) and of zero-
trace symmetric tensor iltfh) parameters that define
the state of the medium. Here one takes the following
expression for the dielectric constant fluctuations (with-
out accounting for spatial dispersion):

Here x, y, z, mj, and n* are real constants, while the
tensor σ ^ γ ζ is expressed as a superposition of the
correlation functions of the parameters u, ΰαβ, T1 (

ξ'*), and ζ&β. In calculating the latter, one assumes, in
line with Onsager's hypothesis, that the evolution of the
fluctuations in the medium obeys the macroscopic equa-
tions of motion: the equations of hydrodynamics (balance
of mass, momentum, and energy or entropy) and addi-
561 Sov. Phys.-Usp., Vol. 17, No. 4, January-February 1975

FIG. 1. The system of coordinates
used for calculating the scattered-
light spectrum.

tional equations of relaxational nature (see (12)), which
by assumption describe the variation of the internal
parameters ξ ^ and F^L Of course, the equations for
the additional parameters need not be relaxational,2' and
ultimately, their form is determined by the formulation
of the problem. Thus, when one is studying light scatter-
ing by solutions of macromolecules, liquid crystals, or
by concentration fluctuations, one uses equations of the
diffusional type. In turn, the relaxation equations can
have a more complex structure than that used below, e.g.,
when one accounts for inertia effects (see[90: l).

It is essential to emphasize the important circum-
stance that the equations of motion are not homogen-
eous.[ 2 3 > 3 0 ] These are the equations of fluctuational
hydrodynamics, which contain on the right-hand side
the fluctuational (Langevin) forces, so that the obtained
spectrum of fluctuational parameters corresponds to
induced motion of the medium under the action of this
type of forces. Although this fact is somewhat obvious,
it has been treated in detail in a recent methodological

note
[46]

Calculation of the scattering tensor trfe] 5 does not
require introduction of any special coordinate system
(see[ 2 3 > 3 0 ]). However, for describing the scattered-light
spectrum that corresponds to certain experimental
conditions, it is convenient to use the system of coor-
dinates shown in Fig. 1. The χ axis lies along the scat-
tering vector k = k s -kj, and the xy plane coincides
with the scattering plane defined by the vectors kj and

ks·
For illustration of the application of the FDT in

Rytov's theory and comparison of it with the following
statistical theories, it suffices to examine the descrip-
tion of the depolarized component Iyjj (the first sub-
script indicates the polarization (vertical) of the
incident light, and the second indicates the polarization
(horizontal) of the scattered light). If we take
account of the fact that k = {k, 0, θ}, i = {θ, 0, l}, and
s = {-cos 0/2, sin 0/2, θ}, then in agreement with (4)
we find that

IVH (ω) ~ <Δε«Δεί2 (ω)} cos2 - | + (Δεί2Δε;ζ (ω)) sin2 ~ (11)

+ «ΔεΙ2Λε£2 (ω)) - (Δεϊ2Δεί2 (ω))) sin -|- cos -|- .

In line with Eq. (6), the expression in the round paren-
theses vanishes. Hence,

IVH Μ ~(Δε.«Δε; 2 (ω))008 2 | Α

Then we should take account of the fact that ΰ = 0,
and in order to find the second term in (11), we need
only write the equations for the internal parameters.
According to [ 2 3 ] , the latter acquire in this case the
form

(12)

0 is the fluctuational force that is coupled ener-
ξ CO

where £C0 is the f
getically with ξ CO.

Further, let us restrict the treatment to the case of
two tensor internal parameters (j = 1, 2), for which the
V. S. Vikhrenko 561



spectrum of the fluctuations Si1^ and H2^ , according to
(12), is the sum of two undispfaced Lorentzians of half-
widths J\l and T21.

In order to calculate the first term in (11), we must
also write down the equation for momentum transport,
in addition to the relaxation-type equations for the inter-
nal parameters:

(13)

Thus we obtain here a system of three equations. In
order to determine the spectrum of the fluctuations,
according to the FDT[ 4 7 1, we must transform in Eq. (13)
to the (ω, ^-representation (9/9q — ik, 8/8t -~iw), and
solve the equations thus derived with respect to the
generalized coordinates. The components of the matrix
that expresses the generalized coordinates in terms of
the fluctuational forces (the so-called generalized sus-
ceptibility matrix) determine the spectral density of the
corresponding generalized coordinates.

We should note that introduction of a frequency-
independent viscosity into the equations of relaxational
hydrodynamics implies violation of the Kramers-Kronig
relation1-231. When such a viscosity exists, the integral
intensities diverge. Hence, its existence can only have
the meaning that actually it arises from one or several
relaxing parameters, but they have relaxation times so
short that dispersion has not yet set in in the frequency
range of interest to us (ωτ « 1). In other words, in a
theory that doesn't restrict the number of relaxing
internal parameters, introduction of frequency-indepen-
dent viscosities (either shear or volume viscosity) is
not necessary, and hence we can set η = 0 in (13).

To go over to an incomplete description, i.e., to omit
from the system of equations like (13) all or part of the
internal parameters, gives rise to frequency-independent
coefficients in the remaining equations (after transfor-
ming to the (ω, k)-representation). The derived new
system of equations can be used to study light scattering,
provided that we have also eliminated these parameters
in advance from Eq. (10) by using their equations of
motion. Then the tensor Δεαβ will be determined not
only by the fluctuations of the remaining parameters,
but also by the fluctuational forces associated with the
eliminated parameters. The correlation functions of the
fluctuations of the rest of the parameters do not depend
on whether one uses a complete or incomplete descrip-
tion [ 2 3 ] , but one cannot restrict the treatment in the
scattering tensor to them alone, precisely because the
fluctuational forces now enter into the expression for
Δεαβ. However, we should emphasize that generally one
can introduce into a light-scattering theory frequency-
dependent characteristics of the medium without expli-
citly specifying the internal parameters that cause this
dispersion. Such an incomplete description of the ther-
mal fluctuations in the medium is admissible whenever
the set of internal parameters determining the devia-
tions of the medium from an equilibrium state contains
some that do not enter into the tensor of the dielectric-
constant fluctuations. These parameters3' can be elimi-
nated from the complete system of equations of relax-
ational hydrodynamics. The effect on the scattering of
these "optically passive" parameters is reduced to the
dispersion that they cause in the hydrodynamic and
mechanooptical characteristics of the medium.

As has been shown in[ 2 3 1, the vanishing of the low-
frequency limit of the shear modulus for a liquid implies
the condition

Moreover, the requirement of a finite integral intensity
of the scattered light leads in this case to the following
relationship among the mechanooptical (x, nj) and hydro-
dynamic coefficients:

* = * * + » , * , . (15)

If we take two relaxing parameters into account,
according to (11)—(13), we get the following expres-
sion1·48 ]for the spectral intensity Iyjj of the scattered
light:

ω, k) -

kRT X 2

— Poo2)

where

,

T + T \ 1 + ίωτ

{ = ίω( " ^ ^ + " ^ ^ ) .

(16)

The structure of the spectrum of (16) in the general
case with various relationships among the parameters
has not been examined explicitly. An example of the
results obtained with a computer has been given int 3 3 1

in the form of graphs that show the change in the nature
of the spectrum Ιγυ(ω) at the scattering angle θ = π/2
as a function of the low-frequency viscosity ijo
= 1/2(ΝΪτι + NJTJ). These results show that the theory
explains the appearance of a doublet at low viscosities
and a triplet at high viscosities. Moreover, we must
note that the dependence on the viscosity TJ0 of the spa-
cing 2A'j>m between the fine-structure maxima in the
doublet region does not correspond with that experimen-
tally found. This defect can be eliminated with a more
suitable choice of parameters (see[ 1 4 7 1).

Now we shall take up some general relationships con-
cerning the depolarization coefficients and the ratios
of the integral intensities of the different components of
the scattered light. If we assume that θ = ττ/2 and use
the system of coordinates indicated in Fig. 1, then after
convolution of the general expression (6) with the unit
vectors of the incident and scattered light according to
(4), we find the corresponding components of the scat-
tered light:

/ν ν-(ω, *") = σ,

/VH<«>, *2) = / Η ν(ω, *2) = 4 - ο 2 + 4 - *

In back-scattering (θ = π) we find that

'ml», l ^ '

(17)

(18)

In an isotropic liquid having a negligibly small
radius a of spatial dispersion (as compared with the
parameter λ = k*1; most studied objects fulfill this con-
dition, at least at low viscosities and at scattering
angles that are not too small), the integral scattering
cross-section should not depend on the scattering vec-
tor k (see, e.g.t411). Actually

σο

» = c j (ΔεαΒ(0,
ν (19)

The expression is valid to an accuracy of terms of the
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order of a/Ar. The quantities σι ο and σ20 are the integrals
with respect to the frequency of σ^ω, k2) and 2

2and they no longer depend on k . Moreover, σ30 = σ40

= σ5ο = 0, so that we have the following expressions for
the integral intensities:

/vV = Olo + f<>20. /HH = /vH = //IV=Y°«>(e=!-), (20)

/ =/ = 4~i / =/ = — (θ =
W = " °10< : ί σ 2 0 ' VU~HV * ' " " " " (21)

This implies that, when the tensor of the dielectric-
constant fluctuations is symmetric and we neglect spa-
tial dispersion in the expressions (10), the depolariza-
tion coefficient calculated from the integral intensities
is

' K B 3 σ 2 (

4σ2ο ' (22)

while the component Iyy of the scattered light can be
expressed in terms of the coefficient σ10 that describes
the purely polarized scattering, with account taken of
the correction of Cabannes

ivv=cK(i-±&uy
>. ( 2 3 )

Any theory that includes both of the stated assumptions
should lead to Eqs. (22) and (23).

As eq. (19) implies, the integral intensities of the
light scattered by the spherical and the zero-trace
parts of the tensor Δ ε ^ can be treated independently
of one another, while the depolarization coefficient of
the asymmetric scattering proves to be Au = 3/4.

Moreover, Eq. (17) implies that the depolarization
coefficient in spectral regions whose structure depends
substantially on k will differ from (22), and we can no
longer isolate A"u in the general case. Evidently, depen-
dence on the scattering vector k is manifested at
ω ~ ω* = kc (c is the characteristic velocity of propa-
gation of mechanical perturbations in the medium).
Hence, Li the spectral region ω » ω*; Eqs. (17) and
(18) must acquire the form of (20) and (21) (σχ and σ2

will be functions of ω, but not of k2). This in turn leads
to (22) and (23). The depolarization coefficient Au

will not equal 3/4 even in the spectral region ω » ω*,
if scalar internal parameters exist (and contribute to
σ^ that have short enough relaxation times. Analogous
conclusions were drawn in concerning the depolari-
zation coefficient for natural light, as based on explicit
expressions for the coefficients 0](ω, k2) found in this
study.

The expressions derived in 2 3 ] permit one to find the
relationship between the integral intensities of the nar-
row and broad components of the depolarized spectrum.
Since the total integral intensity (for liquids) is

then in the case of two relaxing parameters we get

(24)

Jbroad_
/narrow " ^ (25)

Rytov^231 showed that the previously proposed relax-
ation theories[ 1 9 > 2 0 > 3 2 ] are special cases of his more
general theory. We note that a theory1·491 that has sub-
sequently appeared is also a special case of the general
theory that accounts for two relaxation processes.

Further development of the phenomenological theory

can proceed in various directions. In particular, one
could use a more complex model of the relaxation pro-
cess. As we know, a spatially unlocalized model of a
liquid[511 has been proposed to explain the features of
dispersion and absorption of hypersound in liquids at
high viscosities (see'501). Perhaps this very model of
a liquid will prove useful also in studying depolarized
scattering in highly viscous liquids^91.

Another interesting aspect of the light-scattering
problem consists in the fact that the tensor of the
dielectric-constant fluctuations Ae<$} in the general
case need not satisfy a priori any symmetry conditions
(see1·52-1, Sec. 81). Hence a formal generalization of the
theory that accounts for an antisymmetric part of
Δεαβ is quite admissible. Such a generalization leads to
interesting physical consequences^531.

The physical basis for introducing an antisymmetric
part of Δεαβ is the existence in a medium consisting of
nonspherical particles of an antisymmetric part of the
deformation tensor1·54'551. The latter also can lead to
light scattering (as we know, an antisymmetric part of
the deformation tensor that does not take account of the
internal rotational degrees of freedom, but describes a
rotation of the medium as a whole, cannot cause light
scattering[ 5 2 ]).

The tensor of the dielectric-constant fluctuations is
expressed in[ 5 3 1 in terms of the deformation tensor.
The effect of the additional parameters that cause the
fluctuations in the dielectric constant is taken into ac-
count only in terms of the dispersion of the hydrody-
namic and mechanooptical coefficients. With this for-
mulation of the problem, the spectrum of the scattered
light will lack terms caused by an explicit dependence
of the dielectric constant on the additional parameters
that lead to the dispersion of the coefficients. That is, an
incomplete description has been used. However, this
does not affect the general conclusions drawn in this
study.

First of all, we should note the increase in the num-
ber of independent coefficients that characterize the
scattering tensor:

(26)
where

< —-ζ- β ± *<

In these expressions, s and a denote the symmetric and
antisymmetric parts of the tensor with respect to the
corresponding pair of subscripts. The integral scatter-
ing cross-section is determined by three independent
coefficients:

σ£$γδ=σ1θδίί3δγβ + σ2ομαβγδ + σ60 (δαγδββ — δαδδβν). (27)

We find from (27) the following expressions for the
integral intensities in scattering at a right angle
(Θ = TT/2):

and for backscattering (θ = π):
2

(28)

(29)
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A difference already appears here in the polarization
properties of the scattered light. In contrast to (20), we
have from (28), i.e., at θ = π/2:

^φΟ (30)

Evidently, the depolarization coefficient also increases
in terms of the integral intensities, since the antisym-
metric part of the dielectric-constant tensor, while
contributing to the depolarized scattering, does not
alter the polarized component.

Interesting consequences are also derived for the
differential scattering cross-section in the spectral
range that depends on the scattering vector k. We note
here the relationship that was derived in[ 5 3 ], which in-
dicates a violation of the reversibility principle in op-
tics in its commonly-used treatment i1·561

IVH (ω) = Ι«ν (ω). (31)

Equation (26) implies that

IVH (ω) - IHV (ω) = 1 αι ( ω - (32)

However, there is actually no evident contradiction
of the principle of microscopic reversibility, since
consistent application of this principle to light scatter-
ing leads to an expression that differs from (31). At
high enough temperatures and with ω « Ω ο , such that
[(ίϊο + ω)/β0]

4 exp (hw/kBT) « 1, the reversibility prin-
ciple in optics takes on the form[52]

VH ( Ω Ο , ω) = IHV ( Ω ο + ω, — ω), (33)

As before, fio on the left-hand side here is the frequency
of the incident light, while Ωο + ω is that of the scat-
tered light. The expressions (33) and (31) are equiva-
lent if the intensity of the scattered light depends weakly
on Ωο· As Landsberg and Mandelstam^71 have shown,
the intensity of the scattered light depends strongly on
fio when the frequency of the incident light lies in a
region close to an absorption band of the scattering
material. The equality (31) then loses force. Expansion
of the right-hand side of Eq. (33) in a series in the
neighborhood of Ωο indicates that in general the inten-
sities ΙνΗ(ω) and IHV( W ) a r e n°t equal, and moreover,
they are not symmetrical with respect to the point ω = 0,

By comparing (32) with Eq. (19) of[53], we can express
σ7(ω, k2) in terms of the hydrodynamic characteristics
of the medium. The integral of the coefficient σ7 with
respect to the frequency is zero, and hence the integral
intensities of I™ and I ™ are identical.

An unsymmetrical tensor of the dielectric-constant
fluctuations has been treated in[ 5 B l, where the scat-
tering theory was constructed on the basis of the equa-
tions of motion of a continuous medium having internal
rotational degrees of freedom. However, errors entered
into the calculations, and the authors of the study state
that Eq. (31) continues to hold, which contradicts the
general symmetry properties of the scattering tensor
of (26). In a later study,[59J the antisymmetric part of
the tensor Δ ε ^ is not treated, although the hydrodyn-
amic equations are written with account taken of the
antisymmetric part of the deformation tensor, and they
are supplemented by the balance equation for the angu-
lar momentum. We shall take up the results obtained
in[ 5 9 ] in Sec. b of Chap. 3.

3. STATISTICAL THEORIES

Naturally, the phenomenological theories of scat-
tering have given rise to the attempt to develop a mo-
lecular theory of this phenomenon, and primarily, to

elucidate the molecular-kinetic meaning of the concepts
that it introduces. For the discussed relaxation theo-
ries of Leontovich and Rytov, the most important
topic from this standpoint is to establish the micro-
scopic meaning of the phenomenological internal para-
meters. The fundamental problems of the statistical
theory include the derivation of equations resting on a
concrete molecular model of the substance that will
determine the kinetics of these parameters, and the
derivation of explicit expressions for the relaxation
times and kinetic coefficients that enter into the equa-
tions. In addition, the statistical methods must make it
possible to treat other optical phenomena on the basis
of the same molecular model (the Kerr effect, the
Maxwell effect, the Cotton-Mouton effect; see, e.g.'1'
e o "* 3 l ) ) and hence to reveal the essential connections
among their characteristics.

a) Mechanisms of light scattering and its depolari-
zation. The fundamental concepts upon which the sta-
tistical theory of molecular light scattering has grown
have been developed by Kirkwood1·64' and especially by
Yvon.[iel Kirkwood derived an expression for the static
dielectric constant of a system of nonspherical, polar-
izable particles, while Yvon has treated light scattering
in a system of optically isotropic molecules.

The concept of molecules as the polarizable struc-
tural elements of a medium had been widely used even
earlier in treating light scattering. Thus, from the
moment of its discovery in gases^·651 and liquids'·683,
depolarization of scattered light has been considered
to be due to the optical anisotropy of the particles of
the medium. Rayleigtr67' expressed the depolarization
coefficient in terms of the principal values of the
polarizability tensor of the molecules under the assump-
tion that their orientational distributions are equally
probable and mutually independent. On the basis of this
calculation, Cabannes[68i introduced a correction for
depolarized scattering into the Einstein formula for
the integral intensity of scattered light. The form of
the correction remains invariant upon taking account of
both the rotation of the p a r t i c l e s ^ and of orientational
correlation among them.[701 The phenomenological
theories of Leontovich and Rytov give the same form of
correction factor. This is understandable, since the
correction of Cabannes (see (23)) is implied by the
general symmetry properties of the scattering tensor
of (6), and it cannot vary in line with any particular
concretization of the depolarization mechanism.

The depolarization of light scattered by a system of
optically isotropic particles cannot be explained within
the framework of the above-stated mechanism, and
hence it requires special discussion.

Rayleigh[14) and Cabannes1·681 had already observed
a depolarized component of the light scattered in me-
thane, carbon tetrachloride, and even in the inert
gases. However, until very recently, experimental dif-
ficulties did not permit one to say with assurance that
a depolarization effect had actually been observed in
these substances (see^1], p. 224). Broad experimental
studies of depolarization of light in inert gases have
become possible owing to the development of laser
technology. As was noted in the Introduction, they
were started inC l 2'1 3 1, and a rather extensive material
has accumulated up to now.[71~79] A detailed study of the
spectrum of depolarized light scattering in carbon
tetrachloride, whose molecules are isotropic has been
taken up in[8°5.
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Depolarization of light scattered by a system of
optically isotropic particles has been treated theoret-
ically in t i e I . The appearance of a depolarized compo-
nent was explained by the interaction of dipoles induced
in the particles by the wave of the incident light.
Gans t l 5 ] had pointed out this mechanism earlier (see
also ). However, apparently, people didn't grant the
requisite significance to these studies in their own time,
and they sometimes tried to explain depolarization by
the Rayleigh mechanism, i.e., by the anisotropy of the
particles.

Development of the theory of molecular light scat-
tering has shown that one must take account of many fac-
tors for a complete description of this phenomenon. The
first theoretical studies starting witht 6 7'6 8 1 treated a
very simple mechanism of scattering and depolariza-
tion of light in which each molecule of the medium was
represented as a polarizable particle subject to the
action of the light wave, and emitting light independently
of the rest of the particles of the system. The effect of
the environment on a given particle was taken into
account indeed only in terms of expressions like the
Lorentz-Lorenz formula for the internal field in the
medium. Various correlation effects were taken into
account later. Thus, Yvon[16] devised a general theory
of. the integral intensity of polarized and depolarized
light scattering of a system of optically isotropic par-
ticles, with account taken of correlation among their
spatial positions and interaction among the dipole mo-
ments induced in the particles. The latter leads to
fluctuations of the local field acting on the particle, and
it gives rise to anisotropic scattering in the system of
spherically symmetrical particles. The new feature
was that the spatial correlation was described by the
particle distribution functions.

A number of studies have been concerned with inves-
tigating only the spatial correlations of isotropic par-
ticles. Davydov[82' has developed a theory in which he
expressed the characteristics of the integral intensity
of the scattered light as a series in Mayer group inte-
grals. The result obtained in this study might be repre-
sented as an expansion in terms of the density. However
in this case he was able to sum the series and obtain
the Einstein formula for ordinary states of the scat-
tering medium and the Ornstein-Zernike formula to
describe the scattering near a critical point. In Zimm's
study, as in , particle distribution functions were
also used to describe spatial correlations, but without
taking account of the fluctuations of the local field. A
study by Komarov and Fisher borders in its theme
on[82,s3j T n e s e a u thors treated the more general prob-
lem of determining the spectral composition of the scat-
tered light, and they expressed the final result in terms
of Van Hove space-time functions.

Ansel'mf 7 0 ] has examined the effect of orientational
correlations of nonspherical particles on light scatter-
ing. A rather large number of studies has subsequently
been devoted to this effect (see, e.g.,185"871). Buckingham
and Stephen[18] calculated the integral-intensity of the
scattered light and its depolarization, with account
taken of both orientational and spatial correlations of
a system of nonspherical, polarizable particles, and
also of fluctuations of the local field. Kielich (see[88])
has carried out a number of studies in the development
along this line.

Determination of the spectrum of the scattered light

has attracted broad interest relatively recently. Init-
ially the calculations were based on studying the
Brownian movement of mutually-independent scattering
particles. [ 8 9" 9 1 ] Essentially these theories are pheno-
menological, although they use the concept of the pola-
rizability tensor of the molecule. The role of the sta-
tistical methods is reduced here to justifying the Lan-
gevin equations for the Brownian movement of a non-
spherical particle and to calculating the frictional
coefficients (see[91~931).

Pecora and Steele[ M l have generalized the approach
ofC841 in which a system of spherical particles is
treated, and they studied the spectrum of the scattered
light from a system of nonspherical particles. The
differential scattering cross-section was expressed in
terms of generalized Van Hove space-time functions
that take account of the orientation of the particles.
Thus, attention was paid in[ 9 4 ] only to the effect of spa-
tial and orientational correlations of the particles on
the spectrum of the scattered light, but not to that of
fluctuations of the local field. Hellwarth[6zl took account
also of the interaction between the dipole moments in-
duced in the particles, and he treated the Kerr effect
as well as light scattering. He derived a relationship
between the Kerr constant and the scattering and de-
polarization coefficients, but the insufficient accuracy
of the experimental data did not permit him to draw
reliable conclusions on the validity of the assumptions
used.

All of the cited studies on the statistical theory of
molecular light scattering have used the concept of
the polarizability tensor of a particle in a medium,
which is usually identified with the polarizability tensor
of the particle in a vacuum, but sometimes is treated
as a tensor parameter that must be determined experi-
mentally. Moreover, the concept of the polarizability
of a molecule in a medium faces serious difficulties
caused by the interaction of the given particle with the
others.

Mazur and his associatest 9 5 ] have shown that one can
introduce the polarizability tensor of an individual par-
ticle, but only with a dependence on the positions of all
the rest of the particles of the system, whereby it
becomes a fluctuating quantity. Hence one must take
account in the scattered-light spectrum also of the
contribution from the fluctuations of the polarizability
tensor of the molecule caused by the action of the sur-
rounding particles. People have widely adduced this
effect, in addition to the local-field fluctuations, to
explain the depolarization of the light scattered by
systems of spherically-symmetrical particles.[12>13>

7ΐ-79,9β-ιοο] T h e n u m b e r o f studies that have subsequently
tried to calculate the polarizability tensor of a particle
in a medium is small (see[ l 0 1"1 0 5 ]).

The polarizability tensor also depends on the internal
state of the molecule. One can neglect the excitation of
electronic levels in the problem of molecular light
scattering, while excitation of vibrational degrees of
freedom is conveniently described by expanding the
polarizability tensor in a series in the corresponding
internal coordinates of the molecule:

α. β

Here the superscript (0) indicates the value of the quan-
tity in the ground state of the molecule. The classical
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variant of the theory of Raman scattering of light is
based precisely on this expansion (see1·1081). The pos-
sibility is not ruled out that the scattering caused by
fluctuations in a arising from excitation of vibrational
degrees of freedom can contribute appreciably in the
studied region of the molecular scattering spectrum
(0-150 cm"1), but a discussion of this problem falls
outside the limits of this review.

Excitation of internal degrees of freedom of the
molecules can affect molecular light scattering in
another way as well. The internal coordinates q a of
the molecule are among the internal parameters that
determine the deviation of the scattering system from
the equilibrium state. Hence, if we restrict the treat-
ment in (34) to the first term a( 0 ) in the expansion, the
vibrational degrees of freedom of the molecules will be
manifested in the spectrum of the scattered light as a
frequency dispersion of the hydrodynamic coefficients
(in gases, the processes that cause such a dispersion
are called Kneser processes). That is, they will effect
the spectrum as "optically passive" parameters.
The studies1 1 0 7'1 4 8 1 are concerned with treating this
effect on the spectrum of polarized light scattering.

The studies considered precisely the polarizabi-
lity tensor a( 0 ) that corresponds to the unexcited inter-
nal state of the particle. Henceforth we also shall
assume that a = a<0); we shall denote the quantity OQ as
the polarizability of the particle in vacuo.

b) Isolation of the "optically active parameters."
Let us assume that we can introduce the polarizability
tensor of the i-th molecule c^, which depends on the
positions of the rest of the particles of the system.
This means that the dipole moment induced in the par-
ticle will be determined by the local field E (̂q )̂ acting
on the particle:

Pi = arEjiq,). (35)

In turn, the local field at the point q̂  is determined
by the external field E(qi) and by the fields induced by
the rest of the particles of the system:

Ei(qi)=E(qi)+STi i.p,(qJ).
ίΦϊ

(36)

The tensor Tjj describes the interaction of the dipoles.
If we neglect retardation, it is determined by the ex-
pression

The dipole moment induced in an arbitrary particle can
be found by solving the system of equations (35) and (36).
We note that in the more general case of multipole
interactions, the part of the dipole moment pj that is
linear in the imposed field E(qj) contains the hyper-
polarizabilities of the particles/1 8 ' 8 8 1

In order to justify the possibility of introducing the
polarizability of an individual particle in a medium
Jansen, Mazur, and Mandel*·951 have used the quantum-
mechanical perturbation theory, and they calculated in
the adiabatic approximation the dipole moment of a
particle in a medium upon imposing an external field.
They were able to represent the result in the form of
Eq. (35) and (36). This permitted them to derive an
expression for the polarizability tensor a. This polar-
izability of a particle in a medium, as defined in the
sense of Eq. (35) (i.e., from the ratio to the local field

acting on the particle), differs from the polarizability
cto in vacuo, and it depends on the arrangement of the
rest of the particles of the system. To simplify the cal-
culation, they treated a system of monatomic molecules
with a nondegenerate ground state. They assumed the
distances between the particles to be not too small, so
that they could restrict the treatment only to dipole-
dipole interaction. In this case, the polarizability of the
particle in the medium is represented as a power series
in its polarizability in vacuo and in the tensor T.

Eqs. (35) and (36) can be solved for the dipole mo-
ment of the i-th particle

P/-.2 Zi rarE(q;·, i), (38)

Here the tensor Zjj is given by the expression'621

= ;). (39)

Let us assume that the distance at which the interac-
tion of the dipole moments induced in the molecules appre-
ciably begins to figure is considerably shorter than the
wavelength of the light. Then we can set E(qi, t) « E(q^, t)
in Eq. (38), and write the expression for the fluctuations
of volume density of the dipole moment (the polariza-
tion &>) of the system in the form

Δ35 (q, i) = Q(q,, q2 q)-E(q, <). (40)

The tensor Q for the polarizability fluctuations of the
entire system has the form

Q(qi, q2, . · . , q«; q) = Σ Zir«j8(q-q i)-<S Zire^iq-qi))· (41)

The way in which it depends on the mutual arrangement
of the particles is determined by the form of the ten-
sors Z - and <*j.

The second term on the right-hand side of (41)
involves the dielectric constant of the system. Trans-
formation of this term leads to the Lorentz-Lorenz and
Clausius-Mosotti formulas, but with corrections that
arise from the fluctuations of the local field (see,
e.g.,[l08> 1 0 9 ] ) . As was stated above, we get additional
corrections upon accounting for the difference between
the polarizabilities of the particle in a vacuum and the
medium. The contribution of these additional corrections
to the dielectric constant and to the refractive index is
of the same order of magnitude as that of the corrections
for the fluctuation of the local field.[95]

The expression (40) for the polarization fluctuations
corresponds to Eq. (2), so that the scattering cross-
section is determined by the correlation function of the
tensor Q(q, t):

S,. (ω, k) = sosi MS. jdq ] *(<?aii(O,O)0ii(q,t)>exp[i(kq-cD()].(42)
V -oo

This contains the correlation function of a quantity that
depends on the dynamical variables of all the particles
of the system.

We can represent the tensor Q in the form

Q = Qi + Q2 + Q3 + . · · , (43)

where Q^ is a sum of terms, each of which depends on
the dynamical variables of a group of k particles, and
which in turn is expanded in a power series in Oo- If we
neglect the fluctuations of the polarizability tensor of
the individual particle, and take account in the scattering
cross-section of (42) of quantities up to the fourth order

566 Sov. Phys.-Usp., Vol. 17, No. 4, January-February 1975 V. S. Vikhrenko 566



in the polarizability, then the first two terms of the
expansion (43) will take on the form

Q i = — q;) ψ-

(44)

Taking account of the fluctuations of the polarizability
tensor of the particle in the medium leads only to re-
placing the tensor Τ in (44) by some other, generally
more complicated operator.

The quantities Q^ that enter into (43) can be inter-
preted as being the internal "optically active" para-
meters that govern light scattering.

M. A. Leontovich's relaxation theory uses only one
internal parameter. One can naturally choose this
parameter in the form Q* = Qi, as was already noted
i n t n ] . The results of Pecora and Steele's study[ 9 4 ] auto-
matically stem from (42) if one restricts treatment in
(43) to the first term of the expansion. We should em-
phasize that, although Qi is a one-particle operator,
two-particle correlation functions enter into the scat-
tering tensor of (42). This makes it possible, even in
the first approximation, to account for the very sub-
stantial effects of two-particle spatial and orientational
correlations. The studiest 8 9"9 1 ], which are based on the
concept of the Brownian movement of the particles of
the medium, also do not exceed the framework of ac-
counting for the parameter Qi. Moreover, they restrict
the treatment in the scattering cross-section of (42) to
one-particle terms alone, i.e., to terms that include
the polarizability of one given particle at different
instants of time. In this approach, no account is yet
taken of two-particle correlation functions (which con-
tain the product of the polarizabilities of two different
particles), nor of spatial and orientational correlations
as well.

The subsequent terms of the expansion (43), which
describe many-particle correlations, can be used as
the internal relaxational parameters of Rytov's pheno-
menological theory, provided only that we neglect a
possible correlational dependence among the parameters
Qk having different subscripts. In the converse case,
one must either transform to normal coordinates, or
take account of the correlation of parameters directly
in the equations of motion.

The method under discussion of determining the
scattering cross-sections for light arouses no doubts
as applied to gases that are not very dense. However,
in liquids, the very expansion of the interaction in terms
of multipoles, or a fortiori the accounting only for
dipole-dipole interaction, requires justification. This
problem has not been discussed in the literature,
although the discussed concepts have often been used
in describing light scattering in liquids. Also there are
grounds for thinking that an expansion in a power
series in the polarizability is considerably more
effective (in terms of convergence) than an expansion
in terms of the density.[ 1 1 0 ] A number of additional
assumptions were made in introducing the polarizability
tensor of an individual particle. The existing calcula-
tions of this quantity have been performed in the adia-
batic approximation, and far from the absorption bands
of the molecular system. Consequently, the tensor Q

of the system of optically inactive molecules proves to
be symmetric, and this causes the scattering tensor to
be symmetric with respect to permutation of indices
within the first and second pairs. Hence one can expect
scattering effects by the antisymmetric part of the
polarizability tensor only near absorption bands. This
agrees with the conclusion derived in Chap. 1.

Another method^53' of calculating the scattering ten-
sor is based on using Kubo's reaction theory. C u l ] This
method can be conveniently used for studying the effect
on light scattering of a given set of parameters. The
effect on light scattering was studied in [ 5 3 ] of fluctua-
tions of the deformation tensors of a medium possess-
ing internal rotational degrees of freedom. In order to
do this on the basis of Kubo's theory, the part of the
dipole moment of the system was isolated that was
bilinear in the deformation tensors and in the imposed
field. Thus the tensor for the fluctuations of the
dielectric constant was expressed in terms of the
deformation tensors. The tensors of the mechanooptical
coefficients that enter into this expression were repre-
sented in terms of the correlation functions of the
operators for density of momentum flux and angular
momentum dipole-moment density.[ U 2 ] The main dif-
ficulty is that the theory does not permit one to isolate
the "optically active" parameters. Hence, in the gene-
ral case the mechanooptical coefficients are frequency-
dependent, and the calculated spectrum of the scattered
light corresponds to an incomplete description of the
state of the medium.

The relation between the discussed methods of de-
termining the cross-section for light scattering has
not been studied. However, one can apparently arrive
at the results of[53' 1 1 2 ]by isolating in Eq. (41) the terms
that are linear in the deformation tensors. It has been
reported in a brief note [ l l 3 ] that an attempt has been
undertaken to make such a calculation of the elasto-
optical coefficients.

c) Methods of deriving the relaxation equations.
At present, nonequilibrium statistical thermodynamics
possesses a number of general methods for deriving
equations to describe the evolution of functions of
dynamical variables (generalized coordinates and mo-
menta) of macroscopic systems.[ 2 7 ] Many of them have
been applied specially to problems of molecular light
scattering.

In t 3 3 ] , the balance equations of momentum and angu-
lar momentum of a system of nonspherical particles
were used to determine the correlation functions of
the deformation tensor. These equations had been de-
rived earlier by statistical averaging (using the
Liouville equation) of the corresponding functions of the
dynamical variables of the system. The form of the
material equations and the expressions for the kinetic
coefficients have been determined[ 5 5 ) 1 1 4 > 1 1 5 ] within the
framework of Kubo's [ l l e ] linear-reaction theory.

Many studies have been based on the theories of
linear response developed by M o r i t l l 7 ' l l e ] and by Oppen-
heim and his associates.[ 1 1 9 ' 1 2 0 ] Some of them1 5 9 ' 1 2 1"1 2 8 1

have formally treated a single relaxing parameter
(besides the variables associated with transport of mo-
mentum, angular momentum, and energy). This para-
meter is usually identified with the optical-anisotropy
tensor of the particles of the medium. The other
studies'1 2 4 ' 1 2 7 ' 1 2 8 1 have used a larger number of relaxing
parameters.
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The methods developed in'-117"120lare similar to one
another, and we have therefore restricted the treatment
only to presenting briefly the results of Mori's theory
that are necessary for the subsequent treatment.

Let us study a certain set of functions of the dynami-
cal variables as represented by the column vector A(t),
which depends implicitly on the time, but only via the
dynamical variables themselves.1·1171 The functions of
the set A are conveniently referred to their equilibrium
values. Acting in the spirit of the concepts of the theory
of Brownian movement, let us (assuming it possible)
isolate the part that is linear in A in the derivative
dA(t)/dt = F(t) as determined over a certain time
interval [0, t], including memory effects over the stated
interval: F(t) = F l i n ( t ) +f(t). The additive term f(t)
contains the terms that are nonlinear in A, and it takes
account of the explicit influence of the other variables
that determine the microstate of the system in addition
to the set A. The system of equations that govern the
evolution of the set A over the time interval [0, t] can be
conveniently written in the form of Langevin's equations
for Brownian movement. In matrix notation, they have
the form:4'

φ (i-s). (45)

The additive term f (t) is a random quantity. Consequently
its properties differ considerably from those of the
dynamical function F(5). This difference has been stud-
ied in detail by Mori.

The solution of (45) is of the form

(46)

where the function 0(t) is defined by the inverse Laplace
transform:

θ (ζ) = j θ (i) e~" dl, ΘΜ = [ζΙ-ίω + φ(ζ)]-1. (47)

0

We have adopted here and below the notation A = Ao.

The formal solution of (46) as treated in the Hubert
space of the dynamical variables of the system has a
pictorial geometric interpretation. Without as yet con-
cretizing the scalar product in this space, we shall
merely require that, at any arbitrary instant t of time,
the second term on the right-hand side of (46) (it des-
cribes the effect of the random "force" f on the evo-
lution of the parameters A) should be orthogonal to the
initial value of the vector A(0) = A. The first term will
then determine the projection of the vector A(5) on the
space A. This implies in addition the formal properties

θ(ί)

(f (i) A · ) = o.

(48)
(49)

The parentheses denote the scalar product.

In order to describe the averaged (secular) variation
of the set A starting at some instant of time t = 0, we
must select an ensemble. Let us make use of the
extremal principle. At the initial instant of time, we
require that the mean values of the functions of the set
A and of the additive integrals of motion over the
sought ensemble should be the most probable values
and equal to the assigned initial values. As we know, an
ensemble that satisfies these requirements is described
by the distribution function (or density matrix)
Po = ZS1 exp [ -/30T-AB*)], where jt is the Hamiltonian

of the system, and the Β are the parameters conjugate
to A, and β = (keT)"1. We shall denote averaging over
such an ensemble with a bar: A1FJ = Sp [A(t)p0]. We shall
retain the angle brackets to denote the averaging
(A(t))= Sp [A(t)p] over the equilibrium canonical ensem-
ble ρ = Ζ"1 exp (-j3jf). We impose requirements on the
latter only with respect to the mean values of the addi-
tive integrals of motion. Now we shall require that Eq.
(45) without the right-hand side should describe in the
linear approximation the averaged variation of the set
A (t) for an assigned initial value of A. That is, they
should be the equations of motion for A (t). Since
ZoPo = Zp(l + 0ΑΒ* . . .), the condition fW = 0 implies
that

<Ι(ήΑ·> = 0.

Combination of Eq. (50) with the orthogonality condi-
tion (49) permits us to concretize the scalar product as
being the average over the canonical distribution p.
Mori used the fact that the time derivative in the stated
Hilbert space is determined by the Hermitian Liouville
operator d/dt = iL, and thus obtained exact expressions
for the matrices iwand ψ. The first of these is deter-
mined by the static correlators:

ί ω = (AA*>-<AA*>-'. ( 5 1 )

The aftereffect matrix φ describes the effects of retar-
dation, and it is expressed in terms of time correlation
functions:

<P(i) = <f (0ί*)·<ΑΑ· Η. (52)

Exact solution of the system of equations (45) en-
counters difficulties that are usual in many-body prob-
lems. However, the practical value of Eqs. (45) is that
they serve as a convenient basis for making use of
various physical hypotheses. In particular, the system
(45) is considerably simplified if one can isolate a
group of the parameters of A that relax slowly as com-
pared with the variation of the rest of the variables.
Then the matrix 0(t) will differ from zero only within
a certain time interval Tf, which is considerably shorter
than the characteristic time τ^ that is required for an
appreciable variation of the function A. Then the system
(45) for t » Tf takes on the form

Such a system describes a steady-state Markov
process, and the tensor of frictional coefficients y and
the tensor in are determined by the relationships

γ = Re Γ, Ω = ω — Im Γ,

? (54)
Γ — Km \ <f (1) exp ί — (ίω-j-el) t\dt.

ο

In the general case, if we impose no restrictions on
the choice of parameters of A or on the studied time
interval, Eqs. (45) can be reduced to a form determined
by the correlation matrix (, A (t) A*). In order to do this
it suffices to multiply (45) on the right by A*, and to
use the property (50):

dt v ·) —ίω-(Α(ί! Α· φ(ί —ί (55)

Upon applying the Laplace transform, we find the solu-
tion of Eq. (55)

(Α|.)Α·)= [ϊΙ-ίω + φΜΙ-ΜΑΑ·), (56)

which, of course, corresponds to Eq. (48).

In Mori's method, the finding of φ(ί) is reduced to
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calculating the time-correlation function of the so-
called reduced fluxes, which generally differ from the
fluxes defined by the relationships5' 1^ = A. Mori also
proposed another procedure for calculating <p(t) based
on expanding the right-hand side of (56) in a continued
fraction/1 1 8-'InC l l 9 ' 1 2 0 ], the correlation function was also
represented in the form of (56), while the matrix of the
kinetic coefficients M(k, z) = i<o(k) -0(k, z) was calcu-
lated as a power series in the wave vector k. One can
also find the matrix M(k, z) by using the non-equilib-
rium statistical operator/2 7 1 and in a number of cases
of space and time dispersion, it is convenient from the
physical standpoint to expand the matrix M"1 in a series

in k and in ζ = ϊω.
[130]

The system of equations (45) resembles in form and
properties the system of equations of relaxational fluc-
tuational hydrodynamics/28'291 In particular, both sys-
tems lead to the same result (56) for the correlation
matrix of the fluctuations of the parameters A. Ulti-
mately, this brings about an agreement between the
calculated spectra of the scattered light. The proper-
ties of the random forces used in these two systems of
equations differ somewhat. This is understandable,
since the equations of fluctuational hydrodynamics are
defined over the time interval [—°°, t], while the initial
instant of time is specified in Mori's equations. Hence,
in correlating the properties of the random forces, one
must account for the stated difference in the systems of
equations.

d) One "optically active" parameter. If we know
all of the "optically active" parameters and the system
of equations (45) for them, then we can calculate the
spectrum of the scattered light over the entire frequency
range that is characteristic of molecular scattering
(from 0 to ~ 100-150 cm'1). In the phenomenological
approach, in which the choice of parameters is physi-
cally not concretized, such a general approach remains
justified. The shape of the spectrum in individual re-
gions can be studied on the basis of the general expres-
sions. Moreover, the existence in these general expres-
sions of a large number of coefficients does not always
permit one to determine their values unambiguously
and with sufficient accuracy from the experimental
data. Hence, it is convenient to dissect the structure
of the statistical theory of the spectral composition
of the scattered light into a set of narrower problems,
while using from the outset certain physical assump-
tions. In this section we shall treat the close-lying
region of the tail of the Rayleigh line, in which we can
restrict treatment to accounting for only the parameters
that vary relatively slowly.

In order to find the "optically active" parameters,
one most often assumes that the theory treated in
Sec. b also holds for the condensed state of matter.
From among the set of parameters Q^ that enter into
(43). one should primarily assign the first term Qi
= Q*to the region of the spectrum of the scattered
light that is adjacent to the undisplaced line. This para-
meter is expressed as a sum of one-particle functions,
and its role in light scattering has been repeatedly
emphasized and studied (see1 1'8 9"9 1 1). Study of dipole
relaxation and infrared absorption, as well as direct
estimates of the statistical expressions (see[ l o > 9 3 ' 1 3 1 j)
have shown that the characteristic times associated
with the orientational movement of the particles are of
an order of magnitude that corresponds to the width of
the close-lying region of the line of the scattered light.

Even the next term, Q2, which is a two-particle function,
varies considerably more rapidly. This is indicated by
the great line widths of the light scattered by systems
of optically isotropic particles for which the contribu-
tion of the parameter Q2 to the scattering is not masked
by the contribution of the one-particle functions Qj.

In addition to the "optically active" parameters,
one must also determine the "optically passive" para-
meters that affect the spectrum of the scattered light
via the simultaneous system of relaxation equations.
First of all, we should include here the quantities that
enter into the equations of ordinary hydrodynamics: the
number-density of particles Q , the momentum density
Q , and the energy density Q^. A number of studies'-53'
58>59]have treated the density Q s of the intrinsic angular
momentum of the particles of the medium. The polar-
ized component of the scattered light is also affected
by the variables that describe excitation of internal
degrees of freedom of the molecules (see1·1071).

Let us return to determining the spectral composi-
tion of the scattered light, and we shall show that the
results of the statistical and the phenomenological
theories agree. We shall treat only the depolarized
component ΙνΗ(ω). ana following1122'1251, we shall in-
clude in the set of slowly varying parameters the
polarizability density Q* and the transverse component
of the momentum density Qj\ As has been mentioned in
Chap. 1, the scalar parameters Q and Q^ and the
longitudinal component of the momentum density QJ|
do not affect the studied component of the scattered
light, while we shall neglect the effect of Q .

In the k-representation and in the system of coordi-
nates shown in Fig. 1, the quantities of interest to us
have the form

<?! (A) = Σ Piz exp (ikxt), Q?z (k) = 2 <*.•« exp (ikxA,

' = 1 (57)

Here x̂  is the projection of the radius vector of the i-th
particle on the χ axis.

In agreement with (11), the spectrum of the scat-
tered light is determined by the expression

IVH (ω, k) = (Q% (ω, k) <?* (-k)) sin21 + (Q% (ω, k) Q?t (- k)) cos2ξ .
' (58)

Spatial-symmetry properties1 1 2 2 1 (see also Chap. 1)
imply that the parameter Qy*z varies independently of
Ql and Q*z, while the equation that governs its evolution
according to Eq. (53), has the form

Qf, (A-, t) = - r«?','i(/c, /) + 1 % (/<·, / ) . ( 5 9 )

The static correlation function of quantities having
differing time parity vanishes. Hence, iw v z

= (QfzMQfzMO) = 0. According to (54), the decay
coefficient Γ that determines the relaxation time
(Γ = Γ"1) has the form

Γ = < 1 Qt (k) I2)-1 ( (Q?. (/.·, t) ()% ( - k ) ) dt. (60)

In view of the smallness of the wave vector, we can
restrict the treatment in calculating the kinetic coef-
ficients to the lowest orders in k, and go in Eq. (60) to
the limit k—0.

The parameters Q^ and Q*z are not independent, and
in order to derive the equations of motion, we should
take A in Eq. (53) to be the column vector composed of
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these quantities. 0_ξ and Q x z have differing time pari-
ties. Hence the non-diagonal elements of the matrix
ϊω will differ from zero. Moreover, if the studied set
of slowly varying parameters is complete, then, accord-
ing to the estimates of1·1221, we can neglect in the lowest
order in k the η on -diagonal elements of the matrix y
as compared with the corresponding elements of the
matrix ico. The resulting equations take on the form

<?I (k, t) = - Β i QI (k,t) + iktIzkBT (0>v' '2 Q% (k,t) + H (k, t),

<& (k, i) = ifc % - <Φ2>1/2 Ql (k, t) - YQ% (k, t) + /£ (fc, t). ( 6 1 )

The following relationship holds for systems having
short-range interparticle forces:

) = Hm Us V [-1. (PllI i)] ex (62)

Hence, the coefficients of the system (26) can be written
in the form

(63)

Here Π χ ζ is the operator for momentum flux density in
the long-wavelength limit:

(64)

whose form has been repeatedly discussed in detail
( see [ 1 1 7 ' 1 3 2 ] ) .

In deriving (61) and (63), we have also used the
theorem of uniform energy distribution

{QlQl) = mNkBT (65)

and have introduced the notation

Ν (Φ2>=<O£>=<O* >• (66)

The relationship between the two equations of the
system (61) arises from the parameter δχζ. The need
of accounting for this parameter in explaining the fine
structure of the tail of the Rayleigh line was even
pointed out in1·361 on the basis of studying the symmetry
properties of the scattering cross-section.

The equations of motion (61) are linear, and they can
be reduced to the form (13) that is used in Rytov's
phenomenological theory by a substitution of variables
(see[ 2 5 ]) :

Owing to this substitution, Eqs. (61) acquire the form:

PV2 = - k^Sl-k^Sl+ik^VS + fz, )

(68)

The appearance of the viscosity constant ηζ in (68) is
quite understandable, since in the derivation we accoun-
ted only for the evolution of the slowly varying para-
meters, which determine the structure of the spectrum
at low frequencies. Hence, there is actually no break-
down of the Kramers-Kronig relationships owing to the
appearance of the frequency-independent viscosity,
since the equations (68) themselves are valid only in
the limit of low frequencies. In order to study the
higher-frequency regions of the scattered-light spec-

trum, one must either treat the frequency-dependence
of the coefficients of Eq. (61) in line with their rigorous
definition (52), or supplement the system (61) with
equations that will account for the faster relaxation
processes. Hence, the system of equations (68) corres-
ponds to the special case of Rytov's theory that con-
siders a single "optically active" parameter, while
assuming the "optically passive" parameters (of which
several can exist) to vary more rapidly and eliminating
them from the equations of motion. In the low-frequency
region, we can neglect the dispersion of the coefficients
caused by elimination of the rapidly-varying parameters
whereby the viscosity constant η2 ar ises . This special
case has also been treated phenomenologically i n [ e l .

The shape of the spectrum ΙγΗ( ω ) that w a s obtained
l n [us ,ml a r i s e s f r o m E q , (16) with the following values

of the parameters:

, = 0, x-n

(69)

Here the fraction of the viscosity T)2 arises from the
high-frequency relaxation processes, while »h arises
from the relaxation of the slowly-varying parameter
that governs the orientation of the particle. The resul-
tant spectrum in the low-frequency region can be con-
veniently described by a formula that contains three
independent parameters:'·1 2 5·'

r2

) (1—Λ)]2

where

When the ratio urpis small enough, Eq. (70) ex-
16,122] the appearance of a doublet in the spectrum

I V H ( W ) · The local minimum at the point ω = 0 disap-
pears and hence the spectrum is converted into a trip-
let or into a single undisplaced line when the quantity
ωχ reaches its critical value ω Τ ) which is given by the

,[125]
expression1

/ ώ τ \ 2 (Ι-Λ)Λ-Μ(Ι-ί
2 (θ/2)|"2 fl1'2

(1—J (71)

However, the analysis of the behavior of the spectrum
when ωχ > ωχ that was performed in [ 1 2 2 ] is not com-
plete enough. Thus, the doublet defined by Eq. (70)
goes over into a triplet in scattering at a right angle,
not only when R = 1, but even starting at R = 0.64. When
R = 0.64 and ω τ = 1.05 (ύ>τ « 1.02 Γ ) , the triplet
structure in IyH * s barely marked, and it rapidly van-
ishes with increasing ω τ . The graphs in Fig. 2
imply that the triplet arises from the appearance of a
weak local maximum at the point ω = 0 as ω^ passes its
critical value ώ τ . With further increase in o>T, the
undisplaced peak becomes more marked, but when
R H 0.9, the triplet rapidly vanishes. (Fig. 2a). For any
R<$C 1, there is a limiting value Wij.. = R *[(1 — R)
x (1 - R 1 / 2 ) ] " 1 / 2 Γ above which (ωχ > «Tiim^ t n e s e c o n d

term on the right-hand side of Eq. (70), and hence also
the spectrum IyH , become monotonic functions of the
frequency (for ω > 0). Only when R = 1 does the triplet
structure persist to arbitrarily large values of ω-ρ, and
here the maxima of the displaced components steadily
remain above the undisplaced maximum.

The expression (70) explains at least qualitatively
the behavior of the fine structure of the tail of the
Rayleigh line over a broad temperature range. The con-
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FIG. 2. Structure of the spectrum IyH f° r values of the parameters
that give rise to a triplet.

dition of existence of a doublet (see (71)) at high tem-
peratures and low viscosities imposes no special re-
strictions on the size of R. Thus, the inequality R > 0.1
must be satisfied when ω τ = 0.3Γ. The authors of[l22]

concluded that R must increase with decreasing tem-
perature in order to explain the temperature-dependence
of the displacement of the doublet components when the
strong inequality ω τ « Γ 2 is satisfied. However, the
ratio Wrp/r itself depends strongly on R, and it sub-
stantially affects the positions of the maxima of the fine
structure. A relation is given in between the struc-
ture of the doublet and the viscosity η at constant
R = 0.5 that matches that observed experimentally. The
disappearance of the fine structure at intermediate
temperatures considerably restricts the upper bound
of possible values of R. The fine structure degenerates
into a single undisplaced line if R ^ 0.6. Upon further
decrease in temperature, R must increase (statistical
estimates'·1221 confirm this behavior of R), and a clearly
marked triplet appears in the spectrum of the scattered
light at values R » 0.9 (see Fig. 2b, c). We can deter-
mine the positions of the maxima of the displaced com-
ponents of the triplet approximately from the second
term of Eq. (70):

Stegeman and Stoichefftl0] have undertaken a detailed
experimental study of depolarized scattering in liquids.
In spite of painstaking treatment of the experimental
material, the obtained values of ω*ρ and M» still could
not be considered to be well-grounded enough. The
trouble is that the determination of these characteris-
tics is based on using the results of the theory that
accounts for only a single relaxation process (the ex-
pression (70) was taken for the spectrum Iyjj with
R = 1). Moreover, this same study noted that the
necessary condition for applicability of this theory
(μχτ/ν = 1) is not satisfied (yj/v* 0.1-0.7) This fact
favors the theory having two relaxing parameters, and
in particular, Eq. (70) with a value R <1.

The appearance of a doublet is explained in'6'1 2·1 by
the existence of an imaginary root of ω = ω (k) of the
dispersion equation of the system (68), i.e., by coup-
ling of the parameter Q*with purely dissipative shear
modes. However, one may object to this viewpoint,
since the light scattering does not arise from free
waves in the liquid. The system of equations (45), just
like the system of equations of fluctuational hydrody-
namics (13), contains the quantities f, which play the
role of external forces (in this regard see also p. 561
of this article). The thermal fluctuations in the medium
are described by a superposition of waves with all
possible relationships between ω and k. However, the
ones that are essential in light scattering are not those

that correspond to solutions of the dispersion equation,
but those for which both the wave vector and the fre-
quency are real, in line with the experimental condi-
tions. Only in an ideal elastic medium can the wave
vector and the frequency that satisfies the dispersion
equation be simultaneously real. Then the spectrum of
the scattered light degenerates into a set of monochro-
matic lines lying at the points ωΙΏ = v s o u n d k . The exis-
tence of dissipation in the medium brings about a mis-
match between the positions of the maxima of the fine
structure of the scattered light and of the speed of
propagation of acoustic waves (vSOund t wm/k)· This
mismatch for longitudinal waves has been discussed
repeatedly/1 9'1 3 3 1 although the reasons for it have not
been pointed out very clearly. The large modulus of
volume elasticity and the relatively small absorption
coefficient for longitudinal sound lead only to a slight
difference between the quantities v s o u n c j and <*>m/k.
However, the situation differs radically for transverse
waves in a liquid, since the low-frequency shear modu-
lus is zero. In this case one can compare the data of
acoustic6' and optical measurements only by directly
calculating the coefficients that enter into the hydro-
dynamic equations. An attempt has been undertaken
in [ 1 3 6 j to make such a comparison of the data of optical
and acoustic measurements on the basis of Rytov's
theory.

In [ 1 2 2 ] they also calculated the depolarized component
of the spectrum of scattered light I^n (<*>)· The principle
of choosing the parameters and constructing the system
of equations for them remained the same as in calculat-
ing the component Iyjj(w). Analysis of the spatial-sym-
metry conditions showed that the components of the
tensor Q* that are essential for the spectrum IJJJJ in-
volve the scalar parameters Q^, Q^, and Qn. Of course,
the resultant spectrum that was calculated in f l 2 2 ] can
also be obtained from the more general formula of

(72) Rytov[ by using in the latter some simplifications
analogous to Eq. (69). The relation of the "optically
active" parameter Q* to the propagation of longitudinal
waves that is described by Q-fj leads to the appearance in
the spectrum IJJJJ of lines that correspond to the
Mandel'shtam-Brillouin doublet, as Leontovich has also
pointed out.[ 1 1 ] A studyfl37:1 has very recently appeared
in which they studied the characteristics of the spectrum
I H H on the basis of the theory of[33].

Ben-Reuven and Gershon 1 ' 1 2 3 · 1 have applied a vari-
ant of Mori's theory'118 for calculating the depolarized
components Iyjj and Ijjfj. Here they use an expansion of
the correlation function (56) written for the parameter
Q*as a continued fraction. In these studies they also
considered the momentum density Q^ as the quantity
that modulates the orientational motion of the particles.
Apparently, one should still prefer the approach of
Keyes and Kivelson, since at least it rests on heuristic
considerations in describing the interaction between
Q*and QP. The studies[ 1 2 2 ' 1 2 5 ] take account of the mu-
tual influence of these parameters, whereas Ben-Reuven
and Gershon do not account for the effect of reorienta-
tion of the particles on the propagation of transverse
and longitudinal modes in the liquid. Hence it is strange
that the quantity y^ that describes the attenuation was
taken to be the same in[ 1 2 1 1 for both longitudinal and
transverse modes, with a value of 2 χ 109 rad/sec,
which is characteristic of Kneser-type relaxation pro-
cesses. In contradiction to this hypothesis, it is implied
by[ 1 2 2 ] that the characteristic parameter for relaxation
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of the shear viscosity must be substantially larger
(Γ ^, 1010 rad/sec), even though here one can hardly
obtain the correct order of magnitude of the spacings
&com between the fine-structure maxima.

The density of the intrinsic angular momentum Q of
the particles of the medium was also introduced i n t 5 9 ]

in addition to the parameters Q*, Q , Q€, and Q . As
before, only the parameter Q*was considered to be
"optically active." However, the calculations did not
lead to fundamental differences in the spectrum of the
scattered light from that found in[1221. In particular,
they showed that the introduction of the parameter Q
does not explain the existence of a broad background.
Gershon and Oppenheim[12el have treated the same
group of variables, and have obtained the spectra of
ΙγΗ and IJJJJ by using the method of calculating the
matrix Μ of the kinetic coefficients that was developed
in[ 1 1 9 > 1 2 . The structure of the spectra was not studied
in detail in t l 2 6 ] , but they noted that the nature of the fine
structure of the two components corresponds to that
observed experimentally (see also[ 1 4 9 ]).

Mori's method11171 has also been applied for con-
structing the equations of motion in[ 1 . The choice of
the "optically active" parameters in this study was not
based on any theoretical considerations. They took the
stress tensor as the slowly varying "optically active"
parameter to explain the fine structure of the spectrum
of ΙγΗ- The group properties of the stress tensor and
the polarizability tensor Q* coincide. Hence, the spec-
trum obtained in[ 1 2 4 1 is formally almost identical with
Eq. (70), which was derived in [ 1 2 2 ] (the use in these
studies of not quite identical approximations led only
to insignificant differences in the results). The tensor
μ α μ.β (μis a unit vector along the axis of the molecule),
to which was attributed a more rapid relaxation,1-1241

was chosen as being responsible for the appearance of
the broad background in the spectrum. However, the
possibility of choosing values of the parameters that
make the calculated spectrum agree with the experimen-
tal data still tells nothing about whether the theory is
correct, since in t l 2 4 ] they didn't develop methods of
estimating the statistical expressions. The example of
this study shows how important it is to base the treat-
ment when choosing "optically active" parameters on
definite theoretical hypotheses, if reliable methods are
lacking for estimating the coefficients statistically.

3) Two relaxing parameters. The structure of the
spectrum of the scattered light over a broad frequency
range containing the broad background as well as the
sharp central line?1'1 3 8'1 3 9 1 cannot be explained by intro-
ducing only one "optically active" parameter. This
conclusion has been argued most convincingly in1-231.
In fact, Eq. (25) implies that the integral intensity of
the broad component is zero if n2 = 0. Hence, introduc-
tion of rapidly relaxing "optically passive" parameters
cannot explain the existence of narrow and broad undis-
placed lines in the spectrum.

The studiesU 2 7 > 1 2 8 ] have dealt with the "optically
active" parameter Q* and a second parameter Q^,
which can be either "optically active" or "optically
passive". As has been noted, until the parameters Q*
and QF have been concretized, one cannot consider a
theory based on the system of equations (53) to be any
more statistical than the theory based on the equations
of fluctuational relaxational hydrodynamics. This is just
why the results of[127'128\ which work with non-concre-

tized parameters Q* and QFprove to be a special case,
in view of the less general formulation of the problem
(the interaction of the parameters Q* and Q^ with the
hydrodynamic variables QP, Q E , and Q11 is not taken into
account) than the results1·231.

Only that part of1-1271 is of interest in which attempts
were undertaken to concretize the choice of the parame-
ters Q* and Q . Bearing in mind the theory presented in
Sec. b, we can naturally choose these parameters as
follows:

0Φ = Q,, ψ = Q2. (73;

We recall that Q2 accounts for two-particle interactions,
but the structure of the formula (42) for the cross-sec-
tion is such that it contains not only the two-particle
functions aiTijajajTjiai (i / j), but also the three- and
four-particle functions of the forms ^
(i μ j jt k) and β ^ β ^ Τ ^ (i φ ] φ I

If we do not take account of the relation of the para-
meters of (73) to the hydrodynamic parameters (as is
justified in treating regions of the spectrum that do not
depend on the wave vector k), their relaxation equations
have the form of (12), with the difference that terms
arise that describe the mutual correlation of Q* and Q*\
When the characteristic'relaxation times of these para-
meters differ considerably, the resultant spectrum con-
sists of a sum of two Lorentzians with half-widths Γ φ
and V-p, and with a ratio of integral intensities equal to

^broad_ t
'narrow

(Γφ«Γρ.). (74)

The coefficients β, γ, and f are determined by the static

/=-«-'€,&,
(75)

while the half-widths of the lines are expressed in terms
of time-integrals of the correlation functions:

>"' j «?«(<) <£> it (α = Φ, Ρ). (76)
Ό

Eq. (74) has been derived under the assumptions that
Γ φ « Γρ, and Γ / Γ φ = 0, where

(t) <&> dt. (77)

The statistical averaging in (75) is a complex problem
for two reasons: we must know the distribution functions
with account taken of the orientation of the particles,
and we must know the three- and four-particle distribu-
tion functions, in addition to the two-particle functions.
There are as yet no studies that have attempted to solve
this problem in complete form. The problem was ex-
tremely simplified in [ 1 2 8 ] in estimating the coefficients
β, γ, and f, and only two-particle point correlations were
treated. Moreover the authors assumed that Γφ/Γρ
** 0.1, and they concluded that Eq. (74) does not contra-
dict the experimental data.

More substantial results have been attained in study-
ing systems of point particles. Buckingham and Stephen1·181

had also estimated the depolarization coefficient of
light scattered in liquid argon, and they obtained the very
high value Au = 0.12, while restricting the treatment in
calculating γ2 to two-particle correlations, and using
the radial distribution function that had been determined
by neutron-scattering experiments. One cannot explain
the sharp discrepancy with the currently existing ex-
perimental data by inaccuracy of the statistical averag-
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ing (according to [ 7 1 ] , Au ~ 10"3 in liquid argon at 90°K).
It was shown int 9 7 : l that the value of Au calculated by the
formula of Buckingham and Stephen deviates from the
experimental data by no more than 50% at low densities
(p < 0.4 g/cm"3).

The reasons for such a sharp disagreement of the
estimates oftl81 with the experimental data at high den-
sities has currently become understandable. Gelbart*-140-1

approximated the three-particle distribution function
with two-particle distributions, and he showed that
taking account of three-particle correlations while cal-
culating γ2 considerably improves the agreement of
theory with experiment.

A computer experiment was used ίη^141'142»1501 for
studying light scattering. A system of spherical, polar-
izable particles having pairwise interparticle interac-
tions was treated. The fluctuations of the local field
were determined in an approximation that corresponds
to taking account of the term a^ · Tij · c*j in the expan-
sion of the parameter Q2 (see (44)). The authors'-1411

concluded on the basis of the difference between the
results of the computer experiment and the experimen-
tal data that the polarizability fluctuations of the par-
ticles (these fluctuations were not taken into account
in the study) must affect substantially the integral in-
tensity of the scattered light. Specifically, they must
reduce the effects of anisotropy caused by fluctuations
of the local field. We find this view to be too categorical.
First, the expressions that account for three- and four-
particle correlations decline slowly (as r"3) with in-
creasing interparticle distance. These expressions
should have been transformed in advance, so as to elim-
inate the dependence of the integrals on the form of the
surface bounding the volume of the system (of course,
under the condition that such a transformation is pos-
sible). Second, the depolarization coefficient was de-
fined as a sum of terms whose absolute values exceeded
the result by one or two orders of magnitude. (Insig-
nificant variations in the values of the terms (and not
so much because of inaccuracy of the calculations as
because of the approximations used) can substantially
change the result.)

The shape of the spectrum1 1 4 2 ] agrees with the ex-
perimental data considerably better. Perhaps this
arises from the fact that the long-range nature of the
dipole-dipole interaction affects the integral intensity
more than it does the spectrum of the scattered light
(as we have stated, they didn't analyze in [ l 4 1 > 1 4 2 ' 1 5 o T the
correctness of the account taken of long-range action).

One can draw interesting conclusions from analyzing
the results given in^1 of calculating the contributions
of two-, three-, and four-particle correlations to the
integral scattering cross-section. Restriction to two-
particle correlations alone gives a very high depolari-
zation coefficient that is comparable with the depolari-
zation coefficient in a system of nonspherical particles.
To account for the three- and four-particle as well as
two-particle correlations amounts to treating more
symmetrical states of the medium, and it considerably
diminishes the final value of the scattering cross-sec-
tion. Hence, local-field fluctuations can per se make
quite a substantial contribution to the scattering cross-
section that is comparable with that from the fluctua-
tions of density and orientation that are described by
the parameter Qj. In a system of nonspherical particles,
owing to the non-central nature of the intermolecular

interactions, the many-particle distributions can no
longer be so symmetrical as in a system of point par-
ticles. Hence it is quite probable that precisely the
parameter Q2 is responsible for the broad line in the
spectrum of the scattered light. There are experimental
estimates that indicate that the integral intensity of the
broad line amounts to 0.2-0.5 of the intensity of the
narrow line.[ 1 4 3 ]

The spectrum of the scattered light that is obtained
from the relaxation theory with two "optically active"
parameters is under certain assumptions close to a
sum of Lorentzian curves. t l 2 e l Levine and Birnbaum[9el

have calculated the spectrum of the light scattered by
a system of spherical particles with account taken of
polarizability fluctuations.[9e] The excess fraction of
the polarizability was assumed to be exponentially de-
pendent on the square of the interparticle distance,[l44^
while the motion of the particles was assumed to be
rectilinear. An analogous calculation of the scattered-
light spectrum has been performed in[ 9 7 ] , but here they
treated fluctuations of the local field to an accuracy of
quantities that are described by the part of the parame-
ter Q2 that is quadratic in a, rather than treating the
polarizability fluctuations of the particles. As we should
expect for a model of two-particle collisions, in both
cases the integral intensity of the scattered light is
proportional to the square of the density. The spectral
intensity proved to be approximately exponential : [ 7 5 ]

/ (ω) ~ / (ω) exp (—ω/ω0) (ω > ω0), (78)

Here f (ω) is a function that depends weakly on the fre-
quency. An attempt was made in [ 9 9 ] to account for the
correlations between the perturbations of polarizability
in successive collisions of the particles.

Experimental studies1 1 2'1 3'7 1"7 9 1 have shown that the
exponential form of the spectrum is maintained at any
density, but the integral intensity of the scattered light
is proportional to the square of the density only for
gases that are not very dense (p < 0.4 g/cm3). We can
assuredly state on the basis of'140'1411 that the decrease
in intensity of the scattered light at high densities in-
volves the increasing contribution to the scattering
cross-section of three- and four-particle correlations.

The characteristic parameter in (78) that determines
the width of the spectrum of scattered light is the quan-
tity ω0. For gases, o>0 varies over the range 7-10 cm"1, but
on transition to a liquid phase, it increases up to ~ 20
cm"1. In order to elucidate the nature of this increase
in the width of the spectrum, Volterra, Bucaro, and
Litovitz1·771 measured the density-dependence of the
intensity of scattered light at frequency shifts of 10 and
105 cm"1. It turned out that at ω= 10 cm"1 the intensity
varies more slowly than the square of the density.
However, at ω = 105 cm"1 it was proportional to the
square of the density. This is explained by the fact that
the effect of fluctuations of the local field is manifested
at great distances, and even at low densities, many-
particle correlations begin to exert an effect. On the
other hand, the fraction of the polarizability fluctuations
of the particles that Levine and Birnbaum studied dif-
fers from zero only at small interparticle distances,
and here the many particle correlations are not substan-
tial up to appreciably higher densities. The fluctuations
of the local field are slower than those of the polariza-
bility of the particles. This leads ultimately to a con-
siderable broadening of the line of the scattered light
in a liquid as compared with its width in a gas.
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Thus, study of depolarized light scattering in sys-
tems of optically isotropic particles permits one to
draw some conclusions also on light scattering in sys-
tems consisting of nonspherical molecules. There are
data in the literature that indicate that the shape of the
outer region of the scattered-light spectrum perhaps is
close to exponential even when the molecules of the
liquid are not optically isotropic.Cl45)14eI Apparently the
mechanisms treated above are very important in the
formation of the broad line in the scattered-light spec-
trum : the fluctuations of the local field and those of the
polarizability of the particles. Both of these mechanisms
can be accounted for by the parameter Q2.

4. CONCLUSION

The phenomenological relaxation theory with two
"optically active" parameters basically gives a cor-
rect description of the depolarized components of scat-
tered light over a broad spectral range. We should ex-
pect the best agreement with the experimental data in
describing the fine structure and the close region of the
tail of the Rayleigh line in liquids of low viscosity.
A broad experimental test of the simplified expression
(70) and the general formula (16) is needed. It would
permit us to elucidate to what extent and within what
limits the concepts of the relaxation theory that takes
account of only two relaxation processes are suitable
for describing the non-equilibrium properties of mat-
ter. In order to elucidate the stated problems, further
experimental study of transverse hypersound in liquids
of low viscosity seems important, as well as comparison
of the data of optical and acoustic measurements based
on relaxation theory.

The relaxation theory in the existing variant explains
at least qualitatively the existence of the broad back-
ground and the data that exist on depolarized light scat-
tering in liquids in the range of shear viscosity from
10"2 to 109 poises. However, the details of the structure
of the broad background and of the scattered-light spec-
trum in highly-viscous liquids apparently do not agree
well enough with the theoretical predictions. As we
know, a correct description of the propagation of longi-
tudinal sound in highly-viscous liquids has required the
use of a more complex relaxation mechanism. An analo-
gous situation inevitably arises also in explaining the
features of structure of the broad background, for whose
existence processes are responsible that develop in
very short (kinetic) intervals of time. In this regard,
apparently, we must alter the concept of the nature of
the relaxation mechanism. A number of experimental
studies have noted that the spectrum in the outer region
of the tail of the Rayleigh line resembles an exponen-
tial frequency-dependence more than it does a Lorent-
zian curve form. An exponential form of spectrum
arises from certain models of the relaxation process.

The achievements of the statistical theory of molec-
ular light scattering are highly significant. The most
important success of the theory has been the represen-
tation of the scattering cross-section in terms of a set
of correlation functions of one-, two-, and many-par-
ticle operators. This has made it possible to interpret
on the molecular level the internal parameters that are
introduced by the phenomenological theory, and to apply
effective statistical methods for deriving the relaxation
equations for them.

Nevertheless, many problems of the statistical theory
still require further development. The stumbling block

continues to be the quantum-mechanical problem of
finding the polarizability fluctuations of the system of
molecules. The small number of studies in which the
polarizability of the system has been expan-
ded in a series in the particle functions have been noted
in Sec. b of Chap. 3 of this review, but the convergence
of this expansion has not been studied at all. Also, the
calculation of the correlation function of the polariza-
bility fluctuations is an essentially statistical problem.
Even here the positive results involve expansion in
terms of the particle functions. One must overcome
special difficulties in concrete calculation of the particle
correlation functions. At present, more or less reliable
estimates of the two-particle static (and in some cases
also the temporal) correlation functions have been ob-
tained. However, we should not consider the existing
estimates for the many-particle correlation functions
to be well enough grounded. Yet it seems indubitable
that, in spite of great difficulties, it is precisely the
statistical theory that will permit us to reveal deeper
relations between the spectrum of the scattered light
and the molecular structure and kinetics of the material.

The author deeply thanks L. A. Rott and the parti-
cipants of the seminar that he conducted for many dis-
cussions of the problems treated in this review.

''In this review we use everywhere the angular-differential scattering
cross-section, but this is not stipulated specifically anywhere.

2)We shall denote as relaxation equations or equations of relaxational
type those that contain only time derivatives of the internal param-
eters, and mainly, linear equations like (12). We shall also use such
expressions as the mechanism of relaxation, relaxation process, and
relaxation equations, when we are referring to an arbitrary process of
establishment of equilibrium.

3'S. M. Rytov has proposed calling them the "optically passive" param-
eters, so as to avoid the term "optically inactive," which is usually
used in a completely different sense.

4>AU formulas in this section are written in the k-representation.
s)One can find a discussion of the problems involved in determining the

matrix 0(t) in [27»117>12»]. Studies to be cited below give more exact
expressions for the coefficients used in this review.

6)The first acoustic measurements of the speed of propagation of trans-
verse hypersound in liquids have recently appeared [ 134>135].
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