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The article is the first review in the world's literature of research on diffraction of Mossbauer γ rays in

crystals. This field of research has developed recently and independently, and has involved both

experimental and theoretical studies. Its development is due, on the one hand, to the unique possibilities

provided by Mossbauer radiation for investigation of the nature of a number of phenomena of solid-state

physics and nuclear physics and, on the other hand, to the alluring promise of use of Mossbauer radiation

diffraction in applications. The review discusses the current state of research and the most important

directions of the studies. These include studies, important in investigation of crystal structure, on

determination of the phase of the x-ray structure factor, on the structure of magnetic and electric fields in

crystals, on separation of coherent elastic and inelastic scattering of γ rays in crystals, and on coherent

Coulomb excitation of low-lying nuclear levels. The research described is promising in applications and

shows that a new diffraction method is in the process of being established—Mossbauerography, which has

a number of interesting possibilities and is a useful addition to traditional diffraction methods of research

such as x-ray and neutron diffraction. The phenomenon of suppression of the inelastic channels of nuclear

reactions in Mossbauer diffraction is discussed in detail. Most of the article is devoted to exposition of the

theory of the phenomena mentioned and to the specific properties of Mossbauer coherent scattering which

distinguish it from diffraction of other types of radiation in crystals.

PACS numbers: 76.80.
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1. INTRODUCTION scattering from the conditions of exact resonance by mean.
As a result of the extraordinarily wide application of o f * e D o PP. l e r f« e c t · H e r e , *» amplitude of the Rayleigh

the Mossbauer effect in very diverse areas of pure and scattering (scattering by electrons) remains unchanged,
applied physics, it is appropriate at the present time to Measuring experimentally the modulus of the combined

Rfylelgh a n d " l ^ f « a P ^ d e for three values of Dop
g y

dtacuse not the Mossbauer effect in general, as was done Rfylelgh a n d " l ^ f , « a P ^ d e for three values of Dop-
during the first years after discovery of theeffect,™ Pier energy shift, « i s possible, by using the known de-
but ite use in some particular area of research (see for f e n d f cf f ° \ f e r f of toe nuclear resonance amplitude,
example ref. 2). One of these areas, which has developed t 0 c a l c u l a t e t h e ^ ^ <* ^ Ra?lei& amplitude,
recently, is the diffraction of MiJssbauer radiation in its Mttssbauer diffraction also permits investigation of
resonance scattering in crystals. Study of the diffraction the magnetic structure of a crystal, and it can form the
of Mossbauer radiation (Mflssbauer diffraction) presents basis for a method of determining directly the magnetic
significant interest for various reasons. In the first place, structure of crystals, which is a useful addition to the
its use in structure research is extremely promising. A only method available at the present time for direct in-
special term, M6ssbauerographyCl3], already exists for vestigation of the magnetic structure, magnetic neutron-
the technique of structure research based on Mussbauer ography. The physical basis for the possibility of study-
diffraction. The differences of MSssbauer diffraction ing magnetic structure by means of Mussbauer diffraction
from the diffraction of χ rays, neutrons, and electrons is the dependence of the Mossbauer scattering amplitude
permit information on crystals to be obtained by its use on the direction of the magnetic field at the scattering
which would be very difficult or practically impossible nucleus, which as we know is due to the orientation of
to obtain by other diffraction techniques. We have in the atomic moment. The dependence of the Mossbauer
mind here first of all the possibility of determining the scattering amplitude on the electric field gradient at the
phase of the structure factor. The knowledge of this nucleus presents the possibility of investigating by means
phase is necessary in a structure analysis for the unique of Mussbauer diffraction the structure of the electric field
deciphering of the structure of a compound. However, its gradients in the crystal. For example, it would be pos-
determination is an extremely difficult problem when sible to establish the different orientation of the electric
traditional diffraction methods are used, especially in field gradient tensor axes at equivalent sites of the crys-
the case of complex compounds. tal unit cell.

The Mossbauer method of determining the structure Another direction of research is the study of the col-
factor phase is based on an extremely simple method of lective interaction of the nuclei of the crystal with γ
varying the phase and amplitude of resonance scattering radiation. As a result of the existence of this interaction
of a y ray by MtJssbauer nucleus by removing the nuclear in scattering by the crystal when the Bragg condition is
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satisfied, the resonance value of y-ray energy and the
energy width of the resonance turn out to be different
from the energy and width of the Mtissbauer level of an
isolated nucleus. Another manifestation of the collective
nature of the interaction of y rays with the nuclei is the
suppression of the inelastic channels of nuclear reac-
tions. This effect appears in the fact that, on incidence
on a perfect crystal at the Bragg angle, y rays penetrate
through a thickness of crystal substantially greater
than the thickness of the same material which the radia-
tion can penetrate in the case of imperfect crystals or
of perfect crystals when the Bragg condition is not satis-
fied. This phenomenon is a nuclear analog of the Borr-
mann effect, which is well known in x-ray diffraction.

Finally, MOssbauer diffraction is of definite interest
theoretically. This is due to the fact that the existing
theory of diffraction of various forms of radiation in
crystals, particularly the dynamical theory, is limited
mainly to discussion of cases in which the scattering
amplitude of an individual atom is of the simplest form.
That is, the theory utilizes the amplitude for scattering
by a scalar center, taking into account if necessary the
anisotropy of thermal lattice vibrations by means of the
Debye-Waller factor. Experiments on MOssbauer dif-
fraction of y rays in crystals require for their quanti-
tative description a development of the theory for the
case of a more complicated form of the amplitude for
scattering by an individual center.

Thus, experimental studies of MOssbauer diffraction,
on the one hand, stimulate the detailed development of
a theory taking into account the nonscalar nature of the
individual scattering centers and, on the other hand,
provide the possibility of experimental verification of
the conclusions of this theory. The difference between
these conclusions and the well known theoretical re-
sults for the case of scalar scattering centers lies
mainly in the polarization properties of the radiation in
the crystal and the experimentally observable effects
associated with them in diffraction experiments.

In what we have said above, it has been important
that in the crystal scattering the y rays there are
MOssbauer nuclei in which resonance y-ray scattering
occurs. There is also interest in the case of scattering
of MOssbauer radiation by crystals not containing a
MOssbauer isotope. At first glance it would appear that
in this case the diffraction of the y rays will occur in
completely the same way as x-ray diffraction and that
it will not be possible to obtain by this means any new
information on the crystal beyond that obtainable by
means of χ rays. However, use of the MSssbauer method
for detection of the scattered radiation permits obtain-
ing information inaccessible by the x-ray method. By
utilizing the exceptionally high energy resolution of
MOssbauer detectors, it is easily possible to separate
the elastic and diffuse scattering in the region of the
diffraction peak. This permits study of the dynamics
of the crystal lattice, observing, for example, the varia-
tion with temperature of the fraction of elastically scat-
tered photons.

The first experiments on MOssbauer diffraction were
carried out by Moon, Black, and their co-workers of the
Birmingham group. ' 4 1 The goal of the first experiments,
which used polycrystalline scatters, was to demonstrate
the coherence of nuclear elastic scattering. The ques-
tion of experimental verification of the coherence of nuc-
lear scattering was raised for the following reason. The

time of nuclear resonance scattering, which is determined
by the lifetime of the MOssbauer level, is in a typical
case 10"7-10"8 sec, i.e., significantly greater than the re-
ciprocal frequencies of excitations in a solid. Therefore
the preservation of phase relations in scattering of a
y ray by the different nuclei of the crystal for such large
scattering times is a very interesting possibility which
is not completely obvious and which deserves experi-
mental verification. The coherence of nuclear resonance
scattering was demonstrated experimentally in the ex-
periments of Moon, Black, and co-workers in interfer-
ence of Rayleigh and nuclear scattering in the diffrac-
tion peak, which appeared as an asymmetric dependence
of the scattering intensity on the Mussbauer source ve-
locity (Fig. 1).

The theoretical problem of coherence of nuclear and
Rayleigh scattering has been considered by Moon,[5]

Tsara,™ and Liptdn.[7] Bernstein and Campbell181 inves-
tigated the effect of nuclear scattering on the critical
reflection of y rays from the enriched iron isotope Fe57.

Soon after publication of the first experimental work
of the Birmingham group13], a number of theoretical ar-
ticles^1 3 1 suggested use of MOssbauer radiation for dif-
fraction studies, including determination of the phase of
the structure factor. For most MOssbauer transitions the
wavelength of the y radiation is λ ~ 10"8 cm, i.e., in a
range convenient for diffraction experiments. So far no
experimental determinations of phases have been car-
ried out by this method for compounds with an unknown
structure, but recently Mossbauer and co-workers[14'15]

have demonstrated with a known structure the practical
achievability of determining the structure factor phase
by this method.

The first successful experiments on Mussbauer dif-
fraction in single crystals'1*"191 stimulated further de-
velopment of the theory.[2ί>"291 Kagan and Afanas'ev[22~2e]

developed the dynamical theory of Mflssbauer diffraction
and investigated in detail the suppression of nuclear-
reaction inelastic channels, the so-called Kagan-Afanas'ev
effect. The independent work of Hannon and Trammell[28> 2 9 ]

was devoted also to derivation of the general equations of
the dynamical theory. Voitovetskii*30'351 and Sklyarev-
gkij-[se-39] a n d aieij. c o . w o r ] j e r s observed the Kagan-

Afans'ev effect and studied it experimentally. A gener-
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FIG. 1. Energy dependence of intensity of (110) (a) and (220) (b)
diffraction peaks for an iron single crystal. [16]
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alization of the results of the first studies of Mossbauer
diffraction and the suppression effect has been published
by Kagan and Afanas'ev.i40]

As was noted above, the dependence of the Mussbauer
amplitude on magnetic field and on the electric field
gradient^41"441 opens the possibility of using Mussbauer
diffraction in structure studies inaccessible by x-ray
diffraction and associated with the order of magnetic
and electric fields in crystals. In the kinematic approxi-
mation the corresponding theory for the simplest cases
has been developed by AiVazyan and the author.[ 4 2 > 4 5~4 8 1

In particular, the existence has been noted in Mussbauer
scattering of magnetic[ 4 7 ] and quadrupole[48] diffraction
peaks which are absent in Rayleigh scattering of y rays.
In subsequent work of the same group1 4 9 ' 5 0 ] the kine-
matic theory of Mo'ssbauer diffraction has been developed
for all the main types of magnetic order in crystals. In
the experimental work of the Sklyarevskii group, mag-
netic^1 1 and quadrupole[52] diffraction peaks in Mossbauer
scattering were observed for the first time. The same
group[39> ω ] has begun study of the line shape in the nuc-
lear (magnetic) diffraction peak and its dependence on
the order of reflection and the departure of the nuclear
scattering from exact resonance conditions. Here a
number of interesting results have already been ob-
tained which have not yet found complete theoretical
interpretation.

Considerable interest is presented by work on the
Mo'ssbauer optics of crystals.t54~e21 In the presence of
resonance interaction of y rays with nuclei, the optical
characteristics of a crystal for y radiation depend sub-
stantially on this interaction. In the case of hyperfine
magnetic or quadrupole splitting of the Mussbauer line
in the crystal, the crystal will exhibit double refraction
and optical activity. The relative strength of these ef-
fects turns out to be substantially greater than in the
case of the same effects for the optical region. As in
ordinary optics, these phenomena can be used to obtain
information on the magnetic^*"601 and crystalline[ 6 1 ]

structure of the crystal. We will refer those interested
in the optics of Mossbauer radiation to the original lit-
erature, [5*"e2] and will limit ourselves to discussion only
of questions of the the diffraction of Mussbauer radiation.

2. AMPLITUDE OF COHERENT MOSSBAUER
SCATTERING

a) Introductory remarks. Mossbauer radiation con-
sists of y rays whose energy typically lies in the range
from several to a hundred or more keV and whose wave-
length correspondingly lies in the range from several
angstroms to several tenths of an angstrom. This means
that the energies and wavelengths of Mo'ssbauer radia-
tion are just in the region of energies and wavelengths
usually used in x-ray diffraction. Why then, in spite of
of the fact that χ rays and Mo'ssbauer y rays are elec-
tromagnetic radiation in the same range of wavelengths,
is their scattering in crystals of a completely different
nature? A general answer to this question is as follows.
The cause of the difference is the uniquely low energy
width of the Mo'ssbauer radiation, Γ , whose value is
typically 10~8 eV (we recall that the corresponding value
for characteristic χ rays is of the order of 1 eV). As a
consequence, in diffraction of Mo'ssbauer radiation in
crystals, in addition to the same scattering of γ rays
by atomic electrons as occurs for χ rays, their reson-
ance scattering by nuclei turns out to be very important.

In addition, nuclear scattering for Mitesbauer y rays
often is dominant, while for χ rays it is completely un-
important. As a result, we have a qualitative difference
in scattering of these two types of radiation by crystals.

b) Elastic scattering amplitude. For quantitative des-
cription of Mossbauer diffraction, it is necessary to dwell
in more detail on the features of the elementary event of
resonance y-ray scattering. Let us therefore discuss
first the amplitude for elastic scattering of a resonance
γ ray by an individual Mo'ssbauer atom of a crystal. The
scattering amplitude f is the sum of two terms, a nuc-
lear resonance term fN and an electronic (Rayleigh)
term fR:

/(k, e; k', e')=/iv(k, e; k', e') + /B(k, e; k', e'), (2.1)

where k, e and k', e' are the wave vector and polarization
vector of the γ ray before and after scattering, respec-
tively. The amplitude fR is identical to the amplitude for
scattering of χ rays and has the well known form[e3]:
fR(k, e; k', e') = Zree'*e, where Ζ is the number of elec-
trons in the atom and r e is the classical electron radius.
As already noted, nuclear resonance scattering involves
all of the specific properties of Mossbauer diffraction,
and therefore we will discuss in more detail the ampli-
tude fN. in view of the large lifetime of Mo'ssbauer levels
(the characteristic value of this lifetime is of the order
10~7 sec) the resonance elastic-scattering process can
be divided into two stages:

1) Resonance y-ray absorption, transferring the
nucleus to the Mo'ssbauer (excited) level; 2) emission
without recoil by the excited nucleus of a y ray, which
returns the nucleus to the ground state.

Therefore the scattering cross section turns out to
be proportional to the product of the probability of y-ray
absorption without recoil and the probability of emission
without recoil, and contains a resonance dependence on
the scattered y-ray energy E. Since in the general case
the nucleus in the crystal is subjected to the action of
electric and magnetic fields and its levels are split, the
resonance energies in the scattering are the energy dif-
ferences of the sublevels of the excited and ground states.
Accordingly, the amplitude for resonance MSssbauer
scattering of a y ray through a definite sublevel m of the
ground state and a sublevel m' of the excited state of
the nucleus (for definiteness we will assume that a mag-
netic field Η acts on the nucleus, and m and m' are the
projections of the spins of the ground and excited states
of the nucleus on the direction of the field) can be writ-
ten in the form[50]

fmm- = \ IW/(k)/(k')-
< m · ( k ) ) (" *"' V / " " " ' ( ί ) (2 2)

where

Tmm· = (2/' + 1)
Μ —TO' Γ,

is the partial radiation width of the transition from level
m' to level m, Γ and Γ Ϊ are the total and radiation widths
of the Mo'ssbauer level·841, L is the transition multi-
polarity (here and everywhere below where it does not
result in confusion we will omit the indices j and j '
designating the spins of the ground state and excited
state of the nucleus), Im™'(k) and n m m ' ( k ) are the nor-
malized intensity ( / l m m Qc) dOjj = 1 and polarization
vector of the radiation emitted in a direction k in the
transition m' — m, E m m ' i s the energy difference of
levels m' and m, and f2(k) is the Lamb-Mossbauer fac-
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tor for emission and absorption of a γ ray in direction
k. General formulas for I m m ' ( k ) and n m m ' ( k ) for nuclear
transitions of pure and mixed multipolarity have been
given in refs. 46, 65, and 66. Here we will write out the
expressions for these quantities in the case of dipole and
quadrupole transitions of pure multipolarity,

(2.3)

"Μ (Ό = (Xa cos ct.,r + i sin α Μ χ , ) eiM<f,

[Hk|
tg a x ^

e« (Λ/k)
e, (Λ/k)

(2.4)

(2.5)

where Μ = m' - m , θ is the angle between k and Η, φ is
the azimuthal angle of the vector k around Η (Fig. 2),
and the values of ex and e2 are given in the table.

Note that in the numerator of formula (2.2) the pro-
duct of the factors depending on the wave vector k is a
quantity proportional to the matrix element of absorp-
tion by the nucleus in the transition m — m' of a γ ray
with wave vector k and polarization vector e. The simi-
lar product of the factors depending on k' is proportional
to the matrix element for emission of a γ ray with
polarization vector e . Equation (2.2) describes a res-
onance state directly if the Zeeman splitting of the nuc-
lear levels is substantially greater than the width Γ
of the MOssbauer level. In the general case to obtain the
amplitude for resonance scattering for a nucleus in the
state m, the expression (2.2) must be summed over the
intermediate states m'.

As follows from Eq. (2.2), in the general case in the
presence of interaction of a MSssbauer nucleus with a
magnetic field or an electric field gradient, the explicit
form of dependence of the nuclear amplitude on the scat-
tering angle and polarization of the γ ray can be ex-
tremely complex. However, without yet giving this de-
pendence in detail, we can see, for example, from Eq.
(2.2) that in the case of scattering by a nucleus in a
magnetic field the scattering amplitude depends on the
direction of the magnetic field. This is evident already
from the fact that the intensities entering into Eq. (2.2)
for radiation in the Zeeman transition I m m ' ( k ) depend
on the field direction, for example, for a dipole transi-
tion, as imm' ~ siR

2B. Below we will consider in more
detail this dependence in Zeeman splitting, which sig-
nificantly exceeds the nuclear level width when the scat-
tering occurs through a completely determined Zeeman
level of the excited nucleus and the nuclear amplitude is
given directly by expression (2.2).

In the case when e and β' correspond to circular po-
larization, the amplitude (2.2) is conveniently expressed
in terms of the finite-rotation matrix elements D
Here Eq. (2.2) takes the form [ 4 1 ' e 7 ]

(1)

mm'

cm Μ

j ' \ 2 / (k) / (k-) C J & (k'H) D'$ (kH) | χ (Z,, 1) | 2

(2.6)

where \(L, I) is the reduced matrix element, and the
indices μ and μ' describe the polarization of the pri-
mary and scattered waves and take on the two values
+ 1 a n d - 1 , corresponding to right-handed and left-
handed circular polarization. Similarly we can find the
dependence of the resonance scattering amplitude on
the orientation of the principal axes of the tensor of
the electric field gradient acting on the nucleus.[ 4 2 1

FIG. 2. Definition of angles in expres-
sions for intensity and polarization of γ
rays.

c) Isotopic and spin incoherence. The formulas that
describe the diffraction of MOssbauer radiation do not
involve the amplitude (2.1), but rather the coherent amp-
litude obtained by averaging (2.1) over the crystal. In
the nuclear scattering amplitude there are two factors
which lead to incoherence of elastic scattering by the
individual atoms of a crystal: 1) isotopic incoherence,
and 2) spin incoherence.

Isotopic incoherence is due to the fact that a given
isotope of the element considered scatters in a resonant
manner, and the presence at a site of another isotope is
equivalent to the absence of nuclear scattering in gene-
ral. Accordingly, the coherent amplitude turns out to be
proportional to p, the relative content of the Mossbauer
isotope.

Spin incoherence is due to the dependence of the
resonance scattering amplitude on the value of m, the
projection of the nuclear spin in the ground state. In
this case the coherent amplitude is obtained by aver-
aging the expression for the elastic-scattering ampli-
tude over m. Thus, the final expression for the coherent
amplitude has the form

/N(k, e; k', k, e; k', e'), (2.7)

where ^ is the filling number of a state with nuclear
angular momentum projection m, and fm is determined
by Eq. (2.2). The dependence of a^ on m must be taken
into account if there is a polarization of the nuclear
spinCe8] due to cooling of the crystal to temperatures at
which an ordering of nuclear spins sets in, or due to
special external influences on the crystal. In the case of
absence of nuclear polarization, to which we will limit
ourselves below, the filling number does not depend on
m, and a m a (2j + I ) 1 .

d) Coherent amplitude in limiting cases of completely
split and unsplit lines. The explicit form of the depen-
dence fN

on on polarization and scattering angle in the
general case turns out to be very complicated. These

Values of e? = | V L,, ' ,) |~' ej for dipole and
\ τη ΛΊ —τη / |

quadrupole transitions

•T(±D

4(0)

e\ (±2)

T v L 9

0

M l

0

V3
2~

j/jjsine

E2

4 ~ s l n

0

± -Tj- sin θ

M2

0

-iff:
^ S i n 2 9
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expressions are substantially simplified in the limiting
cases of Zeeman splitting which significantly exceeds
the MiSssbauer level width, and the total absence of
Zeeman splitting.

In the first case for a fixed y-ray energy only one
term turns out to be important in Eq. (2.7), that cor-
responding to resonance scattering through a completely
determined Zeeman transition with a coherent ampli-
tude

/ v ( k , e ; k ' , e')coh

e'*) V' (Ό ' (k'>
.-r(ir,2)|

(2.8)

In the second case, by using Eqs. (2.2) and (2.6), in
which the energy denominator now does not depend on
m and m', it is possible to carry out the summation in
Eq. (27) in general form. For dipole transitions, for
example, the formula for the coherent amplitude takes
the form

e; k ' , e')Coh = -
p(2f-l)IV(k)/(k')

X{ r̂

where the upper line on the right-hand side refers to
electric-dipole transitions, and the lower line to mag-
netic-dipole transitions. Using Eqs. (2.8) and (2.9), we
can easily obtain a representation of the relative values
of the coherent-scattering cross section, the y-ray ab-
sorption cross section, and the Rayleigh-scattering
cross section. Using the optical theorem σ τ

= - (47r/k) Im f (k, e; k, e) we find from (2.9) for the
total cross section for absorption by one nucleus σ τ

(2.10)

: i p 2 ( 2 / ' — I ) 5 P(k)f-(k·)

"°" B(2;-rl)= f-
Γ,

£ v — £ 0 —(ίΓ..2)

The cross section for coherent scattering by one nucleus
is:

(2.11)

The radiation width Γ^ is related to Γ by the expression
Tj = Γ(1 +a)'\ where a is the y-ray internal-conversion
coefficient. In order to give an idea of the ratios of the
cross sections for coherent nuclear scattering, absorp-
tion, and Rayleigh scattering, we will give numerical
values obtained from Eqs. (2.9)-(2.10) for an iron crys-
tal. The differential cross section for coherent nuclear
scattering is (άσ/άΐΐ)-^ ~ 3ρ2· 103 barns at the exact res-
onance. The cross section for coherent rayleigh scatter-
ing (da/dfi)jj, in contrast to nuclear scattering, depends
strongly on angle and is equal to 40 barns for scattering
at zero angle and ~4 barns for scattering at 60°. The
cross section for nuclear absorption at the resonance is
σχ ~ ρ χ 106 barns.

We note that, as a result of the fact that nuclear scat-
tering is a slow process in comparison with the inverse
frequencies of excitations in the crystal, the thermal
factor in the coherent amplitude enters in the form of
the product of two Lamb-Mflssbauer factors
expi-k^x2)^) exp(-k2(x2>k') and not in form of the
Debye-Waller factor exp(— |k— k'Kx 2 )^^), as occurs for
the coherent-scattering amplitude of χ rays ((x21)^ is the
mean square of the thermal vibrations in the k direction).
This explains the smooth dependence on scattering angle
noted above for nuclear coherent scattering and the rapid
drop with increasing angle of the Rayleigh-scattering
cross section.

3. KINEMATIC THEORY OF MOSSBAUER
DIFFRACTION

a) Introductory remarks. The main qualitative fea-
tures of Mossbauer coherent scattering of y rays in
crystals can be described in the kinematic approxima-
tion of diffraction theory. This approximation is valid
under the conditions of scattering of y rays in crystals
of small size, where the intensity of the scattered beam
is much less than that of the primary beam. With small
modifications the same approximation is applicable for
description of scattering in imperfect (mosaic) crystals
of arbitrary size, under the condition that the scattering
in an individual crystallite (block) satisfies the require-
ment formulated above. As in the diffraction of χ rays,
the principal quantity determining scattering in this case
is the structure factor F, which is the sum of the coher-
ent scattering amplitudes (with inclusion of phase factors
determined by the location) of all atoms of the unit cell.
A special feature of the scattering of Mdssbauer radia-
tion is the fact that the structure factor consists of the
sum of two terms. One of them, due to scattering of y
rays by electrons, is identical to the well known struc-
ture factor for χ rays. The other term is due to nuclear
scattering and, in contrast to the x-ray structure factor,
turns out to depend in a resonant manner on the y-ray
energy and also on the magnitude and structure of the
hyperfine fields (electric and magnetic) acting on the
MiSssbauer nucleus. As a result the cross section for
scattering and the polarization of the scattered radia-
tion depend both on the energy of the MOssbauer y rays
and on the magnetic and electric structure of the crys-
tal. Since the x-ray structure factor does not depend on
the energy (small energy variations of the y rays near
the resonance value are involved), while the magnitude
and phase of the nuclear amplitude depend substantially
on energy (see Eq. (2.2)), the scattering cross section

as a function of energy has a sharply expressed inter-
ference form and can be conveniently represented as the
sum of Rayleigh, nuclear, and interference terms. Be-
low we carry out an analysis of the energy and polari-
zation characteristics of Mossbauer coherent scattering
in paramagnetic and magnetically ordered crystals in
the kinematic approximation.

b) Diffraction In the case of an unsplit Muasbauer
line. The differential cross section for scattering of
unpolarized radiation per unit cell of the crystal is
given by the formula

da

dQ...
(3.1a)

where V is the volume of the unit cell, τ is the recipro-
cal lattice vector multiplied by 2π, and ] F T | 2 is the struc-
ture factor averaged over the photon polarization. In the
right hand side of Eq. (3.1a) we have separated the total
scattering cross section into the Rayleigh cross section
σ^, the nuclear cross section σ^, and the interference
cross section a*®*. It follows from Eq. (3.1a) that dif-
fraction peaks in scattering in a crystal exist only for
fulfillment of the relation

k—k' = (3.1b)

—the Bragg condition. The structure factor F T is given
by the formula

FT(k, e; k', e')=F?(k, e; k', e') + F?(k, e; k', e')

K e; k', e')cohexp [i(k-k')
(3.2a)
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where the summation in the last term is carried out only
over the MOssbauer nuclei, and F R is the well known
x-ray structure factor. We will consider first the dif-
fraction of MOssbauer radiation in a crystal with an un-
split MOssbauer line. Then the structure factor can be
conveniently written for vectors e and e' corresponding
to linear polarization π (lying in the scattering plane)
and perpendicular polarization σ (perpendicular to the
scattering plane). For these polarizations the structure
factor can be represented in the form

Fi = F?PR + FxPN, (3.2b)

where P1* and P N are the Rayleigh and nuclear polari-
zation factors, and F ^ is defined by Eq. (3.1) if we use
in it for ί £ ο η the expression (2.9), omitting the factor
containing the product of the polarization vectors. The
form of Ρ** depends on the multipolarity of the MOssbauer
transition. For example, for an El transition we have
pN _ pR (pR _ c o s 2Θ for π polarization and P R = 1 for
σ polarization, where 2Θ is the scattering angle). For an
Ml transition, P N = 1 for π polarization and pN =Cos 2Θ
for σ polarization.

A characteristic feature of MOssbauer diffraction in
the case considered is interference of the nuclear and
Rayleigh scattering. For an unpolarized incident beam
the intensity of the scattered radiation in the diffraction
peak is determined by the expression

(3.3)

where the bars over the second and third terms signify
polarization averaging. For an El nuclear transition the
interference term in Eq. (3.3) takes the form
(1+cos2 2e)ReF^FR*, and for an Ml transition it is
2 cos 2Θ Re F ^ F R * * . In view of the resonance depen-
dence of the magnitude and phase of the nuclear scat-
tering amplitude on the y-ray energy, which enters
through the factor [Ey - Ε + (ϊΓ/2)] , and the constancy
of the Rayleigh amplitude for the energy variations con-
sidered, the intensity of the scattered radiation as a func-
tion of Εγ has a clearly expressed dispersion form. In
Fig. 1 we have shown an experimental curve in which in-
terference of the nuclear and Rayleigh scattering is
evident.

c) Determination of the phase of the structure factor.
The dependence of the modulus and phase of the nuclear
amplitude on energy, in combination with the possibility
of calculation of these quantities for each y-ray energy
value, permits determination by means of MOssbauer
diffraction of the phase of the x-ray structure factor F R .
Particular interest from the point of view of structure
studies is presented by MOssbauer determination of the
structure-factor phase in the case of complex com-
pounds with a large number of atoms in the unit cell,
where determination of this phase by traditional methods
is extraordinarily complicated.

The MOssbauer technique for phase determination1-10"121

is similar to the method, well known in x-ray structure
analysis, of isomorphic substitution and anomalous dis-
persion[69] and is illustrated in Fig. 3, taken from ref.
15. To determine the phase of the structure factor it is
sufficient to make measurements of the intensity in the
diffraction peak in the absence of nuclear scattering (for
large Doppler shifts of the y-ray energy) and for two
different values of Έγ for which the nuclear scattering
amplitude is sufficiently large. The first measurement
gives the modulus of the structure factor (in Fig. 3 this

FIG. 3. Principle of determin-
ation of the phase ^>0 of the x-ray
structure factor [15] Fo(H).
FOA(H) and ?OA(H) are the total
nuclear and Rayleigh scattering
amplitudes of the unit cell, and
n Fe( n Fe) is the nuclear resonance
scattering amplitude, which is de-
pendent on the γ-ray energy.

is |F0(H)|), and the last two give the modulus of the sum
of the nuclear amplitude and the structure factor (in the
figure these are |FQA(H)I and |FOA(H)I )· Then, by using
the calculated value of the nuclear amplitudes n F e and
fipe for the corresponding energy values, it is possible
by means of the geometrical construction shown in Fig. 3
to determine the structure-factor phase Ψο uniquely.

d) Diffraction in magnetically ordered crystals. If
magnetic fields act on the MOssbauer nuclei in a mag-
netically ordered crystal, the differential cross section
for scattering of unpolarized radiation is given by Eq.
(3.1a), in which τ is the reciprocal-lattice vector with
inclusion of the magnetic structure of the crystal, and
the remaining designations are the same as above. The
diffraction pattern in this case is similar in its general
features to the diffraction of neutrons in magnetically
ordered crystals. Therefore the magnetic structure of
the crystal can be determined from data on MOssbauer
diffraction, exactly as in the case of magnetic neutron-
ography.

While the possibility of determining the phase of the
structure factor is quite obvious as a result of the fact
that the phase of the nuclear scattering can be changed
by means of the Doppler effect, the possibility of deter-
mining the magnetic structure of the crystal is not at all
obvious at first glance. In fact, in a magnetically ordered
crystal, for example, at not too low temperatures there is
ordering of the atomic spins, but the nuclear spins are
completely unordered (Fig. 4). It therefore seems strange
how diffraction of γ rays in a system of unordered nuclei
can provide information on the existence of magnetic or-
der in the crystal. The case of very low temperatures,
at which ordering of the nuclear spins is achieved, is
another matter.Ce8]

However, this possibility actually exists and is due to
the low energy width of the MOssbauer line Γ ~ 10Γ8 eV,
which leads to a preferential participation in the scat-
tering of nuclei with a definite spin orientation relative
to H, and the coherent amplitude turns out to be depen-
dent on H. For example, in the case of complete reso-
lution of the Zeeman splitting, for coincidence of the
y-ray energy with the energy of one of the Zeeman tran-
sitions Emm'> the scattering occurs essentially only
through this one transition. This means that in reson-
ance scattering only nuclei with a spin projection m on
the magnetic field direction take part, while nuclei with

FIG. 4. Illustration of the disorder in orientation of nuclear mo-
ments (small arrows) in a crystal with ordered atomic moments (heavy
arrows).
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other values of spin projection play practically no part
in the scattering. However, in view of the fact that the
nuclear spins are oriented chaotically, on the average
only one of 2j + 1 MBssbauer nuclei takes part in the
scattering. This leads only to a decrease in the coherent
amplitude by a factor 2j + 1 in comparison with the case
of complete ordering of the nuclear spins, but the dif-
fraction pattern remains qualitatively the same as for
ordered nuclear spins.

Strictly speaking, MSssbauer diffraction provides
the possibility of direct determination of the nature of
ordering of magnetic fields in Mussbauer nuclei. How-
ever, since the nature of the ordering of magnetic fields
in nuclei is determined by the ordering of the atomic
angular momenta in the crystal, we will discuss the
MOssbauer determination of the magnetic structure in
the generally accepted meaning of this word. As will be
shown below, information on the magnetic structure of
the crystal is given not only by the set of observed mag-
netic maxima and their intensity, but also by the polari-
zation of the radiation in the diffraction peaks. From the
discussion of the Mo'ssbauer scattering amplitude given
above, it follows that Eq. (3.1) describes both crystal-
line diffraction peaks determined by the crystalline unit
cell of the crystal, and the magnetic peaks determined
by the magnetic unit cell. It should be noted that, in view
of the extremely weak dependence of the Rayleigh scat-
tering amplitude on orientation of the magnetic moment
of the atom1™1 (in what follows we will completely neg-
lect it), the magnetic diffraction peaks receive contrib-
utions practically only from nuclear scattering and con-
tain no interference of nuclear and Rayleigh scattering.
In the crystalline peaks there is a contribution of both
Rayleigh and nuclear scattering and therefore the inter-
ference of these two forms of scattering appears in them
to the full extent.

e) Polarization characteristics of scattering. In this
section we will present general expressions relating the
polarization characteristics of the scattered radiation
with the magnetic structure of the crystal, and also with
the polarization, energy, and energy width of the scat-
tered y-ray line. For this purpose we will write out the
differential cross section for scattering of polarized
radiation

^ • ^ ' ' ' ' ' - ^ l ^ f r , e; k', e')pa(k-k'-T), (3.4)

where the designations are the same as above. Expres-
sion (3.4), as a function of e' reaches a maximum for
some value e ' =n(,. The vector n6(e) is the polarization
vector of the scattered radiation, and the cross section
corresponding to it

Ar(k, e; k', nj) da (k. c; k')
da,.. da,..

is the differential cross section for scattering of a γ
ray with a polarization vector β. Introducing the co-
herent-scattering tensor T^j for the unit c e l l [ e ] , which
is related to the structure factor by the expression

F (k, e; k', e') = £ e?Tikeh = e'Te, (35)

we obtain the following expression for ηό(β):

n'(e) = 7!e|7ie|-', (3.6)

where the symbol T e indicates a vector whose k-th

for the vector no below for some special cases. The cross
section for scattering of unpolarized radiation is ex-
pressed in terms of dff(ke; k') by the relation

da da(k. e,-; k')
dQ._, (3.7)

where the summation is carried out over two mutually
orthogonal polarization vectors ej. The scattered radia-
tion in this case turns out to be partially polarized, and
its polarization matrix is

P= 2 PW(e,))
• =1. 2

da (k. e;; k')
^ [ Σ

* j ( k . e; k ' ) η - ι
(3.8)

In Eq. (3.10), p(e) is the polarization density matrix of
a photon163] with polarization vector e whose matrix ele-
ments are given by the formula

where ej are the coefficients in expansion of the polari-
zation vector in the polarization basis vectors. For
example, from Eq. (2.4), ei = ismotme^A<p, e2

= cos a M e M * 1 .

In the case of partially polarized radiation with a
degree of polarization P, the scattering cross section
is represented in the form

/ da \ .. „. da JJ da (k, e; k')

\Ίαζ7)ρ-
(1~ι>Ί^; + ^ χίζ. · (3.10)

where e is the vector of the polarization partially repre-
sented in the radiation. The polarization density matrix
of the scattered radiation turns out to be

The formulas given above for polarization and cross
sections refer to scattering of monochromatic γ rays.
In view of the resonance nature of nuclear scattering,
these expressions are rapid functions of the y-ray
energy Ey. In order to take into account the finite width
of the initial radiation line, expressions (3.8) and (3.11)
must be integrated over energy with a weighting factor
I(E) which describes the shape of the initial radiation
line.

For example, the polarization density matrix Pp
with inclusion of the finite width of the line is given by
the expression

nE)(daiditt.)p9p{E)dE

component is j . We will give an explicit expression

(3.12)

Here we have introduced into the quantities defined
above an argument E, in order to emphasize their de-
pendence on energy. Since, as a result of the interfer-
ence of Rayleigh and nuclear scattering in the crystal-
line peaks, Pp is a function of E y , it follows from Eq.
(3.12) that for these peaks, even in the case of com-
pletely polarized incident radiation, the scattered radi-
ation turns out to be partially polarized. In the nuclear
peaks, where pp does not depend on Εγ, in the case of
polarized incident radiation ρ corresponds to completely
polarized scattered radiation.

The general structure of the cross section for scat-
tering of unpolarized radiation in a magnetically or-
dered crystal and its energy dependence, as before, can
be represented in the form of Eq. (3.3). However, in
this case the nature of the dispersion curves determined
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by the third term in Eq. (3.3) turns out to depend on the
type of magnetic ordering in the crystal, the Zeeman
transition through which the scattering mainly occurs,
and the orientation of the magnetic fields in the MSss-
bauer nuclei. This follows directly from the correspond-
ing dependences of the coherent amplitude (see Eq. (2.8)).

f) Completely resolved Zeeman splitting of the
Mussbauer line. We will now consider the explicit form
of the general expressions given above for the case of
several types of magnetic ordering in crystals. For
simplicity we will assume that the Zeeman splitting in
the crystal is much greater than the line width of the
scattered radiation and the MOssbauer line width in the
crystal, i.e., the nuclear scattering occurs through com-
pletely determined Zeeman levels of the ground and ex-
cited states of the nucleus. The differential cross sec-
tions for scattering of unpolarized γ rays for electric
dipole El and magnetic dipole Ml nuclear transitions
are determined by the following expressions:

1) Ferromagnetic crystals. In this case the magnetic
unit cell is identical to the crystalline unit cell and there
are no magnetic diffraction peaks. Using Eq. (3.1), we
obtain the following expressions for the nuclear and in-
terference components of the cross section. The nuclear
term is

The interference term <r®* is given by the following
expressions for the case of the transition multipolarities
listed:

a) for an Ml transition,

+M' (cos3 θ + cos* Θ' — sin*esin»8' sin2 Φ)1 He (AfifJ'Vf) ( 3 . 1 4 a )

—Μ (-i- sin 2Θ sin 2Θ' sin Φ + -~sin' θ sin* Θ' sin 2Φ ) Im {AEF^'F") \ ;

b) For an Ml transition,

+ 2Λ/' cos θ cos Θ' Re (bEF%*FR) — Μ sin θ sin Θ' sin Φ Im (AEfJ'V J)],
(3.14b)

where
W - ' " k " | t ' 1

8Γ(2; + 1)

where the summation is carried out within the unit cell
only over the MOssbauer nuclei, ΔΕ = E y - E m m '
+ (ΐΓ/2), Φ = φ - φ ' is the difference in the azumithal
angles of the vectors k and k' (the Ζ axis is directed
along the magnetic field; see Fig. 2), and the remaining
designations are the same as above.

Equations (3.14) show that the explicit form of the
interference term depends on the crystal structure and
is different for the different lines of the MOssbauer
spectrum. The interference term is different also for
electric and magnetic types of dipole nuclear transi-
tion. The latter difference is due to the fact that Ray-
leigh scattering is electric dipole, and therefore the
result of its interference with nuclear scattering turns
out to be different for El and Ml transitions. The de-
pendence noted of the form of the interference term on
the transition multipolarity can in principle be used co
determine the type of nuclear transition.

2) Antiferromagnetic crystals. The magnetic field

in the nuclei takes on two values, Η and - H . At a mag-
netic maximum in expression (3.1) only the nuclear term
is different from zero,

°S= ^Τ'ΓΑΕΙ' 1 ' 2 I^Hfl(cos29 + c 0 5 '9 ' + s i n ' B s i n ' 9 ' sin'®), (3.15)

where f$ = S e ^ 8 " * ' r 1 , and the summation is carried
out within thffunit cell over nuclei located in a field H.

The nuclear term for the crystalline peaks is

· "I [i-(-i)M«-o'

+ 2 sins θ sin' 8' He ^ ^

(3.16)

The interference term for El and Ml transitions is
given respectively by expressions (3.14a) and (3.14b) if
the expression under the Re sign in them is replaced by
AEFR(Fjj + F ? H ) > and the expression under the Im sign
is replaced by AEF R (Fg*-fN£).

We note that for Μ = 0, as shown by Eq. (3.15) there
are no magnetic peaks. This result turns out to be in-
dependent of the transition multipolarity and is due to
the fact that in this case the Mussbauer scattering amp-
litude does not change on replacement of Η by - H .

As follows from the general discussion, the polari-
zation characteristics of the radiation scattered in the
diffraction peaks depend on interference of nuclear and
Rayleigh scattering and, in particular, depend on the
ratio of the corresponding structure factors and the
shape of the MSssbauer radiation line. Therefore we
will limit ourselves to presenting the explicit form of
the polarization density matrix only for the nuclear
diffraction peaks, for which the Rayleigh structure fac-
tor goes to zero, and the energy averaging (3.12) does
not change the form of the polarization density matrix.

We have given below the polarization characteristics
of radiation in the magnetic peaks in the case of an anti-
ferromagnetic crystal. The corresponding polarization
density matrix, as follows from the remark made above,
is the same over the entire width of the Mo'ssbauer line.
In the case of polarized primary radiation with a polari-
zation vector e we find for the polarization vector of the
scattered radiation from Eq. (2.8), (3.5), and (3.6)

Ν = η, (k') («η? (k)) - nf (k') (en, (k)). (3.17)

For unpolarized incident radiation the polarization mat-
rix is determined by Eq. (3.8) and, for Ml transitions
in the basis vectors given by Eq. (2.5) (for the k' direc-
tion), has the following Stokes parameters:

sin' θ sin» 8' 3ϊη2Φ
' 2 1 ~cos '8 + cos'8' + sin»8sin»8'sin'®'

cos» 8' —cos' 8—sin' 8 (1 + cos' 6') sin' Φ
l a ~ cos»8+cos!8' + sin»8sin»8'sin»®

(3.18)

The degree of polarization of the scattered radiation is

To obtain the corresponding expressions in the case
of an El transition it is sufficient to change the signs of
ξι and ξ2. The density matrix (3.18) is real. Physically
this means that in the scattered radiation linear polari-
zation is partially represented. The corresponding po-
larization vector forms with the basis vector χί an angle
e determined from the relation e = (1/2) arctg (ξι/ξβ)
+ (ir/4)(l -sign ξι). For ξι = 0 the density matrix is dia-
gonal in the basis vectors used and the scattered radia-
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tion is partially polarized along one of them (for ?3> 0,
along χί, and for ξ3 < 0, along χί); for ξι = ξ3 = 0 the
radiation is unpolarized. In particular, the radiation is
polarized along one of the basis vectors χί, χί if the mag-
netic field lies in the scattering plane or perpendicular
to it. In the first case the degree of polarization is
Ρ = I cos2 θ -cos 2 θί\ χ (cos2 θ + cos2 Θ)'1, and in the
second case the radiation is completely polarized.

It should be noted that in the case considered the po-
larization density matrix of radiation scattered in the
magnetic peaks in an antiferromagnetic crystal does
not depend on the crystalline structure and is determined
only by the magnetic structure of the crystal. Therefore
on the basis of the polarization density matrix (3.20)
measured at a magnetic peak it is possible to determine
uniquely the orientation of the antiferromagnetic axis in
the crystal. The polarization of the radiation in the crys-
talline peaks depends both on the magnetic structure and
on the crystalline structure of the antiferromagnetic
crystal. Therefore polarization measurements can be
used to obtain information on the crystalline structure/ 7 1 1

Inclusion of absorption^72'731, and also the results of a
similar discussion of diffraction in more complex mag-
netic structures and polycrystalline materials and spe-
cific compounds, are given in refs. 49, 50, and 74.

g) Crystals containing Mossbauer nuclei in sites
with a nonuniform electric field. In the case of diffrac-
tion in crystals containing Mossbauer nuclei in sites
with a nonuniform electric field, as a result of the de-
pendence of the coherent nuclear amplitude on the elec-
tric field gradient, the intensity of the diffraction peaks
and the polarization of the radiation in them contain in-
formation on the electric field gradient and can be used
in structure research.1-*21 This information can be par-
ticularly useful in study of phase transitions accompan-
ied by small distortions of the crystalline unit cell, which
are difficult to detect by traditional diffraction methods,
for example, in the case of segnetoelectric transitions.
We will not dwell in detail on this case [ 4 2 ] but will limit
ourselves to discussion of diffraction in crystals for
which there are quadrupole diffraction peaks, which are
absent in scattering of radiation of other types/4 8 1 Just
as the dependence of the scattering amplitude on mag-
netic field leads to the existence of magnetic diffraction
peaks, a consequence of the dependence of the Mossbauer
scattering amplitude on the orientation of the principal
axes of the electric field gradient tensor turns out to be
the existence in Mo'ssbauer scattering of quadrupole dif-
fraction peaks, which are forbidden by the crystalline
space group. Quadrupole diffraction peaks exist for crys-
tals in which Mfissbauer nuclei located at crystallograph-
ically equivalent positions are acted on by electric field
gradients differing in the spatial orientation of their prin-
cipal axes. The dependence of the Mossbauer amplitude
on the orientation of the electric field gradient tensor
axes makes Mossbauer nuclei located at equivalent crys-
tallographic positions nonequivalent in scattering (Fig.
5), which also leads to appearance of diffraction peaks
forbidden by the crystalline space group. For the struc-
ture factor (3.3) this means that there exist reciprocal-
lattice vectors τ for which F ^ / 0, while F ^ = 0 for
reasons of symmetry. As an example of such a structure,
we can mention sodium nitroprusside, in which quadru-
pole peaks were observed experimentally for the first
t ime. [ 5 2 ]

We note that nonequivalence similar to that discussed
above in the scattering of atoms located at equivalent

FIG. 5. Schematic illustration of the
nonequivalence in scattering by nuclei
occupying crystallographically equiva-
lent sites 1, 2 (3, 4). The principal axis
of the electric field gradient tensor
coinciding with the diagonal of the unit
cell at sites 1, 2 (3, 4) is oriented differ-
ently, as a consequence of which the
nuclear resonance scattering amplitudes
for these sites are different.

crystallographic positions may be due to anisotropy of
thermal lattice vibrations. In this case there exist dy-
namical diffraction peaks forbidden by the crystalline
space group/ 5 2 ' 7 5 1

4. DYNAMICAL THEORY OF MOSSBAUER
DIFFRACTION

a) The system of dynamical equations. In the previous
section we discussed Mossbauer diffraction in the kine-
matic approximation. This approximation is applicable
for a quantitative description to thin crystals with a
thickness L < V/ac o n, where c c o n is determined by Eq.
(2.11) and V is the volume of the crystal unit cell. This
means, for example, that in the case of tiie 14.4-keV
transition in Fe5 7 for 100% content of the Mossbauer
isotope in the crystal at the exact resonance, L ~10~4

cm. On departure from the exact resonance and reduc-
tion of the concentration of the Mo'ssbauer isotope, L
increases as

ι t
"*" 2

for the natural content of the Mo'ssbauer isotope (p
= 0.025) at the exact resonance, L turns but to be of
the order 10~2 cm.

In the general case, for quantitative description of
the diffraction pattern it is necessary to take into ac-
count multiple scattering and the attenuation of the
y-ray beam as it is propagated through the crystal.
These factors are taken into account by the dynamical
theory of diffraction. The dynamical theory not only des-
cribes quantitatively diffraction by perfect crystals, but
also leads to a number of qualitatively new results which
are absent in the kinematic approximation. Among these
are the suppression of inelastic nuclear-reaction chan-
nels in propagation of γ rays in a crystal in the case
where the Bragg condition is satisfied (the Kagan-Afan-
as'ev effect), oscillations with thickness of the intensity
of the γ rays which have passed through the crystal
(Pendellosung), and so forth. These effects have direct
analogies in x-ray diffraction, but, as a result of the
specific nature of the interaction of Mossbauer γ rays
with nuclei, their appearance in Mossbauer diffraction
has important features. For example, the suppression
of inelastic nuclear-reaction channels turns out to be
independent of the crystal temperature, while the cor-
responding x-ray analog, the anomalous transmission
of χ rays (the Bormann effect) has a strong temperature
dependence.

The equation of the dynamical theory of Mossbauer
diffraction can be obtained both from classical1 2 2 ' 2 7 1

and quantum-mechanical considerations/2 5 ' 2 8 ] We will
give below a classical derivation of these equations,
referring those interested in the quantum derivation to
the references cited.
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The Maxwell equations describing the propagation of
y rays in a crystal we will write in the form

rotH= i - ^ , divD divH (4.1)

assuming a magnetic permeability μ = 1. Then, using
the relation between induction and electric field strength
written in the form 9D/9t = 8E/9t + 4irj where J is the
current density induced by the fields Ε and H, for the
Fourier components of Ε and j we arrive at the equation

(4.2)

As a result of the periodicity of the medium, the current
harmonic J(k, ω) is induced not only by the field har-
monic Ε (kto) but also by field harmonics with wave vec-
tors kr differing from k by any reciprocal-lattice vector
τ. Therefore, expressing j(k<<>) in terms of E(krw)> we
obtain from Eq. (4.2) an infinite system of linear equa-
tions for the amplitudes E(kw) and E(kT^), where kj.
= k + τ. As is well known, the amplitude E(k T

w ) turns
out to be of the same order as E(ko) if lkj-l =lkl; in the
opposite case it turns out to be small. We will further
assume that the condition |kT| s ~ lk| is satisfied for
the single vector kr and therefore the equations (4.2)
can be reduced approximately to a system of equations
of only two such amplitudes. This approximation is
called the two-wave approximation and is widely used
in the dynamical theory of x-ray diffraction/761 Thus,
limiting ourselves to two Fourier components E ^ and
Ejj2, where k2 = ki + τ, and using the smallness of the
nontransversality of the electromagnetic field in the
crystal, we arrive at the following system of two vec-
tor equations involving Ekt and

In the equations J4.3) ω/c = κ is the y-ray wave vector
in vacuum, and F is a vector operator whose elements
Fg*'^ describe the coherent scattering by the unit cell
of a y ray with wave vector kp and polarization μ into
a y ray with wave vector kg and polarization μ'. The
explicit form of the operator F we will discuss below.
The four solutions of the homogeneous system of two
vector equations (4.3) define four eigenconfigurations
of the field in the crystal near the Bragg condition,
i.e., n, n' are the eigenpolarization vectors of the waves
Ex = Efej, E2 = Ej^, and their wave vectors ki, k2 =ki +τ,
and also the ratio of the amplitudes Ei and E2. The gen-
eral solution of Maxwell's equations in the crystal
I(r, t) is represented by a superposition of the eigen-
solutions:

I(r, t) = Σ Cp [np£?exp (ikfr) + np£? exp (ikfr)] exp ( - tat). (4.4)
ρ

where Cp are the expansion coefficients of the field in
the crystal in the eigensolutions, and the index ρ takes
on values from 1 to 4 and enumerates the eigensolutions.
The coefficients Cp in Eq. (4.4) and the values of the
wave vectors kP of the waves excited in the crystal are
found by means of the boundary conditions.

The difference of the system (4.3) from the corres-
ponding equations of the dynamical theory^ of x-ray dif-
fraction lies in the form of the operator F. Specifically,
for Mo'ssbauer diffraction it is necessary to add to the
expression for F in the x-ray case[ 7 6 l

( which describes
the scattering of photons by electrons, a term associated

with nuclear scattering. Thus, in Eq. (4.3) we have F
= pR + pN^ where F R and F^ are its parts associated
with Rayleigh and nuclear resonance scattering, res-
pectively. The nuclear component F** is determined by
the coherent amplitude of nuclear scattering122'29'461

and is related to the coherent-scattering tensor of the
unit cell, introduced and used above (3.5), by the relation

*?-&«•·,. (4.5)

where ρ and s denote the directions of propagation of
the incident and scattered y rays, and μ and μ' are the
polarization indices corresponding to them.

We will begin our analysis of the system of dynamical
equations withthe simplest assumption as to the form
of the tensor T, which is realized in the case of an un-
split MOssbauer line.

b) Unsplit MiSssbauer line. In this case in the polari-
zation basis vectors π and σ the operator F^p^ is diag-
onal in the spin indices μ, μ' and by means of Eqs. (3.3)
and (4.5) can be represented in the form

±L
Vk»

(4.6)

where F^ is the nuclear structure factor defined by
Eq. (3.4).

The explicit form of the polarization factor P^ for
dipole nuclear transitions follows from Eq. (2.9) and
is given in the explanations of Eq. (3.4).

In the case considered, the solutions of the system
(4.3) are completely analogous to the corresponding
solutions for χ rays. Specifically, the eigenpolarizations
are the polarizations η and σ and the system of vector
equations breaks up into two uncoupled systems of
scalar equations which determine ki, k2, and Ei/E2 for
the σ and π polarizations:

( 4 ' 7 )

where the index μ takes on two values corresponding to
<r and π polarizations and F ^ is the sum of the Ray-
leigh[76] and nuclear (4.6) terms.

The condition of solubility of the system (4.7) (equal-
ity to zero of its determinant) for each eigensolution
determines the region of values of ki and k2 compatible
with the Bragg condition (3.2) and satisfying Maxwell's
equations. These regions in k space, according to the
number of eigensolutions, form four so-called disper-
sion surfaces.176'1141 Each point of a dispersion surface
corresponds to a value of Έ2/Έι. In the case discussed
two eigensolutions of the system (4.7) correspond to
each polarization wand ir, i.e., two dispersion surfaces.
Thus, in contrast to the kinematic approximation, in the
dynamical theory the secondary diffracted wave exists
not for a single value of the angle between ki and fe,
but in some small interval of angles ΔΘ near the Bragg
condition. The size of the interval ΔΘ determines the
parameters characterizing the interaction strength of
the y ray with the crystal,"761 i.e., F&.

In what follows we will not dwell on a detailed analysis
of the eigensolutions of the system (4.7) and the disper-
sion surfaces corresponding to them, but, following ref.
22, we will give a solution which immediately satisfies
the boundary conditions. For this purpose we will assume
that the crystal has the form of a plane parallel plate.
The wave vectors ki and k2 we will write in the form
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κ + k2 = kx + τ, (4.8)

where β is the inwardly directed normal to the crystal
surface, and £ is a small quantity. We will relate ki and
kz to the angle of incidence of the γ ray on the crystal
0i = ice « (kis). For this variation we will represent ki
and k2, in comparison with the vacuum quantity κ, in
the form

κ (1 + e,), kt

Ι ε, I,

κ (1 + ε2), ξ

e 2 | « l .

ε,/cos θ,,
(4.9)

Substituting (4.8) and (4.9) into (4.7), from the con-
dition of solubility of the system we find

(4.10)
±±r

where b = cos θι/cos θ2, 02 = (fos), δ = T(T + 2κ)/κ2.

The parameter δ is a measure of the deviation from
the Bragg condition.

The values of ex which have been found correspond to
the following ratio of the amplitudes of the waves in the
eigensolutions:

(4.11)

From Eqs. (4.10) and (4.11) it follows that |E2| VlEj2 ~1
in the region of angles Δθ ~ | F ^ | (for more details see
ref. 76).

The solution given for the system (4.7), like the solu-
tion of the corresponding system for χ rays, also in the
case of an unsplit Mdssbauer line, permits description
of all features of Mossbauer coherent scattering due to
the existence of resonance nuclear scattering.

In what follows we will discuss individually diffrac-
tion in a crystal in the Bragg case (primary and diffrac-
ted rays are on the same side of the entrance surface
of Fig. 6a) and in the Laue case (primary and diffracted
rays are on opposite sides of the crystal surface, Fig.
6b). To simplify the formulas, we assume that the crys-
tal surface is parallel (in the Bragg case) or perpendic-
ular (in the Laue case) to the reflecting plane of the crys-
tal or, as one says, symmetric cases of diffraction occur.
In the Laue case the boundary conditions have the form

0, g0 = 2 £>„£*, (4.12)

where i0 is the amplitude of the wave incident on the
crystal.

In the Bragg case the boundary conditions have the
form

2 CpnpEP = Ιο, Σ C^El exp (ikfsL) = 0, (4.13)
P , P

where L is the crystal thickness.

c) Suppression of inelastic nuclear-reaction channels.
Without writing out in explicit form the coefficients Cp
in the expansion (4.4), which are found from the boundary
conditions (4.12), we will analyze how the individual
terms of the expansion (4.4) are damped in space for
the symmetric Laue case (b = 1).

Far from the Bragg condition, |5| S> 1, the wave

A \
FIG. 6. Diagram of diffraction experiment in the Laue case (a) and

Bragg case (b).

amplitude E2 is negligible, and therefore the wave Ei
is propagated in the crystal.

The wave vector ki corresponding to it is determined
by Eq. (4.10) with the plus sign in front of the radical,
i.e., kj = K[1 + (l/2)Fn], The wave corresponding to the
minus sign in Eq. (4.10) is not excited in the crystal. t 2 2 ' 7 e l

The damping of the wave is determined by the imaginary
part of the wave vector ki. Far from the Bragg condition
it turns out to be equal to (l/2)«Im Fu. Neglecting in
this expression the damping due to the interaction of the
y rays with the electrons, we obtain for the intensity of
the wave as a function of its depth of penetration χ the
usual expression:

/~exp( — μχ), μ = (4.14)

where Wj. is the total resonance cross section for ab-
sorption of y rays in the crystal, determined by Eq.
(2.10).

Near the Bragg condition (|δ| < iFJJj) in the expan-
sion (4.4) in the general case all four eigensolutions are
represented. However, the damping of the different
eigenwaves in the crystal can differ substantially. The
damping of two of the eigenwaves can significantly de-
crease in comparison with the damping off the Bragg
condition and, for certain values for one of them, even
go to zero.

In order to convince ourselves of this, let us con-
sider the propagation of a wave in the crystal for a
value of the parameter Δ small in comparison with
IF&I:

Δ = — F21F12. (4.15)

In this case the upper of Eqs. (4.10) can be written ap-
proximately in the form

b—a
1 ~ TP^q

where the upper index in ei corresponds to the sign in
front of the radical in Eq. (4.10). As follows from Eq.
(4.16), the eigensolutions and the corresponding terms
in the expansion (4.4) corresponding to el have a damping
coefficient of the same order as Eq. (4.14), The second
pair of eigensolutions, corresponding to el, are damped
substantially more weakly, with an absorption coefficient
equal to

μ" = 2Im κε". (4.17)

This means that under the conditions discussed y rays
can penetrate through the thickness of the crystals sub-
stantially more than off the Bragg condition. This phe-
nomenon is well known in x-ray diffraction and is called
the Bormann effect. In Mossbauer diffraction it is known
as the suppression of inelastic nuclear-reaction channels,
or the Kagan-Afanas'ev effect. The physical nature of
the two effects mentioned is similar. Under diffraction
conditions the wave incident on the crystal is essentially
transformed so that the electromagnetic field in the crys-
tal is the coherent superposition of two plane waves. Here
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the phase relations of these waves are such that for the
two eigensolutions the minima of the electric or mag-
netic field strength (depending on the multipolarity of
scattering) occurs at the crystal lattice sites. This leads
to a decrease in the cross sections for inelastic pro-
cesses, the photoeffect in the atoms, and resonance ab-
sorption of y rays in the nuclei, and produces the ob-
served reduction in absorption coefficient.

However, as a result of the substantial difference in
the characteristic times of Rayleigh and nuclear res-
onance scattering, there is a qualitative difference in
the appearance of these effects. We recall that the time
of resonance scattering in a nucleus TJJ ~ 1(T7 sec is
substantially greater than the inverse frequencies of lat-
tice vibrations τρ ~ 10"" sec, while the time of Rayleigh
scattering by an electron is substantially less than τρ.
While it is possible to achieve a complete suppression
of inelastic reaction channels in the Kagan-Afanas'ev
effect, in the case of the Bormann effect complete sup-
pression of inelastic processes is impossible in prin-
ciple.

The condition of complete suppression of inelastic
processes is the simultaneous vanishing of μ~ for π
and σ polarizations. As follows from Eq. (4.10), this
is possible only for δ = 0 and Δ = 0.

In the case of scattering by electrons, vanishing of
A is impossible, since as a result of the ratio cited of
the characteristic times of lattice vibrations and the
scattering time the amplitudes F ^ contain Debye-Waller
factors, which for F§ (scattering at zero angle) are
identically equal to unity, and for F^,, i φ ρ, are always
less than unity. In the case of MOssbauer scattering as
a result of the slowness of the process the quantities
F?_ contain not Debye-Waller factors, but Lamb-MOss-
bauer factors in the form exp (-k^xjL >) exp (-kp(xL >),

whose product turns out to be identical for the two
terms in Eq. (4.15) and does not prevent a strict vanish-
ing of Δ. For example, for the case discussed of an un-
split MSssbauer line, complete suppression of inelastic
channels turns out to be possible (neglecting Rayleigh
scattering) for the σ polarization if the MOssbauer tran-
sition is electric dipole and for the π polarization if the
transition is magnetic dipole.[22]

The same ratio of the scattering times and inverse
vibration frequencies of the lattice also explains the
absence of a temperature dependence in the Kagan-
Afanas'ev effect and the strong temperature dependence
(decrease in anomalous transmission with increasing
temperature) for the Bormann effect. In the Rayleigh
case Δ actually increases with increasing temperature,
since the first term in Eq. (4.15) does not change, and
the second decreases with increasing temperature. In
the MBssbauer case a change in temperature does not
lead to a departure of Δ from zero, since the thermal
factors in Eq. (4.15) turn out to be identical for the two
terms.

It should be noted that since the suppression of in-
elastic nuclear-reaction channels appears in a region
of angles ΔΘ < | F12I near the Bragg condition, which
amounts to several seconds of arc, it is desirable for
experimental observation of this effect to use a y-ray
beam with collimation of the same order, and also crys-
tals of a high degree of perfection.122'35'"1

d) Bragg reflection from crystals. We will now analyze
the solution of the problem of diffraction reflection in the

FIG. 7. Theoretical angular dependence of Bragg reflection by a
perfect crystal for three values of the parameter ν = [ 2(Εγ — Eo) ] /Γ
(ref. 26). The variation in angle is characterized by the parameter
x = ( l / F I 1 - R e F I 2 P s ) ] .

symmetric Bragg case (b =-1). We will not write out
the expansion (4.4) for crystals of arbitrary thickness/281

but for the sake of simplicity we will limit ourselves to
thick crystals for which |L«Im (ef - e " ) | » 1. As for χ
rays, in this case only two eigenwaves will be represen-
ted in the expansion (4.4), the values of whose wave vec-
tors are determined128'2τ1 by the quantities e\ Therefore,
if the wave incident on the crystal has η (or σ) polariza-
tion, its coefficient of reflection from the crystal R is
determined simply by the ratio (4.11) for the eigensolu-
tion with JT (or cr) polarization corresponding to e+. Hence
it follows that if Δ = 0 for the eigenpolarization (see Eq.
(4.15)), then for some value of the parameter δ for this
polarization ]E2!

2/|Eil2 = 1, i.e., for the corresponding
angle of incidence, total reflection occurs. This fact is
the consequence of the complete suppression of the inel-
astic channels. In the x-ray case when inelastic proc-
esses are taken into account the ratio (4.11) does not
go to unity, in view of the fact that complete suppression
of inelastic processes does not occur and therefore a
loss in the intensity of radiation on reflection is un-
avoidable. However, in contrast to the x-ray case, in
which the absorption is small and the reflection coef-
ficient is practically constant in the region of diffrac-
tion reflection and falls off sharply to zero outside this
region, in the MOssbauer case the absorption is impor-
tant and the reflection curve has the form shown in Fig.
7. Since the sum of the nuclear and Rayleigh scattering
amplitudes and also the value of the absorption (the
imaginary part of the coherent amplitude) depend substan-
tially on the y ray energy, then, as can be seen from Fig.
7, the shape of the reflection curve also depends on the
value of the energy detuning from the exact resonance
condition.

Since the angular size of the region of diffraction
reflection is small and amounts to altogether about ten
seconds of arc, and experiments are usually performed
with y-ray beams with a divergence significantly greater
than this value, experiments usually observe the inte-
grated reflected intensity:

Λ Λ ι π in

(4.18)

In the transition to the second part of the equality
(4.18), the integration over angle is replaced in the usual
manner by integration over the parameter δ with use of
the relation άθ =-d5/2 sin 2ΘΒ, where 2ΘΒ is the scat-
tering angle when the Bragg condition (3.2) is satisfied.

Integration over δ in Eq. (4.18) with allowance for the
smallness of Δ (see Eq. (4.15)) leads to a result^261 simi-
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FIG. 8. Integral reflection coefficient for a perfect (solid curve) and
imperfect (dashed curve) tin crystal enriched to 100%, calculated for the
(200) (a) and (600) (b) reflections at a temperature of 77°K (ref. 26).

lar to the corresponding expression in x-ray diffraction
theory[76]:

where the value of β^1 is close to unity.

Let us consider the characteristic features of MSss-
bauer diffraction, which are due to the strong dependence
of the amplitude Fj^ on y-ray energy. In the case of pure
nuclear scattering, for example, it follows from expres-
sion (4.19) that for large detunings ν = (Ey -Εο)/Γ the
reflection coefficient is R ~ 1/1 vl. This means that the
dependence of the integrated reflection on ν for a thick
crystal turns out to be non-Lorentzian, and the energy
width of the corresponding curve increases significantly
in comparison with the case of a thin crystal, in which
for lv| » lwe have R ~ l/|v|2. The quantity F^ in Eq.
(4.19) also contains a smooth dependence on y-ray en-
ergy and changes somewhat with change of the para-
meter v. The explicit form of this dependence has been
given in ref. 26.

The appearance of interference between nuclear and
Rayleigh scattering is characteristic for the reflection
curve (see Fig. 7) and the integrated reflection coeffi-
cient. However, the interference of nuclear and Rayleigh
scattering appears most clearly as a function of the de-
tuning in the integrated reflected intensity (Fig, 8).

The formulas and illustrations presented above refer
to diffraction in an ideal crystal. If a crystal possesses
a significant mosaic structure, the energy dependence
of the scattering changes.1261 For example, for a small
secondary extinction the reflection coefficient from a
thick mosaic crystal is given by the expression[2°»26]

where the absorption coefficient μ is defined by Eq.
(4.14) and δ is the characteristic misalignment angle of
the blocks in the crystal. Without going into a detailed
analysis of the case of mosaic crystals, which can be
described in terms of the kinematic approximation/771

we will point out that the nature of the change of the
interference pattern in comparison with the case of
ideal crystals is illustrated by Fig. 8.

e) Elgensolutions of the dynamical system In the
case of hyperfine splitting of the M6ssbauer line. With
the existence of hyperfine splitting of the Mossbauer
line in a crystal (below for definiteness we will speak of
magnetically ordered crystals), in the general case the
system of dynamical equations (4.3) does not reduce to
a system of two scalar equations for the amplitudes with

known eigenpolarizations. Different eigenpolarizations[78]

np and np now correspond to each of the four solutions
of the system (4.3). The eigenpolarizations (the vectors
np and np) depend on the magnetic structure and do not
remain constant within the diffraction region, but change
with the degree of departure from the Bragg condition.
Off the Bragg condition they go over to me eigenpolari-
zations for direct transmission.[58] In addition to the de-
pendence of the eigenpolarizations on the angle of inci-
dence of the y ray on the crystal, in this case there is
also a sharply expressed dependence of the eigenpolari-
zations on the y-ray energy. In the limit of large devia-
tions of the y-ray energy from the resonance energy,
when nuclear scattering can be neglected, the eigenpo-
larizations go over to the x-ray π and σ polarizations,
and the specific properties of MSssbauer diffraction in
magnetically ordered crystals disappear.

Thus, the nature of the diffraction pattern for mag-
netically ordered crystals is more complicated than
the case selected above of crystals without magnetic
ordering. Qualitatively new effects appear which are
absent in diffraction for an unsplit MOssbauer line. For
example, complete suppression of inelastic nuclear
processes'"79"911 turns out to be possible. The complica-
tion is mainly due to the polarization properties of the
eigensolutions of the system (4.3).

In addition to the dependence noted above of the scat-
tered radiation polarization on the magnetic structure
of the crystal, a difference in the polarization properties
of the eigensolutions appears in the pendulum solution
(Pendellosung). In a magnetically ordered crystal the
pendulum solution in the general case (as a result of
the nonorthogonality of the eigenpolarizations) gives six
periods of beating of the intensity of the primary and
secondary waves with the thickness of the crystal, in
contrast to the two periods observed for χ rays.

The general structure of the solution of the diffrac-
tion problem in the case discussed is also presented by
Eq. (4.4). In order to find the explicit form of this ex-
pansion, it is necessary to specify the boundary condi-
tions. We will assume that the crystal is a plane-parallel
plate. As in the case of an unsplit line, using the rela-
tion between ki and k2, Eqs. (4.8) and (4.9), imposed
by the boundary conditions, from Eq. (4.3) we will
uniquely determine all parameters of the four eigenwaves
excited in the crystal for a given angle of incidence of the
primary wave on the crystal surface. The four values of
the parameter ei which determine the wave vectors of
the eigensolutions are given by the roots of the equation

άβΐ[ε-1έ(ί·-6)]-0, (4,21)

where the four-row matrices b and $ are expressed in
terms of the parameters b and δ (see Eq. (4.10) by the
relations: b ^ = δ^ if i £ 2, b^- = b6ik if i > 2, ( )
= 0 if i < 2, and (%£ = δδί1ε if i > 2.

• For what follows it is convenient to assume that the
eigensolutions in expansion (4.4) are normalized by the
condition |Ef| = 1 and represented in the form

E? = n, = α1ρχ, + α,,χ,. Εξ = Βρη? = α3Βχ, + αίρχν,

(4.22)

where χι and χ{ are the polarization basis vectors (for
directions 1 and 2, respectively) in which the matrix
F is written. The quantities a i p are expressed in terms

279 Sov. Phys.-Usp., Vol. 18, No. 4 V. A. Belyakov 279



of the matrix elements F, the eigenvalue of Eq. (4.21)
€p, and the parameters δ and b by the relation

d(e.p) = spE-±b(F-&), (4.23)

where Dy is the cofactor of the element dj^ of the mat-
rix d(ep) defined in Eq. (4.23), and C is a normalization
coefficient. Consequently, the coefficients for expansion
of the amplitudes of the field in the eigensolution in the
polarization basis vectors are expressed in terms of
the cofactors to the elements of any row of the matrix
d(ep). For definiteness we will assume below that they
are expressed in terms of the cofactors to the first row.
Representing the eigenpolarization vectors in the gene-
rally accepted form:

n p = (cos α ρ χ 2 + e'pp sin α,,χ,) e tT|i>,

n'p = (cos aftt + e'"? sin aft,) e"1?,

we obtain the following expressions for the parameters
α, β, ana η:

β * " Ρ = Ι

' ~ «.ρ

(4.25)

The polarization properties of the eigenwaves, the
values of Bp, and their dependence on the parameter δ
(the angle of incidence) determine all the features and
polarization dependences of diffraction in magnetically
ordered crystals. In particular, far from the Bragg
condition (large |δ|) it follows from (4.22M4.23) that
the amplitude of the secondary wave approaches zero,
and the eigenpolarizations np, as should be the case,
coincide with the eigenpolarizations for direct traver-
sal. 1 ^

f) Solution of the boundary-value problem. If a wave
whose polarization vector is e = c o s c ^ n-e^sinaxi is
incident on a crystal, then in the Laue case (b > 1) we
find for the intensity of the radiation which has passed
through the crystal in the primary and secondary direc-
tions, from Eq. (4.4) and utilizing the boundary conditions
(4.12)/821

I, (e) = Σ I Cp (e) |21 Vp I2 + 2 Re Σ cv (e) tt (e) TsV* (η*»».
P=l p»i

/« (e) = Σ ' Cp (e) |21 yp |2 B'p + 2 Re Σ Cp (e) CJ (e) Β ^ γ , γ ί
(4.26)

where Cp(e) = &Lp(e)/AL, ^L is t n e determinant of the
matrix ayj (see Eq. (4.23)), ALp(e) is the determinant ob-
tained from AL if in its p-th column we set a j p

= e^sin a, a2p = cos a, a3p = a4p = 0; yp = exp (iepKL/2
cos (KS)); L is the crystal thickness.

The polarization vectors of the radiation which has
passed through the crystal are determined by the re-
lations

( 4 · 2 7 )

beats appear for a change in the y-ray energy as a result
of the dependence of the amplitudes and consequently also
the differences ep - e p ' on energy. As follows from Eq.
(4.26), the eigenwaves, which correspond to the zero
roots of Eq. (4.21), are propagated through the crystal
without damping, i.e., for the eigenwaves there is a com-
plete suppression of inelastic channels. In the case of
resolved hyperfine structure of the Mossbauer spectrum,
neglecting Rayleigh scattering, the complete suppression
effect can be realized for two eigensolutions/791 i.e.,
absorption can be absent for radiation of any polarization.
However, as a result of the fact that in reality there is
always an interaction of the γ rays with electrons, a com-
plete suppression of inelastic processes is never achieved,
and a small but finite absorption can occur, of the same
order as the anomalous absorption of x rays.

In the case of an unpolarized primary beam, we obtain
for the intensities of radiation which has passed through
the crystal, from Eq. (4.26),

(4.28)

where Δ^ρ = ^ L P for α = 0, Δ^Β = Δχ,ρ for α =ir/2,
β = 0.

Beams which have passed through the crystal turn
out to be partially polarized and are described the fol-
lowing polarization density matrices:

J = l , 2

= ̂  Σ Mx.)P(Mx·)).
(4.29)

As follows from Eqs. (4.26) and (4.27), the intensities
and polarizations of the radiation in the primary and
secondary directions undergo beats with the crystal
thickness, the Pendellosung effect. In contrast to x
rays, for which there are two beat periods, in Moss-
bauer diffraction, as a result of the nonorthogonality of
the eigenpolarizations, in the general case it is possible
for six beat periods to occur, on the basis of the number
of different values of the quantities e p - e p ' , ρ f- p', which
determine the beat periods. For a fixed crystal thickness,

where p(e) is defined in Eq. (3.9).

Equations (4.26)-(4.29) assume that the angle of in-
cidence and energy of the primary beam are strictly fixed.
In a real situation the primary beam has a finite angular
and energy width and detection of the secondary beams is
accomplished with finite angular and energy resolution.
Therefore the observed quantities are described by ex-
pressions obtained from Eqs. (4.26)-(4.29) by means of
appropriate averaging. Thus, in a typical experimental
situation with an angular divergence of the primary beam
and angular size of the detector significantly exceeding
the angular size of the region of diffraction reflection, the
observed quantities turn out to be those obtained from
Eqs. (4.26M4.29) by integration over the parameter δ.
Integration over δ of the expressions (4.27) leads to the
result that, even for a completely polarized primary
beam, the result of polarization measurements is des-
cribed by the polarization matrix corresponding to a
partially polarized beam:

- J I, (e, δ) ρ ' ( M e , 6» db - J IR <e, δ) ρ ( n B (e, 6)) db . .
Pi(e)=-i , PB(e) = - , .(4.30)

\ It (e, &) d& J ' H (e, δ) db

In a similar way (see Eq. (3.14)) averaging is carried
out over energy with inclusion of the line shape of the
primary beam, the scatterer, and if necessary the
detector (for a resonance detector).

In the Bragg case (b < 0) for the coefficients Cp in
the expansion (4.4), using the boundary conditions (4.13),
we find
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Cp(e)--

^11 012 ^13 #14

<hl "S2 «23 «24

Y4O44

. (4.31)

The determinant Δηρ(β) is obtained from Δβ in the
same way as ALp(e) is obtained from AL (see Eq.
(4.26)), and the remaining designations in Eq. (4.31)
are the same as above.

The intensity and polarization of the radiation which
has passed through the crystal It(e) and nt(e), as before,
are determined by the first relations in Eqs. (4.26M4.30),
but with coefficients C p determined by Eq. (4.31). The
determinants Δ^ now entering into Eq. (4.28) are related
to Δ Β ρ in the same way as Δ^ ρ is related to A L p .

The corresponding quantities for radiation reflected
from a crystal are described by the expressions

polarizations n t and n 2 . In this case the reflection curves
of waves whose polarizations coincide with the eigenpo-
larizations a r e described by the angular dependence of
the quantities Bi and B 2 . Here it is necessary to have in
mind that, generally speaking, the eigenpolarizations
change along the reflection curve. Since in the general
case the eigenpolarizations nl and n 2 a r e not orthogonal,
the reflection curve for unpolarized radiation is not
simply one half the sum of the curves for ni and ήί, but
contains also an interference addition. Here the reflec-
tion coefficient takes the form

Exactly as in the Laue case, the intensities and polari-
zations of beams which have passed through the crystal
and which have been reflected undergo beats with change
of crystal thickness and y-ray energy. However, the beam
amplitude is damped with crystal thickness much more
rapidly than in the Laue geometry, since in the Bragg
case the imaginary additions to the wave vectors in the
crystal, generally speaking, turn out to be large. The
integral characteristics are described by expressions
completely similar to Eqs. (3.14), (4.18), and (4.30).

g) Diffraction reflection from thick crystals. The for-
mulas given above are valid for arbitrary crystal thick-
ness. In the limiting cases they are substantially simpli-
fied. In the case of thin crystals ImkPsL « 1 ( p = l , 2 ,
3, 4) Eqs. (4.32)-(4.34) go over, for example, to the ex-
pressions of the kinematic theory. For thick crystals
ImkfsL 3> 1 in the Bragg case, of the four eigenwaves
in the crystal, only two are excited, which have maxi-
damping. The contribution of the two other eigenwaves
to the solution (4.4) turns out to be exponentially small.
Assuming that the maximum damping occurs for the
eigensolutions 1 and 2, for coefficients C p which have no
smallness, we obtain from Eq. (4.31) the expressions

C,(e)

, (e) = -

e1^ sin ctfloo — cos ααΐ2

setiiii— el$ sili aatx

(4.35)

which are identical with the expansion coefficients of the
incident wave amplitude in the basis vectors of the eigen-

FIG. 9. Appearance of reflec-
tion curve of an unpolarized
beam for a perfect magnetically
ordered crystal in the absence of
absorption (solid curve) and with
inclusion of absorption (dashed
curve). In the absence of absorp-
tion the angular intervals for
which δ ι < δ < δ 2 , δ 5 < δ < δ 6

correspond to selective reflection of one of the eigenpolarizations, and
the interval δ4 < δ < δ5 corresponds to total reflection of any polariza-
tion.
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R = i (1 - 1 «t>>i I2)"1 BI-2 Re (nJO (n;ua) BtB2]. (4.36)

The polarization density matrix of the scattered radia-
tion is described by the expression

p = A {B'ip (n;) + B\p (r.;) -BtB, [«n2) ρ (12) + (η·η,) ρ (21)]}, (4.37)

where the matrices p(ik) are given by the relations
p(ik)pq = (nj)n fakOq; A is a normalization factor. The
matrix (4.37 f corresponds to a degree of polarization
of the scattered radiation

β}+Βί-2Β,Β, Re [(nfiij) (n£n;·)]
(4.38)

The vector of a polarization partially represented in the
scattered radiation in the basis vectors χί and χί (see
Eq. (4.24)) is determined by parameters <* and β which
satisfy the relation

4 <4·39>
where

·Η Ρ - 1 na |») + B\(\ n'a f - 1

D = B\nnn*

-2B,fiaRe(nfna) [„;,«,;-n\,n*))r

* - B,B3 [(nfn.) nnn£ + (njn,) ntln·],

and n p e is the projection of the vector np on the e-th
polarization basis vector. From Eqs. (4.36) and (4.37),
as in the previous section, it is possible to obtain char-
acteristics which are integral in the angle of incidence
and energy of the γ rays.

Using expressions (4.35)-(4.39), we can analyze the
general nature of the dependence of the reflected radi-
ation intensity and its polarization on small changes in
the angle of incidence near the Bragg condition.1-821 For
definiteness we will assume below that the symmetric
Bragg case is realized. It is convenient jit first to con-
sider the case of the Hermitian matrix F - §, which
corresponds to neglect of absorption. In this case from
the properties of the solutions of the system (4.3) it fol-
lows that the quantity Bj = 1 if ej, the root of the secular
equation (4.21), is complex. This means that in the entire
region of angles Δ0 (or corresponding values of the par-
ameter 5), where all four roots of the secular equation
(4.21) are complex, the reflection coefficient of a wave
with any polarization goes to unity. In the region of
angles where two roots are real and two are complex,
the reflection coefficient reaches unity only for an iso-
lated eigenpolarization determined by the solution which
is damped in the interior of the crystal. In the region of
four real roots the reflection coefficient for a wave with
any polarization is less than unity. Large deviation angles
from the Bragg condition correspond to four real roots
of Eq. (4.21) and a reflection coefficient R approaching ze-
ro. Therefore the typical reflection curve of unpolarized
radiation has the form shown in Fig. 9. The regions of
values of the parameter δ, 6j < δ < δ2, δ5 < δ < δβ, cor-
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respond to two real and two complex roots of the secular
equation. In these regions the reflection coefficient
is R s 1/2. The reflected radiation is completely polar-
ized, its polarization vector coinciding with the polari-
zation vector determined by the second relation in (4.24)
for the eigensolution which is damped in the interior of
the crystal. In the region δ3 < δ < 54 we have R = 1, and
the reflected radiation is unpolarized. In Fig. 9 we have
shown a typical situation in which the region of total
reflection of any polarization is separated from the re-
gions of selective reflection of polarizations. Depending
on the specific form of the matrix F, the location of the
regions of total and selective reflection can vary. In
particular, one or both regions of selective reflection
can directly adjoin the region of total reflection. The
angular size of the region of strong reflection (δβ-δ^
depends not only on the values of the scattering ampli-
tudes at the angle, but also on the values of the scatter-
ing amplitudes forward and has the order 5β — δι

-max {F12, FPf-F?'].
On taking into account absorption, the general three-

humped nature of the reflection curve is preserved. How-
ever, everywhere, except perhaps for individual points,
the reflection coefficient turns out to be smaller than in
the absence of absorption (in Fig. 9 its qualitative be-
havior is shown by the dotted line).

The formulas of the present and two preceding sec-
tions in the general case solve the problem of diffraction
not only for magnetic hyperfine splitting of the MSssbuaer
line in the crystal, but in fact also for quadrupole and
combined hyperfine splitting. (Indeed, the explicit form of
the operator F has nowhere been used.) However, analy-
sis of the expressions obtained in the general case is
difficult, in particular, because it is not possible to find
the roots of Eq. (4.21) in explicit form. As a result, we
will analyze below the qualitative features of diffraction
in magnetically ordered crystals for a number of cases
which permit analytic solution of the diffraction problem.

h) Examples of analytic solution of the dynamical
system. 1) Polarization-independent scattering ampli-
tude at zero angle. If the directions ki and fe coincide
with crystallographic axes of high symmetry, for ex-
ample, with rotation axes of third or higher order, the
scattering amplitude at zero angle in these directions
turns out to be independent of the polarization, the po-
larization of a wave scattered at zero angle coinciding
with its initial polarization. In other words, for direct
passage of a wave in directions of high symmetry, any
polarization is an eigenpolarization. In the case discussed
the eigenpolarizations of the solutions of the system (4.3)
are determined only by the amplitudes for scattering
from direction 1 to direction 2 and from direction 2 to
direction 1 and are easily found from the form of these
amplitudes. Indeed, for a polarization-independent for-
ward-scattering amplitude the system of four scalar
equations (4.3) is broken down into two independent sys-
tems of two equations if we use as polarization vectors
the basis vectors which simultaneously diagonalize the
operators F12 and f*2i. Thus, the search for eigenpolari-
zations reduces to the simultaneous diagonalization of
the two second-order matrices which describe 12 and
21 scattering. The matrices

-4ϊ-
| 5 n |

where §•• (4.40)

From Eq. (4.40) we obtain, for example, the following
expression for the eigenpolarization vector η in terms
of the initial basis vectors:

(4.41)

where
Si,2 = -V \

(see Eq. (4.5)) are diagonalized in the polarization basis
vectors defined by the relations

The further solution of the diffraction problem is carried
out in the same way as in the case of an unsplit line. We
note that in the general case the matrix S is not Hermitian,
and therefore the eigenpolarization vectors nx and n2

defined by Eq. (4.41) are in general not orthogonal.

In the case considered, as for an unsplit line, the
eigenpolarizations remain constant over the region of
diffraction reflection. This simplifies analysis of the
polarization properties of the radiation. For example,
if the eigenpolarizations found are orthogonal, then in
the Bragg case for scattering in a thick crystal of un-
polarized radiation, the polarization density matrix
(4.37), averaged over the region of diffraction reflec-
tion, corresponds to radiation partially polarized along
the vector ni or n2, depending on which of the vectors
ni and n2 gives the greater scattering amplitude from
direction 1 to direction 2. The degree of polarization
Ρ is expressed in terms of the matrix elements FĴ
= F12, written in terms of the eigenpolarization basis
vectors, by the relation

ρ_\\ηύ£1ζύΙϊή£ϊΑ ΊΑ 4?Ϊ

where .&are the same quantities as in Eq. (4.19).

Equation (4.42) differs from the result of the kine-
matic discussion, in whish (see Eq. (3.10)) the radiation
is partially polarized along the same vector, but the
degree of polarization turns out to be
llFi2|

2-|F?2ri/(lFi2l
2 + |F?2I

2). For nonorthogonal eigen-
polarizations, as follows from Eq. (4.37), the vector
describing the partial polarization differs from the vec-
tors ηί and n2. In this case to obtain the integral polari-
zation characteristics it is necessary to use directly
expressions (4.37) and (4.38). The system of dynamical
equations is solved like that discussed above also in the
case where the forward-scattering amplitude depends on
the polarization, if the polarization vectors nj and n[
found from (4.40) coincide with the eigenpolarization
vectors for direct transmission. This situation can be
realized for special mutual orientations of ki and k2

and for directions characterizing the magnetic structure
of the crystal. For the magnetic peaks in an antiferro-
magnetic crystal, for example, the case considered is
realized if the antiferromagnetic axis lies in the plane
of ki and ki, perpendicular to this plane, or the differ-
ence of the azimuthal angles of the wave vectors ki and
k2 relative to the antiferromagnetic axis amounts to
π/2. In the first two cases the π and σ polarizations turn
out to be eigenpolarizations. In the latter case, the eigen-
polarizations are also linear, but are given by the basis
vectors (2.5).

2) The case of a biquadratic secular equation. To find
analytic expressions for the eigensolutions of Maxwell's
equations and to trace the nature of the change in the po-
larization properties of the r adiation in the diffraction
region is possible if the secular equation has biquadratic
degeneracy. The case of a biquadratic equation is real-
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ized for physically interesting diffraction experiment con-
ditions. For example, if an axis distinguished by mag-
netic properties (for example, an antiferromagnetic axis)
exists in a cubic crystal, and the vectors ki and k2 form
identical angles with this axis.

For analysis of this case it is desirable to use as
polarization basis vectors in Eq. (4.3) the eigenpolari-
zation basis vectors for direct transmission in direc-
tions 1 and 2. In these basis vectors the matrix F is
simplified, since its elements, which describe scatter-
ing at zero angle, take the form

F ~ ° \ F -

and for the diagonal elements the relation F}i - Fu
= F22 -F22 is satisfied. The latter relation is a reflec-
tion of the fact that for equivalent directions in the
crystal the differences of the refractive indices of the
eigenwaves (we have in mind direct transmission) are
identical for each of the directions. Here for the sym-
metric Bragg case (b =-1) the condition that the secu-
lar equation (4.21) go over to biquadratic form is

F\lFS-F%F\l = 0. (4.43)

If the condition (4.43) is satisfied the eigenvalues and
eigensolutions of Eq. (4.21) (see Eq. (4.23)) in the basis
vectors coinciding with the eigenpolarization vectors
for direct transmission are determined by the for-
mulas :

« - -r C« + f » - *S - *S) —5- =«= ± η?! {-r -«

-Δ+) ± jAh.t-M 2 [>-2δ (δ,

• bl-W-idetT]}"2,

(4.44)

α)"1 [F\\F\] Τεϊ-Ρ) + Ρ\ΙΡΙ] {b+7p) (a+l^ + A^],

f (a 4- «„) + ^"^"ι Φ + ερ), fl3p = F\\ (4 — 62) + Ρ',ξΑ2,

;2'Δ2 4- FU (b- ερ) (α + ερ)], 5 P = ^ | ^ " j ^ J ' ^ j V ,

""' "2" (4.45)

a,p =

where

A Ρ11ρ23 PI1R1 A Γϋ/Γ" F12 F21

Λ+ = F\iF% + F]\F\\ + F%F% + F^F]1,.

Equations (4.44) and (4.45) completely determine the
eigensolutions of the system of dynamical equations.
In particular, if the eigenpolarizations for direct trans-
mission are linear and mutually perpendicular, the po-
larization vector parameters a and β in the eigensolu-
tions are determined by Eq. (4.25). This means that the
eigenpolarizations (in the general case elliptical) are
characterized by a polarization ellipse whose axis is
rotated relative to the initial basis vector χι by some
angle φ. The angle φ and the ratio of the polarization
ellipse axes ai/a: are not constant over the region of
diffraction reflection and are determined by the rela-
tions:

'• ΦΡ) I tg gp sin β ρ |
(4.46)

Under the same conditions for the Laue case, the secu-
lar equation reduces to biquadratic for ^ f l ^ i
= 0.

3. Completely resolved Zeeman splitting of the Moss-
bauer line. Analysis of the expressions given in the pre-
ceding sections is substantially simplified in case in
which MSssbauer scattering occurs through one or two
different Zeeman transitions. Here the transitions should
be considered different not only in the case when they
correspond to different energies, but also for identical
Zeeman transition energies in the case of degeneracy of
the levels (for example, for quadrupole splitting). If
there are several MSssbauer nuclei in the unit cell of
the crystal, then transitions in nuclei occupying different
positions in the cell also must be considered different
retardless of whether or not their energies coincide.
For example, in an antiferromagnetic crystal with two
magnetic atoms in the unit cell, with a completely re-
solved Zeeman splitting, each line of the Mo'ssbauer
spectrum receives contributions from transitions in
nuclei located at the zero of Η and—Η, i.e., each line
corresponds to two different transitions.

Let us consider first the suppression of inelastic
channels.1791 For one Zeeman transition in the system
(4.3) the matrix elements are given by

where r gives the position of the nucleus, and therefore
the columns of the matrix F are linearly dependent,
since they differ only by a common factor. The conse-
quence of this linear dependence is that in the secular
equation (4.21) for δ =0 the coefficients are different
from zero only for e4, ε3, and the three routes of the
secular equation vanish. This means that for δ = 0 there
is no damping in the corresponding three eigensolutions,
and therefore the complete suppression of inelastic
channels is realized. If scattering occurs through two
different transitions, each element of the matrix F con-
sists of two terms of the same type as above. Here the
linear dependence of the columns turns out to be such
that for γ = 0 e2 is present in the secular equation in ad-
dition to e4 and e3. This means that two roots vanish and
damping is absent in two eigensolutions. If the two zero
roots are not due to the fact that γ rays of some polari-
zation interact simply with the nuclei of the crystal, then
in this case also for δ = 0 the complete suppression ef-
fect occurs, regardless of the multipolarity of the nuc-
lear transition. A similar analysis shows that in the
case of three transitions for δ = 0 only one root van-
ishes and the suppression effect occurs only for a po-
larization corresponding to the solution with zero eigen-
value. For four transitions the suppression effect is not
realized in the general case, i.e., there is no superposi-
tion of the waves Ei and E2 for which the amplitude for
formation of the excited nucleus in the transition dis-
cussed vanishes.

So far we have assumed only the existence of hyper-
fine splitting of the Mossbauer line, without specifying
the type of crystalline structure and magnetic structure
of the sample. The results presented below are for mag-
netic diffraction peaks in antiferromagnetic crystals.

For a polarization-independent forward-scattering
amplitude we find by means of Eqs. (4.40) and (4.41)
that the eigenpolarizations for each of the directions 1
and 2 are linear, orthogonal, and rotated relative to the
basis vectors χ! =[H x k]/|[H x k]l, χ ί : [H x k']/][H x k']|
by an angle φ determined by the relation

(4.47)
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The matrix §, with accuracy to a factor unimportant here, ~ ι
2 6 / I -

/ sin2 a, (1 + cos 2a't cos 2Φ) 4 " c o s 2ai sin 2a, sin 2Φ \

\ ι I·
\"2" cos 2aJ sin 2a, sin2O cos2 a, (1 — cos 2ai cos 2Φ) /

n"nff
2FH

Ν

(4 48)

The matrix S' is obtained from Eq. (4.48) if in it we re-
place a t by a£, a[ by a t , and Φ by - Φ . The parameters
at and a[ determine nt and n{, the polarization vectors
of the radiation emitted in the transition through which
the scattering occurs, in the directions ki and fc>; Φ is
the phase difference of the phase factors of the polari-
zation vectors n^ and n£ (see Eqs. (2.4) and (2.5)). For
example, for a magnetic dipole transition we have

ΔΛί = ± 1 , tga, = ±cos6, tgai=±cos6', φ = ± ( φ _ φ ' ) ,

where the designations of the angles a r e the jsamejis in
Eq. (3.16). The eigenvalues of the matr ices S and S' in
the case discussed turn out to be identical and equal to

| — y l l — cos 2oti cos 2aicos 2Φ (4 49)

± V (1 — cos 2a, cos 2ai cos 2Φ)2 — sin2 2a, sin2 2aj].

In the basis vectors coinciding with the eigenpolari-
zation vectors found, the elements of the matrix F des-
cribing scattering from direction 1 to 2 and the r e v e r s e
take the form

0 \

__J; (4.50)

sin*oU

here φ-& is the phase of the energy factor in the M6ss-
bauer amplitude (2.11), and <r m a x and a m i n are the maxi-
mum and minimum cross sections for scattering for
the unit cell from direction 1 to 2 and the reverse,
which are achieved precisely for the eigenpolarizations
found. Further solution of the diffraction problem for
each of the two sets of eigenpolarizations found is des-
cribed by the formulas of Sec. b of Chap. 4, in which
the quantities F12 and F2i must be considered to be
defined by Eq. (4.50). The expressions found above
for the eigenpolarizations in the case of a polarization-
independent forward-scattering amplitude for scattering
through an isolated Zeeman transition turn out to be
valid also for an arbitrary value of. the Zeeman split-
ting. In this case the amplitudes F\2 and, as a conse-
quence, the integral scattering characteristics (4.42),
turn out to be dependent on the magnitude of the Zeeman
splitting.

Let us now consider the situation in which the forward-
scattering amplitude depends on the polarization, but the
secular equation reduces to biquadratic. As already noted,
this situation is realized in the symmetric Bragg case if
the wave vectors ki and fc> form identical angles with the
antiferromagnetic axis. In this case F N in the polariza-
tion basis vectors (2.5) for a dipole transition with
ΔΜ = ± 1 in the nuclear diffraction peaks is given by the
expressions

(4.51)

where Α =(4ττ/νκ2)Νίcon and f c o n is determined by Eq.
(2.8) if in it we omit the factor (en* /(k)) (n m m '(k ')e ' ) ,
F § is the same quantity as in Eqs. (3.17), Ν is the num-
ber of MSssbauer nuclei in the unit cell and the remain-
ing designations are the same as in Eq. (4.48). Here the
secular equation (4.21) turns out to be biquadratic and,
using Eq. (4.44), we obtain for its roots:

sin*
0

α .

2P

Λ

0
COS3

' \ _

α ,

sit

) •

i2 at sin Φ
sin a* cos at cos Φ

ί sin ct( cos a f cos Φ
i cos! af sin φ

(4.52)

where

B (atF$) * α,+.sin* α, —2Ι (1— cos!2a, οο32Φ).

The quantities ajp corresponding to the p-th root
found are defined by the following relations:

2?g|2/. ? _ \-l r/ Js _ \ "I
-j jp l s i n 2 o t ( — ^ — ε ρ ) s i n s a , ( - τ — 6 c o s 2 a , — ep\

< sin1 a , sin Φ + (-,— -^ + e"p cos 2a, — e | j cos2 a , cos5 Φ

+sin?a,cos4a, ( l - j

2
sin 4a, sin 2Φ,

(4.53)

Equations (4.52) and (4.53) describe the dependence
of the intensity and polarization characteristics of scat-
tering in the nuclear diffraction peaks on the structure
of the antiferromagnetic crystal, the y-ray energy, and
the deviation of the scattering angle from the Bragg con-
dition. For example, for large energy differences from
the exact resonance, where the quantity A can be con-
sidered real with high accuracy, the eigenpolarizations
turn out to be linear. Here the angle formed by the plane
of polarization with the polarization basis vectors (2.5)
depends on the parameter δ (the deviation from the Bragg
angle), and the explicit form of this dependence turns out
to be related to the structure of the antiferromagnetic
crystal through the quantity 12Fg/N|. The form of the
reflection curve of unpolarized radiation depends on the
structure of the antiferromagnetic crystal and the dif-
ference of the y ray energy from the resonance value.
For example, for the case |2F§/N| = 1, which is real-
ized, in particular, for antiferromagnetic crystals with
two magnetic atoms in the unit cell, for large energy
detuning and cos2 at c o s ^ > 1/2, the characteristic
points on the reflection curve (see Fig. 9) are deter-
mined by the following value of the parameter
δ : δι = δ2 = 0,

63 = cos2 Φ (1 - sin 2α,), Re A 64 = cos2 Φ (1 + sin 2a,) Re A,

65 = 2 (1 — cos 2a, sin Φ) Re A, δ, = 2 (1 + cos 2a, sin Φ) Re A.

On the basis of the formulas presented and the results
of the preceding sections, it is possible to find the de-
pendence on the details of the magnetic structure of
the antiferromagnetic crystal of the integrated reflec-
tion coefficient and the corresponding polarization den-
sity matrix. Here we will not give the explicit form of
these expressions in view of their cumbersome nature.

In the above we have not taken into account Rayleigh
scattering. For the nuclear peaks, Rayleigh scattering
contributes only to the forward-scattering amplitude,
and therefore does not affect the polarization charac-
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FIG. 10. Diffraction peak due
to pure nuclear resonance scatter-
ing in an enriched single crystal
of K4Fe(CN)6-3H2O under condi-
tions of extinction of Rayleigh
scattering.!1 8] The lower curve
is the angular dependence of the
scattering intensity off-resonance,
and the upper curve is the same
dependence for coincidence of the
γ-ray energy with the resonance
value.

teristics of the scattering, but simply shifts the reflec-
tion curve as a whole (see Fig. 9) along the abscissa by
an amount Fft.

5. RESULTS OF EXPERIMENTAL RESEARCH

a) Interference of nuclear and Rayleigh scattering.
The experimental study of Mossbauer diffraction began
with establishment of the coherence of nuclear resonance
scattering and Rayleigh scattering, i.e., the existence of
interference between these two scattering processes. In
the first studies of the Birmingham group [ 3 ' 4 ] the inter-
ference of nuclear and Rayleigh scattering was observed
in polycrystalline samples of iron with the natural con-
tent of the Mossbauer isotope Fe 5 7 . These same experi-
ments showed that, as a result of the low activity of the
MOssbauer sources and the small natural content of the
MOssbauer isotope, it is desirable, in order to obtain
quantitative information in a reasonable duration of the
experiment, to use single-crystal scatterers enriched
in the Mossbauer isotope. In subsequent work of the
Birmingham group, carried out in single crystals con-
taining Fe5 7, for 14.4-keV MOssbauer radiation the in-
terference phenomena (a weak dependence of the inten-
sity of the diffracted radiation on the y-ray energy)
appeared already more distinctly,t i e ] but as before the
results had a qualitative nature (see Fig. 1). Diffraction
was also observed under conditions of pure nuclear res-
onance scattering for a reflection whose Rayleigh struc-
ture factor is zero (Fig. 10), i l 8 i and it was shown ex-
perimentally1-171 that the thermal factor in coherent nuc-
lear resonance scattering is the product of two Lamb-
MSssbauer factors (see Eq. (2.11), i.e., does not coin-
cide with the ordinary Debye-Waller factor and does not
depend on the scattering angle.

Voftovetskii's group has carried out experimental
studies of Mossbauer diffraction, utilizing*30"351 the
23.8-keV radiation of the isotope Sn119. This group
carried out the first quantitative experimental studies
of interference of nuclear and Rayleigh scattering.[ 3 2 ]

Use of perfect single crystals of tin as scatterers per-
mitted not only observation of interference of nuclear
and Rayleigh scattering, but also observation of dynamic
effects in diffraction in the enriched isotope Sn119 and in
unenriched samples (see below). It was shown[35] that
scattering at large angles (high orders of reflection)
can be used to separate pure nuclear coherent scattering.
The energy dependence observed in ref. 35 of the inten-
sity of the diffraction peak at a scattering angle of 126°
is similar to that shown in Fig. 10 and indicates the
almost complete absence of coherent Rayleigh scattering
under the experimental conditions. The suppression of
Rayleigh scattering is due to the fact that the thermal
factor in nuclear scattering does not depend on the scat-
tering angle, and the Debye-Waller factor, which enters
into the coherent Rayleigh scattering amplitude, falls
off rapidly with increasing scattering angle.

FIG. 11. Interference of nuclear and Rayleigh scattering in Bragg re-
flection (666) for hematite under conditions of Zeeman splitting of the
Mossbauer line. [84] The antiferromagnetic axis is perpendicular to the
scattering plane (a) and lies in the scattering plane (b).
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FIG. 12. Dependence of intensity of diffracted beam in Laue diffrac-
tion in an enriched single crystal of tin (1) and after transmission through
the crystal at an angle different from the Bragg angle (2), as a function
of the relative velocity of the source and the crystal. [34]

We have presented above the results of experimental
study of the interference of nuclear and Rayleigh scat-
tering in the absence of hyperfine splitting of the Moss-
bauer line in the scattering crystal. A detailed study of
the interference of nuclear and Rayleigh scattering
under conditions of hyperfine splitting of the Mtfssbauer
lines in diffraction in a hematite single crystal enriched
in the isotope Fe 5 7 has been carried out by Artem'ev and
co-workerst83' ^ ' , The interference pattern in the pre-
sence of hyperfine fields in the MOssbauer nuclei in the
spattering crystal turns out to be much more complex
and varied. The sign of the interference term in the in-
tensity of the diffraction peak turns out to depend not
only on the sign of the energy difference of the y-ray
and resonance energy, but also on the orientation of the
hyperfine fields in the crystal. Figure 11 illustrates
the nature of the interference curves and their dependence
on the orientation of the magnetic fields in Fe nuclei in
hematite. Under the conditions of hyperfine splitting,
as follows from the expressions for the coherent ampli- .
tude (see Chap. 2), in addition to the interference of
nuclear and Rayleigh scattering there is also interfer-
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ence of nuclear scattering through different sublevels
of the ground and excited states of the Mossbauer nuc-
leus. This interference and its dependence on the orien-
tation of the hyperfine fields were observed for the first
time for magnetic reflections in Bragg scattering in
hematite.185"

b) Anomalous transmission of Mossbauer radiation
through crystals. Voftevetsktf and co-workers[31>34]

observed for the first time the suppression of inelastic
nuclear-reaction channels in diffraction of radiation by
Sn119 in single crystals of tin (Fig. 12). The suppression
effect appears in the difference of the energy dependences
of the intensity of the radiation diffracted in the crystal
and transmitted through the crystal off the Bragg condi-
tion. For example, in the immediate vicinity of the ex-
act resonance, as a result of the strong absorption, no
energy dependence is observed in the transmission spec-
trum (curve 2), i.e., total absorption of resonance γ rays
is observed. For the diffracted beam in the same energy
interval this dependence is clearly expressed (curve 1),
i.e., total absorption is not achieved. In Fig. 12 we have
indicated also the regions in which the different mech-
anisms of suppression of nuclear absorption are real-
ized: 1) The region near resonance, in which nuclear
scattering and absorption exceeds the scattering and
absorption by electrons (fn > fe, μη > μΘ). Here the
suppression mechanism is due mainly to interaction
of r rays with nuclei. 2) Regions in which the nuclear
scattering amplitude is less than the amplitude for
scattering by electrons, and the nuclear absorption is
still greater than the electronic absorption (fn < fe;
μη > μβ). Here the suppression mechanism is due sub-
stantially to electron scattering, since in this case the
formation in the crystal of a field configuration for
which nuclear absorption is decreased is accomplished
mainly as the result of scattering by electrons. 3) Re-
gions in which nuclear and Rayleigh scattering are of
the same order (tn ~ fe, % > μβ). Here both of the
designated mechanisms are present. The asymmetry of
curve 1 and the displacement of the minimum from the
exact resonance are due to interference of nuclear and
Rayleigh scattering. Voftovetsktf et al. l 3 5 ] observed a
dependence, due to dynamic effects, of the energy shape
of the scattered-radiation line on the degree of perfec-
tion and the thickness of the samples.

Sklyarevskir's groupt39"39'51"53'83"871 has used 14.4-keV
radiation from the isotope Fe57 for study of Mossbauer
diffraction, employing perfect iron single crystals unen-
riched and enriched in the isotope Fe57 with a 3% addition
of silicon, and single crystals of hematite and sodium
nitroprusside.
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FIG. 13. Dependence of intensity of beam of Mossbauer 7 rays dif-
fracted in a single crystal of hematite, as a function of the source velo-
city. [»]
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FIG. 14. Suppression effect under conditions of pure nuclear Laue
reflection in an enriched single crystal of hematite. [39] The intensity of
the radiation transmitted through the crystal Ν increases in regions of
source velocities ν corresponding to minima in the absorption spectrum.

Using a two-crystal diffractometer which provided high
angular resolution (7"), Sklyarevsku and his co-workers
observed the suppression of nuclear reactions[37] in an
unenriched single crystal of Fe + 3% Si. In a hematite
crystal enriched to 85% Fe57 the suppression effect was
observed, and also the nuclear Pendellosung effect (beat-
ing of the intensity of the radiation transmitted through
the crystal as a function of the r-ray energy (Fig. 13)).t38]

The use of hematite (an antiferromagnetic compound)
permitted SklyarevskiPs group to observe dynamic ef-
fects due to pure nuclear scattering, by investigation of
the magnetic diffraction peaks. Thus, they observet53]

a broadening and change in shape of the resonance line
in Bragg scattering. Experiments in enriched hematite
in the Laue geometry have demonstrated the suppression
effect under conditions of pure nuclear scattering1391

(Fig. 14). The energy width of the scattering line mea-
sured experimentally in this work increased to 45 natu-
ral MSssbauer line widths.

c) Diffraction in magnetically ordered crystals and
crystals with a complex electric field gradient structure.
A qualitative difference of Mossbauer diffraction from
x-ray diffraction involving the dependence of the reson-
ance scattering amplitude on the magnetic field direc-
tion at the nucleus was demonstrated by Smirnov et al. '
In this study magnetic diffraction peaks were observed for
the first time in scattering in an enriched single crystal
of hematite (Fig. 15). The results of the study showed
that, like neutron scattering, MSssbauer diffraction can
in principle be used to determine the magnetic structure
of crystals. Another qualitative difference between Moss-
bauer diffraction and diffraction of other types of radia-
tion, involving the dependence of the resonance scattering
amplitude on the electric field gradient in the nucleus,
has been demonstrated.152'8β> 8 8 γ Mirzababaev et al. [ 5 2 ' 8 8 1

observed for the first time quadrupole diffraction peaks
due to the existence of two different orientations of the
principal axes of the electric field gradient tensor in
iron nuclei located in crystallographically equivalent
sites in a crystal of sodium nitroprusside. In one of
these studies1861 a change in the intensity of the quadru-
pole reflection was observed on rotation of the crystal
around a normal to the scattering plane, due to the de-
pendence of the resonance scattering amplitude on the
orientation of the principal axes of the electric field
gradient tensor. Kuz'man and co-workers[89> 901, who
began their diffraction studies with the familiar iso-
topes Sn119 and Fe57, then carried out diffraction experi-
ments utilizing 35.5-keV radiation of the isotope Te125,
in which quadrupole diffraction peaks were observed in
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FIG. 15. Magnetic diffraction peak in Bragg scattering by enriched
single crystal of hematite. [51] The peak is observed when resonance
scattering occurs (b) and when it is absent if there is no nuclear scatter-
ing (a). The curves of Fig. c) show the energy dependence of the scatter-
ing intensity in the magnetic (111) and crystalline (222) peaks.

FIG. 16. Structure of tellurium unit cell. In projection of the unit
cell on a plane perpendicular to the C axis, we have used different desig-
nations for crystallographically equivalent sites, corresponding to the
three different orientations of the principal axes of the electric field
gradient tensor at these sites. [8S]

scattering in tellurium single crystals.1 8 8 1 The existence
of quadrupole diffraction peaks for tellurium is due to the
fact that in its unit cell there are three different orien-
tations of the principal axes of the tensor of the electric
field gradient in Te nuclei occupying crystallographically
equivalent sites (Fig. 16). The investigations in refs. 52,
86, and 88 were carried out in compounds with a known
electric field gradient structure. Their results show the
possibility of obtaining information on the spatial orien-
tation of electric field gradients in crystals by means
of Mossbauer diffraction experiments.

d) Determination of the phase of the structure factor.
The suggestion of using Mossbauer diffraction to deter-
mine the phase of the x-ray structure factor was made
by a number of authors after publication of the first ar-
ticle [3 ] demonstrating coherence of nuclear resonance
and Rayleigh scattering of y rays. However, only two
articles'-1 4'1 5 ] have been devoted to the experimental
solution of this problem so far. Parak et al . [ 1 4 ] pub-
lished the results of preliminary experiments and the
necessary numerical calculations for determination of
the structure factor phase in myoglobin. A further ar-
ticleC l 5 ] was devoted to a M8ssbauer diffraction deter-
mination of the phase of the structure factor in the com-
pound K3Fe(CN)6. The principle of determination of the
structure factor phase is illustrated in Fig. 3. Using a
single crystal of K3Fe(CN)6 enriched to 90% in the iso-
tope Fe5 7, these authors experimentally determined the
structure factor phases of the (020) and (040) reflections.
The phase values found agree with their exact values
(the structure of K3Fe(CN)6 is known). Note that in deter-
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mining the phase from the results of the measurements
in refs. 14 and 15, the relations of the kinematic theory
were used. The expressions for determination of the
phase, taking into account dynamic effects, and also hy-
perfine splitting of the Mossbauer line, are given in refs.
91 and 92. Andreeva et al . [ 9 3 ] discuss the possibility of
finding the phase not from the energy dependence of the
nuclear amplitude, but from its dependence on the orien-
tation of the hyperfine fields, which appears in the ex-
periment in a change of the intensity of the reflection on
rotation of the crystal around a normal to the reflecting
plane (see ref. 86).

These studies[14> 1 5 ] give an idea of the laborious na-
ture of a Mossbauer determination of the structure fac-
tor phase in a complex compound and of the requirements
imposed on the experimental apparatus. The main prob-
lem which arises in Mussbauer determination of the
structure factor phase is the long duration of the experi-
ment, due to the low activity of existing Mossbauer
sources. For example, in the experiment with K3Fe(CN)6

the measurement time to obtain the data for only one
reflection was about a month. While noting this, Parak
et al . [ 1 5 ] nevertheless conclude that it is possible to de-
termine the structure factor phase experimentally by
means of Mossbauer diffraction with accuracy sufficient
for crystallographic determination of the structure.

e) Separation of elastic coherent and thermal diffuse
scattering. The unique energy resolution of the MOssbauer
effect (for example, ~10~8 eV for the isotope Fe57) has
been used by a number of workers[94~1001 to separate elas-
tic and thermal diffuse scattering of y rays in crystals not
containing MSssbauer nuclei. Thermal diffuse scattering
is accompanied by a characteristic change in the y-ray
energy by an amount of the order of 10~2-10~3 eV. This
small change in y-ray energy for a y-ray energy of the
order of 104 eV cannot be observed by means of the usual
x-ray technique. As a result, the information obtained by
the Mdssbauer method on inelastic diffuse scattering is
particularly valuable. As is well known, an energy analy-
sis of thermal diffuse scattering can be carried out by
means of inelastic neutron scattering. However, the en-
ergy resolution of this method11001 (10~5 eV) is much
poorer than that provided by the Mossbauer effect.

O'Connor and colleagues [ 9 4 " M ] have investigated ther-
mal and elastic scattering and its temperature and angu-
lar dependence in the region of angles near the Bragg
reflections in single crystals of lithium fluoride, barium
titanate, aluminum, and potassium chloride. As a result
the inelastic scattering of y rays by optical phonons in
barium titanate was observed near the phase-transition
temperature. For potassium chloride and aluminum the
Debye temperature was determined. The results of the
Mo'ssbauer determination of this quantity are interesting
in that the Debye temperature determined from x-ray
diffraction measurements contains a systematic error
due to the impossibility of separating pure elastic scat-
tering by this method.

Merlini and co-workers [97~100] have made similar
studies in single crystals of silicon, aluminum, potas-
sium chloride, and the alloy Zr-20% Nb. In these studies
it was shown, in particular, that the temperature depen-
dence of diffuse scattering observed in KC1 in high or-
ders of reflections cannot be explained just by single-
phonon scattering. Account of multiphoton scattering
leads to agreement of the theoretical and experimental
values. Batterman et a l . [ 1 0 0 ] carried out for the first
time the separation of elastic and diffuse scattering in
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FIG. 17. Angular dependence of intensity of scattering of Mossbauer
radiation with energy 14.4 keV from a silicon single crystal near the (444)
reflection. [97] The upper curve is the total scattering intensity, the mid-
dle curve is the result of measurements with the presence of a resonance
absorber in front of the scattered 7-ray detector, and the lower curve
(the dashed curve) was obtained from the first two and represents the
intensity of inelastic scattering of 7 rays.

FIG. 18. Temperature dependence of inelastic scattering of Mossbauer
radiation with energy 14.4 keV for the (1000) reflection from a KC1 sin-
gle crystal. ["] The experimental results agree with the theoretical
curve (solid line) obtained with inclusion of both single-phonon and mul-
tiphonon inelastic scattering. The dashed theoretical curve takes into
account only single-phonon scattering.

Zr-20% Nb for scattering angles far from the Bragg
peaks. These authors l 1 0 0 ' associate the existence of a
diffuse-scattering peak in the middle of the Brillouin
zone with instability of the alloy studied by them
with respect to a structural transition, and note the im-
portance of the information obtained for clarifying the
dynamics of this instability. Typical results of the ex-
perimental measurements are shown in Fig. 17 and 18.

f) The Mossbauer source problem. The basic scheme
of experiments on MOssbauer diffraction is completely
similar to that of the corresponding x-ray experiments.
The difference is only that, instead of an x-ray tube,
a MSssbauer source is used, and also that because of
the need of making an energy analysis of the scattered
radiation, a resonance absorber is placed between the
detector and scatterer (Fig. 19). A quantitative differ-
ence, which grows into a qualitative difference, is the
low activity of MSssbauer radiation sources existing
at the present time in comparison with x-ray tubes. For
a source activity of several tens of millicuries a typical
value of the counting rate of scattered radiation is of the
order of ten per minute. As a result, in experiments on
MOssbauer diffraction, diffractometers are used which
permit measurements to be made both with the Moss-
bauer source and an x-ray tube. t l 0 l ] The use of an x-ray
tube permits a substantial speedup in the adjustment of
the crystal and the performance of auxiliary measure-
ments. In addition to the low activity of Mossbauer
sources, a factor which hinders the extensive use of
MOssbauer diffraction in physical and applied studies is
the decrease of the activity of these sources with time.
For example, the half-life of an Fe 5 7 Mflssbauer source
is 270 days, for Sn119 245 days, and for Te1 2 5 57 days.
For this reason searches are being carried on for means
of increasing the activity both of existing types of M5ss-
bauer sources and for new principles for producing
MSssbauer sources.

We will mention below two basic possibilities of pro-
ducing Mossbauer sources for diffraction studies which
do not decay with time. One of these is based on separa-
tion from the spectrum of an x-ray tube of radiation in
a narrow energy interval and smaller solid angle, 1 0 2
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FIG. 19. Basic diagram of Mossbauer diffraction experiment. S-

M&ssbauer source, Si, S2-collimators, Α-resonance absorber, R-scat-

tered radiation detector.

and the other on use of coherent Coulomb excitation of
MOssbauer nuclei1103"1061 Separation of a y-ray beam
narrowly directed in space and with an energy width
equal to the width of the MOssbauer transition is pos-
sible in diffraction of radiation from an x-ray tube by
a crystal containing MOssbauer nuclei placed in a loca-
tion corresponding to pure nuclear Bragg peaks. Here
only those photons will undergo diffraction which inter-
act resonantly with nuclei, i.e., in an energy interval
determined by the width of the MOssbauer transition.
However, the spectral densities of radiation of x-ray
tubes existing at the present time turn out to be still
insufficient for use of this means of producing a MOss-
bauer source.

Mossbauer y rays emitted coherently after Coulomb
excitation in a single crystal have a sharply anisotropic
angular distribution.1 1 0 3'1 0 6 ] The allowed direction of
coherent radiation is related to the crystal orientation
by an expression completely similar to the Bragg con-
dition, kp - k = τ, where k is the wave vector of the
emitted y ray, τ/2π is the reciprocal lattice vector of
the crystal, and kp = (Er/fiv)v/v. Here E y is the Moss-
bauer transition energy and ν is the velocity of the
charged particle exciting the Mossbauer level. The ratio
of intensity of the coherent radiation concentrated in the
small solid angle to the total radiation cross section due
to the Coulomb excitation depends strongly on the particle
velocity, increasing as the velocity increases, and in the
limit of ultrarelativistic particles it is equal to the fol-
lowing product of two Lamb-MOssbauer factors,

Ce-2W(k)e-2W(kp)i ( T h e f a c tor C, which depends on the
characteristics of the nuclear transition, is of the order
of unity.) Thus, the cross section for the coherent process
can be comparable with the total cross section if the pro-
bability of the MOssbauer effect in the crystal considered
is sufficiently high. As is well known/1071 incoherent
Coulomb excitation is used to produce MOssbauer sources
and is accomplished by means of nonrelativistic particles
(protons, helium ions, and so forth). In view of the fact
that for an appreciable coherent excitation cross section
it is necessary to use relativistic particles, in this ca
fast electrons are most appropriate for this purpose.

6. CONCLUSION

Theoretical and experimental studies carried out up
to the present time permit definite conclusions to be
drawn as to the promise of further development of MOss-
bauer diffraction, its applications, the advances made,
and also the problems which arise. In regard to appli-
cations in the field of crystal structure analysis, it can
be stated on the basis of the studies made that Moss-
bauer diffraction (Mossbauerography) can be considered
as a method supplementing the traditional diffraction
methods of investigation (x-ray diffraction, neutron dif-
fraction, electron diffraction). The selectivity of the
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method, which in some cases appears as an advantage,
limits the possibility of use of Mossbauerography only
to objects containing Mossbauer nuclei. Thus, in prob-
lems of investigating the crystalline and magnetic struc-
tures and the structure of the electric field gradient in
crystals, the application of Mossbauerography is limited
to structures containing the familiar Mossbauer isotopes.
In regard to investigations of the dynamics of the crystal
lattice, there is no similar limitation of the objects of
study, and the method itself is particularly promising in
investigation of phase transformations and their dynam-
ics.

[IOOT

The value of theoretical studies carried out in con-
nection with Mo'ssbauer experiments extends beyond the
field of Mossbauer diffraction and has general physical
interest. Studies on the basis of the dynamical theory of
interaction of resonance radiation with crystals, in par-
ticular, under conditions of hyperfine splitting of the
Mflssbauer line, have permitted not only description of
the specific properties of Mossbauer diffraction, but
also have led to a number of results applicable to des-
cription of the dynamical interaction with matter of radi-
ations of other types, in particular neutronst 2 3 ] and vis-
ible light[ 1 0 8 ]. For example, a similar method has been
successful in describing the specific optical properties
of cholesteric liquid crystals. 1 0 8 1

We note that interesting questions of solid-state
physics on collective nuclear excitation and on the
effect of the regular crystal structure on the charac-
teristics of low-lying nuclear levels have been discussed
in detail so far only theoretically (see for example refs.
25 and 109) and are awaiting experimental study. The
polarization characteristics of Mo'ssbauer scattering
have not yet been studied experimentally. Nevertheless,
the polarization characteristics contain information,
for example, on the magnetic structure of the unit cell,
and also (if hyperfine splitting of the Mo'ssbauer line
occurs in magnetically ordered crystals) can be used
to determine the phase of the x-ray structure factor.
The question of the effect of the crystal lattice on the
angular and other characteristics of the radiation em-
itted by a nucleus located in a perfect crystal also
awaits experimental study, although the theory of this
process [ 1 1 0"1 1 3 ] has been developed in some detail.

The experimental achievement of Mossbauer dif-
fraction is as a whole still a rather complicated matter,
and therefore for the most part those experimental
studies are being carried out which answer questions
of a fundamental nature. The extensive introduction of
Mossbauerography into the practice of applied research
is limited mainly by the activity of existing Mossbauer
sources. Increase of the activity of existing sources by
even one order of magnitude would mean a decrease in
the measurement time sufficient that the duration of the
experiment would no longer be the main argument against
carrying out some investigation. Therefore, the rate of
penetration of Mossbauerography into applied research
depends mainly on progress in perfection of Mossbauer
radiation sources.
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