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Transition and Cosmology!’ Recent years have seen
significant progress in elementary-particle theory,
progress that will, it is hoped, culminate in the con-
struction of a unified (encompassing all particles and
all of their interactions) theory that is free of incon-
sistences (see, for example!l®; This progress has been
due to use of the idea of spontaneous symmetry viola-
tion, which has served as a basis for description of
ordered states in macrophysics (superconductivity,
ferromagnetism, and many others). In the new theory
of particles, their masses are initially assumed equal
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to zero, which make: it possible to combine particles
into multiplets and avoid the appearance of inconsisten-
cies that do not submit to renormalization. However,
the particles ultimately acquire the required mass as

a result of spontaneous symmetry breaking—Bose con-
densation of a scalar field specifically introduced into
the theory.

There is a profound and far-reaching analogy be-
tween the new particle theory and the theory of super-
conductivity. For example,boson masses result from the
same mechanism that forms the basis for explanation
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of the Meissner effect, and fermion masses appear for
the same reasons as the energy gap in a superconduc-

tor. This analogy suggests (and this is confirmed by an
exact calculation) that at a sufficiently high tempera-

ture—on the order of 1-100 GeV in the various models—

the particle system should undergo a phase transition
with recovery of the originally broken symmetry and
with loss of the particle masses; in a sufficiently
strong external field, this transition can take place
even at zero temperature. This also applies to a
vacuum-—a state with zero values of the total charges
(electrical, baryon, lepton), The type of phase transi-
tion depends on the model chosen—it may be of either
the first or second order.

When applied to the “‘hot’’ (big-bang) model of the
universe, the pattern described above produces a num-
ber of cosmological consequences:

a) The density of the condensate depends on tem-
perature, and, consequently, also on time, The same
applies to such fundamental quantities as the masses of
particles (they decrease with backward movement in
time, disappearing after a certain instant) or the Fermi
weak interaction constant (which, to the contrary, in-
creases with motion backward in time, becoming in-
finite at the initial epoch, which corresponds to long-
range action of the weak interaction).

b) Like an ordinary vacuum in field theory, the Bose
condensate is manifested as a cosmological term in

Einstein’s equations, However, this quantity depends on
time, so that an apparent violation of the energy balance
arises as a result of its being ‘‘pumped’’ into the unob-
servable Bose condensate (or back).

c) At the epoch corresponding to the phase transi-
tion, buildup of the fluctuations, the appearance of
nuclei, etc. should take place in the Universe. The pos-
sibility that this fact may prove essential for the as yet
unsolved problem of the formation of galaxies can not
be overlooked.

UThis paper was based on the authors’ publications [!] (see also I*].
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