
FROM THE CURRENT LITERATURE

Electric conductivity and atomic dynamics in liquid metals
V. Ya. Prokhorenko

Usp. Fiz. Nauk 115, 521-529 (March 1974)

PACS numbers: 72.10.C, 61.25.D

Progress in the theory of electric properties, as
developed by Ziman and co-workers[1"3], was an im-
portant stimulus for the development and improvement
of research on the atomic structure and electron
kinetics in liquid metals. The main cause was that the
theory provided, for the first time, an analytic connec-
tion between the electron mean free path and the struc-
ture factor of the liquid:
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here Ζ is the valence, Ejr and kf are the energy and
the Fermi wave vector, m is the mass of the free elec-
tron, and Ujj is the form factor of the pseudopotential.
The structure factor S(k) describes inter-ion correla-
tions in the melt. In contrast to a crystal, where S(k)
is equal to a sum of δ-functions in the reciprocal-
lattice sites, in liquids it has finite values at each point
of reciprocal space. The structure factor can be con-
structed theoretically on the basis of the a priori as-
sumed (and, of course, simplified) model of the liquid
metal, or else derived from diffraction experiments.
The second method is regarded as preferable in view of
the presence of data on the concrete substance. We note,
however, that the experimental intensity J(k) of coher-
ent x-ray or neutron scattering, which is used in this
case, yields information only on the pair correlation
functions, while the single-particle motion and the
higher correlations are not taken into account.

The rapid development of the theory of pseudopoten-
tials and the enticing simplicity of expression (1) have
determined the active interest in the electric proper-
ties of liquid metals1-41. It should be noted that in most
researches expression (1) is assumed a priori to be
correct, and disparities between the calculated and ex-
perimental values of the kinetic coefficients is attributed
to instrumental and methodological errors in the deter-
mination of S(k), in the choice of the integration inter-
val during computer solution of (1), to the method used
to approximate S(k) at the boundary k = 0, and to im-
perfections of the employed pseudopotential models.
The bulk of the studies therefore followed three direc-
tions: precision measurements of the electric conduc-
tivity, thermoelectric power, and Hall coefficient in a
wide range of temperatures and pressures; improve-
ment of the pseudopotential models, and structure in-
vestigations .

To a considerable degree, owing to progress in the
theory of the electric properties of liquid metals, the
procedures in diffraction experiments have been im-
proved in principle in recent years, both with respect
to apparatus and with respect to the mathematical re-
duction of the results^5'"1. The resolution of the experi-
mental equipment and the accuracy of photography at
small scattering angles have improved[ 7 ) 8 ] and the re-
sults of the investigations have been tabulated. The
analyticity of the function S( k) was investigated in the
entire integration region, especially at low values of
the momentum19>10]. The improvement of the technique

of diffraction experiments has made it possible to re-
veal many new features of short-range ordering in
liquid metals, this being of undisputed independent in-
terest. With respect to the electric properties, the
progress in structure investigations has determined,
above all, the uniqueness of the calculations of the re-
sistance and of the thermoelectric power, since the use
of the old structure data introduced a large random ele-
ment in calculations of this kind.

By now there have been developed a number of
pseudopotential models'·11·12] that are suitable, to one
degree or another, for the calculation of electronic
properties. Of course, different pseudopotential models
yield significantly different calculation results. How-
ever, a comparison of a large number of experimental
data on the resistance and thermoelectric power with
the theoretical data show that, regardless of the pseudo-
potential model, the difference for most investigated
polyvalent metals is of the order of 20% and more in
absolute magnitude[13]. Numerous investigations show
that the obtained difference cannot be entirely attributed
to instrumental errors in the determination of J(k),
nor to imperfections in the employed pseudopotential
model.

Ziman's theory, which is based on the Born approxi-
mation, assumes the inequality kpA » 1 to hold. This
inequality, however, is far from obvious for heavy poly-
valent metals. In addition, the very definition of the
radius of the Fermi surface of a liquid metal calls for
refinement, in view of the diffuseness of this surface.

The upper limit of integration in (1) presupposes a
sharp Fermi-surface boundary. The temperatures
smearing of the Fermi surface remains small enough
even at 2000°K. In liquid metal, however, which is a
partly disordered system, an additional spread of Ak,
on the order of fi/τ, should take place, and should be
determined by the lifetime of each plane wave. It has
been shown1-14] that this circumstance can be taken into
account by introducing in (1) the additional factor

At R/τ on the order of E F / 2 , allowance for the smear-
ing can lead to a change of λ ζ by ±10%. According to
March [ 1 5 ' i e i , however, it is hardly reasonable to assume
for arbitrary liquid metals a smearing of the Fermi
surface larger than 10%. In particular, substituting Ak
« l/λ we obtain for sodium, mercury, lead and bismuth
respectively

Ak

T"
= 0.007, 0.10, 0.11, 0.15.

If this estimate is valid, then the contribution of (2) the
mean free path is small, on the order of 2—3%. But the
condition WpX » 1 does not necessarily mean that the
electrons are described approximately by plane waves
waves1 Z 1 ] . Thus, for example, in silicon, germanium,
and HI-V compounds the value of λ is quite large, but
the spectrum and wave functions of the electrons «u e by
far not the same as for free electrons. The pre: cnted
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values of the degree of smearing of the Fermi radius
are therefore far from obvious.

The conclusion that the Fermi surface is sharply
outlined is corroborated by March by his own calcula-
tions of the interatomic potential φ(τ), which has in
accord with these calculations a long-oscillating form,
whereas the oscillations should become rapidly damped
if Ak/k> 0.1.

The study of the form of the inter-ion potential in
liquid metals in comparison with the potential in liquid
argon is of fundamental significance for the description
of the metallic bond. This problem is the subject of a
large number of studies^15"201, the results of which are
quite contradictory. The reasons for which are quite
understandable.

It is known that the calculation of <p(r) is based on
the solution of the approximate Born-Green, Percus-
Yevick, and the superconcatencted equations, the degree
of applicability of which to liquid metals has not yet
been fully clarified. In addition, the inter-ion potential
is determined in these calculations from the direct and
paired correlations functions, the principal role in its
determination at large distances being played by infor-
mation on small-angle scattering, which is obtained with
minimal accuracy from diffraction measurements and
which is therefore the least reliable. Yakovlev[iel has
made a detailed analysis of the introduced approxima-
tions and has shown that for a correct solution of the
problem of determining φ(τ) it is necessary to refine
the existing data on S(k) in the region of small scatter-
ing angles.

Thus, on the basis of the available information on the
pair potential of inter-ion interaction it is impossible to
arrive at an unambiguous conclusion that the Fermi
surface of a liquid metal has a sharp outline.

Direct information on the degree of smearing of the
Fermi surface can be obtained from experiments on
positron annihilation in liquid metals. Such experiments
were performed on solid and liquid mercury[ 2 2 ]. On the
basis of the diffusion spectrum of the electron momenta
observed in the melt, the authors of1·221 have reached the
conclusion that Ak/kp ~ 0.2. Incidentally, according
to [ 1 5 1 , so large a smearing could be the result of an in-
correct interpretation of the experimental results.

The scattering probability was calculated in Ziman's
theory in the Born approximation. Accordingly, the
matrix element between the states ψι and ψ2> consti-
tuting plane waves, was considered. Thus, the complete
wave function, including all the scattered waves that
modulate the amplitude and the phase of the incident
wave, are replaced by a plane wave.

On the whole, there are no grounds for using such a
simplification. It is shown in[ 1 4 ]that the formalism used
in the Born approximation can be used here, except that
the true potential V(r) must be replaced by an effective
potential V'(r):

V W = [1 + ΐ Ml V (r), (3)

where γ (τ) can depend on k and, moreover, the
spherical symmetry of the potential V(r) does not im-
ply a spherical symmetry of y(r) . Therefore V'(r) can
be complex and can depend both on the value of k and
on the scattering angle. To calculate the scattering in
the Born approximation using an effective potential in-
stead of a true potential it is necessary to know corre-
lation functions higher than the binary one.

The higher correlation functions cannot be obtained
from diffraction experiments. This makes it difficult to
account for the deviations from the Born approxima-
tion. According to the estimate1·1*1, however, this devia-
tion can be appreciable for polyvalent liquid metals,
where the mean free path is commensurate with the in-
teratomic distance.

We turn now to a more detailed analysis of the influ-
ence of the atomic structure in both the static and dy-
namic sense) on the electric properties of the liquid
metals. New information on this problem follows
primarily from experiments on the scattering of slow
neutrons, and is also confirmed by the results of inves-
tigations of the properties of the electron kinetics.

The main idea on which Ziman's theory is based is
that the scattering of the conduction electrons is deter-
mined by the same structure properties as the scatter-
ing of χ rays or neutrons. It is therefore expedient to
assess how complete an information is obtained on the
structure from the diffraction experiment.

In the conventional theory of x-ray scattering one
analyzes only coherent scattering. Incoherent scatter-
ing produces a continuous background and is not taken
into account in the analysis. Thus, x-ray diffraction
studies of liquids yields integrated information on the
pair correlation and does not make it possible to ana-
lyze individual translational motion of atoms, nor higher
correlations. The same conclusion pertains equally well
to coherent scattering of slow neutrons. According to
statements by the very author of the theory of almost-
free electrons^31, allowance for only the pair correla-
tion function may be insufficient for a description of the
scattering of electrons in a liquid metal.

It is important to note one more feature of the inter-
action of χ rays with a melt, namely, they are strongly
absorbed, and the absorption increases with increasing
atomic number of the metal. This circumstance has
that important advantage that one can neglect in practice
the multiple scattering and this, naturally, facilitates
the interpretation of the intensity curve. But large ab-
sorption limits the experimental procedure—the x-ray
diffraction of liquid metals is based on reflection, and
transmission of samples with realistically attainable
thicknesses is excluded. As a result, the region inves-
tigated in practice is that of small scattering angles.

In the Born approximation, the scattering of slow
neutrons by a system of Ν atoms can be described
with the aid of the function S(k, ω), which determines
the probability of transferring to the neutron an energy
fiw from a system that acquires a momentum fik. Ac-
cording to Van Hove, the differential scattering cross
section is

• ) . (4)dtodQ

where b is the "scattering length," a parameter that
determines the intensity of scattering by the nucleus,
and Κ = ko - k (ko and k are the initial and final wave
vectors).

The coherent and incoherent parts of the scattering
can be separated by introducting the concept of the
average scattering length (b ), which takes into account,
with a suitable weight factor, the statistical distribu-
tion of the isotopes and the spin effect:
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Here the scattering functions ^ ' ' " ( k , ω) and S i n c o h (k ,
ω) are connected via a double Fourier transformation
with the space-time correlation functions of (r, t)-
space:

S c o h ( k ,ω) = - ^ f f G (r, i) €*«"-<"> drdt,

Stocoh (k, ω) = ^ J j Gs (r, i) *'""-<•"> drat.

(7)

(8)

The function G(r, t) determines the space-time corre-
lation of the density. The function Gs(r, t) describes
the autocorrelation part of G(r, t), which gives the
probability that an atom located at the origin at t = 0
will be located at the point r at the instant of time t.
It is obvious that the function G(r, t) is the sum of the
autocorrelation function and the function Gd(r, t) that
determines the probability of observing the atom at the
point r at the instant t if another atom was located at
the initial instant in the origin.

The autocorrelation function Gs(r, t) takes into ac-
count the single-particle motion, whereas the pair cor-
relations are described by a general space-time func-
tion. Thus, the atomic translational dynamics is de-
scribed by coherent neutron scattering.

In the theory of x-ray scattering one uses the so-
called static approximation1^231. Its gist is that the en-
ergy transferred to the atoms is assumed to be small
in comparison with the incident energy, and therefore
k is assumed to be constant over the entire range of
values of ω in which energy transfer takes place.

As a result we have

da = S(k)N(b)K (9)

It is precisely this value which is taken into account
in (1). Thus, when experimental information is used on
coherent scattering of χ rays of neutrons in integral
form only Ziman's theory takes into account the atomic
dynamics in the melt. In other words, only time-aver-
aged atomic displacements that lead to a statistical dis-
tribution of the atoms are taken into account.

For a finely-dispersed solid at high temperatures,
the coherent scattering of the neutrons can coincide
surprisingly in its intensity spectrum with scattering
in a liquid metal near the crystallization tempera-
ture[ Z 4 1 . Analogously, there are known investigations on
"thermal smearing" of crystal structures^251, which
yields for the radial distribution of the atoms curves
that are very similar to those calculated from the plots
of the intensity of coherent x-ray scattering by a melt.
These two facts demonstrate convincingly the quasi-
phonon character of the motion of the liquid atoms at
high frequencies. It is likewise obvious that the particle
motion in a liquid differs qualitatively from that in a
crystal in the presence of atomic translations that give
rise to high-frequency modes of motion.

It is natural to ask: is it necessary to take into ac-
count temporal correlations of the energy and density
when considering conductivity in liquid crystals?

Baym[ z e ] has attempted to take into account time-
dependent correlations for the calculation of the pertur-
bations introduced by the conduction electrons into the
atomic system. By drawing a definite analogy between
inelastic scattering of slow neutrons and of conduction

electrons, Baym assumes that in the Born approxima-
tion the electron is scattered with a change of momen-
tum from k to ρ and a change of energy from E^ to
Ep. The scattering process is accompanied by oscilla-
tions of the atomic density, determined by the momen-
tum k and by the energy ηω. As a result, the correla-
tion function of the density is a Van-Hove function.
Assuming furthermore that the form of the pseudopo-
tential depends only on k, Baym obtains the following
expression for the relaxation time:

t "

This formula goes over into the scattering integral (1)
if we put na)/kBT[exp(nu>/kBT) - 1] = 1, for then the
integral with respect to ω yields the structure factor
S(k), This is a reasonable approximation, inasmuch as
fiw « kgT.

We can now formulate the problem in the following
manner: How is the electron scattering affected by the
natural spontaneous density fluctuations of thermal
character if account is taken not only of the phonon
spectrum but also of thermal translations of the atoms?

The appreciable contribution of the translational
motion to the atomic dynamics is confirmed by the con-
siderable increase of the specific heat in the course of
melting: c p is of the order of 6.2 ± 0.4 cal/deg-mole
for solid metals and increases to 7—10 cal/deg-mole
after melting[2?1. This is corroborated also by all the
information on atomic transport phenomena.

The thermal density fluctuations due to the transla-
tional motion of the atoms determine the fluctuations of
the main short-range characteristics, particularly of
the coordination number. Fisher and Prokhorenko[2el

have shown, on the basis of statistical theory, that the
mean-square fluctuation of the coordination number in
liquid metals amounts to 0.15—0.20 of the average
value already at the crystallization temperature. With
further heating, the fluctuations increase significantly.
The concept of a coordination number that is constant
in space and in time has no meaning for a liquid. In-
stead, it is an expedient to introduce the concept of the
probability function of the coordination numbers.

The structure of liquid metals, unlike the crystal
structure, has a statistical character, and this concept
must be understood both in the temporal and in the
spatial sense. Accordingly, one cannot speak of identity
of the "instantaneous" structure with that averaged
over a large time. The very concept of the structure of
a liquid is best tied in with the relaxation time of the
considered process.

The question of the influence of the translational dy-
namics of the atom on the electric properties of the
melt can be reduced to a certain sense to a relation be-
tween the period of the thermal oscillation TD and the
"settled lifetime" τ0. Until recently, the predominant
estimate was that of Ya. I. Frenkel', namely T O / T D
f» 500. Experiments on incoherent scattering of slow
neutrons have shown, however1241, that τ0 and TD dif-
fer by only one order of magnitude in the case of liquid
metals, even at large heat rises above the melting tem-
perature. For example, for liquid soldium the recipro-
cal "settled lifetime" is τ'ο

ι = 1.8 χ 1012 sec'1, while
the Debye frequency Is ωη » 1.8 χ 1013 sec"1. It is ex-
pedient to compare the energy of the corresponding
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high-frequency modes with the thermal energy
viz., hwD = 1.8 x 10~21 J, ha>o = 18 x 1<Γ2λ J, and
= 6.9 χ 1O~21 J .

The fact that all three values are commensurate
favors the need for taking the diffusion modes into con-
sideration when relaxation processes in liquids are
considered. Krasnyi and Kovalenko[Z8J postulate that
the electric conductivity should be expressed in terms
of a dynamic structure factor S(k, ω) that contains in-
formation on all types of collective motions in the ion-
subsystem, which are connected with the change of
density. They obtained for the relaxation time the ex-
pression

T - W T T W · ' · Τ .(«%-%)*-*.->**. (ID
This expression goes over into Ziman's expression of
S(k, ω) is a δ function in ω at arbitrary k, i.e.,
S(k, ω) = S(k)5(ti>). Then the second integral is not
equal to zero only at O i x £ 2kF. The upper limit of
the first integral can therefore be restricted to the
value 2kp, and the limits of the second can be moved
to ± » . Finally, by making the change of variable
R ( k | - k?)/2m « -ω, in the second integral, we arrive

at the integral (1), assuming that j S(k, ω)άω - S(k) in

accord with the static approximation for scattering.
This is precisely the approximation used by Rice[3°'311,
but Krasnyi and Kovalenko consider it to be too rough.
They base themselves on the results of neutron-diffrac-
tion experiments'^321 according to which there exist, be-
sides the maximum responsible for elastic scattering,
also to side maxima corresponding to the presence
collective modes of motion of the ion subsystem, of the
acoustic-wave type, from which the electrons are
scattered. So complicated a scattering picture is ob-
served already in the hydrodynamic limiting case
ω —· 0, k — 0. Unfortunately, the properties of the
function S(k, ω) remain uninvestigated, apart from this
limiting case.

The inadequacy of the direct experimental informa-
tion on the dynamic structure of liquids is the cause of
the extensive use of model methods. Any particular
model of a liquid contains more complete information
than pair correlation. It is possible to extract from the
model, for example, also a ternary distribution func-
tion[ e l , and this offers undisputed advantages in the
analysis of the properties of a melt. In addition, the
analytic dependence of the model structure factor on
the temperature makes it possible to avoid the errors
that inevitably accompany many-temperature x-ray or
neutron diffraction[ 1 S ] .

A model description of the structure of a liquid
metal can be proposed from two points of view: by
postulating a definite short-range order, usually by
"smearing" of the crystal lattice, or conversely by
considering a disordered statistical disposition of the
atoms. Notice should be taken of the fundamental dif-
ference between these approaches, since the former
usually presupposes the existence of long-lived ordered
regions, whereas the latter admits of irregularity of
the structure only in the hf fluctuations of the ion
density. In the former case the conditions for electron
scattering differ in principle from those proposed in
Ziman's theory, whereas in the latter all that is needed
is additional introduction of a frequency dependence of
the structure factor.

The advantage of the quasicrystalline or "cluster"
approximation is justified by the singularities of the
first maximum of the x-ray scattering intensity curve.
These singularities appear in certain liquid metals,
usually characterized by loose packing, and consist,
depending on the object, in the following: asymmetry of
the maximum, the presence of side maxima, and separa-
tion of the maximum in the fine structure. Since these
details cannot be reproduced for fully disordered struc-
tures, partial conservation of the short-range order-
structure is assumed/2 5'3 3 1, or even of several struc-
tures [ M > 3 s l , which sometimes coexist with regions
where the atoms are randomly arranged^381. However,
an essential destruction is always assumed, since the
change of the first maxima on the radial-distribution
curve during melting cannot be attributed only to a
change in the phonon spectrum1371.

Thus, even quasicrystalline models admit, to one
degree or another, of an intense thermal motion of the
atoms. It appears that the indicated models, which are
based on experiment, can yield concrete information on
the character of this motion near the crystallization
temperature. At the present state of the art, however,
they are only qualitative and are still far from an ana-
lytic description of the atomic dynamics.

New information concerning the character of the
motion of the atoms in a liquid can be obtained in
principle by the method of molecular dynamic s[ 1 8 '3 8 1.
This method makes it possible, by performing a mathe-
matical "experiment" on a large number of atoms with
large computers, to calculate the Van-Hove space-time
functions. This exclusive capability of the molecular-
dynamics method makes it promising for an analytic
description of atomic motion in a liquid.

Even the use of this method to calculate the motion
of atoms of an idealized hard-sphere liquid with a
Lennard-Jones potential has yielded quite interesting
results. Figure 1 shows the trajectory of a particle in
the (x, y) plane (σ is the diameter of the model sphere),
and also its velocity as a function of the time. As seen
from the figure, the motion of the particle describes a
drift trajectory that differs greatly from Ya. I.
Frenkel's simplified model—a series of oscillations as
against a jump. The particle velocity varies in magni-
tude and direction continuously and quite smoothly.
This picture can be described only by assuming partici-
pation of the chosen molecule in the collective motion
of the temporal condensations of the molecules, and
fluctuations of the density about a given molecule during
the time of its drift along the trajectory.

Calculation of the function Gd(r, t) shows that the
time during which the atoms change place is very short,
so that the very concept of "quasicrystalline" structure
is meaningless for a time > 10 1 2 sec. It is concluded on
this basis that the concept of the lattice structure can-

SM
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FIG. 1. Particle trajectory in the (x, y ) plane (a) and time dependence

of the velocity (in relative units) (b), calculated by the molecular-dynam-

ics method.
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not exist at all in the theory of liquids. To the contrary,
statistical models of a liquid are quite promising. In
particular, if the potential is correctly chosen, the
method of molecular dynamics can yield an analytic
description of the autocorrelation function of the veloc-
ity, and consequently of the function Gs(r, t) which is
needed to calculate the incoherent part of the scattering
in accord with (6)—(8). For an idealized liquid, the
frequency spectrum of the autocorrelation has already
been obtained and differs noticeably from the frequency
spectrum of crystals, for example in the presence of a
frequency ω = 0 that describe the uniformly-accelerated
motion of a conglomerate of atoms as a unit.

Persistent efforts were made in recent years to find
a theoretical description of the autocorrelation function
of the velocity. In [ 3 9 ] , in particular, a numerical calcu-
lation was made of Gs(r, t) on the basis of a model in
which the atom is bound by harmonic forces to a certain
cell, and the cell itself moves through the liquid and
expressions deformations. The main parameters of this
theory are the dynamic coordination number (the num-
ber of atoms influencing the motion of the considered
atom) and the frequency of the harmonic oscillations.
They are so chosen that the obtained autocorrelation
function of the velocity differs least from the exact one
obtained by the molecular-dynamics method. In [ 4 0 ] is
given a comparison with a computer "experiment" of
an autocorrelation function obtained by numerically in-
tegrating an equation with a memory function. The
latter is expressed in terms of an inter-article poten-
tial calculated in the Percus-Yevich approximation, and
is approximately Gaussian up to τ ~ 5 χ 10~13 sec, fol-
lowed by a long tail. A comparison of the autocorrela-
tion function of the velocity with the results of the com-
puter experiment yields good agreement at small τ.

Ashcroft[41] has analyzed in his review the develop-
ment of the theory of electric resistance of liquid
metals and has shown that the main difficulties in the
way of further progress in this field are due to insuf-
ficient knowledge of the density correlation functions.
This pertains not only to the single-particle motion, but
also to higher correlations. Definite progress was
made also in this direction. For example, in[ 4 2 ] there
is proposed a theory that connects the isothermal de-
rivative of the structure factor with respect to pressure
with the three-particle correlation function q3. To in-
vestigate qs, use was made of experimental results on
neutron scattering at different pressures. An analysis
was made of the applicability of the statistical theories
of Bogolyubov-Born-Green and Percus-Yevich for the
interpretation of the obtained ternary distribution func-
tion.

The integral equations of the statistical theory are
widely used to simulate the structure of liquids. As ap-
plied to liquid metals, the solution of the Percus-Yevick
equation for the hard-sphere model is used in recent
years. In spite of the obvious simplicity of the hard-
sphere model, its use is justified by the following cir-
cumstances: When the distance between the ions de-
creases to definite values, the potential energy increases
strongly, and this recalls the effect that occurs when
hard spheres collide. This presupposes the applicability
of a simplified inter-ion potential, which may turn out
to be too crude for the description of short-range
forces, but accounts sufficiently accurately for the
long-range correlations. Accordingly, the model de-
scribes in a sufficiently likely manner the structure

factor at small values of the momentum—approximately
in the region of the first maximum of S(k). It is pre-
cisely this region which is the most interesting for the
description of the scattering of electron waves in a
liquid metal.

The solution of the Precus-Yevick equation for the
direct correlation function yields an expression for a
structure factor14S] that is determined only by the
density of the packing of the hard sphere (TJ). This non-
ambiguity is a great advantage of this method. Unlike
earlier studies, where the value of η was chosen arbi-
trarily to reconcile the model and experimental struc-
ture factors, in the latest studies the packing density
was determined from independent experiments. One
starts here from the thermodynamic relation

S(0) = (12)

where N/V is the atomic density. Thus, the packing
density of the spheres is determined by the value of the
isothermal compressibility /3τ·

The isothermal compressibility can be calculated
from experimental information on the equation of state
of the metal at high temperature and pressure. This
method is unique in a definite way, since other methods,
for example based on the ultrasound propagation
velocity, yield only the adiabatic compressibility. The
experimental P—V—Τ diagram of mercury was used to
simulate the structure and electric properties of mer-
cury at high temperature and pressure^4 4'"1, when dif-
fraction methods of investigating the structure are
technically not realizable.

Figure 2 shows the structure factors of liquid mer-
cury, calculated in the range 0 < k < 2kf on the 2000
atm isobar of the experimental P—V—Τ diagram1"1

for the densities 11, 15, 10.26 and 9.71 g/cm. The cor-
responding packing density of the hard spheres was
0.28, 0.17, and 0.07. For comparison, the same figure
shows the experimental structure factor obtained by
x-ray diffraction at room temperature and atmospheric
pressure^471. The structure-factor curves on Fig. 2
are plotted against k/2kp, since the radius of the
Fermi sphere k-p at decreased density turned out to
depend on the Mott factor g, which is determined by the

02 ΒΛ as as w

FIG. 2 FIG. 3

FIG. 2. Structure factors of liquid mercury: 1 —experimental for
13.6 g/cm3 density; 2, 3, 4-calculated for densities 11.15, 102.6, and
9.71 g/cm3.

FIG. 3. Relative change of the resistance of mercury as a function
of the density: 1—experiment, 2—calculation with Heine-Animalu pseudo-
potential, 3-calculation with Evans pseudopotential.
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ratio of the real density of the electron states to the
free-electron density in the vicinity of the Fermi level.
The values of the Mott factor were taken from[4e].

Figure 3 shows the relative change of the resistance
of mercury as a function of its density. Besides the ex-
perimental data, the figure shows, the results of a cal-
culation by the Ziman formula (but with variable inte-
gration limit in accordance with the decrease of the
Mott factor), using the pseudopotentials of Heine-
Animalu and of Evans. The latter, which gives good
results for the calculation of μ of mercury at normal
density, is not suitable at decreased densities. At the
same time, the Heine-Animalu psuedopotential accounts
quite satisfactorily for the variation of the resistance
with density.

The results of the calculations show that the use of
the model structure factor and allowance for the change
in the density of the electronic states makes it possible
to extend the applicability of the Ziman theory to melts
of much higher density (by ~30% above normal). This
is a somewhat unexpected result. However, the apparent
disparity can be easily resolved by the following con-
siderations : The structure factor at zero momentum
S(0) is determined from a thermodynamic relation and
therefore contains information on the variation of the
ion interaction in the melt with changing density. Thus,
the calculated values of the packing density reflect not
only geometric effects due to the thermal expansion of
the melt, but also contain information on the concom-
itant change of the ion-ion interaction. The latter cir-
cumstance is reflected by a decrease of the effective
diameter of the model spheres. This effect becomes
stronger when the electron-ion interaction begins to
change as a result of localization of part of the conduc-
tion electrons, a fact manifest by the deviation of the
factor g from unity. Guiding ourselves by Mott's
known premises^4"1, it can be stated that introduction of
the factor g in the expression for kp in addition to the
model structure factor makes it possible to make ade-
quate use of the theory of the electric properties of
normal liquid metals for the calculation of the resist-
ance of metals at reduced density.

Summarizing, we note that new serious progress was
made in recent years in the theory of liquids. This
progress is due primarily to the new experimental re-
sults of investigations of the dynamic atomic structure
of liquid metals by the methods of slow neutron diffrac-
tion, interaction of ultrasound and electromagnetic radi-
ation with the melt, and the development of model
methods for the study of the structure of liquids.
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