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This review considers the thermodynamic aspects of the theory of information processes—measurement,

transmission of information, and its processing. Considerable attention is given to an explanation of the

limiting relations between the accuracy of a physical measurement and the ensuing energy degradation.

Hence, in particular, a relation is established between physical entropy and quantity of information. These

results are used to determine the energy cost of information transmission with allowance for the energy

expenditures on decoding. The process of information processing (computational process) is treated as

indirect measurement, and on the basis of this model the energetic complexity of the process is determined

(the minimum value of the energy that must be degraded in order to realize the prescribed processing with

the necessary accuracy).
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1. FUNDAMENTAL PROBLEM OF THE
THERMODYNAMICS OF INFORMATION
PROCESSES

a) Introduction. The fundamental problem of the
thermodynamics of information processes consists in
establishing connections (limiting relations) between the
most important thermodynamic characteristics (energy,
entropy) and the informational (accuracy, quantity of in-
formation). In the application to the primary information
process—measurement—one can distinguish three aspects
of the problem:

—whether the obtaining of information is connected
with a decrease of the statistical entropy of the system,
and what the nature of this connection is;

—what sort of compensating increase of entropy there
is in the system because of dissipation of energy;

—how it is possible after measurement to ensure
additional decrease of entropy in the system by means
of controlling action.

Despite the obvious importance of this problem, the
literature devoted to it is scanty and is very inconsistent.
Therefore the range of questions discussed in this review
is limited to just this problem and, furthermore, to its
application to classical (nonquantum) topics. The last
limitation is due to the fact that, as will be evident from
what follows, in order to solve the fundamental problem
of the thermodynamics of information processes, as
formulated above, it is necessary, and in the first ap-
proximation sufficient, to restrict oneself to investiga-
tion of the classical part of the measurement apparatus.

On the other hand, an attempt has been made to treat
from a unified point of view all the basic information
processes: the obtaining of information (measurement),
the transmission of information, and the processing of
information (the computational process).

b) History of the problem. After the introduction into
thermodynamics, by Clausius, of the concept of entropy
as a state function, Boltzmann gave entropy a statistical

(informational) meaning. A few years before this (see,
for example, '-1-1), Maxwell formulated the paradox of the
demon who sorts molecules according to velocity and in
consequence "violates" the second principle of thermo-
dynamics. Precisely by investigation of the "Maxwell's
demon" paradox, Szilard in 1929 m first pointed out the
physical connection between information and entropy.

The mathematical definition of quantity of information,
introduced in 1928 by Hartley Μ and then generalized in
1948 in the works of Wiener ^ and, especially,
Shannon1-5-1, coincides to within a constant multiplier
with the statistical definition of entropy according to
Boltzmann. This formal circumstance served as the
basis for the introduction by Shannon of the concept of
"entropy of a communication source." Shannon did not
discuss the physical meaning of the formulas for quantity
of information and for entropy. The usefulness of an
investigation of the interesting meaning of the analogy
between these concepts was pointed out by Wiener'-6-' and
by Kolmogorov1^.

But information theory, beginning with the basic works
of Shannon[5], developed predominantly as a mathemati-
cal discipline E3l>323 w f t n application to the process of
information transmission. Kolmogorov^7-1 gave a rigor-
ous presentation of the basic problems of this theory and
considered the limits of its applicability.

The basic researches of 1944—1951, analyzing the
connection between thermodynamics and information, re-
lated to the investigation of the "Maxwell's demon" prob-
lem from various points of view and developed the
foundation-laying work of Szilard^2-1 already cited. These
researches of Gabor, Demers, Jacobson, and finally
Brillouin are set forth in detail in Brillouin's bookC8:i.
It was shown that the important thing in Maxwell's
paradox is not that the "demon" is a thinking being (he
might be called a robot), but that information is used for
purposeful control, leading to a decrease of entropy
(ordering of the system either with respect to tempera-
ture or with respect to pressure—a "pressure
demon"t8-1). The obtaining of information is inevitably
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connected with a degradation of energy, which leads to
an increase of entropy exceeding its decrease in conse-
quence of ordering of the molecules. It seems that the
results presented in Brillouin's bookC8] give a definitive
solution of the "Maxwell's demon" paradox. It is difficult
to agree with Shambadal' M , who regards the "exorcism
of the demon" as specious. His arguments are based on
the different dimensions of entropy and of quantity of
information, and also on the fact that a number of the
works cited treat a one-molecule gas. It is well known
that dimensionless energy (corresponding to measure-
ment of the temperature in energy units) is often used1'
in statistical physicsi10^; and thermodynamics is still
valid for a one-molecule gas in a thermostat (see'-"-',
English transl., p. 399). But one can agree w that
Maxwell's paradox has been solved only qualitatively:
the problem of the quantitative relations between the in-
formation and energy characteristics cannot be consid-
ered solved in the works cited.

Natural, therefore, is the dissatisfaction expressed in
1955 by Kharkevich'-12-1 because of the absence, in
information theory, of relations of the conservation-law
type. This can explain the well-known remarks of
Gabor[ 1 3 ] in 1950 and of von NeumannCl43 in 1951 on the
necessity for developing a physical (thermodynamic)
direction in information theory.

The application of thermodynamics to information
theory found systematic development only in 1956, in the
well-known book of Brillouin1-8-'. Here were formulated
and treated a whole series of problems going far beyond
the limits of the "Maxwell's demon" problem. In par-
ticular, a detailed analysis was made of the connection
between energy and information characteristics in a
whole series of thought experiments in measurement.
Formulated in general form was the "negentropy prin-
ciple of information," which sets a lower bound to the
energy cost of a measurement. But neither from the ex-
amples treated nor from general considerations was it
explained whether this lower bound is attainable; and if
it is not, whether the estimate may not be made more
accurate. Thus even on the basis of Brillouin's book^,
the limiting relations between information and energy
characteristics cannot be considered definitively estab-
lished. Therefore the importance of this problem is
stressed even in the literature of the sixties (see, for
example,[15:]).

In a subsequent book, L. Brillouin1-16-1 develops his
ideas in a somewhat different direction: he discusses
the problems of the information content of physical laws
and theories, the significance of errors of measurement
in the cognitive process, etc.

In recent years, papers have appeared that use the
methods of information theory to analyze technical in-
formation systems C17>18>"] a n d that consider the formal
analogies between thermodynamic and informational
concepts'-19'20^. Work in these directions, of course, has
not posed the problem of giving an answer to the question
of the physical connections between energy and informa-
tion characteristics.

Further development of the physical theory of infor-
mation proceeded principally in the direction of inves-
tigating the limits imposed by the quantum nature of
matter on the process of information transmission. This
aspect of physical information processes has great
theoretical and practical importance and has been pre-
sented in a voluminous literature.

But only a few of the works in this direction have a
relation to the problem posed above. The results of these
works, in particular t2 1»2 2^ and also ones directly rela-
ted to the theme of the review, in particular t23"26^1, will
be discussed in detail below.

c) The measurement process and its informational
characteristics. In order to establish the limiting phys-
ical relations between energy and information charac-
teristics, it seems natural to begin with an analysis of
the primary information process—physical measurement.

By measurement is usually understood any single-
valued transformation of a measurable physical quantity
to some other physical quantity, called the recording
parameter. But for thermodynamic analysis of measure-
ment, this definition needs to be narrowed: it is neces-
sary to describe a measurement as a thermodynamic
process of transition of the system from one equilibrium
state to another. We shall assume that:

1) the measurable physical quantity is an internal
parameter of the system being investigated (SI);

2) the physical quantity chosen as recording param-
eter is one that characterizes the state of the measuring
apparatus (MA) and therefore is capable of use as a
control parameter;

3) in the process of interaction between SI and MA
(that is, in the measurement process), there is estab-
lished a new stationary value of the recording param-
eter, uniquely related to the measurable quantity.

According to this definition, for completion of a meas-
urement it is sufficient to restrict oneself to a single
step (and, correspondingly, to a single act of elementary
interaction between SI and MA) only when:

a) the measurable quantity satisfies condition 1);

b) it can be directly transformed to a recording
parameter satisfying 2) and 3).

In general this is not so, and the measurement may
require a long chain of successive transformations. It
appears that in order to explain the general relationships,
it is sufficient to consider a chain of four steps:

l->-X->-F->-y-+x; (1.1)

here / is the measurable parameter, which may be either
classical or quantum; it by no means always satisfies
condition 1) and therefore must be transformed to a
physical quantity that does satisfy condition 1). In the
course of this transformation, accomplished by a trans-
ducer, often (explicitly or implicitly) there is an inter-
mediate step, in which / leaves a "trace" λ in some
coded form. We shall illustrate what has been said by
some examples of possible Ι—λ pairs:

frequency of a signal being detected—position (or
number) of a tunable resonator;

distance to an object—time interval recorded by the
main and the reflected pulses;

difference of phase or of velocity between two elec-
tromagnetic signals—interference pattern in the place
where they meet;

momentum of micro- or macroparticles—instantan-
eous value of the deflection of a test body; etc.

It is evident that the "trace" λ is a positional coding
of the measurable quantity and is explicitly present in
those measurements in which the presence of an obser-
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ver is assumed. Therefore λ is often accepted as the
final result of the measurement, as follows from the ex-
amples given. But if the presence of an observer is not
assumed, then the step Ζ—λ may be present implicitly,
since simultaneously with rearrangement of the appar-
atus according to the parameter I there occurs in the
transducer a transformation of it to F. The parameter F
has the character of a generalized force (in particular,
an electromotive force) acting on MA. Thus SI (together
with the transducer) has a certain supply of free energy
that insures the interaction of SI and MA.

The action of the generalized force F on MA, leading
to a corresponding change of a coordinate x, cannot
always be accomplished directly. For example, if F is a
measurable voltage in an electric circuit being studied,
and if χ is the angle of rotation of a pointer with a spring,
then y is the value that becomes established, in the
measurement process, of the current or charge of volt-
age in the instrument circuit that acts directly on the
pointer. The parameter y and the device that accom-
plishes the step F — y in (1.1) we shall call "matching."
This step is introduced into the consideration in order to
estimate its effect on the thermodynamic characteristics
of the measurement process. From later discussion it
will be evident that the limiting relations are determined
by the direct transformation F —• x, and that any addi-
tional step only worsens the estimates.

From what has been said, it is evident that for the
thermodynamic characteristics of a measurement ac-
cording to 1)—3), only the classical part of the MA is
important. The definitions introduced above will be made
more concrete as follows.

Every physical measurement is connected with an
interaction of two systems, that under study and the ex-
perimental apparatus; the interaction is such that an ex-
change of energy occurs between SI and MA, and as a
result there is a change in the value of a parameter χ of
the recording device in the experimental apparatus.
Dissipative processes due to the energy exchange be-
tween SI and MA are the only possible reason for irre-
versibility of the physical measurement.

It is assumed that SI and MA are located in a thermo
stat with temperature T. Thermal fluctuations of the
parameters F, y, and χ are the only irremovable cause
of measurement error. The measurement is based on
the fact that there is an unambiguous correspondence
between the mean values F, y, and χ (averaged_over the
fluctuations that occur), and from the value of χ a judge-
ment is made regarding the measurable quantity F. A
linear relation is assumed between F, y, and x.

Such a model of a measurement was considered
in[23,2e,27] a n d w m ^ d e s c r i b e d i n ^ ^ ι i n chap. 2.

We pass on to the definition of the fundamental
informational characteristics of a measurement.

Let the true value of the scalar quantity being meas-
ured be I, the measured value I'; their difference

i-v = bd (1.2)

is the error in the given measurement.

A measurement in a domain, or an estimate of a ran-
dom quantity[28-1, is characterized by the fact that a
domain (segment) L of length Zm is known in advance,

im=Zmax — 'mini I € L «i=> imin-<i<Zmai (!··»)

and the prior distribution P(Z) in L is given.

The error ΔΖ of a given realization of the measure-
ment of course cannot serve as its criterion of quality:
for this purpose, one must choose some quantity aver-
aged over the joint distribution P(Z', I) = P(Z)P(Z'/Z). A
physical measurement is usually characterized by the
property of uniformity; that is, that P(Z'/Z) = P(|Z -l'\)
= Ρ(|ΔΖ|) and is independent of I.

An average over all fluctuations (that is, over Ρ( |ΔΖ|)
we shall denote by a bar above, and an average over the
prior distribution by triangular brackets, (...).

Then the mean square of the fluctuations is

JET2) =~ST2. (I·4)
In addition, a measurement is often characterized1-8'29-1

by an interval ΔΖρ that has the meaning of minimum in-
terval of resolution or scale division. It must be empha-
sized that ΔΖρ, in contrast to ^ΛΖ2, is an ambiguous
characteristic, since

4u«>o. α·5)

that is, there is a nonzero probability w of an error (of
exceeding the interval ΔΖρ). In this connection, there
arises the question of the relation of the error ΔΖρ to the
reliability l-29] of the experiment.

A measurement according to the scheme (1.1) is
characterized by a linear transformation

l - L · (1.6)

of the segment L of (1.3) to a segment X of length x m .
Here, as is well known E303, the distributions of I and of
χ belong to the same type and differ only by the config-
uration parameters: a scale factor Z m /x m and a center-
ing parameter Zo.

We shall hereafter consider only distributions P(Z)
symmetric with respect to (I), and therefore the cases
of a symmetric measurement,

(1.7)—?-<*<:- χζΧ,

and an asymmetric measurement,

io=imin> 0 < z < z m <=> χξΧ_. (1.8)

In simultaneously treating both cases (1.7) and (1.8), we
shall write: χ e X, having in mind either Xt or X_. The
transformation (1.6) is in general related to the fact that
in the transducer there is used a certain standard gen-
eralized force F s t , which jointly with F(Z) gives

+ F ('mm) = 0
for
for

(1-7).
(1.8).

(1.9)

We notice that improvement of experiments is usually
connected with an increase of their sensitivity; that is,
discernibility of small differences h - Z2. It is therefore
natural that in these cases principal consideration is
given to the lowering of the absolute error VAZ2 of (1.4).
Here, when one speaks of an increase of accuracy, one
has in mind a decrease of the error, although formally
the dimensional quantity ( Ι Λ Δ Ζ 2 ) can hardly be called
the absolute accuracy.

In contrast to this, the relative accuracy can be form-
ally defined as the reciprocal of the relative error. As
will be evident from what follows, just this dimension-
less quantity plays a decisive role in the thermodynam-
ics of information processes.
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We define the relative accuracy ΐ/σχ of a single meas-
urement as

έ (1.10)
/ E 5

This quantity has meaning either as a characteristic
of a single realization of a measurement in a domain, or
in estimation of a constant quantity '-28-1. In the latter
case, in speaking of the accuracy of a quantity I it is
usual to assume that in (1.10) and (1.8) l0 = Z m i n = 0. In
the former case, for a characteristic of any process of
measurement in a domain we shall define the mean rela-
tive accuracy l/σ as the ratio of the prior root-mean-
square error to the posterior:

J- = 1 / * E » 2 ± ^ - i / W (1.11)

Often the relative (or, according to t37-1, reduced)
error ν*Δξ2 is introduced through the dimensionless
variable

l - I o

then

(ΔΕ2) °0

(1.12)

(1.13)

We shall introduce also the relative (reduced) resolu-
tion interval

(1.14)

We have, according to'-7'31·1,

/(i, x') = Η(χ)-ΜΗ (xlx'), (1.15)

where H(x) is the initial entropy, describing the indeter-
minacy of the prior distribution P(x); H(x/x') is the
conditional entropy, describing the posterior indeter-
minacy of χ given the measured value x' (that is, the in-
determinacy of the distribution P(x/x')); and MH(x/x')
is the value of the conditional entropy H(x/x') averaged
over P(x')·

Supposing, in accordance with1-32·1, that maximum en-
tropy on a segment corresponds to a uniform distribu-
tion, whereas maximum entropy for given dispersion
corresponds to a Gaussian distribution, we shall here-
after assume for the respective distributions

(1.16)

P(x/x')*=p(\z-x'\)*

Here, in agreement with formulas (1.13), (1.15), (1.16),
(1.7), and (1.8), we have

^ . o'^JLoK (1.18)

If for a o € l (accurate measurements) we neglect the
difference of p(x') from p(x) and calculate (1.15) accord-
ing to (1.16) and (1.17), we get

(1.19)

Thus for high accuracy l/σ (formula (1.11)) of the
measurement, the quantity of information is determined
by its logarithm2' (In l/σ) to a sufficient accuracy (the
ratio of variances was taken for such different distribu-
tions as the uniform and the normal).

If we calculate p(x') on the basis of the expressions
(1.16) and (1.17), we find that within the interval P(s')
does not differ from P(x); only on the edges of the seg-
ment (xb = x m a x , x m i n ) for |x - x b | « a o x m does the
difference of p(s') from p(x) become appreciable. In the
calculation of I(x, x') this is equivalent to an effective
decrease

<Δξ~2>

which is unimportant in formula (1.19) (for (δξ2)
» ξ2 2 «: 1)

We shall call 1/e the resolving power, l/w the relia-
bility (following1-8-1), and l/σ the accuracy of the meas-
urement.

It remains to determine the mean quantity of informa-
tion I£c, x') characterizing the process of measurement
in a domain.

(1.20)

Δξ
p ( ) ( ( ξ )
1), but which must be taken into account3'

in the calculation of I(x, x') for crude measurements. In
this case, recalling the symmetry property of Ifc, x'):

I(x,x') = I ( i ' t x) = // (x1) - Μ Η (χ'Ιχ), (1.21)

we note that the conditional entropy is exactly determined
by the normal distribution, since the averaging in (1.21)
is over P(x), while H(x') > H(x) because of the edge effect
mentioned.

Calculations show that the edge effect can be taken
into account with sufficient accuracy by supposing that
the effective increase of H(x') is equivalent to the fact
that the initial variance is equal to the sum of the prior
<δχ2) and the posterior Δχ*. Then from the preceding
formula we have the equality

which, in contrast to (1.19), is valid also for σζ > 1.

It is evident that for very crude measurements, when
l/σ2 «: 1,

*-*')«4ϊ- for 4r· 0. (I· 2 3 )

Finally, we shall give expressions for <δχ2) of (1.11)
and (1.13), which simplify in the case of the uniform dis-
tribution (1.16). For a symmetric measurement (1.7),

±- (1.24)

and for an asymmetric measurement (1.8)

(fa·) = 4 <*>=.£*. (1.25)

2. THERMODYNAMIC LIMITS OF ACCURACY
OF A PHYSICAL MEASUREMENT

a) Entropy defect in a measurement. To begin the
analysis of the characteristics of the measurement
process, we shall isolate the principal questions of the
basic problem, formulated above, of the thermodynamics
of information processes (see Sec. a) of Chap. 1).

I) Does the coincidence of the formulas for quantity
of information I and for change of entropy Δ Η reflect the
physical content of the process, or is this simply a
formal analogy? More exactly: is the obtaining of infor-
mation connected with a decrease of the statistical en-
tropy (entropy defect ΔΗι < 0L21^) of the system, and
what is the nature of this connection?

Π) What is the nature of the compensating increase of
entropy ΔΗΖ > 0 in the system? That is to say, what is
the minimum dissipation of energy in the measurement
process, and how is it related to the informational char-
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acteristics, i.e., what is the energy cost of the informa-
tion? In other words: is the process of classical meas-
urement reversible or irreversible, and what is the
lower bound to its irreversibility?

ΠΙ) By what means is it possible, in the obtaining of
information, to produce a certain ordering in the system
(of the type produced by "Maxwell's demon," and in the
general case to accomplish control of the system by
means of information); that is, to insure an additional
decrease of entropy ΔΗ3 (ΔΗ3 < 0)? In this section we
shall consider the answers to question 1.

Until very recently, one encountered statements (see,
for example, ί9>331) in which the authors insisted on the
essentially different nature of physical and of informa-
tional entropy (in accordance witht33: i, "energetic" He

and "cybernetic" Hc). In[ 9 : i , as was mentioned above,
the principal arguments were based on the difference in
their dimensions. In , it was furthermore emphasized
that He is defined only for an equilibrium state of a
closed thermodynamic system, whereas Η is defined for
a stationary random process of delivery of messages by
an information source and thus can be related to an arbi-
trary mathematical model of a source of messages, not
connected with a state of a physical system. With this,
of course, it is impossible not to agree; but it is clear
that juxtaposition of He and Hc (more accurately, of I
and ΔΗι according to (I)) makes sense only in an analysis
of a change of state of a real physical system in the
process of obtaining information4' (analogous to the dis-
cussion in'-33-1 with application to the control process for
the other components: ΔΗ2 (Π) and ΔΗ3 (ΠΙ)).

The majority of authors identify physical and infor-
mational entropy, like Brillouin'-8'16-1, restricting them-
selves to heuristic considerations (see, for exam-
ple, t 3 1 " 3 6 ^), which cannot serve as proof for this point
of view. The "positive" (according to '-21-') aspect of the
negentropy principle of information, formulated by
Brillouin^8'16^1, also consists precisely of the assertion
of the equivalence of the obtaining of information (bound4')
to the decrease of the physical entropy of the system.

Here it is simply assumed that after the obtaining of
the information, the number of possible microstates in
the system is decreased by a factor 1/e (see (1.14)), and
it is postulated that I = |ΔΗι| = In (l/e). It has been men-
tioned above (see footnote 2) that the definition of relative
accuracy and of quantity of information in1-8-1 is not
rigorous. Here it must be emphasized, however, that it
was Brillouin who first directed attention to the impor-
tance of the relative (and not the absolute) accuracy for
establishing quantitative relations between the thermo-
dynamic and the informational characteristics.

InC 2 i : l question I) was investigated more thoroughly.
The authors consider the process of information trans-
mission and relate the obtaining of information to a
deviation of the system from the equilibrium state. It is
hypothesized that each i-th signal transfers the system
to the i-th macrostate. The concept of entropy defect
ΔΗΧ is introduced; it shows how much further from a
state of thennodynamic equilibrium the state of the sys-
tem is, on the average, under the action of a definite
signal than under the action of a randomly chosen signal.
It is asserted that the quantity of information I obtained
by a physical system is equal to its entropy defect |ΔΗΧ|;
but here it is noted that this principle must be consid-
ered heuristic, since it has not been proved rigorously.
It is further assertedC 2 i : ! that the inequality I s |ΔΗιΙ

always holds and that this is a consequence of the second
principle of thermodynamics. The latter part of this as-
sertion is erroneous, since the second principle can be
applied only in estimations of the compensating increase
of entropy ΔΗ2 (Π) in another part of the system; that is,
when one is using the "negative" (according toC 2 i : i) aspect
of Brillouin's negentropy principle, according to which
ΔΗ2 s: |ΔΗιΙ·. This assertion of Brillouin can be consid-
ered a consequence of the second principle of thermo-
dynamics.

It appears that the answer to question I) follows from
an analysis of the equilibrium thermodynamic model
considered in reference'-23·1. According to^2 3'2 8 ' 2 7^1 and
the definition given in Sec. c) of Chap. 1, the measure-
ment process reduces to an interaction of two bodies, the
first of which, Y, contains the system being studied
(together with matching apparatus), and the second is
the recording device (for concreteness, mechanical) of
the measuring instrument. It is assumed that before the
measurement (t < 0) the bodies Υ and X are not interact-
ing and are in an initial state of equilibrium: y(t< 0)
= x(t < 0) = 0. We shall use the name "equilibrium
models" for those in which, during the measurement
process (t > 0), there is established a new equilibrium
state of the now coupled system Υ + X, characterized by
new equilibrium values of the parameters νΜ, χ^ propor-
tional to the measurable quantity F.

We shall first consider, in conformity withi23^, models
of the first class, in which the accuracy of the measure-
ment is uniquely determined by the energy U transferred
from body Υ to body X.

The transfer process in the recording apparatus
(body X) is described by the equation

μχ"+ ηχ+ βχ = v.y = / (ί), χ (0) = χ (0) = 0. (2.1)

The transfer process in body Υ (SI with matching ap-
paratus) is described either by the equation

My + By - F — κχ, y (0) = 0 (2.2)

(if y is a generalized velocity) or by the equation

By + By = F+ KC, y (0) = 0 (2.3)

(if y is a generalized coordinate). Here the following
generalized coefficients5' have been introduced: inertias
μ, Μ; resistances η, Η; elasticities (stiffnesses)
j3 = θ2υ/θχ2, Β; κ is the coupling coefficient of the sub-
systems Υ and X.

It is evident that in accordance with formula (1.10)

_, ZP> kT ja_ (2.4)

Considering a measurement in a domain (symmetric,
in accordance with (1.7)), we get from (1.11) and (1.24)

ι _ (*»> _ 2 {V) (2 .5)
«" ΔΪ5 kT '

where (U) is the value of the energy transferred from
body Υ to body X, averaged over P(x).

In the equilibrium model, it is easy to calculate
directly the entropy defect ΔΗΧ. In fact, before the meas-
urement

(X) (y), (2.6)

where H(a) is the entropy determined by all the micro-
scopic and macroscopic parameters except y in body Υ
and χ in body X. After the measurement, there is estab-
lished between the two (previously independent) param-
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eters (y and x) a coupling, which leads to a decrease of
entropy of the now coupled subsystems. We have

#00 = // (Y + X) = Η (a) + // (z) + MH (y/x). (2.7)

The entropy defect is

-&H1 = Ho - Η« = // (ι/) - ΜΗ (y/x) = / (χ, y). (2.8)

But the indeterminacy in y for known χ is due only to the
error χ - χ ' = Δχ of the measurement. Recalling (1.15)
and (1.22), we get, with use of (2.5):

It is evident that the degree of coupling between sub-
systems Υ and X is described by the quantity of informa-
tion obtained, which is equal to the decrease of entropy,
and the chief problem of analysis of the model consists
in the determination of the minimum permissible dissi-
pation of energy in the measurement process; that is, in
the answer to question Π).

But even before the carrying out of this analysis, the
often expressed point of view that with unlimited meas-
urement time it is possible to obtain arbitrary relative
accuracy, expending as little energy as is desired, is
easily refuted by the estimates presented above.

It might seem that this point of view is in full agree-
ment with the classical concept of reversible processes.
But when we consider the process of obtaining informa-
tion, we may not neglect, as is often done, the small6' but
in this case decisive effect of the interaction of the two
systems, which leads to the result that the entropy of the
coupled system is in general less than the sum of the
entropies of the previously noninteracting systems. And
if this is so, then, according to the second law of thermo-
dynamics, there must necessarily occur in the interac-
tion process a dissipation of energy that compensates
this decrease of entropy; that is, the rate of interaction
must be nonzero.

In the following section, estimates of this rate will be
obtained, and the physical meaning of the irreversibility
of the measurement process will be explained.

b) Lower bound to the irreversibility of the process
of physical measurement. Investigations made by
J. von Neumann1-11-1 and also by other authors1-38"41-1

demonstrate an irreversibility of the measurement
process that is due only to the quantum nature of the
object of study.

Recently papers have appeared which investigate the
quantum-mechanical irreversibility of the measurement
process from the point of view of the concepts of infor-
mation theory1-22'42'43-1: in the terms [ 2 1 ] discussed above,
it is shown that I < |ΔΗι| if only the two operators corre-
sponding to the parameters being measured do not com-
mute. We note in this connection that the quantum-
mechanical limitation on the sensitivity (absolute error
Al) applies only in simultaneous measurement of at least
two noncommuting variables.

Limitations on the accuracy of measurement of a
single quantity arise only in the classical macroscopic
part MA and are due to thermal fluctuations. References
26 and 27 give corresponding estimates of the variance
of the absolute error Δχ2. Above, in accordance with1-23-1,
we gave estimates (2.4), (2.5) of the relative variance,
relating it (and the relative accuracy l/σ) to the energy
U of interaction of the system under study and the meas-
uring instrument, and also to the entropy defect (2.8),

(2.9). In order to answer question Π), however, it is es-
sential to relate the accuracy not to the energy U trans-
ferred but to the energy Q dissipated in the measurement
process.

It is well known that the dissipated energy Q in the
process (2.1) of transfer of energy U to the body X is
essentially determined by the time of interaction. If the
force increases rapidly (that is, the interaction time is
limited by the time constant of the MA), then the work
produced exceeds U by a factor 2: kinetic energy equal
to the potential is dissipated in the system—transferred
to the thermostat. On the other hand, it is well known1-10-1

that in a reversible process the minimum work is R m i n

— U (that is, Q — 0). It is not that the coefficient of
friction is negligibly small (an explanation sometimes
given): if we neglect the frictional forces, then the new
equilibrium state of the coupled system will never be
established. An approximation to a reversible process
can be insured, independently of the value of the coeffi-
cient of friction η (with increase of η, only the time
scale changes, since the time constant of MA changes)
by slowing down the interaction process (slow increase
of the force). The explanation of this is well known: the
transferred energy U is determined by the displacement
χ = vt (v = mean velocity, t = time of interaction),
whereas the dissipated energy Q ~ v2t. Therefore by
slowing down the transition process as much as is de-
sired, that is by increasing t and decreasing ν propor-
tionally, it is possible, for given U, to insure Q — 0.

We note that one usually does not investigate what it
means to slow down the transition process: it is assumed
that the experimenter slowly introduces a force (moves
a piston, removes a resistance in an electric circuit,
and so on). But to estimate how the work performed by
the experimenter depends on the slowing down does not
seem possible.

Therefore in the model considered, the role of the
experimenter is reduced to a minimum: he only removes
the subsystems from a state in which they do not inter-
act to a state of interaction, in which the transitional
process begins in the coupled system SI + MA. This ac-
tion of the experimenter (advancing of a shutter, closing
of a switch in an electric circuit, and so on) is a single
act and not connected either with the energy being trans-
ferred or with energy stored in the shutter or the open
switch. The work performed here by the experimenter
must only exceed (in general by many times) kT: the
energy barrier that prevents the subsystems from spon-
taneously reaching the state of interaction. Further-
more, the slowing mechanism considered in the models
is itself realized not by the experimenter but by some
regulator which (in contrast to the experimenter) can be
investigated by physical methods. Here it turns out that
since the regulator itself participates in the thermal mo-
tion, the realization of the slowing down is connected
with a certain additional dissipation of energy that is
usually not taken into account.

Returning to the model (2.1), (2.2) or (2.1), (2.3), we
see that if f (t) = /cy(t) increases rapidly (τ <§C τχ, where
Ty and τχ are the time constants of bodies Υ and X
respectively), then the dissipative losses in body X are
Qx = U. It is also evident that the matching apparatus
can serve as a damper, slowing down the growth of the
force in (2.1). Then, however, although it is possible to
make Qx — 0, the dissipative losses in the body Υ are
Qy > U. This result follows from the fact that the coup-
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ling coefficient κ and the dimensionless coefficients
proportional to it, δ = κ2/ηΗ in the system (2.1), (2.2)
and Δ = «7/3Β in the system (2.1), (2.3), are bounded
from above. Decrease of δ and Δ below the upper bound
is possible but is connected with an increase of Q

Those values are energetically optimal for which
σ^ = σ£ (see (2.4)). Then

and we attain the lower bound of the estimate for
the case of two degrees of freedom (see123-1)

σ*<?Σ > 2W.

.

(2.10)

in

(2.11)

This estimate, in consequence of (2.10), is four times
worse than the limiting estimate for one degree of free-
dom, when the matching parameter y is absent and the
force F acts directly on the recording device.

Then, in accordance with (2.4) and Q .̂ = U, we have

.U.T (2-12)

Both estimates relate to an irreversible realization
of the measurement process: either when the interaction
time is limited by the time constant τχ, (2.12), or when
the growth of the force is slowed down in X, but as a re-
sult the losses in Υ increase, (2.11).

Thus in order to decrease the dissipation during the
measurement, it is insufficient to slow down the growth
of the force in X: it is necessary also to slow down the
growth of the force in Y. In the model under considera-
tion, this can be done only by introduction of a third body
Z—a regulator, which slowly changes the parameter Η
in (2.2) or Β in (2.3). But since the regulator also par-
ticipates in the thermal motion, it is then found that for
given U (that is, accuracy l/σ) the decrease of Qg is not
unlimited7'.

Let the regulator insure the optimal law of growth of
the force f (t) in (2.1):

' -
ί β* for

= const for
(2.13)

Then the dissipation Qi connected with decrease of veloc-
ity decreases by a factor η = t o /4r x (irreversible realiza-
tion of the process corresponds to mean velocity x^/4^).
On the other hand, in consequence of (2.13), equation
(2.1) is transformed to μχ + 7jx = e, when it is necessary
to take account of a Brownian drift8*

When t = to, so that f (t) = ίβ, the body X falls into a po-
tential well; the larger to, the more its energy exceeds
the equilibrium value βΔχο/2 = kT/2. This energy is
delivered to the thermostat; this corresponds to a second
term in the dissipative losses, Q2. From the condition

• _.._ ( 2 · 1 5 )

we get

whence follows at once the limiting estimate (see[23·1)
for the "reversible" realization9' of the measurement
process:

For a model with one degree of freedom, analogous to
the preceding, the estimate improves:

σ<?ϊ>2/£Γ, (2.18)

but in this case not by a factor 4, like (2.12) and (2.11),
but only by a factor 2.

The same result is obtained for a discrete realization
of the slowing down, when the regulator fixes each i-th
intermediate equilibrium state (i = 1, 2, ..., n); in the
optimal case, Δχ4 = Δχ. = xw/n. Since the fixation of each

equilibrium state requires an energy coupling of the
regulator with the system exceeding kT, each i-th tran-
sition is connected with a dissipation Q i m i n s kT.

We have in this case

<3ι= Σ Αρ,,, <?2=Σ Δ<?21·, u

On the other hand, on taking into account the coupling
of the regulator with the system, we have

Δρ 2 ί = a*kT, a > 1.

We write in analogy to (2.15):

(2.20)

(2.21)

Hence, setting a2 = 1 (weak restraints), we get directly
(2.18).

In order to obtain estimates of the increase of entropy
ΔΗ2, it is necessary to go over from a single measure-
ment to measurement in a domain. It is easy to see that
the estimates (2.11) and (2.12) for an irreversible real-
ization of the process are valid also for the mean values
(Qj;) in a symmetric measurement (1.7) (inconsequence
of (1.24), in analogy to (2.4), (2.5)). For an asymmetric
measurement (1.8), the estimates, in consequence of
(1.25) worsen by a factor 4.

In an optimal realization of the process, however, the
coefficient in the estimates (2.17), (2.18) is, strictly
speaking, somewhat smaller (by a factor V3/2), because
l/σ ~ V(x2) whereas (Q) ~ (vS2). For the same reason,
for an asymmetric measurement the estimates (2.17),
(2.18) worsen not by a factor 4 but by a factor 2.

Hereafter we shall neglect the coefficient V3/2 in
(2.17), (2.18) and shall apply these estimates, as well as
(2.11), (2.12), also to the case of a symmetric measure-
ment in a domain10', when O^ = (Q 2 ) (we shall omit the
brackets).

From formulas (2.12) and (2.18) we find that the mini-
mal increase of entropy ΔΗ2 resulting from dissipation
is completely determined by the accuracy of the meas-
urement and the mode of realization of it (irreversible
or in the limit "reversible"):

(2.22)

(2.23)

• -ST. Affi»>|-2/2Affi».

In accordance with an earlier result (see (2.9),

In (l/σ), σ»«1.
1/2σ2, σ*>1.

It was mentioned above that according to
BriUouin118'163

(2.17)

Aff2>|Aff1|, (2.24)

the equality sign defines the lower bound of an irreversi-
ble measurement process. From (2.22) and (2.23) it is
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evident that this lower bound is much too low and can be
attained only in the limit I — 0. Even this, however, is
not altogether accurate, since formulas (2.22) are in
general valid only for σ2 < 1. In the contrary case (that
is, when U < kT, (2.4)), in accordance with (2.20), Qj.
> kT > U; that is, ΔΗ2 > 1 always. In this connection
we remark that the possibility of attaining the lower
bound (2.24) in the examples considered in1-8-1 has not
been proved. But if it is nevertheless attainable for
σ2 < 1, then from (2.23) and (2.5) there is obtained an
extremely unnatural relation between the optimal speed
of the transition process and the parameters of the meas-
urement and the MA (in this connection, see footnote 9).

But the chief objection, in principle, to the possibility
of the equality in (2.24) for I > 0 arises in the course of
answering the question ΠΙ) formulated above. From con-
sideration of Maxwell's paradox it is known that the in-
formation obtained does not completely describe the re-
sult attained: it can be used later for the introduction of
order into the system (for control); that is, for a de-
crease of entropy ΔΗ3 < 0.

To wit, a low value of the informational efficiency

/ σ , 1 1 (2 2*)}

obtained from the relations (2.23) and (2.22), insures the
possibility of effective control without violation of the
second principle of thermodynamics:

AH. - I AH11 = AH, (1 - rtof m a s )> | AH, | > 0. (2.26)

In contrast to the informational, the mechanical effi-
ciency r m e c n completely describes the result attained:

υ ,, < ?i/~ i f n^kT (2.27)
* mech max 7J~J~O -^ ι r 2U * ** *

it differs less from unity, the greater the useful effect
(the transferred energy U).

Thus the analysis of the slowing down of the transition
process achieved by an ideal regulator (yet one that par-
ticipates in the thermal motion) leads to the natural
bounds (2.16) and (2.22) in the approximation to a revers-
ible process.

All these results related to models of the first class,
in which the transferred energy U completely determined
the informational characteristics of the measurement
process (see (2.4), (2.16), and (2.23)).

It is possible to consider models of a second class,
in which the estimate (2.12), relating Q^ with σ, is ob-
tained directly and cannot be improved; but then the
value of the transferred energy U (which no longer de-
termines σ) may appreciably exceed the bounds (2.16)
and (2.27).

Let the measurable quantity F, in contrast to the
model just considered, be not a lumped parameter, but
one that slowly decreases with distance z. Then the role
of regulator Ζ is played by a "truck" that slowly brings
the body X closer to SI.

In this case the optimal law of growth of the force is

(2.16), but the relation between the accuracy and U ap-
preciably worse than by (2.4).

This kind of interaction is characterized by the fact
that the test body is acted upon by the small difference
of two large forces, produced by corresponding fields.
Therefore there is a very weak coupling with the param-
eter χ (the accuracy ί/σ, which characterizes this coup-
ling, is small), and a "strong" interaction occurs in
equilibrium: an inappreciable fluctuation of the total
energy leads to large fluctuations of the parameter χ and
consequently to large transfers of energy from one field
to the other. As is well known[41], normality of the
macroscopic variables is characterized by high stability
of them (ί/σ 3> 1). In the present case the energy of the
system is a normal variable, but the energy of the sub-
systems is not; for their thermal fluctuations are large,
and consequently the information that can be extracted
by the test body (with recording parameter x) is small.

Thus only for such a transfer of energy U that the in-
formation extracted from the system is characterized in
accuracy by (2.4) does the bound (2.16) occur in the ap-
proximation to a reversible process.

We shall now discuss the choice of the parameters of
the recording apparatus.

From the preceding it is evident that for a given value
of the directly measurable quantity (£yM = i^, an increase
of the accuracy (that is, of U) can be attained by decrease
of the elastic coefficient β. If, besides the energy limi-
tations, we take into account also the limitations on the
time of measurement, which in all cases (both irreversi-
ble and optimal) are determined by the relaxation time
τχ, it is easy to obtain the following recommendations
for synthesis of the recording apparatus. It is known that
the character of the transitional mode for equation (2.1)
is completely determined by the parameter

(2.28)

and in equation (2.1) β will be replaced by ββ%. Then the
dissipation decreases by a factor β/ββ&, but the mean
square of the error increases by the same factor, so that
the estimate (2.12) does not improve. In this situation,
however, the relation between the dissipated energy Qj;
and the transferred energy U may be better than by

inverse to the figure of merit. It is easy to show that at
the boundary (γ = 1) between oscillatory (γ < 1) and
aperiodic (y > 1) modes, a minimum of the relaxation
time τχ is attained (and with it, of the measurement
time) for given value of β (that is, for given accuracy).
We have

- = •& for (2.30)

From this it is evident why accurate measurements are
characterized by small values of β and μ.

c) The energy cost of accuracy and of quantity of
information. From the estimates obtained above for the
measurement process, (2.12), (2.18), (2.22), and (2.23),
there follow immediately limiting estimates of the en-
ergy cost ea of accuracy and ej of unit quantity of infor-
mation. We have from (2.18)

I/O
--2kT, (2.31)

that is, for optimal slowing down of the process the cost
of accuracy is constant.

But for irreversible realization of the process, the
energy cost of accuracy

7»=±kT (1) (2.32)

increases in proportion to the accuracy.

From (2.23) and the preceding formulas we have
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e/=%!2- = 2 & r ^ 7 ^ = 2fcr^, ο»<1, (2,33)

(2.34)

that is, for σζ <C 1, not only for irreversible but also for
optimal realization of the process, the cost of unit quan-
tity of information I increases exponentially (with respect
to I). Only for I — 0 (σ2 » 1) does this cost approximate
to kT, Brillouin's lower estimate, obtained also in1·21-1.

One of the reasons for the obtaining of too low estim-
ates for e : is the fact that neither in[8^ nor in™ is
there introduced an explicit bound on the energy (or,
contrariwise, on the quantity of information or the ac -
curacy)11'; because of this, these estimates relate to the
uninteresting limiting case I — 0.

A second reason has a different origin: very often the
energy expenditures are estimated only in the first stage
of the measurement (see the scheme (1.1)), especially if
this step is detection12'.

We shall consider briefly the limiting energy relations
in detection as dependent on accuracy. The statistical
theory of detection developed during approximately the
same years as did information theory and has been pre-
sented in an extensive literature. Here we must select
the pioneering papers of Kotel'nikovc*5'*6] and the
laterc*7"49-1. Without discussing the numerous results of
this theory, we note an important basic fact important
for the question under discussion: the threshold energy
is determined first of all by the energy of the noise kT,
and the threshold level can be found from the require-
ments on the probabilities of detection (1 — w+) and of
false alarms w.. It isknown that for arbitrary relations
between the duration τ of the signal pulse and the time
constant τ for relaxation of the receiver, the signal en-
ergy for sure detection Ec > kT.

If we are concerned with detection of a constant force
of duration f (a video pulse) or of a pulse of sinusoidal
oscillations of known frequency ν and of duration τ, then
a matched receiver, as is well known'-50-', is character-
ized by a relaxation time τ « τ: in this case it is optimal
to use the band Δ ν of the receiver, and the chief part of
the signal energy is transferred to the receiver and is
dissipated in it.

Use is often made of a signal with a large number
η ^> 1 of degrees of freedom (wide-band, either repeated
pulses or a constant force of long duration in comparison
with τ). Then the signal energy in a single degree of
freedom may be smaller than kT (the noise power ex-
ceeds the signal power). In these cases, as is well
known1-50-5, one uses the method of accumulation (for a
sinusoidal signal, coherent accumulation). Then the
signal /noise energy ratio at the output of the receiver
increases by a factor η = f A » 1, but the total signal
energy E'n> is Vn"times as large as the energy E^1' of a
signal with one degree of freedom that would insure the
same w+ and w-

Recently the contrary case of a time ratio τ/τ = m
^> 1 has acquired great importance. It was shown by
Braginskii E513 that an increase of the sensitivity of a
mechanical receiver—an oscillator, described by (2.1)—
is inevitably connected with an increase of the relaxation
time τ and a corresponding narrowing of the band of the
receiver. Braginskii[5i:i proposed an optimal strategy
for obtaining a solution which, despite the so significant
mismatch of the receiver with respect to the signal, in-

sures detection of almost the limiting threshold signal.
Here the portion of the energy U transferred to the re-
ceiver (or extracted from it) may be m times smaller
than kT. It must be mentioned, however, that the thres-
hold signal energy Ec is not decreased: only a fraction
l/m of this energy is transferred to the receiver (be-
cause of the fact that the receiver has a band m times as
narrow as the spectrum of the signal), while the principal
part of the signal energy is dispersed, not entering the
receiver, and is absorbed in the thermostat. Precisely
for this reason, the application of the described effect of
apparent lowering of the threshold of detection to in-
formation transmission or operative radar is of course
inexpedient, since this method leads not to a decrease of
the transmitter energy but only to an incomplete use of
it in the receiver.

But the methodology presented in1-51-1 and developed
in '-52-1 has great importance in physical experiments on
the detection of minute effects (search for quarks, gravi-
tational waves, etc.— seet 5 i : i)o Because the energy U
transferred to the receiver can be m times smaller than
kT, quantum limitations begin to show up significantly
earlier (when U = kT/m « hv). These questions are con-
sidered in detail in1-52-'.

We shall briefly discuss the successive steps of a
measurement described in [ 5 1 ' 5 2 ] and shall compare them
with the steps of the scheme (1.1). The force being
measured excites small nonstationary changes of ampli-
tude of the oscillations of the mechanical oscillator
(2.1)—the step (I — λ) of (1.1). Then with the aid of a
capacitive transducer the mechanical oscillations are
transformed to electrical; this corresponds to the step
λ — F in (1.1). InC523 it is shown that in this step it is
advantageous to be in a nonstationary mode: then it is
possible to attain minimum threshold signal (for high
initial level of the oscillator energy). The next step is of
especial interest: it is shownt52:i that measurement of
the energy of the electrical oscillator before and after
action of the force can be accomplished practically with-
out disturbance. The interaction of an electron beam
with a resonator can occur almost completely elas-
tically—without transfer of energy. Between the inter-
actions in a phase and the opposite phase, part of the
electrons fall into the recording device; this corresponds
to the last steps in (1.1): F — y — x; here y is the cur-
rent, and χ is the value of the recording parameter. The
last step, as always, is quasistationary and is connected
with transfer and degradation of energy exceeding kT.

Thus in all cases of detection, the energy degraded in
the receiver and the surrounding medium exceeds kT.

In considering the accuracy of measurement in detec-
tion, it is necessary to distinguish two problems.

On the one hand, it is possible in detection to retain
amplitude information and thus not simply to detect, but
also to measure the force. Then in the first two cases,
when f a r , the requirement 3) of Sec. c) of Chap. 1, on
establishment of a stationary state, is fulfilled, and the
energy estimates obtained above are valid for the accur-
acy of the measurement of amplitude. In the third case,
as is evident from what was just said, only the final step
in (1.1) is stationary; for it, the estimates obtained are
also valid.

On the other hand, and this is especially characteris-
tic of detection, what is of interest is the accuracy of the
measurement not of amplitude, but of some parameter I
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with respect to which the detector reorganizes itself.
This type of detection also appears in the first step
(I — λ) of measurement by scheme (1.1), when λ is
either the instantaneous position of the receiver on some
scale, or the number of the detector with a positive
response (in the case of a parallel many-channel re-
ceiver).

In order to insure accuracy ΐ/σ0 (see (1.10), (1.13),
(1.14)) of the order of the resolving power l/e, it is
necessary that the probability of error

s — i( '_« ε, (2.35)

where w- is the probability of a spurious blip in a single
detection event (resolved element). Hence it is easy to
find the energy Eo of the threshold level for detection of
a signal

— = 2kTln-

and the approximate value of the signal energy

Ec » 2£0 = ikT In - w ikTJ.
(2.36)

Thus it is evident that in detection (that is, in the first
step of measurement), minimum cost of unit information
is, in order of magnitude, attained; but this cost relates
only to signal energy and does not take into account en-
ergy expenditures in the second stage, corresponding to
measurement of time or distance. Although practically
this (second) part of the energy expenditures is usually
unimportant (see footnote 11), in principle it is it that
determines the energy cost of accuracy and of quantity
of information (2.31)-(2.34).

In closing this chapter, we shall discuss the reasons
why thermodynamic limitations have not shown up prac-
tically in the improvement of physical experiments.

In physical experiments the aim is, as a rule, to
achieve an increase of sensitivity1-51"55-1; that is, a de-
crease of the absolute root-mean-square error VAZ2

(1.4) and, correspondingly, a decrease of the resolving
interval Δ/ (1.5). In this, however, the relative accur-
acy of the experiment is artificially decreased by having
recourse to the transformation (1.6) because of the use
of standards (1.9).

What has been said relates to the majority of experi-
ments—even the most delicate and accurate: to the
classical experiments of Michelson and to experiments
on the use of the Mossbauer effectt53: i; to experiments
on detection of gravitational waves '-51-' or, in general,
"crucial experiments";'-54-' etc.

In all these experiments, despite the high sensitivity,
the accuracy ί/σ did not exceed 103. Then even according
to the worst estimate (2.32), at Τ = 300°K it is necessary
in a single measurement event to degrade only 10~7 erg.
If, however, in accordance with[56-', high relative accur-
acy is not very necessary in usual experiments, the
fundamental physical constants must be known with high
accuracy. Nevertheless, all the fundamental constants
have been determined with a relative accuracy not ex-
ceeding 106-107 (see, for example, β β ' 5 < 1 ) . A single
measurement event with such accuracy requires the
degradation of ~ 1 erg, and this is also less than the ac-
tual technical limitations.

Thermodynamic limitations acquire importance not
only in principle but in practice in contemporary systems

for the collection, storage, transfer, and processing of
information. In the first place, these systems are char-
acterized by transfer and processing of large blocks of
information with a high speed of operation. In the second
place, transfer of information is connected with large
losses on attenuation of signals. In the third place, mod-
ern computers operate with numbers of very high accur-
acy (~ 109-1013).

We shall therefore discuss the thermodynamic pecul-
iarities of information transmission and processing that
results from the limitations on the accuracy of measure-
ment.

3. THERMODYNAMIC CHARACTERISTICS OF
THE PROCESS OF INFORMATION TRANSMISSION

a) The energy meaning of encoding. In order to ex-
plain the thermodynamic peculiarities of the process, it
is sufficient to restrict ourselves to the analysis of the
transmission of one-dimensional, uncorrelated messages
(numbers) χ e χ . This case is directly related to the
measurement process considered above, and it enables
us to obtain energy estimates of the accuracy of various
number representations, which will be necessary later
for investigation of the process of information process-
ing.

Suppose that it is necessary to transmit over a com-
munication line the measured value of a scalar quantity
in the form of a number. In analogy to the preceding, we
shall require that at the receiving end, the quantity of
interest to us shall also be represented in the form of a
single scalar characteristic. It is obvious that the ob-
taining of messages in the form of a scalar quantity
with the necessary accuracy requires no less energy
expenditure than a measurement. In contrast to measure-
ment, however, here it is important what part of the
energy is consumed by the system under study (in the
present case, the energy of the arriving signal), and what
part by the measurement instrument (in the present
case, the receiver that accomplishes the decoding). If
the only characteristic of the signal that carries the in-
formation about the number is its amplitude (energy),
then all the estimates obtained in the analysis of meas-
urement apply directly to the signal energy absorbed in
the receiver ^ 2 4 ' 2 5 ] , and no additional expenditures in the
receiver are required. This method of encoding we shall
call the analog, or natural, representation of a number.
This method of transmission corresponds to a remote
measurement, very disadvantageous in the energy
respect: in consequence of attenuation of the signal, the
energy expenditures in the transmitter are very large.
Therefore it is expedient to redistribute the energy
necessary to insure the prescribed accuracy of trans-
mission, in such a way as to decrease as much as possi-
ble the energy of the received (and therefore of the
transmitted) signal, correspondingly increasing the en-
ergy expenditures in the decoding at the receiving end.
Such redistribution of energy is accomplished by various
methods of encoding, when the information about a num-
ber is contained not only in the amplitude of the signal
but also in its temporal position (positional codes) or in
the carrier frequency.

These (and other) methods of encoding are based on
the use of a number of degrees of freedom instead of
one: a scalar quantity is reduced to a unique corre-
sponding vector, each of whose components requires ap-
preciably less accuracy of representation than did the
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original scalar. It was shown above that at high accur-
acy, the energy expenditures grow exponentially with
increase of the quantity of information about a given
scalar quantity. On the other hand, it is clear that with
increase of the quantity of information not because of
accuracy, but in consequence of an increase of the num-
ber of components, the energy expenditures are propor-
tional to the increase of the quantity of information (that
is, to the number of components). Herein lies the phys-
ical meaning of any methods of encoding, among them
the optimal—according to Shannon.

b) Natural representation of a number. Before esti-
mating more economical (because of encoding) methods,
we shall first consider the energy cost of accuracy of
the natural representation of a number.

Above, an estimate of the cost of accuracy was ob-
tained for a single measurement, and then these results
were extended by simple considerations to measurement
in a domain. Strictly speaking, however, the formulations
of the corresponding extremal problems are different.
We shall study this problem for the transmission proc-
ess.

Following'-5'7^, we shall consider transmission of
messages according to the scheme

x-+y-+y'^x', (3.1)

where χ and x' are the initial and the received messages,
respectively, and y and y' are the signals at the input and
output of the transmission line.

The formulations of the extremal problems consid-
ered below, in contrast to the traditional ones C5'7»31^
are simplified in that they relate only to uncorrelated
messages (numbers) but have an important distinctive
property related to the aim of the investigations.
Whereas satisfaction of the "quality (accuracy) require-
ment" of transmission ̂  is usually limited by the trans-
mission capacity of the channel, below the role of limit-
ing quantity is assumed by the energy13'. Therefore only
such limitations on the quality of the transmission are
permissible as do not require infinitely large energy.
Thus, for example, the limitation used in the usual
mathematical formulations

4 i £ i ^ 1 L < l l = l. (3.2)

But such a requirement on the transmission, in con-
trast to (3.2), does not describe its quality and does not
permit comparison of different dependences y(x): for
different y(x), the same values of c and w can lead to
appreciably different accuracy. The peculiarity stated
shows up graphically, in particular, in a comparison of
the natural representation of a number in analog systems
with the digital representation in numerical ones.

Therefore we shall consider hereafter those require-
ments on the quality of transmission that are expressed
through a single scalar characteristic—the mean rela-
tive accuracy l/σ.

As we did for measurement, we suppose, in analogy
to (1.8) and (1.16), that the numbers χ are distributed
uniformly over a segment:

p(i)=_L, 0<i<im<^ifX. (3.4)
xm

We shall consider the most natural case of the natural
representation of a number—the linear amplitudinal:

y**Bx. (3.5)

Assuming that the same processes occur in the re-
ceiver that were considered in the analysis of measure-
ment, that is that the position χ of the recording element
is completely determined by the energy U(x) = |3x2/2
transferred to this element (in the present case a part
of the signal energy), and neglecting noise in the chan-
nel, we give the conditional distribution P(x'/x) of its
density

is not permissible.

This requirement (3.2) on the accuracy originates
from the classical theory of approximation of functions,
where χ is the exact assignment of the function and x' is
the approximate. In this case, in which χ and x' are ab-
stract mathematical items, condition (3.2) is completely
correct. But when physical signals participate in the
transition χ — χ' (y — y'), the condition (3.2) cannot be
attained if the energy is bounded.

For any physically encoded quantity, the assumption
of zero probability w of an error that exceeds e (if e is
less than the a priori interval) is inevitably connected
with the assumption of a signal energy as large as may
be desired (at nonzero temperature T). This follows
from the classical statistical theory of fluctua-
tions C 1 0 ' 2 6 . ^ .

Thus with allowance for the finiteness of the energy,
it would be necessary, in analogy with (1.5) and (1.14), to
rewrite condition (3.2) thus:

en ^ ^ w>() (3.3)
ώ J

-exp L±n£!
№ 2

£!L1
2 ]•

(3.6)

Since the energy expenditures are determined by the
relative error σ (or aa, in accordance with (1.13), (1.12),
(1.18)), we rewrite (3.6), using the facts that U m a x

= fJxm/2andp(x) = l/xmby(3.4):

The physical meaning of the coefficient Β in relation
(3.5) becomes clear if we take into account that the signal
energy is

£c = !/2 = (l + a)%? i ^-- (3.8)

where a defines the fraction that the dissipated energy Q
is of the transferred energy U.

From the preceding relations (2.16)—(2.18) it is known
that

where the index "i" corresponds to irreversible and the
index "r" to reversible, i.e. optimal, according to Sec.
b) of Chap. 2, realization of the process of decoding in
the receiver. From (3.8) it is evident that, in contrast to
measurement, where going over to the optimal mode
gives an appreciable power advantage (proportional to
the accuracy \k— see (2.18), (2.11)), in the case of
transmission this is not so (the signal energy (3.8),
which determines the energy of the transmitter, changes
by less than a factor two). This is also clear if one takes
into account that, independently of the later use of the
transferred energy U (useful or degraded in the
receiver), at the transmitting end it is all the same
necessary to insure that after attenuation, Ec > U.

We shall measure energy in relative units, using the
notation
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kT
ιΑ, (3.10)

From (3.4), remembering formulas (1.8) and (1.25),
we get

~· (3.11)

In transmission of numbers χ assigned in the domain
(3.4), there occurs a discretization (quantization) of them
and of the corresponding signal amplitudes y (3.5), (3.10),
in accordance with (1.14): ΔΧ /x m = e. Any choice of e
in accordance with (3.3) leads to a nonzero probability
of error w. Both these quantities separately affect the
accuracy ΐ/σ and the choice of the mean energy S of
(3.11) for transmission of a single message. To deter-
mine the total energy Sj on transmission of all the
messages x^ (i = 1, 2, ..., l/e), it is necessary to multi-
ply the mean energy S by the number of readings l/e:

5, = s i . (3-12)

We write the formulation of the extremal prob-
[243.

lems

σ (ε, w) ->- min, S (e, w) < C, ^ const. (3.13)

σ (ε, u-)->-min, Sz (ε, w ) < C 2 = const, ,o -<*\

each of which corresponds to an energy optimization of
the transmission parameters—either for a single mess-
age (3.13) or for the whole domain (3.14).

Solution of the problem (3.13) shows that c r m m (and
correspondingly I m a x ) is attained under the conditions

- 0 , w •

so that

(3.15)

that is, as was to be expected, for a single transmission
(or measurement) discretization is not required (e -~ 0).

We have in this case (taking account of (3.4), (1.8),
(1.25))

O2 = ~-, 7 « | l n S , S>1. (3.16)

It is evident that even for a continuous message
(e — 0), the quantity of information is finite and is de-
termined by the released mean energy. We note that
when symmetric encoding is used (that is, if in analogy
to (1.7) we set ~x m /2 < χ s x m /2 in (3.4)), the energy
cost of accuracy decreases by a factor 4:

. . (3.17)

Solution of the problem (3.14) for the symmetric do-
main (3.17) gives energetically optimal relations between
the number of readings l/e (or the resolving power for a
measurement), the accuracy l/σ, and the reliability l/w:

σ2=3σί=ε2 = - (3.18)

On comparing the values of the minimum errors
(σ, σ0) with the corresponding values (3.17) (where, also,
σ2 = 3σ§) obtained from problem (3.13), we see that the
errors of discretization lead to an increase of the energy
cost of accuracy by a factor 5/4. For the symmetric
encoding (3.4), in correspondence with (1.18),

ο* = 12σΙ = № = ±, (3.19)

that is, the loss as compared with (3.16) is also in the
ratio 5/4.

We point out that with the energetically optimal dis-
cretization (3.18) and symmetric encoding, e = σ; that is,
in conformity with (3.16) and (1.19)

/ « l n ! = l n ! ,»«! (3·2 0)

This means that one can speak of a determination of
energetically optimal e-entropy in a solution of the ex-
tremal problem (3.14). The conditions (3.18) determine
a unique value of e, when for given Sj the entropy H€

= In l/e (despite the fact that w > 0 in (3.3)).

From formulas (3.20) and (3.16) it is evident that the
quantity of information depends logarithmically on the
energy (when S 2> 1); and only in the limiting case when
S < 1 do we arrive at the linear dependence I » S.

A more accurate expression (as compared with (3.16)),
valid for arbitrary S, has, in accordance with (2.23) and
(1.22), the form

7 = yln(25 + l). (3.21)

We compare this expression with Shannon's '-5-1 formula
for the limiting mean over Δ τ of the transmission capa-
city C (in a frequency band Δ ν):

Since the noise power P n = kT&v and the signal power
P s = EC/AT, and since I = CAT, we get

( 3 ' 2 3 )

In accordance w i t h [ 5 ' 8 ' 1 2 ] , we suppose that for the
quantity of information in one degree of freedom (which
is given by formula (3.21)) it is appropriate to set Δ^Δτ
= 1/2; then, remembering (3.10), (3.9), and (3.8), we
arrive at formula (3.21) if in (3.9) a = ar = o(l). If
a = o i = 1, then 2S = E s of (3.8), and the quantity of in-
formation decreases (quite inappreciably: by less than
unity). Application of optimal slowing down for trans-
mission is inexpedient not only because of the smallness
of the positive effect, but also because it requires use of
many degrees of freedom (of accumulation) for the
transmission of a single reading. But here there is
more advantage in the use of an encoding in which a sig-
nal with many degrees of freedom (vector) is placed in
correspondence to a scalar quantity.

c) Positional methods of encoding. It was shown above
that the limited energy resources lead to the necessity
for discretization of continuous messages. Here the
number of readings l/e determines the maximum num-
ber of resolvable values of the scalar message (number)
being transmitted. The transition from the usual limita-
tions on power to limitations on signal energy shows that
wide-band signals are more economical energetically
(but not as regards power) only in consequence of the
use of many degrees of freedom, but only within definite
limits. In the discussion of detection it was explained
that certainty of detection always requires that the sig-
nal energy Eg > kT, and various methods of accumula-
tion do not change this limitation. Therefore increase of
the number of degrees of freedom Μ of the signal to
more than l/e is meaningless.
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The most economical method of encoding a number,
from the point of view of transmitter energy, is the
single-pulse positional, in which

Μ =AfmaI = 1/e. (3.24)

Here use is made of a special case of the vector
representation—a unit vector in which all components
except one are zero. In consequence of (3.24), this me-
thod of encoding is the least economical from the point
of view of bandwidth (or duration); that is, it requires an
appreciable increase of the transmission capacity of the
channel as compared with the natural representation of a
number.

Another method of positional encoding, connected with
the digital representation of a number, is the most wide-
spread. This method is somewhat less economical with
respect to power, but more economical with respect to
the number of degrees of freedom:

where a is the base of the positional numeration system.
From the preceding it is known that it is energetically
advantageous to take the minimum possible value
= 2. Then

Λ/2 = (1η2)-'1η — , (3.25)

and the energy of the signal, as likewise for (3.24), is
determined by the requirements for its certain detection.
Because of the irregular (anomalous'-12-1) law of distribu-
tion of the errors (as compared with the natural ampli-
tude encoding, (3.7)), the relations between σ0, e, and w
are significantly different from (3.18).

On neglecting coefficients of order unity, we find at
once:

«0 as ε <~ σ0. ( 3 . 2 6 )

Hence it is easy to find the requirements on the proba-
bility w. of false alarms—of a spurious blip in some
position j different from the i-th (of the transmitted
message).

For single-positional encoding, in consequence of
(3.24) and (3.26), we get in analogy to (2.35)

w = Μ miXw.., w. = ε2. (3.27)

For the binary digital representation (3.25), we have

elp2 (3.28)

It is evident that with the single-positional encoding
(3.30), the energy cost of unit information,

(3.32)

Hence it is easy to find the threshold energy for both
cases:

-. (3.29)

and on setting w- = w+ (the probability of nondetection),
we get for the energy of a signal that represents a num-
ber by the single-positional code (3.27):

(3.30)

For the binary digital representation, the signals
(ones) can be in all M2 positions (3.25). On taking into
account that on the average a number contains half of
unity, we get

Ep=i M2E'S"' = MtE% = kT la \ (In 2)"' (in ± + In In | + In j ^ ) ,

( ) 2 (3.31)

as for detection (2.36), agrees in order of magnitude
with the minimal estimate according to'-8'21-'. But as has
already been mentioned in Sec. a) of Chap. 3 and in Sec.
b) of Chapter 2, in the decoding of the signal after de-
tection a measurement is made with accuracy ~ 1/e, when
all the energy estimates of Sees, b), Chap. 2 and b),
Chap. 3 are valid. Here it is important that the energy
expended in the decoding at the receiving end does not
affect the choice of the energy of the signal (which atten-
uates in the transmission channel).

The energy cost of unit information in the digital
representation,

En (3.33)

increases with increase of I (the number of digits
~ln l/e). As for single-positional coding, for the transi-
tion to a scalar quantity, that is in decoding (decipher-
ing), here again the energy estimates of Sees, b), Chap.
2 and b), Chap. 3 are valid.

4. THERMODYNAMIC MODELS OF THE PROCESS
OF INFORMATION PROCESSING

a) Complexity criteria of information processing.
During the last decade, considerable development has
occurred in the mathematical theory of complexity; its
various directions have been quite fully elucidated in the
monograph and review literature'-58*"64-'. In'-65-', the ap-
plied aspects of the theory of complexity were consid-
ered from the point of view of the problems of control
theory. In this connection, a unified approach was pro-
posed t 6 5 : i to the various directions of complexity theory,
and a classification of these directions was carried out.
We shall discuss two basic classes of complexity
criteria'-65'63-1 that have a direct relation to information
processing.

By "information processing" we shall understand a
single-valued transformation Γ of a set of elements
χ e χ to a set of elements Γχ = f e x^, when both sets X
and Xf are subsets of some set of numbers. Informally—
in the spirit of the preceding sections—we shall repre-
sent information processing as indirect measurement.
Let it be necessary to determine the value of some phys-
ical quantity f, direct measurement of which is impossi-
ble, but somehow a unique relation is known between it
and another physical quantity χ that is accessible for
direct measurement. Then measurement of χ and subse-
quent transformation of the physical quantity correspond-
ing to the value of χ into a value of the function f (x),
represented in the same form, constitutes indirect
measurement (information processing).

Consequently it is necessary, first to prescribe some-
how the transformation Γ, and second to realize it; that
is, to perform the corresponding transformation.

The first class of complexity criteria'-65'63-1, in the
application to information processing, characterizes the
complexity of the prescription of the transformation Γ .
This may be complexity of the text, of the algorithm
(number of symbols), or of the scheme (number of ele-
ments), in which the rules are described for going from
the objects χ e x to the objects f eXj. In particular, this
may be the length of the binary word (program) by which
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some automaton (machine) recovers a word f from a
word x. In the papers of Markovίβε^ and
Kolmogorov1-67'68^, a general theory of complexity
criteria of this class was developed—with application to
any calculable functions. It is important that in[ e 7 : i a
proof was given of the invariance (to within an additive
constant) of these complexity criteria with respect to
the automaton that accomplishes the deciphering of the
program.

We note that the criteria described characterize the
complexity of an algorithm (its transcription), which in
general is unrelated to the complexity of its execution
(that is, for example, the duration of the calculation).
The latter aspect of the complexity of information proc-
essing, that is the laboriousness of the calculation by a
given algorithm, relates to the second class of
criteriaΓ 6 3'6 5^ and characterizes the complexity of the
processing process itself. Here are introduced signalling
functions'-63-1: temporal or capacitive, characterizing
respectively the resources of time (for example, the
number of elementary operations) or of memory neces-
sary for realization of the given transformation Γ. It is
important that these estimates depend both on the
algorithm and, in general, on the machine (the mathe-
matical model of the automaton) on which the algorithm
is realized. A satisfactory machine-independent theory
of criteria of this class does not exist at present1-63'65'.

Along with this, it would be desirable to estimate
computational complexity (complexity of the process of
information processing) in a manner invariant with
respect to the algorithm and the machine, and based only
on very general rules. It appears that in order to deter-
mine such an invariant characteristic of the complexity
of the processing process, it is necessary to go over
from mathematical models to physical. In the preceding
chapters it has been shown that the complexity of the
processes of measurement and of information transfer
are uniquely characterized by the work performed and
the energy thereby degraded. It would be tempting to
represent the process of information processing also as
a thermodynamic process and to characterize its com-
plexity by the energy degraded14'. We shall set forth
some considerations on this score, which were briefly
projected in C24'!53,

b) Energy criterion for the complexity of information
processing. The essential difference between mathe-
matical and physical models of information processing
is that the former operate from the very beginning only
with discrete objects (most often with binary words),
while the latter consider macroscopic physical param-
eters having the character of continuous quantities. On
the other hand, the physical models explicitly introduce
limitations on the energy resources; and it is purely in
consequence of this, according to Sec. b), Chap. 3, that
there arises a necessity for discretization (quantization)
of the objects of study. Mathematical models, on the
contrary, start from the hypothesis of potential realiza-
bility1-64-1, which according to [ 6 9 : i consists of "an
abstraction from the real limits to our constructive
possibilities, imposed by the finiteness of our existence
in space and in time." Thus practical realizability C 6 4 ]

is determined precisely by physical limitations; and if
it is a question of thermodynamic limitations, then the
practical limitations determined by them depend to a
significantly smaller degree on the level of development
of technology than do, for example, limitations with
respect to speed of operation.

We shall now discuss the fundamental difference be-
tween the processes of measurement and of information
transfer and the process of information processing.
Whereas for the former, an energy criterion of complex-
ity was determined solely by a single quality criterion-
accuracy—of these processes, for processing this is not
so. Processing of information (like any processing, for
example of materials) cannot be characterized by a
single scalar quantity, in contrast to transmission of
information (or transportation of materials). Here there
is a significant change of the quality (value) of the in-
formation (or of the other product being processed). If
it is necessary to obtain a piece not only of given weight
but also of a definite form, then the complexity of such a
piece is determined not only by the weight of the original
billet but also by the process of treating it. Analogously,
the complexity of a function is characterized not only by
its accuracy but also by its form, and correspondingly
is determined not only by the accuracy of the original
information but also by the process of treating it. Of
course the complexity of the processing of a piece de-
pends on the technology, so that we must take as an un-
conditional characteristic the minimum (over all imag-
inable technologies) complexity. Analogously, the com-
plexity of a process of information processing must be
characterized by the minimum (over all imaginable
models of the processing) energy expenditures. It ap-
pears that it is possible to approximate such estimates
by considering only two thermodynamic models of in-
formation processingC24].

Returning to the treatment of the process of informa-
tion processing as an indirect measurement16', we repre-
sent it according to the scheme

^ , Λ , - * / . . (4-1)

Here χ is the physical quantity being measured (or a
number corresponding to it), y is the signal representing
it, and ζ is the signal, represented in the same form
(as y), corresponding to the value of the function—the
number f(x). In (4.1) the symbols correspond to (3.1)
(and not (1.1)); therefore, as in (3.5) and (3.10), y and ζ
describe the amplitude of the signals, and y2 and z2 their
energy (see (3.8) and (3.9)).

Because of the insufficiency of a scalar characteris-
tic for estimation of the quality of information process-
ing, and in accordance with the generally accepted method
of vector representation of functions with integrable
square, we shall represent them in the form of points
(vectors) in a Hilbert space L2. It is necessary to choose
a space L2 because, as was shown above, the mean energy
expenditures are proportional to1 6'

</*>= jp(x)f(x)dx=\ (4.2)

Here lif II is the norm of the function in L2; the dis-
tance p(f, g) between functions f and g is defined thus:

P3(/. £) = II/-?II2 = \p(x)[f(x)-g{x)?dx. ( 4 i 3)
X

As earlier, we shall suppose that a requirement on
the accuracy of realization of f (x) is prescribed. From
the requirement on the accuracy ΐ/σ^ (see (1.13), (1.18),
(1.24), (1.25)) it is easy to find requirements on the ac-
curacy of representation of the original variable (the
directly measurable quantity x):

(4.4)
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It is evident that, in general, for p(x) = const information processing device (IPD) to use the energy of
each i-th original signal y^ by slightly changing its value;

^ ' that is, to execute energy jumps

this corresponds fully to the intuitive idea that quantita-
tively there must be no less of the original product than
of the final (in the present case, as regards quantity of
information Ι ~1η(ΐ/σ)). The inequality (4.5) is the
stronger (see (4.4)), the more f (x) oscillates.

From (4.2) and the preceding it is evident that the
norm of the function is determined entirely by the re-
quirements on the accuracy 1/OQ^ (or 1/irf) and is propor-
tional to it. We shall require that the encoding of the
original information (3.5) shall be the same as of that
sought; that is, in (4.1)

ζ = Bf. (4.6)

This means that, in consequence of (4.4) and (4.5), the
original variable must be so normalized as to insure
higher accuracy for the same energy coefficient A in
(3.10). This reduces to an increase of the range x m of
the measurement of x; that is, for the original signal we
must set

Bu, u — ex, c > 1,

i m , 0 < u < um = cxm

(4.7)

The simplest method of realization of information
processing according to the scheme (4.1) consists in
measurement of χ with the accuracy necessary according
to (4.4) and subsequent functional transformation of the
measured quantity to the f (x) sought. If this second step
is realized with a functional transformer (for example, a
potentiometer), then it corresponds completely to a sec-
ond measurement. This step can also correspond to
information transmission (with subsequent decoding), if
the signal y = Bex is used to interrogate a table for the
values of f.

The last case illustrates especially graphically the
need for discretization of χ (and y) and quantization of f
(and z). According to (3.18) and (3.19), we may choose
the energetically optimal values

(4.8)

Thus it follows from this model of information proc-
essing that its energetic complexity is

sL~s,+sx,
(4.9)

where the coefficient of proportionality C is determined
on the basis of the preceding chapters. It is easy to see
that (4.9) does not always determine the minimum neces-
sary energy expenditures: thus even if f (x) is very close
to χ (f — x, df/dx — 1), the model considered requires
double the expenditures as compared with direct meas-
urement. The closeness of the functions (4.7) and (4.6) is
characterized by the distance p(f, u) of (4.3):

(4.10)(*(/. u)=\p(x)[i(x)-cx?dx.

With the notation

/ (x) — ex = φ (ι), (4.11)

we get
P· </.»>-II * Μ II· ( 4 > 1 2 )

and go over to the description of the second model1**3.
It seems obvious that for lia>ll "C llf II it is expedient in the

B*(h-cxif. (4.13)

It is easy to understand, however, that this energy is
insufficient for processing: it is still necessary to know
the value of the jump <pi corresponding to each x i at the
input. In the general case it is possible to interrogate a
table for the values φ^, using part of the energy of the
input signal for interrogation of the memory (as in the
first model), and to sum another part with the jump en-
ergy £? of (4.13). It is evident that in such a model (the
second), a continuous transition is insured from informa-
tion processing to measurement for \\φΐ\ = p(f, u) — 0,
and its energetic complexity is

C<P —. C _ t _ Ο

(4.14)

A general definition of the energetic complexity Sx j
of a realization of a function f (x) is, in accordance wit'h
the preceding and with (4.13) and (4.14):

5I p i = min{Si,^}. (4.15)

The fact that the complexity of the transition y — ζ in
(4.1) is actually characterized by the distance p(f, u) of
(4.10)—(4.12) and that p2 is proportional to the mean en-
ergy jump (4.13) follows from the calculation model'-24-',
which constitutes the central part of the second process-
ing model.

Let the IPD be replaced by a "black box," into whose
input enters a signal y = Bex, (4.7). If the "black box" is
located in a thermostat, then on the signal is superposed
additive noise with mean energy kT determined by the
temperature Τ of the thermostat. For Τ > 0, there is a
nonzero probability that an arbitrary value of the input
will be converted to an arbitrary other value, including
that prescribed by the processing ζ = Bf of (4.6). The
higher this probability, then, by hypothesis, the simpler
the processing.

We write the expression for the probability density
w(f/u) of transition of input values to output, starting
from a Gaussian distribution law for the fluctuations
(3.6), (3.7), and (4.13):

— β

η r π

and, taking into account the necessity for discretization
of the input and output values, and also the finite accur-
acy of reproduction of a function, we go over from proba-
bility density to the finite values of the probability of
transition of the point cx^ to an ej-segment:

Wi (film) = —?=•e~flI*'(*)e/ (4.16)

We furthermore write the mean (over P(x) value of
the logarithm of this probability:

(-In W {flu)) Pi

where, in accordance with (3.10) and (3.18), Be = const
(of order unity). Taking the ratio of (4.17) to the logar-
ithm of the probability of spontaneous appearance of
unity from zero (that is, eliminating the accuracy of
reproduction of the coefficient B), and letting Τ —- 0, we
get:
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(4.18)

It is well known[ 1 0 ] that the argument of the exponen-
tial function that describes the probability of the corre-
sponding fluctuation is equal to the minimum work that
must be performed on the system for transition of it
from an initial equilibrium state to another, determined
by the fluctuation. Thus the calculation model described
gives an expression for the energy that it is necessary
to transfer from one body to another. And this energy,
as follows from the preceding, completely determines the
value of the dissipated energy (in the irreversible case,
is simply equal to it). Thus formula (4.18) represents
the value of the mean energy jump for the prescribed
processing. The mean value of the increase of entropy
in the system is proportional to the square of the distance
p2(f, u) (in the irreversible case) or to the distance
p(f, u) (for optimally slowed-down realization of the cal-
culation).

Returning to the determination of the energetic com-
plexity Sx f of processing as indirect measurement
(4.15), (4.Ϊ4), (4.9), we note that always

(4.19)

where Sj is the energetic complexity of a direct meas-
urement. Thus the coefficient l/r characterizes the
relative complexity of the processing: the increase of
complexity of reproduction of f (x) according to indirect
information about x, accessible for direct measurement.

Incidentally, it is possible to introduce also the con-
cept "value of initial information" l-24-1, which it is natural
to describe by the coefficient r < 1, the reciprocal of the
coefficient of relative complexity of the processing17'.

As follows from the above considerations, the com-
plexity of a calculation is greater (and the value of the
initial information less), the greater the distance p(x, f)
between the vectors of the initial and the sought func-
tions.

This treatment of the complexity of a calculation and
of the value of initial information makes it possible, it
seems to us, to dispel misunderstandings that have
arisen in discussion (in terms of a scalar representation
of information) of the useful effect of the work of a com-
puter (see, for example,C8:l, p. 295 of original English
edition), and the related problem of comparing the in-
formation obtained during its solution. A computer in the
process of solving a problem of course does not increase
the quantity of information, but decreases it, simultane-
ously increasing the value of the information.

c) Effective methods of calculation. In practical cal-
culations, functional transformers (or the tabular method
of realization of functions), corresponding to the first
processing model of Sec. b), Chap. 4, are applied quite
rarely. Besides the nonuniversality of such devices, here
it is essential to use amplitude encoding, in which the
energetic complexity is proportional to the square of the
accuracy (in actual cases of limitation on the processing
time). At Τ = 300°Κ, a number with accuracy 109 » 230

requires energy 105 erg = 10~2 J. This is why analog
methods are not used for accurate calculations. It has
already been mentioned that accuracy this high (and
higher) in the natural representation of numbers not only
is not required and is practically not realizable from
energy considerations, but also does not correspond to
anything physical, since even the accuracy of the funda-

mental constants is considerably less (apropos of this,
see also other fundamental considerations ir.-74^).

The requirement of high accuracy arises in inany-
dimensional problems, when the number of distinguish-
able initial situations increases exponentially with in-
crease of the number η of measurements of the initial
domain x( n ) of definition of the function. In this case, use
of the first processing model is difficult. In fact, for
this purpose it is necessary to bring the dimensionality
η of the domain x( n ) of the input variables into agree-
ment with the dimensionality μ of the memory. Here the
energy expenditures are s(n) ~ nqn/M, where q = 1/e is
the number of distinguishable situations for each of the
variables. Since μ < 3 (practically, even μ < 2), for
large η the increase of s(n) is appreciable.

In the second model of information processing, the
execution of the energy jumps in the transition y — ζ of
(4.1) is not necessarily connected with interrogation of a
table for the values φ^. Properly, a calculation is usually
characterized by a sequence of certain transformations
of the argument χ and of the corresponding signal y (for
example, multiplications and additions in the realization
of a polynomial). In this case the transition from argu-
ment to function proceeds not along a straight line con-
necting the corresponding vectors {xjj and {fjj, but
along some broken line, which is closer to straight, the
broader the set of elementary operations. Nevertheless,
this transition along a broken line may prove energetic-
ally advantageous, since it does not require turning to a
table. In particular, in this case it is possible to use (as
is done in a digital computer) a binary digital represen-
tation of numbers, which energetically is significantly
cheaper than the natural representation18' (see (3.31) and
(3.33)).

In digital coding, the energy of each given number is
on the average the same (in contrast to amplitude coding,
where the energy is proportional to the square of the
value of x) and depends only on the digit capacity (n).
Therefore all the elementary operations entail about the
same energy expenditures (of the order of η unit jumps
(3.33)), and the energetic complexity of calculations is,
in a natural manner, characterized sufficiently well by
the number of elementary operations. As before, the dis-
tance p(f, u) determines the complexity, but in conse-
quence of (3.31) the energy expenditures are proportional
to (In p)2, and not to p 2 as in amplitude coding.

We note that the definitions and model of information
processing considered above, with application to realiza-
tion of a function f(x), can be easily extended to the solu-
tion of some problem (in particular, the concepts of
complexity of the solution, value of the initial informa-
tion, etc.). The effectiveness of one or another method
of solution of a given problem—under given requirements
on the accuracy of the solution—is characterized suffi-
ciently well by the number of elementary operations. We
recall that the effectiveness of the second model of
processing as compared with a general table method
(first model) was determined by a lucky choice of the
zero-order approximation to the desired function. In the
present case, the independent variable itself was used as
the zero-order approximation, and the expediency of such
a method was determined by the nearness according to
(4.10); this corresponded to a change of requirements on
relative accuracy for the second stage (interrogration of
tables for values of φ± instead of f j).

In connection with the facts just noted, we shall make
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a few qualitative remarks about constructive methods in
computational mathematics. Application of good zero-
order approximations is peculiarly effective in many-
dimensional problems (as follows, in particular, from the
models considered above). Therefore it is important to
have some general approaches to the search for such
zero-order approximations. If we consider some class
of problems, then for "almost all" problems of this
class, some general and, as a rule, computationally very
cumbersome method seems the only possible one. In
particular, for example, for the solution of boundary
problems described by equations of elliptic type, the
method of grids serves as such a method.

On the other hand, as a rule, in each class of problems
there exist "singular points" in a whole domain of this
class, for which special but very effective methods of
solving them are known (or perhaps proposed). In par-
ticular, for the class of boundary problems mentioned, a
computationally simple method has been proposed for
regions whose boundaries are described by equations of
the second order (seet 7 S'7 6 : i).

If we use solutions obtained for special problems as
zero-order approximations (principal partC 7 5 ]) for solu-
tion of a broader class of problems, in some sense
"close" to these special problems, then it is natural to
expect a significant economy in the computational work.
Thus, for example, for the boundary problemsC75' ^
criteria of closeness have been given. If in the transition
thereafter from the zero-order approximation to subse-
quent ones use is made, for example, of the same gen-
eral grid method, it is found that the grid step can be
chosen appreciably larger. In^77^ it is shown that the
effectiveness of this kind of zero-order approximation
is connected with an appreciable lowering of the require-
ments on the relative accuracy of the residual part of
the solution.

5. CONCLUSION

A whole series of physical problems requires the
carrying out of computational jobs that cannot be provided
by contemporary computational technology E78 .̂ Similar
difficulties arise also in problems of planning, control,
and projection (see C78»80]). it is interesting to have
estimates that limit in principle the possibilities of com-
putational technology. It is desirable that such estimates
not be too high, like those cited in the literature ίΒ1'83^
and characterized by a number of units of information
to be processed ~ 1O100. This figure was obtained either
from a calculation of the number of nucleons in the
universe and of the number of events at the atomic level
from the instant of formation of the earth's crust11813, or
from an estimate of the energy of,4he universe equivalent
to its mass and used for the recording of informa-
tion ί*ζ>83\

From thermodynamic considerations, the energy cost
of accuracy was determined above for various forms of
number representation; on the basis of this, it is possi-
ble to obtain more realistic estimates of the limiting
possibilities of computational technology.

The requirements for high accuracy are realized in
digital (in particular, binary) representation of numbers,
where the energy is proportional to the square of the
logarithm of the accuracy. Here high accuracy is con-
nected with great depth of the calculations and leads to
higher requirements on reliability C w ' M 8 6 3 . In this case,
for a thirty-digit binary number, if we allow for the re-

quirement on the reliability, the energy cost of a binary
unit at Τ = 300°K has the order 1CT11 erg. Analysis of
data on the logical schemes of contemporary technical
devices (electronic'-87-1 and optical[88]) shows that over
a wide range of frequencies (from 10* to 109 Hz) the en-
ergy of a single switching event is approximately the
same and has the order 10~3 erg. Thus the limiting value
differs by 8 orders of magnitude from that actually
attained. Assuming that this discrepancy can in principle
be overcome, we get the following estimate.

If all the energy produced on the earth in the course
of a year (~1014 kWh) is expended on information proc-
essing, then there will be enough of it for the perform-
ance of 1036 (300/T) elementary operations (such as addi-
tion of thirty-digit binary numbers). We emphasize that,
despite the fact that this estimate takes account only of
thermal noise, it is valid in all cases. In fact, if for
kT 2> hy this is an accurate estimate, then under the
necessity for taking account of quantum noise it can be
taken as a top estimate (as regards number of opera-
tions). This estimate is not as excessive as those cited
above, and it shows that the energy resources actually
and quite strongly limit the possibilities of digital com-
puters of the contemporary structure.

In order to make this assertion concrete, we shall
cite an example £78^. For a quantum-mechanical calcula-
tion of the methane molecule, it is necessary to perform
calculations by the grid method at 1042 points. If we sup-
pose that at each point it is necessary to perform in all
10 elementary operations, and if we assume that all the
calculations are carried out at a superlow temperature
(T = 3 χ 10"3 °K), then even under these conditions the
calculation of the methane molecule requires expenditure
of the energy produced on the Earth in about a century.

Similar requirements arise in the problem of calcu-
lation of plasma traps1-783 and in numerous problems of
control and of planning'-79'80-'. Therefore, along with in-
crease of the productivity of digital computers and build-
ing up of the stock of them, it seems urgent to search
for other (nonarithmetic) methods of solving complicated
problems.

The author expresses his thanks to B. B. Braginskii
and L. A. Rivlin for useful discussions, which contribu-
ted to the improvement of this article.

'^Throughout the present paper also, dimensionless entropy is used and is
denoted by the symbol H. This same notation has been accepted in infor-
mation theory, beginning with Shannon's paper. In the physical litera-
ture, however, this notation occurs much earlier: in Boltzmann and in
Gibbs.

2 )For the special case in which both the prior and the posterior distribu-
tions are normal, relations of the type of 1.19) and the later (1.22) were
given ["]. it must be emphasized that until recently one encountered
definitions of accuracy according to Brillouin [s, " ] as (in our notation
(1.14) 1/e, but of quantity of information as I =ln (1/e). Because of the
condition wX) of (1.14), such a definition is of course ambiguous and
therefore incorrect. This problem will be discussed in detail below
(Chap. 3) in connection with energy estimates.

3\t is possible to derive (1.20) formally if in the definition of the error
p(x, x') we take into account the prior data:

{ Ι Λ—χ' I for x'£X,

Ι — *mln for * ' < * m ! n

ρ (ι, »') =

In this case, of course, equalities of the type (1.4) become incorrect.
4)Brillouin [8] therefore introduces a distinction between free and bound

information. The latter arises when the possible cases (events) can be
described as microstates of a physical system.
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5>In the particular case when Υ is an electric circuit, the system (2.1),
(2.2) describes the transfer process in a galvanometer (see [2 ?], the system
(2.1, (2.3) in an electrometer.

6}We note that this effect ΙΔΗ, I is small only in comparison with the ene-
tropy of the whole system (Ho or H,*, in (2.6) or (2.7); but for Ho - H(a),
that is for the entropy determined by the parameters y and x, the effect
ΙΔΗ] I is always significant. This is important, since the exchange of
energy U occurs precisely through these degrees of freedom (y and x).

7 )It can be shown that results analogous to those given below also hold if
the regulator slowly changes, instead of the parameter Η or B, the para-
meter/3 in (2.1).

8)That is, with decrease of the force difference e, there is an increase of t 0 ,
and with it of the indeterminate (Brownian) mismatch of the forces.

9*The quotation marks point out that the optimal, from the point of view
of the connection between a and Q j , realization of the measurement
process, as is evident from (2.16), corresponds to a finite speed of the
process-of the order of the thermal. Not only an increase but also a
decrease of the speed, relative to the "natural" (thermal) speed, is con-
nected with an increase of the dissipative losses.

""Because the relations (2.11), (2.12), (2.17). and (2.18) and also the sub-
sequent (2.22) are valid both for measurement in a domain (estimation
of a random quantity) and for a single measurement (estimation of a
constant parameter), it seems natural to extend formula (2.23) and the
concept of quantity of information (defined only for a ran. im quantity)
also to a single measurement.

"'The corresponding natural conditional extremal problems are dis-
cussed in the next chapter.

12)Practically, this is sometimes completely justified: for example, in a
radar measurement of distance all that is calculated is the energy of the
signal necessary for certain detection (this corresponds to the step / -* λ
in (1.1)), and there is no interest in the energy expended in the scanning
device or the meter. Along with this, it is precisely in this step (F-*x in
(1.1)) that a physical quantity is formed that is proportional to the dis-
tance, and it is to it that the estimates obtained above relate. From (2.32)
it is evident that for the accuracy usually realized (~103), the expendi-
tures in the second stage are negligibly small in comparison with the
energy of the signal.

1 3 )It is important that in this formulation the results obtained always lead
to a finite value of the transmission capacity. On the other hand, some
of the results in the usual formulation actually are valid only with an
infinitely large energy. We remark that the limitations on the transmis-
sion capacity introduced in the usual formulations, and connected with
a limitation of the mean signal power, are not equivalent to limitations
on the mean energy.

14'We note in this connection that even in formal mathematical formula-
tions, the term "computational work" is used [6 3]-not, of course, in
the thermodynamic sense.

1S)A treatment of the computational process similar to that given in Sec. a,
Chap. 4, is contained in [7 0], where consideration is given to mathema-
tical problems of the theory of (indirect) measurements, related to appro-
ximate solution of certain integral equations on computers.

16)See (3.4) and (3.8) - (3.11) for the signal energy. The degraded energy Q,
in accordance with (2.5), (2.11), and (2.12), is also proportional to the
square of the accuracy in an irreversible (operative) realization of the
processes. The transition to estimates of Q for optimal slowing down of
the processes is easily accomplished by formulas (2.16)-(2.18) and
(2.22); we shall as a rule not do this.

17)The concept "value of information," outside the connection with the
computational process, was considered in [33 >" "73] and other papers,
where this concept assumed a more general case of use of the informa-
tion obtained: for attainment of some purpose (control). In the case
considered here, the purpose consists entirely in calculation of a pres-
cribed function.

18)If in a calculation with digital numbers it is necessary to use a table, then
a transition to a natural number is required (for example, in a decoder),
and this entails an increase of the energy expenditures.
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