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A review is given of the problem of passage of charged particles through a crystal lattice and determination

of the location of foreign atoms inside the unit cell. Chapter 1 is introductory. Chapter 2 considers the

effect of spatial redistribution of the flux of charged particles in axial channeling. The effect of multiple

scattering on the flux at both large and small depths is discussed. A relation is demonstrated between the

location of the foreign atoms and the location of the peaks in the angular distribution. Chapter 3 considers

the redistribution of the flux and multiple scattering in planar channeling. Chapter 4 is devoted to

channeling of heavy ions. A technique is presented for calculation of the spatial redistribution of implanted

ions with inclusion of the channeling effect. Chapter 5 presents a review of experiments on determination

of the location of foreign atoms inside the unit cell.
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1. INTRODUCTION

Experiments carried out in the last ten to fifteen
years have revealed a number of special features of the
interaction of charged particles with a crystal lattice.
The order of the lattice leads to orientation effects.

The first of these apparently was observed by Bredov
and co-workers[1] and by Davies et al. [ 2 ] , who found
anomalously long ranges of ions with energies of sev-
eral keV in crystalline targets. To determine the
ranges of the ions, Bredov et al. used the tracer
method. They were able to show that the anomalous
penetration effect is due not to diffusion but to the initial
kinetic energy of the ions.

A somewhat different effect was observed by
Wehner[3], who discovered an anisotropy in the sputter-
ing of single-crystal targets bombarded by heavy ions.
The first interpretation of this effect was given by
Silsbee[4] (the theory of focusing of atomic collisions in
crystals).

Rol and co-workers[ 5 ] and Molchanov and Tel'kov-
skri [tJ] established the existence of a sharp dependence
of the yield of sputtered atoms on the angle of incidence
of the ions on a single crystal. Mashkova et al . [ 7 ] also
established that the coefficient of ion-electron emission
varies rapidly when the ion beam travels along a close-
packed row of atoms. A theory of these phenomena was
proposed by Odintsov1"1 and Martynenko[S1.

Somewhat later Robinson and Oen[ 1 0 ] directly
modeled the ion penetration process in a copper lattice
by computer and reached the conclusion that an ion
whose trajectory in the crystal passes at a small angle
to a direction of close packing of atoms has a signifi-
cantly greater range than for a random direction.
Robinson and Oen named this phenomenon channeling.

Several groups of experimenters independently con-
firmed the existence of channeling.[u~13] The experi-
ments of Bredov et al . [ 1 ] and Davies et al. [ i ! ] Obviously
have a direct relation to channeling.

Another effect, the so-called shadow or blocking ef-
fect, was observed and studied by Domeij and
Bjbrkvist[14], Tulinov and co-workers[ 1 5 ], and Hemmel
and Holland[ie]. In these studies it was shown that be-
cause of the order of the lattice the emission of charged
particles from a crystal along atomic rows and planes
becomes impossible, as a consequence of which shadows
of the atomic rows and planes appear on photographic
plates recording the intensity of particle emission. A
calculation of the shape of the shadow for a Firsov po-
tential was carried out by Martynenko[9). Agranovich et
al. [ 1 7 ] calculated the shadow with inclusion of the
thermal vibrations of the atoms. Tulinov[15) calculated
the shadow with inclusion of nuclear screening by elec-
trons .

The basic concepts of the theory of the channel ef-
fect and blocking were formulated by Lindhard.[1β>1β]

He introduced the idea of atomic strings and planes and
replaced the potentials of the individual atoms by the
potentials of continuous atomic strings and planes.
Lindhard was able to obtain the value of the critical
angle ipi within which channeling can be observed. A
statistical description is used in calculation of the spe-
cific parameters in Lindhard's theory.

For heavy particles (protons, α particles, and
heavier ions) the classical theory of Lindhard turns out
to be completely satisfactory.[31] It provides the possi-
bility of explaining any of the experiments carried out
up to the present time. However, for a description of
the channeling of light particles, electrons and posi-
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trons, a quantum-mechanical discussion is apparently
necessary in many cases.

Kagan and Kononets[20] utilized the density matrix
method to describe channeling and obtained the depend-
ence of the Rutherford-scattering yield on the angle of
incidence.

Subsequently, inelastic processes were taken into
account in the theory. It turned out that at depths
> 1000 A the nondiagonal terms of the density matrix
disappear and the motion of the ions in the channel can
be described by an equation of the Boltzmann type. The
theory predicts diffraction effects near the crystal
surface. In terms of this formalism, in particular, it is
possible to calculate the dechanneling function and the
energy spectrum. This approach is convenient in that it
permits the distribution of the particles over the cross
section of the channel to be obtained.

The quantum-mechanical theory^201 is now apparently
very rigorous and complete.

Scattering in a thin crystal from the quantum-
mechanical point of view has been studied by Kalashni-
kov, Ryazanov, Koptelov, and Chukhovskii.[22]

With allowance for the screening of neighboring
nuclei by an atomic string, they were able to obtain an
expression for the differential cross section for elastic
scattering.

The interrelation of the quantum and classical ap-
proaches was investigated by Newton and Chadderton.t23]

They assume that the quantum approach should be dif-
fractive, since it is necessary to consider a plane wave
at the entrance to the crystal and a set of Β loch waves
inside it. For more detail on this question see the arti-
cles by Chadderton[121].

In recent years the orientation effects have been
used in a large number of experiments[24'251 to study
the dynamics of radiation damage of crystals, to deter-
mine the location of impurity atoms, and also in atomic
and nuclear physics. The channeling of ions is accom-
panied by a new physical phenomenon—the effect of
spatial redistribution of the flux of charged particles in
a crystal lattice. The present article is devoted to
study of this effect and the possibilities of its utiliza-
tion in physics.

2. SPATIAL REDISTRIBUTION OF THE CHARGED-
PARTICLE FLUX IN AXIAL CHANNELING

a) Main assumptions used in interpretation of ex-
periments determining the location of foreign atoms.
When a beam of ions hits a crystal parallel to any
crystallographic axis, the beam is separated into two
components: channeled and random, i.e., unchanneled.
The channeled ions do not approach a string of atoms
closer than some distance rmin· According to Iind-
hard, r m i n = u2 + a2, where ux is the amplitude of
thermal vibrations of the atom perpendicular to the
string considered; a is the screening parameter. The
fraction of atoms which does not enter the channel is
irrminNd, where Nd is the number of chains per cm2

of surface perpendicular to the ion beam direction; Ν
is the concentration of atoms per cm3; d is the dis-
tance between atoms in a string.

Most physical processes such as Rutherford scatter-
ing at large angles, nuclear reactions, production of

characteristic χ rays from inner atomic shells, and so
forth require small impact parameters, at least less
than r m i n . In order of magnitude rmin ~ 0.1 A, and all
processes require impact parameters one to two orders
of magnitude smaller. The use of channeling to deter-
mine the location of a foreign atom is based on just this
fact.

Let us consider, for example, the case of Rutherford
scattering. First a combardment of an unoriented target
is carried out. During a certain length of time the de-
tector records the number of particles scattered into
some solid angle determined by the location of the de-
tector relative to the target and the angular resolution
of the detector. In this case those particles are de-
tected which are scattered by the foreign atoms and not
by lattice atoms. This can always be done if the mass
of the foreign atom is greater than the mass of the
lattice atom, since in this case the energy of particles
scattered by the foreign atoms is higher than that of
particles scattered by the lattice atoms. Therefore by
adjusting the detector to a definite energy interval it is
possible to discriminate against particles scattered by
the lattice atoms. If the mass of the foreign atom is
less than the mass of the lattice atom, this becomes
difficult since there will be a background from scatter-
ing from lattice atoms. In this case it is possible to
record for a certain location of the foreign atom not
the scattered particles but nuclear reaction products.

After the bombardment of the unoriented target is
carried out, the beam is directed along some channel
and in a certain time the number of particles at the de-
tector is measured.

If the foreign atoms are in substitutional states or
inside the region rmin, the ratio of the number of
particles detected in channeling to the number of parti-
cles detected for unoriented bombardment is roughly
equal to ych/yn ~ τrminNd> i.e., roughly equal to the
fraction of ions not entering the channel at the beginning.
Typical values are ych/yn * -5 χ 10~2, i.e. several
percent. Thus, if the foreign atoms are localized inside
the region rmin> a strong reduction of the yield is ob-
tained for channeling, roughly by two orders of magni-
tude, in comparison with the case of bombardment of
an unoriented target. The foreign atoms, for example,
in Si and Ge cannot occupy tetrahedral interstitial
positions. Along the rows (111) and (100) these inter-
stitial positions are blocked by the atoms, and along
the (110 ) row they are outside the region r m i n . This
fact is utilized in interpretation of the experiments. If
the foreign atoms are outside the region rmin, i.e., in
a region accessible to the channeled ions (or in other
words in interstitial positions), it is assumed that in
this case there should not be a decrease in the yield of
particles for channeling, i.e., here ych/yn = 1· This
last assumption implicitly supposes that the flux of ions
in the channel is uniform, i.e., the same as on entry
into the channel at the surface.

This assumption of uniformity of the ion flux in the
channel is fundamental and has been used in interpreta- .
tion of the experiments carried out in 1966—1970 (see
for example refs. 24—26). In these experiments,
naturally, there was generally no consideration of the
possibility of determining the location of a foreign atom
located in an interstitial position beyond the region
rmin· In fact, if the flux in the channel is uniform, the
number of particles recorded in the detector will be
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constant, independent of just what interstitial position
the atom is located in, under identical conditions.

Our work is mainly devoted to investigation of the
distribution of the flux of channeled ions. As we will
see below, the main assumption which has been used in
interpretation of the experiments, namely, the assump-
tion of uniformity of the ion flux in the channel, has
turned out to be incorrect. As a consequence, the
quantitative, and in a number of cases also the quantita-
tive interpretation of these experiments has turned out
to be wrong.

There is, however, another significantly more im-
portant conclusion. As a consequence of the fact that
a redistribution of the ion flux in the channel occurs,
the number of particles recorded in the detector will
change, depending on just what interstitial position the
foreign is located in. Thus, as a result of the spatial
redistribution of the ion flux in a crystal lattice, it
turns out to be possible to determine the exact location
of an impurity atom located in an interstitial position.

This fact has fundamental importance in a number of
fields of solid-state physics, particularly in the physics
of hyperfine interactions and solid-state radiation
physics. We now turn to a detailed study of the question
of redistribution of the flux of particles in the lattice.

b) Statistical equilibrium distribution in axial chan-
neling. A statistical description of channeling was used
by Lindhard.[18] This description is convenient for dis-
cussing the redistribution of a flux of particles.

The potential Ut(r) created at a point r is the sum
of the potentials of individual atomic strings, i.e.,

tMr) = JUC--n), (2.1)

where U is the potential of an individual string, ri is
the location of the string, and η is the number of
atomic strings forming a channel. A particle hitting a
crystal at a point r perpendicular to the transverse
plane considered can have a transverse energy Εχ de-
termined from the equation

± t\ I 2 '

Vi is the transverse velocity, and Μ is the mass of the
particle. This equality determines the region accessible
to an ion with a given transverse energy.

At the beginning the beam of particles has some
initial distribution in four-dimensional phase space. As
it passes through the crystal, a tendency will be ob-
served for establishment of statistical equilibrium. As
a consequence of this, it is possible to go over to a
statistical description of channeling, and not discuss in
detail the series of collisions of ions with atomic
strings.

As a result of the fact that in two-dimensional mo-
mentum space the volume is proportional to dEx, it
turns out that for particles with a given transverse en-
ergy Εχ the probability of location in an elementary
area dS of the transverse plane, dw/dS, does not de-
pend on r:

0, EL<Ut(r),

(2.3)

ing the ion uniformly fills the accessible region. This
simple distribution occurs only in the two-dimensional

dW

c) Time of establishment of equilibrium distribution.
The question of the possibility of using a statistical de-
scription, in particular Eq. (2.3), is discussed in the
literature[27] up to the present time. It is therefore im-
portant to consider in sufficient detail the limits of ap-
plicability of the statistical approach.

It must be said first of all that if the system has
stochastic irreversibility and intermixing properties,
this system can be described statistically. Here it is
particularly argued that because of the finite resolution
of the physical apparatus we are always dealing with a
small but finite volume in phase space.

Consider, for example, the yield of a nuclear reac-
tion as a function of the depth when the particle beam
is directed along the channel axis. As a result of the
periodic nature of the particle motion in the channel,
the yield also will oscillate with depth, but at large
depths, because of the phase mixing of the particle tra-
jectories, the oscillations will disappear.

At the same time, if we use Eq. (2.3) for calculation
of this process, this description gives no oscillations.

The question therefore arises: at what depth can a
statistical description be used?

Very small oscillations will exist up to extremely
great depths. However, large-scale oscillations of the
order of a quarter wavelength of the particle in the
channel disappear rapidly as the result of the phase
mixing. In this case the question of at what depths ob-
servation of oscillations is possible depends on the
resolution of the detector. The characteristic resolu-
tion in depth of contemporary detectors amounts to a
hundred angstroms. When a beam of protons and α
particles with Ε ~ 1 MeV passes along a channel, in
these detectors it is practically impossible to detect
oscillation of yield after several oscillations of the ion
in the channel. At the same time the average yield re-
corded by the detector at such small depths is predicted
quite correctly when the calculation is carried out by
means of Eq. (2.3).

It is clear that in a physical experiment where the
dynamics of a system are followed for a finite time, we
almost never have complete statistical equilibrium in a
very small volume of phase space, but because of the
finite resolution of the instrument there is no necessity
of a probabilistic description of the evolution of this
system in this case.

Lindhard,[18] using the potential U(p)=a 2 /p (p is
the distance from the string, a 2 = (ii/2)Z1Z2e a/d),
considered the question of scattering of an ion by atomic
strings on the assumption that these strings are distri-
buted at random. Here it turned out that an important
change in the direction of the initial momentum of the
ion occurs at depths of the order of λ, where

(2.4)

S(E±)
E±>Ut(r),

where S(Ex) is the region accessible for an ion with
energy Ε χ. This formula shows that for axial channel-

for an ion with transverse energy Εχ. For light ions
with Εχ ~ Εψ? (Eipl is the critical transverse energy
at which channeling is still possible) we have λ < 1000
atomic layers.

In channeling a particle moves at a distance greater
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than a from the string, where it is best to use a poten-
tial of the type U ~ p"2. For this potential'2*1 we have

λ"1 « V'SNdayfn, (2.5)

i.e., λ does not depend on the transverse energy; ψι is
the Iindhard critical angle.

The existence of a regular location of the strings has
the result that for axial channeling the angular distribu-
tion may turn out to be asymmetric as a result of planar
blocking.[28] Consequently, λ can approach 1 μ, which
corresponds to experiment'291.

In spite of this effect of planes on axial channeling,
the latter is substantially different from planar chan-
neling. Special experiments'301 show that axial channel-
ing is two-dimensional, due primarily to the potentials
of the atomic strings, while planar channeling is one-
dimensional.

The concept of accessibility of a region for axial
channeling, used by Lindhard, is legitimate in spite of
the existence of planes, as a result of the fact that the
potential barriers and gradients of the atomic strings
are substantially higher than those of planes.

Computer calculations'311 and experiments'321 con-
firm these basic ideas of Lindhard's theory.

In a number of cases the idea of an equilibrium dis-
tribution can be used if we have in mind only configura-
tion space, i.e., the transverse plane in axial channel-
ing. Actually, as the result of planar blocking, equili-
brium in phase space sets in only at depths ~ 1 μ, but
this does not mean that at smaller depths it is impossi-
ble to use an equilibrium distribution. In many cases it
is not necessary to be interested in the onset of equili-
brium in momentum space, i.e., in the angular distribu-
tion.

For example, in calculation of the flux of particles
over the cross section of the channel, we are interested
first of all simply in the total number of particles
crossing the element of area considered, independent of
the direction of these particles. The question naturally
arises, at what depths can we use Eq. (2.3) in this case
and how strongly does the asymmetry in the angular
distribution affect the uniform filling of the accessible
region?

In order to answer this question accurately, it is
necessary to make a detailed calculation without use of
Eq. (2.3) and a statistical calculation with Eq. (2.3), and
to determine the depth at which the two calculations
give an identical value with inclusion of the detector
resolution.

Such calculations (see for example Sec. g of Chap.
2 and Sec. a of Chap. 3) show that for protons and a
particles with Ε ~ 1 MeV the idea of equilibrium in
configuration space can be used at depths of ~ 1000 A.
For heavier ions these depths are smaller.

While the angular distribution is still not symmetric
(i.e., while there is still no equilibrium), as was noted
above, planar blocking exists in axial channeling. This
leads to the fact that in some places in the transverse
plane a series of sites can be blocked, i.e., strictly
speaking, Eq. (2.3) cannot be used here in the general
case. Nevertheless there are a number of experiments
where use of Eq. (2.3) has been justified even in this
case. One of them is an experiment to determine the

location of impurity atoms. Because of the symmetry of
the crystal, any completely defined interstitial position
in the transverse plane, as a rule, occupies not one but
many sites. Therefore, even if some of these sites are
blocked, we can speak of equilibrium in the transverse
plane, since for the remaining sites the anisotropy in
the angular distribution will have no effect in practice.
Thus, in this case the asymmetry in the angular distri-
bution will affect only weakly the uniform filling of the
accessible region.

It is therefore clear that it makes sense to carry out
special calculations in order to establish when we can
use approximately the concept of uniform filling of the
accessible region in the transverse plane.

The atomic strings produce in the transverse plane
a potential close to harmonic. The trajectory of an ion
in this field is an ellipse. Since the real potential con-
tains also an anharmonic part, the ellipse is rotated
and describee a figure of the Lissajous type which
more or less uniformly fills the accessible region. In
the course of two to three periods of oscillation of the
ion in this field, rather uniform filling of the region is
achieved. The depth at which this filling sets in is

λ » - 2πί>2

ι"1/3ηψ,
(2.6)

where η is the number of atomic strings forming a
channel, b is the channel radius, ψj is Lindhard's
critical angle, and a is a screening parameter. Equili-
brium sets in as the result of inelastic scattering of
particles by electrons, and the anharmonicity of the
potential facilitates a more rapid phase mixing of the
particle trajectories. Equation (2.6) is valid for the
greater part of the beam. For well channeled particles
for which the anharmonic part of the potential is very
small, equilibrium sets in at greater depths. However,
the fraction of such particles in the beam is insignifi-
cant, as the result of scattering at the surface, beam
divergence, and so forth. Kagan and Kononets'201

showed on a completely different basis that the distribu-
tion of channeled particles becomes independent of the
initial conditions also at depths of the order of a thou-
sand atomic layers.

d) Distribution of ion flux in an axial channel. Con-
sider a unit flux of ions incident normally on the area
So associated with one axial channel. The area So is not
always equal to the area ΤΓΓ2, which is associated with a
single string. In the general case we can write So

= nrla'1, where α is the ratio of the number of axial
channels to the number of atomic strings forming the
channel. In Si, for example, α = 1/2 in the (110)
direction, a = 1 in the (100 > direction, and α = 2 in the
(111) direction.

In Fig. 1 we have shown the equipotential surfaces in

FIG. 1. Equipotential lines in Si in the <100> direction (a) and distri-
bution of flux in the (110> channel in Si (b). The sign + shows tetrahedral
interstitial positions.
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Si and the effective flux. As can be seen from this
figure, the maximum value of the flux in the center of
the channel is greater than the flux at the periphery
near the atomic string by about three orders of magni-
tude, i.e., the flux is substantially nonuniform.

The ion-redistribution effect can be explained as
follows. The center of the channel is accessible to all
ions, and ions with small transverse energies stay
there for the most part. The peripheral part of the
channel is accessible only to the small fraction of the
ions with large transverse energy. This circumstance
also explains the rapid change in the flux over the
channel cross section.

We will estimate the ion flux F as some equipotential
S(Ex) bounding a surface S(Ex). If the transverse en-
ergy considered is not too small, its value is deter-
mined by the potential of one string, i.e., Εχ = U(p),
where ρ is the distance from the string. Here S(Ej.)
= π(ΐο - ρ2)α"1. For normal incidence of the ions on
the area So, the distribution of ions in minimum im-
pact parameter px relative to the chain has the form
(for a = 1)

dn

dp ι
2pf

or
dn = -

(2.7)

(2.8)

The flux produced by ions having an accessible
region from S to S + dS is (l/S0)dS/S. The flux at some
equipotential S(Ej.) is produced only by those ions
whose accessible region exceeds S(Ex) and thus lies
between S(Ej.) and So.

_ Hence we can see that the flux at the equipotential
S(EJ is

, = _*_ j .£=-£-In
S(E±)

(2.9)

If we take into account that a fraction of the ions equal
to Sun/So (where Sun/So = i""mjnNd) does not enter the
channeling mode and that this fraction of the ions pro-
vides a normal contribution to the flux, the formula for
the flux can be written more correctly:

(2.10)

Usually Sun/So» 10~2 « 1, so that there is no practical
difference between these two formulas.

The relative flux of ions in a channel, normalized to
the flux for arbitrary unoriented irradiation, γ, is ob-
viously

= 1η
S(EX)

(2.11)

For small Εχ, the value of S(EjJ approaches zero,
i.e., y has a logarithmic singularity. For large Εχ, the
value of S(EjJ approaches So and in this case the flux
at some small distance ρ from the string is

since for large Εχ we have S(Ex) = π( r§ — pz)a~l. Com-
paring Eqs. (2.11) and (2.12), we see that in the limiting
case of large Εχ we have γ « 1, while for small Εχ
we have γ » 1, i.e., Eq. (2.10) describes also the
blocking effect. These features of the ion flux redistri-
bution in the transverse plane have the result that the

cross section for scattering of ions by a defect (i.e.,
by an impurity or displaced atom) depends substantially
on the location of the defect. Equations (2.9)—(2.12) are
fundamental in the theory of the flux-redistribution ef-
fect. They were obtained previously in refs. 33—37.

e) Dependence of the flux on the angle of incidence of
the ion beam on the crystal. In the preceding section we
discussed the case in which the external angle φΐα = 0.
We will now consider the case in which φ{η * 0. In
order to carry out the analysis, we will first consider
the change of potential in the channel with distance. In
the central part of the channel the absolute value of the
potential and the change of potential in some small
length fir are small. At the same time near an atomic
string the corresponding values are large, i.e.,
(SU/5r)c e nt r6r « (5U/6r)p er fir, where the subscripts
respectively denote the central part of the channel and
the peripheral part. When the ion hits the crystal at an
angle φίη less than the critical angle for channeling,
we can write

Εχ = ϋ (i>) + E^i\n = U(p1), (2.13)

where ρ is the point of incidence. When φιη = 0, the
minimum impact parameter relative to the string is
simply the point of incidence, i.e., p.

For ψίη * 0, as the result of the additional trans-
verse energy equal to Ei/>?n, the ion can approach the
string to a distance[1] ρ which is determined from Eq.
(2.13). Here the accessible region obviously changes in
comparison with that which existed for φΐη = 0. How-
ever, if the ion hits the crystal in the peripheral region,
i.e., near a string, the accessible region is practically
unchanged, since there the value of the potential is
large. Therefore the additional increase in transverse
energy by an amount Εφ%η is not greatly felt near the
string. If the ion hits the crystal in the vicinity of the
center of the channel, the accessible region increases
sharply, so that the potential barrier there is very
small. In the central part of the channel the potential
can be taken as harmonic:

(2.14)

where α
α
 = Z ^

channel radius.
C * /3~, and b is the

This potential is obtained by expansion in series of
the potential of an individual atomic string U = αϊ/ρ 2

and summation over the η strings forming a channel.

If for φιη = 0 the ion hits the center of the channel,
its accessible region is zero. If φχη * 0, then a region
equal to πΕφ(η/Α is accessible, where A = nai/b4.
For φ{η = 0 the region in which the turning point for
channeled ions is concentrated is So - Sun. For an ex-
ternal angle φϊη * 0, this region is approximately equal
to So - Sun - irEi/jjn/A.

Let us evaluate the relative flux at some equipoten-
tial line 5jo bounding a surface S/o for ^in * 0. Let
Ŝ o > πΕφΙη/Α. Evidently for φ\η = 0 the fraction of ions
which cannot reach the equipotential 5/,, is S^/So, and
for ψίη * 0 this same fraction is (S/o - 7rE^2

n/A)/S0.

From this discussion we find, using the same method
as in the preceding section, that

ο — Jl£t|)fn— San

So
(2.15)
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For small initial angles ipin we have (Sun + irE f̂n /A)/So

« 1, i.e.,

(2.16)

For ipin = 0 we obtain the previous result. In the center
of the channel where S/ = 0, we have

= In (2.17)

An interesting feature of Eq. (2.16) is the presence of
a logarithmic singularity for i/ifn = SioA/ffE. The double
and multiple peaks in the angular distribution of chan-
neled ions are associated with these singularities (see
Chap. 3 below).

The fact that in Eq. (2.16) the value of the flux has a
maximum for ψ^ = S/ Α/πΕ is explained simply. For
angles ψ[η > S^A/πΕ the ions have an accessible
region >S/0, so that the value of y(S/o) in this case is
small. For #fn < %,Α/ΙΓΕ some fraction of_the ions
generally will not reach the equipotential S ô. For ψ2

η

iq all ions reach Sj0, and the accessible regions
lie in the interval {So, S/o}. Thus, for ψ^ «* S^A/πΕ
the flux at a line ~Ŝ 0 has a value close to the maximum
value.

f) Multiple scattering and its effect on ion flux re-
distribution. In all of the equations given above it is
assumed that the transverse energy of the ion Ε χ re-
mains constant. However, the transverse energy of the
ion changes as the result of scattering by electrons, by
thermal vibrations of lattice atoms, defects, and so
forth.

As a consequence of the change of Εχ, the accessible
region S( Ej_) also changes, and this in turn changes the
distribution of the flux in depth. Up to this time we have
discussed the value of the flux in the channel immed-
iately after establishment of statistical equilibrium of
the distribution. Now let us trace the dependence of the
flux on depth, for which it is necessary to calculate the
multiple scattering.

The multiple scattering of channeled particles by
electrons and nuclei decreases substantially in com-
parison with the scattering of particles in an unoriented
target, since the trajectories of the channeled particles
pass far from the nuclei in regions with low electron
densities. Here multiple scattering has the nature of a
fluctuation of the channeling angle. The solution of the
problem of finding the angular distribution of the parti-
cles in the channel requires another approach, distinct
from the usual approach in the theory of scattering in a
uniform medium. This is due to the fact that multiple
scattering is superimposed on the motion in the continu-
ous potential of the nuclei. The problem of multiple
scattering of channeled ions is of interest in itself. As
a result of the fact that channeled ions do not pass
close to the nuclei, the cross section for physical reac-
tions (for example, nuclear reactions, production of
radiation defects, nuclear bremsstrahlung, production
of characteristic radiation, ionization, and so forth)
changes substantially. However, if the ion is dechan-
neled, the cross section becomes normal. Therefore,
for a broad class of problems associated with utiliza-
tion of the channeling effect, it is necessary to know the
dechanneling function.

Let us consider first the nonconservation of trans-
verse energy as the result of ion scattering due to

thermal vibrations of lattice atoms. The effect of
thermal vibrations on channeling has also been dis-
cussed by Kadmenskil et al.[ 1 2 Z ] Since the atoms are
displaced from their equilibrium positions, a fluctua-
tion force A · F acts on the channeled particle, where
AF2 = (F - F')2, where F = -VU(r), F' = -VU(r + Ar),
and ΔΓ is the displacement of the atom.

The increase of the transverse energy (δΕχ/δχ) per
unit length is related to Δ F 2 by the expression

(2.18)

where the angle brackets denote averaging over the ac-
cessible region. lindhard[ 1 8 1 calculated the value of
&FZ with an accuracy to terms of order ~μ2/Γ2, where
μ2 is the mean square amplitude of thermal vibration.
In many cases it is desirable to know a more accurate
value of

(2.19)

(2.20)

It has been shown[3e>40] that with an accuracy
we have

[ FF'

1 FF·

7r-T

3 F'F'

where

~-nrF, etc.

The first term in Eq. (2.19) corresponds to Lindhard's
expression. With use of Eq. (2.19) and a potential U(r)
= αζ/r the increase in transverse energy is

(2.21)AJiL
\ 16 r§ | j

The change δΕχ is due also to inelastic scattering by
electrons. For simple estimates it is assumed that
δΕχ is proportional to that part of the energy loss
which is due to close collisions.[18l

Far from the nuclei, the increase δΕχ due to in-
elastic scattering by electrons is much greater than
δΕχ due to thermal vibrations of the lattice atoms.

The increase δΕχ due to the discreteness of the
atomic string is much less than the variation of δΕχ
due to thermal vibrations/411 and therefore this correc-
tion need not be taken into account. Recently Firsov[1231

showed that the discreteness is negligible in channeling.

Lindhard[18] suggested that in many cases we can as-
sume that the change in transverse energy with depth
occurs smoothly, without fluctuations. This approxima-
tion of Lindhard's, which is known as the approxima-
tion of monotonic collection of transverse energy, has
been used in a number of studies[ 4 2 4 β ] for calculation of
the dechanneling function. A systematic and rigorous
solution of the problem has been given in refs. 47—49,
where the diffusion of the particles in transverse energy
space was taken into account. In refs. 47—50 an explicit
form of the diffusion coefficient for channeling was ob-
tained.

Since the increase in transverse energy δΕχ in
Coulomb scattering described by the Rutherford
formula is small in comparison with E 1 ; we can use
the Fokker-Planck approximation to study the behavior
of channeled ions. The Fokker-Planck equation for the
distribution function f (Ε, Εχ, χ) has the form (Ε is the
total energy of the ion, and χ is the depth)

(2.22)
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where the averaging ( . . . ) is carried out over the ac-
cessible region. The coefficients in Eq. (2.22) are re-
lated to each other by the expression

Τ \ Δ* Ζ"*
(2.23)

If we neglect the change in total energy, Eq. (2.22)
can be rewritten in the form[471

(2.24)

a
OE .

and the diffusion coefficient can be written in the two
forms:

or

(2.26)

These formulas provide the possibility of calculating
analytically the diffusion coefficients in channeling.

For example, for a potential U(r) = α Σ/Τ and for
large transverse energies where r% » rf (Εχ), where
Εχ = U( rl), we find that the diffusion coefficient due to
scattering by electrons, De, is given by

D -W* E\ (2·2 7)

where Le = In ] 2mv2/l | , and I is the ionization poten-
tial of the atom. The corresponding diffusion coefficient
due to scattering of channeled particles by thermal
vibrations, Dth, is

D i h X " l ^ i U , 3 " i £ ' \ (2.28)

From comparison of these two formulas it is evident
that Dth increases with increase of Εχ much more
rapidly than De (see Fig. 4 below).

At high energies where Ε > (Μ/πι)Εχ (where Ej is
the critical transverse energy of Lindhard), we can
neglect the last term in Eq. (2.24). If, further, we as-
sume that S(Ex) = const, then the Fokker-Plack equa-
tion (2.24) goes over to the ordinary diffusion equation
in transverse energy (the Fick equation). However,
this pure diffusion approximation has the important de-
ficiency that the redistribution of the flux of channeled
particles cannot be described by this means.

It follows from Eqs. (2.22) and (2.24) that in the
problem of departure of particles from a channel, in
addition to the usual term taking into account the in-
crease of the transverse energy, it is necessary to
consider also the diffusion term.

At the same time, Eq. (2.24) is not the ordinary dif-
fusion equation. In addition to the last term, a new
feature here is the presence of the weighting function
l/S(Ex) in front of the square bracket and the factor
S(Ex) inside it.

The appearance of these factors is physically, in the
last analysis, due to the fact that scattering of chan-
neled ions occurs not in free space but in the field pro-
duced by the atoms of the crystal.

In derivation of the kinetic equation (2.24), the follow-
ing assumptions are used:

1) The combined potential produced in the channel

by the atoms of a string is replaced by the continuous
potential of the atomic string.

2) Existence of statistical equilibrium is assumed.

3) The change in the ion energy as a result of in-
elastic scattering by electrons and thermal vibrations
is assumed much less than the ion energy.

Assumption 1), as was shown by Lindhard[18], is
completely acceptable. Assumption 2) leads to the re-
sult that Eq. (2.24) can be used only at depths >1000 A.
Assumption 3) is also completely justified, since in
Coulomb collisions the main role is played by remote
collisions for which the change in momentum or energy
of the particle in one collision is negligible.

Equation (2.24) is the most general equation in the
classical theory of channeling. All of the main features
of passage of a channeled beam through a crystal are
described on the basis of this equation.

Equation (2.24) describes not only channeling but
also the blocking effect in which a particle is emitted
from a crystal lattice site. Here it turns out that the
last term in Eq. (2.24) which describes the change in
transverse energy due to ionization loss exerts oppo-
site effects on channeling and blocking. Inclusion of
this term reduces the particle yield for channeling and
increases it for blocking. This behavior of the particle
yield, χ, is easily explained.

In channeling, the yield of backscattered particles is
provided by particles which have increased their
transverse energy to the critical value, and the energy
loss acts to prevent increase of the transverse energy.
In blocking, on the other hand, the yield of particles
along the channel axis occurs as a result of the de-
crease in their transverse energy, and the energy loss
assists this process. It turns out that even at small
depths where the change in total energy Δ Ε is small so
that ΔΕ/Ε « 1, the yield in blocking, χ^, is substan-
tially greater than the yield in channeling, χ . Experi-
ments[ 5 2'5 3 ] completely confirm this conclusion.

In order to compare the approximation of monotonic
collection of transverse energy with the solution of the
kinetic equation, a number of calculations have been
carried out.[47"49] Figure 2 shows the dechanneling func-
tion obtained in the approximation of monotonic collec-
tion of transverse energy. Also shown is the result of
calculations in the diffusion approximation.

As can be seen, for a rigorous solution of the
kinetic equation, i.e., with account of diffusion in trans-
verse momentum space, the fraction of dechanneled
ions is found to be substantially less than in the approx-
imation of monotonic collection of transverse energy.
This is explained by the fact that with inclusion of the
diffusion term we do not have a continuous departure
of particles from the channel, but a spreading of the
initial distribution function f(E, Εχ, χ = 0) in trans-
verse energy. This is clearly evident from Fig. 3,
where we have shown the behavior of F(E)
= S(Ex)f (Ε, Εχ, x) as a function of Εχ at various
depths. As can be seen from this figure, at small
depths the fraction of ions with small transverse ener-
gies is very high. With increasing depth a redistribution
in Εχ occurs, the relative role of ions with small Εχ
decreasing. It is evident that, although the peak of the
function S(Ex)f (Ε, Εχ, χ) is displaced downward, its
location on the horizontal axis is not greatly changed
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tion of the dependence of flux on depth. The flux is

V(r, x)=f ί[Ε,Εχ,,

FIG. 2. Dependence of fraction of dechanneled ions on depth in
Si (<110>, t = 25°C). 1-approximation of monotonic accumulation; 2—
diffusion approximation. The calculation was carried out for a particles
with Ε = 7 MeV; the signs + show the experimental data of ref. 37.

FIG. 3 Variation of distribution function with depth in Si «110>).
The calculation was carried out for a particles with Ε = 7 MeV.

(i.e., in fact, a monotonic motion of this function to the
right does not occur). At the same time, as the result
of diffusion, a widening of the half-width of the function
f(E, Εχ, x) takes place. For comparison we have shown
in Fig. 3 a solution of Eq. (2.24) where S(E_J is as-
sumed constant. As can be seen, the area under the
curves are not greatly different, but the functional de-
pendence in this case is not very accurate.

Determination of the dechanneling function is ordi-
narily carried out by means of experiments on back-
ward scattering. Here it is customary to record parti-
cles which have left the channel near the surface, i.e.,
ions which in the channel have large transverse ener-
gies . These ions are dechanneled mainly as the result
of scattering by thermal vibrations. This is evident
from Fig. 4, where we have shown the dependence of
the diffusion coefficient from electron and nuclear
scattering on transverse energy. Here the diffusion
coefficient due to electron scattering is not felt. There-
fore in interpretation of these experiments the main
dechanneling mechanism, electronic, has in essence
been underestimated, and the nuclear mechanism due
to thermal vibrations has been overestimated. The
time spent by the main mass of ions in the channel is
determined for normal incidence of the ion beam by
electron scattering. In order to be sensitive to this, it
is necessary to detect particles traveling at large
depths. In Fig. 2 we have shown the results of such
experiments.[ 1 1 ]

Solution of the kinetic equation (2.24) gives the pos-
sibility of solving the main problems associated with
channeling of ions. For example, it is possible to ob-
tain the dependence of the half-width of the dip in ψι/2

on temperature, depth, and so forth, and also a number
of other important parameters. [ 4 β ]

The main conclusion of this section is that the ap-
proximation of monotonic collection of transverse en-
ergy is unsatisfactory in many cases. It can be used
only for rough estimates and then only near the surface
when no more than 10—20% of the particles leave the
channel. For a correct interpretation of the experi-
ments it is necessary to use the solution of the kinetic
equation with inclusion of the diffusion term.

The particle distribution function in transverse en-
ergy as a function of depth f(E, Εχ, χ) permits calcula-

where x (x) is the fraction of dechanneled ions, E*
= U( r) is the potential energy of the ion in the channel
at a given point r (r is the radius vector in the cross
section of the channel), and Ec = Eip\.

Numerical calculations of the flux have been carried
out for the case of passage of 3-MeV protons through
silicon at room temperature in the (110) direction
(Fig. 5). [ 1 β ]

Since the equipotential line determined by the equa-
tion Εχ = U(r) gives a whole family of points at which
the ion flux is identical, the dependence of the flux on
the location r in the cross section of the channel was
characterized by the reduced potential energy

In Fig. 5 we have shown the dependence of the ion
flux in the center of the channel and near an atomic
string on the angle of incidence ψύι at different depths.
It can be seen from these data that the increase in flux
is retained up to great depths (> 10 μ), but initially it
drops rapidly. At the same time an increase of flux
with depth occurs at the atomic string. The dependence
of the flux at various points of the channel on the angle
of incidence at a depth 0.1 μ is given in Fig. 6. Note
the existence of double peaks in the central part of the
channel.

FIG. 4. Dependence of diffusion -
coefficients in transverse energy e^ ;1
in Si (<110>, t = 25°C). D e is the
electronic diffusion coefficient, 1
is the nuclear diffusion coefficient
(D = D e + D t h ) .

-075 -as-azs a 025 as 0.75

FIG. 5
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FIG. 6

FIG. 5. Dependence of flux in center of channel and near atomic
string on angle of incidence (Φ/Φο

 = 7). The calculation was carried out
for protons with Ε = 3 MeV in Si (<110>, t = 25°C).

FIG. 6. Flux at different points of the <110> channel in Si at a depth
0.1 μ. The calculation was carried out for protons with Ε = 3 MeV (t
= 25°C; the upper quantities are in units of e\).
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g) Distribution of ion flux at small depths. Up to this
time we have discussed the flux at depths where an
equilibrium distribution has been established. It is of
interest to consider also small depths near the crystal
surface.

The motion of the particles in the channel can be
considered as the motion of Brownian particles in the
field of the atomic strings. The scattering centers in
the central part of the channel are the valence electrons,
whose distribution in the channel can be considered iso-
tropic.

The combined potential in a channel formed by η
atomic strings has the form

i+JL\ ( 2 · 2 9 )

if the potential of an individual string is given by the
expression u(p) = αϊ/ρ2, where ai = ZiZ^e^aVd, and
b is the channel radius. In the central part of the
channel we have r/b < 1, so that the anharmonic part
of the potential is small there.

In the first approximation the motion of a particle
can be considered in a two-dimensional harmonic well
with axes y, z, where y2 + z2 = r2.

For a Brownian particle in such a field it is possible
to find a solution of the Fokker-Planck kinetic equation
in phase space.

By means of this equation we can find the probability
W(yo, z0, y, z, 0oy> #0ζ, χ ) that the particle will be at
a point with coordinates (y, z) at a depth χ if at χ = 0
the particle enters the channel at an angle θ ο
= V~i ?n + θ ο a t a d i s t a n c e ro = Vyj; + z2 from the

channel1541.

A formula for W can be obtained also by taking into
account the anharmonicity of the potential. A feature of
a harmonic potential is the fact that the flux calculated
for such a potential changes periodically with depth. In
spite of inelastic scattering by electrons, phase mixing
of the trajectories occurs here only at very great
depths. When the anharmonicity is taken into account,
the tangling of the particle trajectories occurs much
more rapidly.

In the anharmonic approximation the frequency of
oscillations begins to depend on the point of entry of the
particle into the channel. Here the "frequencies of
oscillations" along the y and ζ axes have the following
form:

where

W I, . 3 z§ \

-2EV + T-^-)'

< = •%&

(2.30)

(2.30)

(2.31)

In the harmonic approximation the flux can be calcu-
lated analytically:

The flux in an axial channel is

1 Γ φ /;/"> — %y sin ax + tab cos ax \'\ (ft i y f t >—9oy sin ωζ — ab cos ax \ 1
' ) \ : p II

t -^/ζω—θοΐ sin ωζ + ab cos ax \ .γ. i ζω—%z sin ax — ab cos ax \~1
\ p ) ~ \ p /J

(2.32)

where Φ is the error integral, b= ^~b; Θ2 = ^ f̂-f , ^

is the stopping power of the ion. As can be seen from
this formula, the value of the flux oscillates with depth.

Figure 7a shows the dependence of the relative flux
at the center of the channel on the depth, calculated by
Van Vliet[58i by computer. It can be seen that the oscil-
lations are damped at a depth ~2000 A, which is in
good agreement with the estimates made in section c)
and also with calculations on the basis of Eq. (2.31).

At depths > 1000 A for particles with Ε ~ 1 MeV the
flux distribution given by Eq. (2.31) is essentially no
different from the distribution in the transverse plane
given by Eq. (2.3). Calculations of the yield of a nuclear
reaction in the matrix atoms carried out by Ryabov[e0]

and Barret [ e i ] give similar results.

Figure 7b shows a calculation carried out by means
of Eq. (2.31) (curve 1). Curve 2 was calculated by solu-
tion of Eq. (2.24) on the assumption that statistical
equilibrium exists. It is evident that, even without in-
clusion of the divergence of the beam due to inelastic
scattering by electrons and anharmonicity, phase mix-
ing sets in after traversal of about 1000 atomic layers.

In Figs. 8 and 9 we have shown the results of calcu-
lations of ymax a s a function of ion energy, orientation,
ion-beam divergence, depth, and type of ion on the
assumption that an equilibrium distribution exists.

In Fig. 8 we have given the energy dependence of the

(X)
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Λ

1200
Depth, A

Oft
χ, μ

FIG. 7. a) Dependence of maximum flux of α particles with Ε = 1
MeV in Cu on depth (1-multiple scattering is not taken into account;
2-multiple scattering is taken into account (beam divergence θ = ±0.06°);
3-the same as 2 but for θ = ±0.23° (calculation of Van Vliet by com-
puter [ s 8 ])); b) dependence of relative flux of protons in the center of
the <110> channel in Si (E = 700 keV) on χ (1-calculation with Eq. (2.31)
with inclusion of anharmonicity in inelastic scattering by electrons; 2—
calculation by solution of Eq. (2.24) on the assumption of existence of
statistical equilibrium).

Ofi 1

E, MeV

FIG. 8

S 4 5

E.MeV

FIG. 9

FIG. 8. Dependence of maximum flux on energy and depth, a parti-
cles in Si «110>, θ = 0.01°, χ(μ) = 0.1 (1), 0.2 (2), and 0.5 (3)).

FIG. 9. Energy dependence of maximum flux (Si, a particles). 1 —
electron scattering is considered to a depth of 0.1 μ (θ = 0.02°, U10>);
2-the same for <111>; 3-the same as 1 but for θ = 0.1°.
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maximum flux at the center of the channel ymaxi with
inclusion of multiple scattering by electrons. As can
be seen, y m ax decreases with increasing depth. In the
figure we have shown the case of small divergence
( θ = 0.01°). For a greater divergence y m ax w i l 1 de-
crease with energy, i.e., there will be a pattern oppo-
site to that which occurs in Fig. 9, where we have con-
sidered the case θ =0.1°.

In spite of the fact that the area So associated with
the (110) channel in Si is approximately five times the
area of the (111) channel, ymax in the two cases is
rather similar, as can be seen from Fig. 8. This is
simply explained by the fact that the coefficient A used
to calculate the potential in the channel is proportional
to U"(b). Therefore the small area is compensated,
though incompletely, by the large change of U"(b) at
small b, i.e., for channels with small So, since So « irb2.

In Figs. 10 and 11 we have shown the results of com-
puter calculations by Alexander et al.[ s e > 5 7 ] Detailed
comparison of computer calculations at small depths
with an analytical approach based on assumption of an
equilibrium distribution is given in ref. 59. The good
agreement of these two approaches is noted.

h) Splitting of the angular distribution of channeled
ions and appearance of multiple peaks. When the foreign
atom is localized at some equipotential line S/o bound-
ing the area Sj0, according to Eq. (2.16) for φ?
= S/gA/πΕ a logarithmic singularity occurs. Hence it is
evident that in the angular distribution γ(ψΐη) the ap-
pearance of a double peak is possible.[38>62]

The appearance of the logarithmic singularity can be
understood in the following way. For φχα = 0 for a part
of the ions the equipotential S/o is inaccessible. For

ψ|η = SjgA/πΕ this equipotential is accessible for all

ions. If ipia exceeds this value, the accessible regions
of the ions are increased, so that the flux at the line
SiQ in this case will be smaller than for ψ[η = S^A/ττΕ.
Thus, for ψΐη = S/0A/JTE the flux at the line S/o will
have a value close to the maximum.

Having determined the experimental value of φιη for
which the peak appears, we can find the value of S/o,
i.e., the location of the foreign atom. Thus, the angular
distribution of channeled ions carries information on

FIG. 10 FIG. 11

FIG. 10. Contour plot of <110> channel in Cu with indication of flux
values (computer calculation of Alexander et al. [**]) (in relative units).

FIG. 11. Contour plot of <110> channel of copper with indication of
flux values [S6J (in relative units).

the location of impurity atoms. We will consider several
cases of interest.[Se'5BI

If the impurity atom is localized in the center of the
channel, the distribution is characterized by a maxi-
mum for ψΐη = 0 (Fig. 12a).

If the impurity atoms are localized in the central
part of the channel at some equipotential S/, then a
double peak appears (this is shown schematically in
Fig. 12b).

If part of the impurity atoms are localized in the
center of the channel and the other part in the central
part of the channel, then a triple peak will appear.

If part of the impurity atoms are localized in the
center of the channel and the other part is in substitu-
tional positions, then there will be a maximum at ψιη

= 0, but the height of the maximum may not even reach
the normal level (see Fig. 12c). The height of the peaks
depends not only on the location of the impurity atom
but also on what fraction of the impurity atoms occupy
such a position.

If the impurity atoms are localized in the peripheral
part of the channel, the maximum will be replaced by a
minimum (Fig. 12d), but the half-width of this minimum
will be smaller than the critical angle.

All of these features can be seen also in Fig. 6,
where an accurate calculation has been made.

On taking into account the finite divergence of the
beam, the logarithmic singularity in Eq. (2.16) disap-
pears and the value of γ in this case is given by the
formula^71

Soγ = 1η (2.33)

Recently Alexander et alJ58'821 observed a multiple
peak in Fe implanted with Br ions. The splitting of
the angular distribution and the appearance of multiple
peaks has an important significance, since it greatly
facilitates the interpretation of experiments to deter-
mine the location of the impurity atom.

As was pointed out above, if the impurity atom is
localized in the center of the channel, then for tpin = 0

-fin

ΛΛΓ
'fu,

FIG. 12. Schematic representation of dependence of flux on initial
angle of incidence of ion beam, a) Impurity atom in center of channel;
b) impurity atoms in central part of channel but not exactly in center;
c) part of impurity in center of channel, and remaining part in substitu-
tional state; d) impurity atoms localized in peripheral part of channel
near the atomic string.
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FIG. 13. Effect of yield increase in nuclear reactions, a) Increase of
proton yield in the reaction H2(d, p)H3 (1) and yield of matrix atoms in
niobium (2) (experiment of Iferov, Pokhil, and Tulinov [ 6 3 a ]) ; b) increase
of yield of α particles in the reaction Li7 (p, a)He4 (1) and yield of matrix
atoms in Si (2) (experiment of Andersen, Uggerhoj, and Gibson [ 6 3 b ] ) .

a peak appears in the angular distribution. An increase
in yield has been observed experimentally in refs. 36,
56, and 63—68. In Fig. 13 we have shown an increase in
the yield of nuclear reactions, which was observed for
the first time in ref. 63.

A theoretical interpretation of the increased yield,
based on the theory of ion flux redistribution, has been
given by Kumakhov[33] (see also refs. 34, 35, 37) and
also by Andersen et a l . [ s e ] . Computer calculations car-
ried out at approximately the same time[ 5 5 > 5 &"5 9 ] also
show the possibility of a yield increase. References 34—
37 and 55—59 have pointed out the possibility of using
the ion flux redistribution effect for accurate determina-
tion of the location of an impurity atom in an interstitial
position. In principle it is possible also to obtain infor-
mation on the amplitude of thermal vibration of the im-
purity atom.[ 3 3 '

Alexander[56] has attempted to obtain information on
the quantity u^i—the amplitude of thermal vibration of
an impurity atom located in a substitutional position, by
measurement of the angular half-widths φι/ζ and ψι/2,ί
in the matrix and impurity atoms.

3. EFFECT OF SPATIAL REDISTRIBUTION OF ION
FLUX IN PLANAR CHANNELING

a) The flux of ions in a planar channel. Channeling
occurs, as is well known11"1, not only when the initial
momentum of the particles is parallel to the principal
crystallographic axes, but also in the case when the
initial momentum is parallel to the principal atomic
planes. This is so-called planar channeling. As in the
case of axial channeling, we will avoid discussion of the
particle motion along the planes, i.e., in depth, and dis-
cuss only motion in the plane perpendicular to the longi-
tudinal momentum of the particle, i.e., we will consider
one-dimensional motion between two planes.

The equilibrium distribution for one-dimensional
motion (which we will designate as F( Εχ, y)) differs
substantially from the two-dimensional case considered
in section a of Chap. 2.

If we watch the motion of a particle for a time
t » Τ ( Τ is the period of motion between the two
planes), then

f(E±,y)-

( 2dt
, ) dy

I 0, . (3-D

ured from the plane. Note that the distribution (3.1) can
also be obtained as a solution of the equation of con-
tinuity in phase space:

where

VV+-irV=°- (3·2)
Vy/2 = Ej_. As can be seen from Eq. (3.1), in

contrast to the two-dimensional case, a particle spends
a large fraction of the time near the turning point,
seeming to "hover" over the plane.

Suppose that a unit flux of ions enters one planar
channel traveling in the parallel direction. Let us find
the flux of ions at some distance ζ from the center
between the two planes, when an equilibrium distribu-
tion (3.1) is established.

Obviously this flux is

(3.3)

where Y(Zj)= E 1 ; dp is the distance between the atomic
planes (/ = dp/2), and ζ = / - y.

In order to obtain a simple analytic formula for the
flux, the potential in the planar channel can be assumed
harmonic. In a detailed discussion it is necessary to
take into account also the anharmonic term. If
Moliere's potential is used as the ion-atom potential,
the potential Y(z) with inclusion of both planes can be
written in the form

Υ Μ
(3.4)

where

In the approximation which takes into account only
the harmonic part of the potential (3.4),

o,

Then the flux in the channel, y(z), is equal to

(3.5)

(3.6)

Hence it is evident that in the central part of the
channel for l/z » 1, we have y > 1, i.e., the flux in the
center of the channel is higher than the normal flux.

The flux distribution in the channel described by
Eq. (3.6) is illustrated in Fig. 14. As can be seen from
this figure, in the peripheral part of the channel near
the atomic plane, the relative flux is substantially less
than unity.

The case of an inclined beam, where peaks in the
angular distributions can arise, and also the effect of
beam divergence on the value of the flux, has been dis-
cussed in an earlier article.1 3 7 1

The estimates made above are valid only for those
depths for which t » T, i.e., where the particle com-

FIG. 14. Distribution of ion flux in
planar channel.

here Y(y) is the potential of the plane, and y is meas-
?, Ί Β S !0
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pletes at least several oscillations between the two
planes. In investigation of the near-surface layers it is
desirable to calculate the flux more accurately without
use of the equilibrium distribution (3.1). This necessity
arises, for example, in the case where the detector
energy resolution permits analysis of very thin near-
surface layers of the crystal.

As in Sec. g of Chap. 2, for solution of this problem
we can use the analogy between a Brownian particle
and a channeled ion, assuming that the distribution of
valence electrons in which the ion scattering occurs is
uniform.

On the basis of a solution of the Fokker-Planck
kinetic equation, we can find the probability
W(z0, z, 0o, x) that the ion will be at a point with co-
ordinate ζ at depth χ if for χ = 0 the ion enters the
channel at an angle 60 at a distance z0 from the
center of the channel. This probability is expressed by
the formula[ M ]

W (20, ζ, θο, χ) = - j ^ = = ~ exp [ =

When a harmonic potential is used, we have

(ζω - joco cos ωχ - θ 0 sin ωχ)*].

(3.7)

ω ο V 2Ε<
of *

~M '· β is the mean square angle of

scattering by electrons after traversing a depth x:
dE χ dEθ* *"ΊΜ ~U ~E ' Ίχ~ i s t h e stopping power of the ion.

On taking into account the anharmonicity, ω begins
to depend on the initial coordinate z0:

(3.8)

The relative flux r ( z , x) as a function of depth is
obviously given by the formula

γ (χ, 2) = (3.9)

For a harmonic potential in this case we obtain the
simple formula

ι>—θ0 sin ωχ + (ω cos ωχ \ ^ /ζω—θοβίηωχ—to cos ωχ π.Γφ(! i\ /ζω

2 cos ωχ L V e a / V θ 2

(3.10)
It can be seen from this that the flux oscillates with

depth. The maximum flux in the center of the channel
(i.e., for ζ = 0), when the beam is incident on the
crystal in a direction parallel to the plane considered,
has the value

.. M 1 Λ/«»«»«Μ (3.11)
COX \ Q2 /

Using the simple formulas (3.9)—(3.11), we can in-
terpret experiments near the surface.

b) Multiple scattering of channeled ions in planar
channeling. An important difference exists between
axial and planar channeling, in view of the fact that in
motion along a plane at a large angle to the crystallo-
graphic axes, in contrast to the axial case, successive
collisions occur with very different impact parameters.
Therefore nuclear scattering, in addition to a directing
effect, and contrary to the case of axial channeling,
exerts an important effect on the diffusion of the parti-
cles in their transverse energy, even if thermal vibra-
tions are omitted from the discussion.

An equation of the Fokker-Planck type for planar
channeling has been obtained in earlier articles. [ 4 8 > β 9 ]

If we neglect the change in total energy, the equation
has the form

where χ is the depth, Εχ is the transverse energy, and
Τ is the period of motion of the particle in the channel.
In many applications it is convenient to use the follow-
ing relation:

In Eq. (3.4)—(3.5) the angle brackets designate averag-
ing over the period of oscillation of the particle:

(3.14)

where Υ is the planar potential. In a number of cases
a solution of Eq. (3.12) can be obtained in explicit
form.[ 4 8 1 In Table I we have given the calculated depths
Xi/z at which the number of particles in the channel is
decreased by a factor of two. These values were ob-
tained as the result of solution of Eq. (3.12).

As can be seen, there is good agreement between the
theory and the experiments of Davies et al.[7t>1. Hence
we can conclude that the calculation of Xj/2 can serve
as a good estimate for theoretical prediction of this
quantity in design of an experiment.

4. CHANNELING OF HEAVY IONS

a) Some features of heavy-ion channeling. As was
pointed out in section f) of chapter 2, for (Μ/ΐη)ψϊ > 1
the decrease in transverse energy due to energy loss
exceeds the increase due to scattering by electrons.
The condition (Μ/πι)ψ? > 1 is satisfied at not very high
velocities for heavy particles. For example, in Si in
channeling of protons this condition is satisfied already
at energies of the order 0.1 MeV and below. With de-
crease of the transverse energy the accessible region
S(Ej_) decreases. This leads to the result that with in-
creasing depth there is an increase in the flux in the
center of the channel, rather than a decrease as for
fast light particles. In Fig. 15 we have shown a calcula-
tion of the flux for deuterons with Ε = 300 keV, carried
out by computer166'*71. As can be seen, with increasing
depth the flux increases. It is evident that near the
surface, where a statistical equilibrium distribution

TABLE I. Depth χ^(μ) at which
half of a channeled beam of protons
in tungsten leaves the channel

Direction
(plane)

{100}

{111}

Energy,
MeV

2
3
6

2
3
6

theory

1.5
2.2
4.4

2.6
3.9
7.8

experi-
ment ["•]

1.3
2.8
4.0

2.7
4.1
8.8

FIG. 15. Dependence of flux on depth for
deuterons with Ε = 300 keV in niobium. [66·67]
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has not yet been established, the flux oscillates with
depth.

Some fraction of the ions with large transverse
energies are dechanneled as a result of scattering by
lattice nuclei undergoing thermal vibrations. In this
way the channeled beam is split into two components^481.
Ions with small Ej_ as a result of energy loss to elec-
trons are focused toward the channel axis, while ions
with large Ei leave the channel. On the average the
ranges of the two kinds of ions can differ considerably.
This leads to a very substantial difference between the
profile of implanted ions under conditions of channeling
and the profile in an amorphous medium.

The problem of the spatial distribution of implanted
ions in crystals has acquired considerable interest
recently as a result of the extensive use of the technique
of ion implantation of conductors. A great many arti-
cles have been devoted to this question[71"98]. The fea-
tures of heavy-ion channeling appear distinctly in dis-
cussion of the question of the spatial distribution of
these ions. This question is briefly discussed below.

b) Spatial distribution of heavy channeled ions. In
calculation of the profile of implanted ions in an amor-
phous medium (i.e., without taking into account chan-
neling) it is sufficient to know the projected range and
the straggling. In a crystal, when channeling is taken
into account, the situation is substantially more com-
plicated. As we will see, the profile depends on a very
large number of parameters. For simplification of the
calculations a number of assumptions will be made:

1) If the ion has a transverse energy below Lind-
hard's critical energy, the ion is considered channeled.

2) If the ion has an energy above the critical value,
it is assumed that the ion belongs to the random part of
the beam.

3) Capture of an ion back into a channel is not taken
into account.

4) The crystal is assumed to be ideal—i.e., scatter-
ing of ions on the defects introduced during the implan-
tation is neglected.

5) It is assumed that the transverse energy in-
creases monotonically, i.e., diffusion in transverse
momentum space is not taken into account.

The change in transverse energy ei at the veloci-
ties considered ν s v0 = 2.2 χ 108 cm/sec is due
mainly to energy lost to electrons (Δει/Δχ) Θ and
scattering (Δεχ/Δχ^, and also to scattering by
thermal vibrations, (Δεχ/ΔχΗΐι, i-e.,

\ Δι / \ Δι / e \ Δι / th \ Ax / 8 '

here the angle brackets designate averaging over the
accessible region. Usually the last term in Eq. (4.1) is
substantially smaller than the first two terms. For fast
light particles, as is well known, the last term is
dominant. Equation (4.1) has been solved in two approx-
imations.[ 4 8 ] In the first case, which we will call the
rectangular well approximation, it is assumed that the
average kinetic transverse energy is equal to the total
transverse energy, i.e.,

(4.2)

is assumed harmonic, in accordance with the virial
theorem we have

/ Aex \ _ _ ? ± / Δ £ \
\ Αχ Λ ~ Ε \ Δι /

Δι 2 Ε
(4.3)

Lindhard's formulas11"1 are used for the quantities
(A£i/Ax)th and (A.ei/Ax)s- In this case

! Υ5ηιν'Λωρ / AE \ (4.4)
4EZtZ2e* \ Ax / '

In the rectangular well approximation for the poten-
tial, Eq. (4.1) can be rewritten in the form

'-. (4-5)

/Ae_L\ =

\ Δι / S

\ i £ / ~ i T \ d < / l h \ dx

In the harmonic approximation the first term on the
right-hand side in Eq. (4.5) is replaced by ex/2E.
Equation (4.5) is solved by computer by a method simi-
lar to that used in ref. 48. The method provides the
possibility of investigating the effect of the main factors
on which the channeled-ion profile depends: to study the
effect of the amorphous layer which usually covers the
surface of a crystal, the dependence on orientation and
on temperature, and the dependence of the profile on
the initial angle of incidence of the ion beam, energy,
and so forth.

In Fig. 16 we have shown the energy dependence of
the profile for boron ions channeled along the (111)
direction in Si at room temperature. As can be seen,
with increasing angle the fraction of ions falling into
the channel for a given thickness ΔΧ of the amorphous
layer covering the surface increases. In addition, the
depth of both the first and second maxima increases.

In Fig. 17 we have shown the energy dependence for
phosphorous ions.

In Fig. 18 we have shown the orientation dependence
of the profile for boron ions with Ε = 50 keV.

As can be seen, in the (110) direction the range of
the channeled ions is substantially greater than in the
(111) direction. This is also confirmed by experi-
ments. [ 7 4 ]

There is a great difference in the profiles for ions
of Β and Ρ if all conditions are equal. This is explained
by the fact that the range of boron ions in the amor-
phous medium and in the channel do not differ so

.dN/dR
dH/dR

where ( Δ Ε / Δ Χ ) is the change in total energy. In the
second approximation, where the potential in the channel

FIG. 16. Energy dependence of profile for boron ions in the <111>
direction in Si. 1-E = 100 keV, 2-E = 150 keV. The thickness of the
amorphous layer is Δχ = 50Α.

FIG. 17. Dependence of profile for Ρ ions on energy in Si «110>, t
= 25°C). Eo(keV) = 100 (1), 150 (2), and 200 (3). Δχ = 50Α.

FIG. 18. Dependence of profile for boron ions with Ε = 50 keV in
silicon on orientation (1-<111>, Δχ = 20A; 2 - 0 10>, Δχ = 100Α).
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greatly as in the case of phosphorus. Therefore the
first and second maxima for boron ions are more diffi-
cult to separate experimentally than in the case of
phosphorus ions.

This circumstance is aggravated also by the fact that
scattering by thermal vibrations is weaker for boron
ions than for phosphorus ions. Therefore the depth of
the dip between the first and second maxima for boron
ions is substantially smaller than for phosphorus ions.
The heavier the ion, the more distinctly should the dip
between the first and second maxima appear. In Fig.
19 we have shown the experimental profile for Ρ ions
obtained by Dearnaley and co-workers.[71] As can be
seen, there are two clearly expressed maxima. The
maximum ranges of the channeled ions can be calcu-
lated with the theoretical estimates for the energy loss
as a function of impact parameter.[ββ"97]

5. EXPERIMENTS TO DETERMINE THE LOCATION OF
IMPURITY ATOMS

a) The main factors affecting the location of an im-
purity atom. When impurity atoms are introduced in the
lattice by means of diffusion, they usually replace
atoms of the matrix. In ion implantation, which we are
discussing here, the location varies, Ion implantation
is a substantially nonequilibrium process. In implanta-
tion, radiation damage (Frenkel pairs), disordered re-
gions, and so forth, are produced. As a consequence of
this, in implantation, impurity atoms can occupy various
locations in the lattice. We will consider a number of
factors which can affect the location of an impurity
atom introduced into the crystal by means of implanta-
tion.

In the process of stopping of an ion in a crystal, a
rather large number of displaced atoms and vacancies
are produced along the track. The ion can interact with
a vacancy and can occupy a substitutional position.

The impurity atom can become substitutional also on
annealing of disordered regions.

Impurity atoms can also occupy an interstitial posi-
tion. In silicon, for example, one of these positions is
the tetrahedral interstitial position. There are several
channels by which the transition of an impurity atom to
an interstitial position can take place. For example,
this can occur in the direct interaction of a matrix atom
with an impurity atom located in a substitutional
state.[ae] As a result the matrix atom occupies its site,
and the impurity atom occupies an interstitial position.
In addition, there can be simply a transition of the im-
purity atom to the tetrahedral interstitial position, as
a result of which there occurs vacancy formation and
filling of the tetrahedral interstitial position. This re-
action has been observed experimentally for ions of
thallium implanted in silicon.[2e]

Impurity atoms can also occupy other locations.
Dislocations and other imperfections can serve as a

FIG. 19. Profile of Ρ ions in Si,
obtained experimentally. [71]

natural sink for impurity atoms. They can emerge also
onto the surface of a crystal.

A detailed analysis of experiments carried out up to
1970 is contained in the book by Mayer, Eriksson, and
Davies.[2e) The quantitative, and in a number of cases
even the qualitative interpretation of these experiments
are not satisfactory, since in these studies the effect of
ion flux redistribution was not taken into account.
Nevertheless, it is possible to indicate several factors
and basic regularities which have been observed ex-
perimentally . The radiation dose and temperature at
which the implantation is carried out substantially af-
fect the location of the impurity atom. There is also a
dependence on the annealing temperature.

A definite correlation exists of the fraction of ions
located in substitutional states with the number of radi-
ation defects and the temperature.[2e]

In Table II we have enumerated the main experi-
ments carried out up to 1970 in silicon.1"1 1 6 '

The behavior of the impurity atom in the lattice also
depends on its charge state. Therefore the elements of
different groups of the periodic table behave differently.
Elements of group IV and V for the most part occupy in
silicon a substitutional position'2*1, while group II ele-
ments occupy generally an interstitial tetrahedral posi-
tion. We will discuss in detail a number of new experi-
ments in whose interpretation the redistribution of the
channeled-particle flux has been taken into account.

b) Use of the flux redistribution effect for accurate
determination of impurity atom location. In the work of
Domeij, Fladda, and Johansson[e5] the location of Zr,
Hf, Tl, and Hg ions has been determined in silicon. The
measurements were made with a beam of carbon ions
of energy 1.8 MeV. These authors observed an increase
in the yield in the (110) direction when the yield of
silicon ions was measured (Fig. 20). At the same time
in bombardment along the (111) direction the usual

TABLE II. Experiments to determine location
of impurity atoms in silicon

Implanted
ion

Li
Β
Ρ
Ga
As
Cd
In
Sn
Sb
Sb
Tl
Xe
Ca
Tm
Yb
Tl
Bi

Experimental method

(p, a)-reaction
(p, a>reaction
Remission
Backscattering
The same

X-ray emission
Backscattering
The same

Remission
Backscattering
The same

References

69
100-103
99
104, 109, 106-108
100, 106-107
109, 106

loo, loe, no
106
100, 104, 106, 107, 111
112
109, 106
110
106
113
114
100, 110, 115
106, 116

FIG. 20. Dependence of yield of Si
matrix atoms and Zr impurity atoms
on external angle (experiment of
Domeij, Fladda, and Johansson [6 S]).

-δ -Ί -Ζ 0 Ζ Ί

Angle, deg
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minimum was observed. This permitted the authors [ e s i

to prove that the zirconium ions were localized in tetra-
hedral interstitial sites. In fact, for bombardment along
the (111) direction the tetrahedral interstices are
blocked by the (111) atomic string. At the same time
along the (110) direction they lie in the central part of
the channel (see Fig. la) and the yield γ is close to
2.3 (Fig. lb). In ref. 65 the yield turned out to be 2.2.

In the variation of the yield of thallium ions (Tl) a
minimum with a small peak in the center was observed
along the (110) axis (Fig. 21). The yield along the (111)
direction was insignificant. This gave the authors[ e s ]

the possibility of proving that a fraction of the Tl
atoms occupy a tetrahedral site and the remaining frac -
tion are in a substitutional state. According to the
theoretical model (see Fig. 12) for the situation which
was observed for thallium in ref. 65, part of the atoms
are in a substitutional state and part are localized in an
interstitial site. Since a minimum is observed along the
(111) direction, the interstice for thallium ions corre-
sponds to a tetrahedral position. Furthermore, since
the yield for thallium ions is close to 1 along the (110)
direction (if all thallium ions were localized in tetra-
hedral interstices, the yield γ according to Fig. lb
should be close to two), we can estimate that the frac-
tion of ions located in a tetrahedral site is close to 1/2,
and the remaining half are in a substitutional state.

In the work of Carstanjen and Sizmann[e?1 the loca-
tion of deuterium atoms in niobium was determined by
means of the nuclear reaction D(d, p)T. The target
temperature was 150°K and the initial beam energy was
300 keV. From general thermodynamic considerations
it is known that in the niobium lattice there can be
tetrahedral, octahedral, and hexagonal interstitial
positions. A theoretical calculation of the ion flux was
carried out for all of these positions. Results of the
calculations are shown in Fig. 22 by the solid lines.
Then the identical experiment was performed. As can
be seen Fig. 22, the result of the experiment agrees
with the theory only in the case where the deuterium is
in the tetrahedral interstitial positions. From this fact
the authors[ f f 7 ] concluded that deuterium atoms in nio-
bium are located in tetrahedral interstitial positions.
It is interesting to note that this result is confirmed by
the experiment of Somenkov et al . [ 1 1 7 i on the basis of
neutron diffraction. In the case of the experiment of
Carstanjen and Sizmann[$7] it is evident how important
the theory of the flux redistribution is for interpretation
of experiments to determine impurity atom location.

Andersen et al. [ 3 e ) determined the location of
ytterbium atoms implanted in silicon. A beam of 1-MeV
a particles was used. Figure 23 shows the result of the
experiment along the three principal axes. To explain
the experiment the authors[ 3 6 ] considered two possibili-
ties: 1) part of the Yb atoms (30%) were localized in
tetrahedral interstitial positions, and the remaining
part of the atoms were displaced rather far from the
(110) and (111) axes and therefore do not provide a
substantial decrease in the yield, 2) all Yb atoms are
localized in one interstitial site which does not corre-
spond to the ordinary tetrahedral interstitial position.
If the Yb atoms were localized in tetrahedral inter-
sitial positions, they should give a very low yield along
the (111) and (100 ) directions, since along these rows
this position is blocked. From this fact Andersen et
al . [ 3 e ] reached the conclusion that a third of the atoms
lie along equivalent axes ( Ϊ00 ), and the remaining

FIG. 21. Yield for thallium ions. ["]
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FIG. 22. Result of the experiment of
Carstanjen and Sizmann. [66] The solid Q
curves are the result of calculation of the
flux by computer.
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FIG. 23. Result of the experiment of Andersen et al. I3*] on determi-
nation of the location of Yb in Si. The yield is in relative units.
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FIG. 24. Location of Yb atoms in Si along principal axial channels
in Si.

atoms are displaced 0.68 A from these axes (Fig. 24).

In Fig. 24 we have shown the locations of Yb atoms
along the principal axes. As can be seen, along the
(1Ϊ0) axis 5/6 of the Yb atoms lie in the central part
of the channel. Therefore along this axis an increase of
yield is observed.

In the work of Eisen and Uggerhoj[68] the experiment
of Andersen et a l . [ s e ] was repeated. In Fig. 25 we have
shown the result of Eisen and Uggerhoj.[ee] In contrast
to the work of Andersen et al.,c ] the latter experi-
ment[ 6 8 1 gave a yield of Yb atoms with a half-width not
equal to the half-width of the yield of Si atoms, i.e., the
matrix atoms. Therefore Eisen and Uggerhoj[68) made
the assumption that Yb atoms in a number of cases can
occupy two different interstitial positions. The differ-
ence of their results from those of ref. 36 is explained
by Eisen and Uggerhoj, in particular, by the fact that
the conditions of implantation of Yb atoms in silicon
were somewhat different in the two experiments, and
this can naturally lead to different results, as is clear
from Sec. a of Chap. 5.
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An experiment by Alexander, Callaghan, and Poate
(see refs. 59, 62) determined the location of bromine
atoms implanted in iron. This is one of the most ac-
curate and complicated experiments carried out up to
the present time. The authors observed for the first
time a triple peak along the {211} plane (Fig. 26).

A detailed analysis of the experiment showed that
40% of the atoms are in a substitutional state, and the
remaining 60% occupy an interstitial position. Here it
turned out that these positions do not correspond to the
ordinary tetrahedral interstitial positions. The authors
reached the conclusion that for correct interpretation
of the experiment it is necessary to carry out an analy-
sis of the angular distribution along several principal
crystallographic axes and planes. This experiment has
demonstrated that the appearance of fine structure, i.e.,
multiple peaks, in the angular distributions greatly
facilitates the interpretation of the experiments. In
spite of the fact that implanted bromine atoms were
placed not far from the surface (~400 A), computer
calculations and an analytical approach based on the
assumption of establishment of an equilibrium distribu-
tion gave approximately identical results.

In the work of Matyash, Skakun, and Diklit11"] the
flux-redistribution effect has recently been used to de-
termine the location of implanted atoms of oxygen in
niobium. These authors experimentally obtained multi-
ple peaks in axial and planar channels. This enabled
them to show that oxygen impurity atoms occupy octa-
hedral interstitial sites inside the unit cell.

c) Determination of the location of boron in silicon.

tZ ΙΊ 51 51 52 50

FIG. 25. Result of the experiment of Eisen and Uggerhoj [6S] on
determination of the location of Yb in Si.
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FIG. 26. Triple peak in Fe in which Br ions have been implanted
(experiment of Alexander, Callaghan, and Poate [5».«.i«]).

The theory of the flux-redistribution effect has recently
been used[12<>1 to determine the location of implanted
atoms of boron in the silicon lattice.

The implantation was carried out with boron ions of
energy 50 keV (dose 6 χ 1014 cm"2). The nuclear reac-
tion B(p, a)Be was utilized, and the proton energy was
Ε = 700 keV.

Figure 27 shows the results of measurements along
the principal axial channels. These data were obtained
after annealing af a temperature of 500°C. The experi-
mental data indicate the presence of central peaks in
scanning across the (100) and (111) axes, and double
peaks in scanning across the (110) axis.

The results were compared with a calculation of the
normalized yield as a function of the angle of incidence
of the beam. The yield was found by calculation of the
relative flux of protons in the respective channels.

By solution of a kinetic equation of the Fokker-
Planck type, the change in transverse energy due to
scattering by electrons, thermal vibrations, and defects
was taken into account. The calculations and their com-
parison with experiment show that about 20% of the
boron atoms are in substitutional states, and the re-
maining 80% in interstitial positions.

The best agreement of theory and experiment (Fig.
27) is achieved in the case when it is assumed that the
boron atoms lie along the (110) axis at a distance of
0.97 A from the substitutional position. The position
found is shown in Fig. 28. As can be seen, it does not
agree with the tetrahedral or hexagonal interstitial
positions. On annealing, when t 2 500°C, a quadruple
peak is observed along the (110) direction. This can
be explained by the fact that in this case boron occupies
positions along the (111) diagonal, halfway between the
closest atoms.

FIG. 27. Result of experiment on determination of the location of Β
in Si. The crosses designate the experimental yield, and the circles are
theoretical (the solid curves are the yield of matrix atoms, and the circles
are the theory).
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FIG. 28. Unit cell of silicon.
Τ and Η are the tetrahedral and
hexagonal interstitial sites, and
Β is the location found for the
boron atom. [12°]

6. CONCLUSION

Up to the present time many studies have been made
in which the channeling technique and the flux-redistri-
bution effect have been utilized to determine the loca-
tion of implanted atoms.

We have not discussed here studies in which the
orientation effects have been used to determine the
profile of implanted atoms and radiation defects, to
determine the number of residual defects, to study the
dynamics of annealing of defects, and so forth.

In contrast to optical and electrical measurements,
the present method gives correct information on the
exact location of the implanted impurity.

In crystals with a high density of defects, the chan-
neling technique with use of the flux-redistribution
theory has a number of important advantages over EPR,
Mossbauer, and other techniques.

Use of characteristic χ rays for identification of
atomic sites in a lattice will subsequently provide, ap-
parently, the possibility of obtaining necessary informa-
tion even in those cases where the concentration of the
implanted impurity is many orders of magnitude less
than the concentration of the matrix atoms.

In conclusion I wish to express my deep gratitude to
Ο. Β. Firsov for his constant interest in my work and
for numerous helpful discussions. I am grateful to
B. B. Kadomtsev, Yu. V. Martynenko, A. A. Rukhadze,
and Β. Μ. Smirnov for their interest in this work and
for helpful remarks.
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