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Electron-phonon interaction in metals is considered on the basis of quantum-mechanical perturbation
theory, which is fully equivalent to the adiabatic expansion. An appropriate diagram technique is used. The
dependence of the electron-phonon matrix elements on the phonon momentum is analyzed in various
models. Results of calculations are presented for corrections to the vertices, for the energy spectra of the
electrons and phonons, and for the phonon damping. It is shown that even though the adiabatic phonon
frequency is renormalized very little as a result of nonadiabatic and anharmonic terms, its value depends
significantly on the electron-phonon interaction. This dependence, however, does not lead to a possible
lattice instability at a sufficiently large value of the electron-phonon interaction parameter, as in the
Frohlich model, since it corresponds only to a transition from an optical dispersion law, in the absence of
interaction of the electron and phonons, to an acoustic dispersion law when this interaction is taken into
account. The Frohlich model in its literal form cannot be obtained from the exact Hamiltonian of the
system, but it is possible to choose a zero-order Hamiltonian such that the form of the electron-phonon
interaction Hamiltonian coincides, accurate to small terms, with the form of this operator in the Frohlich
model. It turns out here that the nonrenormalized phonon frequency is described not by an acoustic
dispersion law, as postulated in the Frohlich model, but by an optical law, and is equal to the ion plasma
frequency, as in the Bohm-Staver model of "bare" ions. Therefore even in this model allowance for the
electron-phonon interaction leads only to a transformation of the optical dispersion law into an acoustic
one, and cannot lead to lattice instability, i.e., to a decrease of the acoustic frequency all the way to zero.
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1. INTRODUCTION c ^ = S [rOr-Roi-ARO-Vir-R,,)] =2(VrV(r-Roi), AR,),
As is well known, the adiabatic approximation, which

is a regular expansion in the small parameter where V (r - Roi) is the potential with which the i-th
κ = (m/M)1 / 4, is the most rigorous method not only in ion with equilibrium coordinate Roi acts on an electron
the theory of molecules, but also in the theory of with coordinate r, and ARi is the displacement of the
metals (m and Μ are the masses of the electron and ion from the equilibrium position. In the Frohlich model
ion, respectively)[1!. However, the adiabatic perturba- it is postulated that the nonrenormalized frequency of
tion theory is much more complicated than ordinary the phonons, i.e., the frequency of the free phonon field
quantum-mechanical perturbation theory, and its use in ^o(q) at small phonon wave vectors q, is described by
practical calculations entails great difficulties. Conse- an acoustic dispersion law. Zimanc2] proved back in
quently, the Bloch-Frohlich model is customarily used 1955 that the Bloch-Frohlich model in conductivity
in different particular calculations in metal theory. theory, i.e., in the calculation of the matrix element of
This theory has no rigorous foundation, but offers great the transition of an electron from a state with momen-
conveniences in the calculations, since it was formu- turn k to a state with momentum k' followed by emis-
lated as an ordinary quantum-mechanical perturbation sion or absorption of a phonon, is equivalent to the
theory. In this model, the Hamiltonian of the electron- adiabatic theory. Subsequently, the question of the en-
phonon system is assumed equal to the sum of the ergy of the electron-phonon system and of the energy
Hamiltonians of the free electron and phonon fields SS0, spectra of excitations in this system has attracted
i.e., to the sum of the Hamiltonians of the noninteracting particularly great interest. Attempts were made to
electrons moving in the periodic potential of the lattice prove the equivalence of both theories also in this re-
and the Hamiltonian of the harmonic oscillations of the spect, but actually there is no such equivalence, as will
ions, as well as the Hamiltonian of the interaction be- be explained below. An exact calculation within the
tween the ions, which is equated to the change of the framework of the Frohlich model, based on summation
potential acting on the electrons as a result of the dis- of all the essential diagrams[ 3 ] (approximate perturba-
placement of the ions: tion-theory estimates were given in[4"e:l) has led to two
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important results: 1) the initial electron velocity v0 on
the Fermi surface, owing to the electron-phonon inter-
action oK'-p, is changed (renormalized) by the amount
1 + ζο· ν = vo/( 1 + ζο), where £0 is the dimensionless
Frohlich parameter characterizing the electron-phonon
interaction, ζ0 < 1; at the same time, a renormaliza-
tion takes place in the chemical potential μ - Δμ
~ fo^D, where O>D is the Debye frequency; 2) at small
q (for simplicity, only the interaction of the electrons
with longitudinal phonons and an acoustic dispersion
for u>o(q) were considered) the phonon frequency with
allowance for interaction, u>(q), is expressed in terms
of the nonrenormalized (zeroth) frequency wo(q) in ac-
cordance with the formula a>(q) = u>o(q)•J 1 - 2£0- Ob-
viously, the velocity of the longitudinal sound u/
= u/0 V 1 - 2jo· is expressed in the same manner.
Therefore w(q) becomes pure imaginary at ζο> yz,
i.e., the lattice becomes unstable. Thus, the maximum
possible value of ζ0 turns out to be %. Within the
framework of the Bardeen model, according to the
microscopic theory of superconductivity (the so-called
weak-coupling theory), the critical temperature of the
superconductor Tc is determined by the well-known
formula Tc = 1.14fiu>Dexp (-l/jo). Therefore the maxi-
mum possible value of Tc for a given O>D is T c max
= 1.14Λωββ"2. The existence of this limiting value of
Tc is in qualitative agreement with the experimental
facts.

However, this concept of limiting value of ζ0, con-
nected with the onset of lattice instability, has soon en-
countered two contradictions.

1) In the more exact formula obtained in [ 7 ] for T c ,
the electron-phonon interaction parameter, designated
λ in[ 7 ] , enters in a more complicated manner. It turned
out here that for certain superconductors λ greatly
exceeds Y2, for example λ = 1.1—1.3 for Pb, λ = 1.6
for Hg, and λ =2.25 for Ga; of course, the experimental
data indicating that T c has a certain upper bound still
remain in force.

2) It was shown in [ 8 ] that if we start with a consistent
adiabatic theory, rather than the intuitive Frohlich
model, then the result concerning the renormalization
of v0 remains valid, and the renormalization of the
phonon frequency turns out to be negligibly small,
~κ4. It was therefore deduced that the conclusions
made in [ e ] with respect to a possible instability of the
lattice in the case of strong electron-phonon interac-
tion is unfounded.

This was followed by the question of the extent to
which the other results obtained on the basis of the
Frohlich model can be trusted, and whether the
Frbhlich-Bloch Hamiltonian can be rigorously obtained
from the complete Hamiltonian of this system of elec-
trons and ions. To this end it was necessary to com-
pare the Frohlich model with adiabatic perturbation
theory. But whereas the Frohlich model constitutes an
ordinary quantum-mechanical perturbation theory, the
adiabatic theory, as is well known, has an essentially
different structure, and consequently a direct compari-
son of the two theories is quite difficult. It was possible,
however, to construct on the basis of the adiabatic
theory an ordinary quantum-mechanical perturbation
theory with a zero-order Hamiltonian that depends, in
contrast to the adiabatic theory, simultaneously on the
electron and on the ion variables'91. Although this
theory is quite different in structure from the adiabatic

theory in its canonical form, the two theories are quite
equivalent in their results. The adiabatic approxima-
tion in the form of a quantum-mechanical perturbation
theory permits the use of a standard diagram technique,
but one characterized by the presence of vertices with
not only one but with two and more phonon ends. In
particular, this gives rise, besides the corrections to
the vertex with one phonon and, obtained in [ J ] , also to
additional corrections that have the same order of
smallness ~κΖ. The perturbation operator Si' has a
peculiar form and differs noticeably from the perturba-
tion operator &ΐ'γ in the Frohlich model. Therefore, al-
though the phonon frequency, to the extent that it coin-
cides with the adiabatic value even in the zeroth-order
approximation, is very little renormalized (if account
is taken of the anharmonicity, then the renormalization
is of the order of κ2 and not κ4), but the interaction
forces between the electrons turns out to be large, on
the order of ζ0.

In this article, which is devoted to a clarification of
the theory of metals, are presented the main results of
the papers devoted to this question; principal attention
is paid to the question of the limits of applicability of
the Frohlich model in the theory of metals.

It is shown in[ 9 ] that the Frohlich model with 36'
-Sg'-p cannot be obtained from the exact complete Ham-
iltonian of the system regardless of the choice of the
zero-order operator. The perturbation operator closest
to oM'-p can be obtained nevertheless for a definite form
of the potential energy Ui(AR) of the ion oscillations in
S£a, which differs significantly from the form of Ui in
the adiabatic theory (see formulas (27) and (28) (in the
Frohlich model, the form of Ui remains unknown).
This potential energy, however, corresponds to a zero-
point frequency equal to the ion plasma frequency, and
not to the acoustic frequency as postulated in the
Frohlich model. Therefore, although allowance for the
perturbation, which in this theory is not small (close to
Sf'-γ) yields for the renormalized (i.e., adiabatic) fre-
quency a formula of the same type as in the Frohlich
model, namely wad(q) = u)0(q)Vl - (ωΖ/ωξ), this leads
only to a transition from an optical to an acoustic dis-
persion law for arbitrary £0, inasmuch as ω0 is the
ion plasma frequency (this was already known earlier
in the so-called model of " b a r e " ions[ 1 0"1 3 ], and not to
a vanishing of the frequency. Thus, the conclusion that
the lattice may become unstable via such a mechanism
is unfounded in the Frohlich model.

Of course, this conclusion does not concern other
possible instability mechanisms, such as the so-called
Peierls doubling, martensitic transformations in com-
pounds of the A-15 type, Mott transition, etc.

In spite of the fact that the Frohlich model in its
literal form does not agree with the complete Hamilton-
ian of the system of electrons and ions, many important
results obtained within the framework of the Frohlich
model and determined directly by the perturbation SB'-p
still turn out to be correct. These include the equation
of the pairing self-energy part Σ2 and the supercon-
ducting gap, the value of the matrix element for the
transition of an electron with emission or absorption of
a phonon in the theory of the conductivity of metals, the
value of the energy-dependent part of the mass opera-
tor Σι, the renormalization of the electron velocity v0,
and the magnitude of the electron-electron forces due
to exchange of virtual phonons. All these quantities
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contain only the real phonon frequency a>(q) in place of
the zero-point frequency ojo(q)·

An essential role in the calculation of the correc-
tions to the energy of the electron and phonon is played
by the form of the electron-phonon matrix elements
and their dependence on the phonon momentum. This
article contains an analysis of this dependence and an
explanation of the disparities between the relative
forms of the matrix elements in different models.

It is also shown in the article that the upper limit
for the critical temperature Tc of the superconductor
is connected with the fact that there exists a value
SOmax, equal to Yz, since the formula for Tc contains

not ζ0 but ζ (or λ = ζ ( £ u/

2q2yt,w^2(q)>av for a real
f = l

dispersion law; see (31)), which can assume arbitrary
values. The upper limit for Tc is connected with the
renormalization of the pairing self-energy part Σ2 and
the gap. An investigation of the ordinary and pairing
self-energy parts Σι and Σ2 shows that they (and con-
sequently also the electron effective mass and the
critical temperature) have a noticeable singularity as
functions of the Fermi momentum pp ~ fin1/s, and con-
sequently of the electron density η at 2pp = q0 (q0 is
the maximum phonon momentum).

2. ADIABATIC EXPANSION FOR METALS

We consider first the usual adiabatic perturbation
theory^.

The Schrodinger equation for a system of electrons
with coordinates r^ and of ions with coordinates Rj
takes the symbolic form

e, (r, R)] Ψ (r, R) = ΕΨ (r, R);

(1)

i (r, R) = V (r, i) + V (R, R) + V (r, R)

is the total potential energy. We assume that V(R, R)
and V(r, R) take into account the potential of the ions
with the electrons of the filled shells. We neglect here
the reaction of the conduction electrons on the inner
electrons, which are rigidly bound to the nuclei within
the framework of the adiabatic theory. This approxima-
tion is sufficiently accurate because of the presence of
a forbidden band.

Since the ion kinetic energy se-x is smaller by a fac-
tor κ2 than the electron energy, it is neglected in the
zeroth approximation of the adiabatic theory, and the
following equation is considered[ 1 ]:

(SB. + SB.i) ifc» (r, R) = Em (R) ^ (r, R). (2)

The complete * function can be sought in the form
of an expansion in a complete orthogonal system of
functions ym (r,R)r*r('7R) = ΣΦ»-η <Η)ΦΜ (*, R); the symbol

ro . ^ —

η indicates that we a r e seeking the complete * function
pertaining to the n-th electronic s tate, in which the
t e r m with m = η i s the principal one.

Substituting this se r ie s for Φη in (1), multiplying by
φ%, and integrating with respect to r , we obtain

(SB 1+E°,) Φ. + Σ Csm<Dm = £ηΦ,,

W 3

——JJ-2 2 A««*~wj^' (3)

AL* = j Φί jjfc dr, B>m = j φ?ΔΗ- φ™ dt, dt = Π dt, ·

Assuming that Φηψη « Υ) Φηιψηι, we obtain by succes-
ms-'n

sive approximations an expression for ΦΒ, with arbi-
trary accuracy[ 1 > 9 ].

The equation for Φη = Φηι̂  takes the form

(SBι + £/2n + <a?pn) Φην = | £ » , - En (Ro)] Φ»ν,

J!?in=(Cn n+S Cn,Dln+ Σ CnJ)mDmn+...)
φ

Dsm=(En-Sii-E',)-'Csm,
(A)

j ^ ia οΐαι n<^ v ^ s * n e aggregate of the phonon
quantum numbers. The expression for -96'rm is given

It is expedient to expand ψη(τ, R) in (2) also in a
series [ 1 ] in powers of ΔΧχα near the equilibrium posi-
tions Roi:

» (r, R).(r, R) = H?n (r, Ro) + 2

Since .βφ,'̂ Χίο, ~ φ,/d, a [(AX,a)av]"2~ao, the second term
is of the order of ao/d ~ κ, the third of the order of /c2,
etc., d is the lattice constant, a0 ~ Vn/Mw£> is the
amplitude of the zero-point oscillations, and u>D is the
Debye frequency. Therefore the corresponding terms in
the expression for the Ψ function of the system must be
included in the correction η ^
the zero-order approximation.

Then Ψηι, = Φ η ι / (Η)ψ η (Γ, Ro), and the correction is

y
to the Φ function Ψη[, of

ψ;ν - Σ ®mv (R) Φ™ (r, R) + <J>U (R) φ ; (Γ, R)

+Φ;νψη (r, R0) + Φί,νψ; (r, R), Φ = Φ η ν -

Differentiating Eq. (2) with respect to Xja, multiplying
then by ψ|, and integrating with respect to r, we obtain
for s * m

(5)

and using (5), we obtain

ί c i (r, R) |.™ (E'm-

If we use the representation of the single-particle
Bloch electron φ functions ψ^ = eKk>rAifc(r) (ufc(r) is
a periodic function; the question of taking the Coulomb
interaction into account will be considered later on),
then

I VRMH (r, Ro) |nm = I VBj Σ V (r.-Ro,) | n m = ΐ4- = «i(k'-k· B» '̂Ukk.,

Utt. = - j φϊ (r,) VrV (τ,) φϊ- (r;) dts, t, = r - Roi. (8)

In the representation of single-particle functions,
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expression (7) takes the form (for R = Ro)

IR=RO

8>V(Ri--Rj)

dXla
We
B=Ro (9)

are thewhere E n ( R ) is an eigenvalue of (2) and
electron occupation numbers .

In the last t e r m of (9), the factor njj - n^n^' under
the summation sign can be replaced by n^ or, in the
usual symmetrical form, by (njj - nk')/2, since the
sum in the symmetrical t e r m n^m^' is obviously equal
to zero, for when k is replaced by k' the denominator
of the summed expression reverses sign, while the
numerator remains unchanged.

3. ORDINARY PERTURBATION THEORY
BASED ON THE ADIABATIC EXPANSION

The main practical shortcoming of the adiabatic
theory is the impossibility of separating the zeroth-
approximation Hamiltonian SBQ, which depends simul-
taneously on r and R (and on R not as on the parame-
ters), to obtain its eigenfunctions, which take the form
of the products φΐΏ(τ)Φι,(Η), and to separate the per-
turbation operator SS'(r, R) in explicit form. This
makes it impossible to develop an ordinary quantum-
mechanical perturbation theory and to employ the stand-
ard diagram technique.

It is easily seen that this ordinary perturbation
theory can be developed on the basis of the results of
the adiabatic approximation^1. We seek the complete
if function pertaining to the n-th electronic state. The
adiabatic zeroth-approximation function in this case (in
the harmonic approximation for phonons) is known to
us: Φ^ν = $n(r> Ro)*n^(R)· L e * u s find a Hamiltonian
that depends on r and R, one of the eigenfunctions of
which is equal to Φη ι /, and use it as the zeroth-approxi-
mation Hamiltonian.

Obviously,
r, R) = r) + SBot (B),

SB, (r, R) Ψ^μ (r, R) = E°mllW°mli (r, R),

As usual, the Fourier component of the Coulomb in-
teraction potential V c (k) with k = 0 can be set equal
to zero, since it is cancelled out by the potential of the
ions. Generally speaking, the remaining eigenfunctions
Φΐημ °f *-ne complete orthogonal system, with the excep-
tion of ΨΠ (,, have no rea l meaning, since the coordinates
in (10) a r e equal to Ron f ° r al l m (and n ° t to Rum),
while the frequencies w(q) a r e equal to u>n(q) (and not
to w r n (q)) ; but if two electronic functions differ from
each other in that the momenta of s electrons have
changed from k s to kg, then the values of Rom and
a>m(q) for these will differ by an amount on the order
of s/N, SO that for states close to the ground state the
dependence of R o n and of u>n(q) on η can be neglected,
and consequently al l the * ^ μ have a direct physical
meaning.

The perturbation operator SB' is obviously equal to

' = SB — SB0 = - U2n + SB,t (r, R) - SB,t (r,
( Π )

etc.

Using (7), we get

'Z\<Wi\hn(E>n-KJ-1.

Substituting (12) in (11), we obtain

here Μι = ο№2~|c^

(12)

(13)

| η η = 0, since

= 0.

1*2Inn and < 2̂n a r e operators with respect to the pho-
non degrees of freedom and are classical quantities
with respect to the electron variables. The perturbation
theory for SB' is obviously fully equivalent in its results
to the adiabatic perturbation theory, although the two
theories are different in structure. We note that the
considered perturbation theory with SB' in the form (11)
is perfectly applicable also in the case of overlapping
bands, for unlike in the theory of molecules (the Jahn-
Teller effect), the degeneracy for a metal, as is well
known, is lifted already within the framework of the
electronic problem alone (in the case of tight binding
for the electrons see[ 1 4 ' 1 5 ]), and En(R) is determined
by the electrons of all the overlapping bands. As is
well known, in the Frbhlich model the perturbation
operator is equal to S£'F= Σ (dV (r, R)/dXtta) AXta, i.e., to

ία

the operator SB,, without the t e r m 2 (dV (R, R)/dXola) AXia,
, ioc

which, however, is equal to zero in the presence of a
symmetry center. Thus, (11) corresponds to the cor-
rected Frohlich-Bloch model, since now SB' is equal not
simply to SBi but to SB ι + Mt — S£2n + SB3 + . • ., and the
frequencies w(q) in (10) are equal to the frequencies in
the Debye approximation, since the potential energy of
the oscillations Ui(AR) is equal to

1 -π

2 2 J
iaifi

( = R ΑΧ,αΑΧβ

where

in accordance with the zeroth approximation of the adia-
batic theory. Let us estimate the order of magnitude of
the terms contained in SB':SB1~SBBl^\SB,\^ ~ha>D, like
SBi;^<HBi~Ki)Jx·, and further SB.~ xSB,.,. The corrections
to the energy Ε^μ are calculated from the formulas of
ordinary perturbation theory. It is easily seen that al-
though SB, "Λωη/χ and sT2~3£2n ~haD, the first correc-
tion to the energy Enj/l is of the order of K2KO>D, just
as in the adiabatic expansion. Indeed, we first take into
account the correction from the terms SBUSBZ, and $?2η·
It is equal to the diagonal matrix element of S£z and

Ĵ5?2n a n d the second approximation of Hi, since

From the definition of SBZ it follows that l^jkv; »v=0.
Therefore

E'ml =Σ\#Β, Bv, mn (BJ,- ^W"1- Σ II SB, %m |w № -KmY1

™'μ ™ ί14)
^ ^ Ι ί 3 ί / J ? " *2i£' ^ — 1 i2ff I ^ II CW I* I / ΚΌ P" \~i
= |(2>ϊ·ι(£ην—QflSo; ·2«ι|ην;ην — Zi II <2fl5i |nm |w \&οη—^Om) -

τη

Since the matrix elements of S6X are not diagonal in ν,
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the energy denominators of the first term in (14) will
t i i ddit E also

gy ()
contain, in addition to the differences Egn - E o m ,
the terms ±fituq. Therefore E n t > 1 will be of the order
of KuiDlJS^nli'i'/eF ~ Λ ω ϋ (ep = p|-/2m is the
Fermi energy). Indeed, substituting in (14) the formula
(8) and the known expressions for ARi in terms of the
phonon amplitudes bq\ l l 4 > i e ]

(eq\ is the unit vector of the phonon polarization; Ν is
the number of ions per unit volume), we obtain the first
term in formula (14):

^λ ( e k — e k + , + Λω,λ)"'] nk (1 — n k + q )

and the second term

(16)

The summation over Roi yields 6fc'; k+q+ g; g is the
integer reciprocal-lattice vector multiplied by 2n; we
shall assume g = 0.

It should be noted that (15) takes into account the
electron-phonon interaction, and therefore the n^ in
(16) can differ from (15) by an amount ~κ2, which we
neglect here (see Appendix II).

In (15) and (16) we have introduced the Bloch matrix
element

This yields

E'mi

since

— n k + q ) ( e k — e k + q ) - '

(18)

Fa0/d
F, a toqJ, (ek-ek+q)-'

Thus, although each term in E n i / 1 is of the order of
fia>D, their mutual cancellation causes En i /^ to be of
the order of K2tiu>D, as in the adiabatic perturbation
theory (see above). This cancellation of S£z and |<%|nn>
and also of &SX and <$?2n> plays an essential role not
only in the first-order perturbation-theory approxima-
tion, but also in the higher ones. If the energy denomi-
nators do not contain the electron energies but only the
phonon energy, i.e., are of the order of HU>D and not ep,
then, inasmuch as <βχ ~ RWD/KI and "Sz ~ ^ 2 n ~ R^D»
the corrections in the next higher approximations for
Stz and 3ίχ may turn out to be of the order of Κωβ. The en-
ergy denominators can be of the order of fiu>D only in
the case when there exist nonzero matrix elements $ez

and sex which are diagonal in the electron quantum
numbers η and are not diagonal in υ. From the defini-
tion of Sez it is seen that | « 2 | n n = 0; l^ilnn is also
equal to zero. However, the second-approximation op-
erator of <9ex, equal to ^ {E% — Stο)'1SSΊ), which is of the
order of Κωϋ (since En i, -SS0~ CF), can have nonzero '
matrix elements that are diagonal in η and not diagonal
in ν. But such a matrix element enters in any approxi-
mation, as can be readily seen, only in the form of the
difference J<fi?i..i£nv — ̂ ο)"1^!™ —<$?2n, which we have
seen to be of the order of κ2Κωϋ· Consequently, in the

higher approximations the energy denominators for d*2

and 36-L will be of the order of eF- As to the higher ap-
proximations of 3ez,dSi, etc., they cannot yield correc-
tions of the order of Κωβ, since S£3 ~ •x.^T>,'sei~it1Hu>D

etc. Thus, the subtraction of U2n from <% +Sez

+ c% + . . . in the expression for S£y plays a very im-
portant role.

We have calculated Enj,i- The second term E ^ j .

~ K2fiu)D consists of five terms:

1) First approximation of <&?4: |®5?4|ηι,.ηι/; 2) second
approximation of S£2; 3) first approximation in S£x and
first mSe3; 4) first approximation in S£1 (with subtrac-
tion of <8?2n; see above) and first approximation in <#?2;
5) fourth approximation in SSi (aleo with the corre-
sponding subtraction of d#2n (see[ 8 ]). The next correc-
tions of Enyi are of the order of K4fiu>D and higher.
We shall see that to calculate the energy Eny with ac-
curacy κ2!ϊωο w e must take into account in<8?' [Eq.
(13)] all the J5?s up to set.

Variation of En^l with respect to Nq\ determines
the nonadiabatic correction to the phonon frequency
u>q\ - Awqx. Κ is easily seen that ΔΕ^1 ^ yields

Jκ2 even though yields for^ q
a value of order κ4. It is also easily seen that the cor-
rection to the electron velocity ν on the Fermi surface
8Δερ/θρ|ρ=ρρ due to the first term of (15) in E^ y l

turns out to be of the order of fv0 both in calculations
based on the Frbhlich model[!>1 and in the ordinary
adiabatic theory[ e ]; here pp is the Fermi momentum
and ζ is the so-called Frbhlich parameter, defined by
the formula

VmpT

"V
(19)

^kqX = ^kqX with allowance for screening (see (23));
for an acoustic dispersion law we have ζι = ξ = const,
where the subscript l corresponds to the longitudinal
branch.

So large a correction is due to the fact that the en-
ergy denominators in (15) contain efc - efe+q ± fioiqx and
the region | ek+q - | ekl < Κωβ makes an appreciable
contribution to v.

The interaction forces between the electrons via the
phonons can be obtained in the usual manner within the
framework of perturbation theory. The matrix element
of the interaction of two electrons with initial momenta
Pi and p2 and with final momenta ρ3 and p4, due to ex-
change of virtual phonons (if the number of phonons is
initially equal to zero), is equal to

ePl~eP3 "I*

(20)

+ V Γ I ^i Inv; ™μ I &>, |m(t; | X | J»i | ιλ. „ + 2 ±p l . l l

"it

The terms—j^lnn and—»i?2n i n &j!, which are numbers
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in terms of the electron variables, make no contribu-
tion whatever to Mp η 2 · ρ p . In the case of Μ there is

no cancellation of the different terms, similar to that
which existed for the correction to the energy of the
system. The second term, which is connected with <U2,
is smaller by a factor κ2 than Mi and can be neglected.
On the other hand, the first term Mi coincides with the
matrix element obtained in the usual Frohlich model.
If the energy transfer is | e P l - e p , | < KO>D, then Mx is
very large, on the order of eF, i.e., the interaction of
the electrons turns out to be an essentially nonadia-
batic effect. We consider below the electron interaction
exactly, and not by perturbation theory (see expressions
(22) and (23)).

In the matrix elements | &eB | m n , and in particular in
Mkq it is necessary to take into account the Coulomb
interaction between the electrons in the single-particle
representation. Since the Coulomb interaction is not
small, it cannot be accounted for by perturbation
theory. The easiest way is to use a diagram technique.
As shown in Appendix I (formulas (A.I)—(A.3)), it is
necessary to put in this case in formulas (8), (9), and

I Mk. = —i
g-0 f ) . (21)

where MJjqx is the matrix element without allowance for
screening, and £(q, ω) = 1 - V c o(q) p (q , ω) is the
dielectric constant, where Vco = 0

4ff€-l°?'> p(^> ω ) i s

the so-called polarization loop, Ζ is the ion charge, and
the crystal volume V is set equal to unity. In (21) it is
possible to replace e(q, wqx) approximately by e(q, 0)
= 1 + (/cf)/q2). Thus, one factor in the product M*
M^qxMkqx should be taken with allowance for screening,
and the other without allowance for screening. The ex-
pression for the matrix element \3S2 |mn i s given in
Appendix I (A.8).

We have calculated the correction that must be in-
troduced into the system energy to account for the
electron-phonon interaction. The Coulomb repulsion be-
tween the electrons was considered only as the cause of
the screening of the electron-phonon interaction. But
the Coulomb repulsion makes, of course, also a direct
contribution to the system energy. To calculate this
contribution it is easiest to find the total effective in-
teraction between the electrons, the so-called four-pole
term, Veff · As shown in Appendix I (formulas (A.4)—
(A.6)), it is equal to the sum of the interaction V^p via
the phonons, described by the expression for Mj in (20),
the screened Coulomb repulsion Vc, and the mixed
term Vepc:

•]. ( 2 2 )

(23)

Since

t=v<p+vc+vepc, ν;ρ=Σ

Vc = Vc0 (q)/e (q, ω), V,pc = VeIP (q, ω) Vc,

F * 4_T/ Vepnr ' epc —' * ep

it follows that

Οχ is the phonon Green's function.
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Thus, owing to the presence of a mixed term, both the
total electron-phonon interaction obtained from the four-
pole term after subtracting the screened Coulomb re-
pulsion and the correction to the electron energy contain
a factor | M n | 2 /e 2 , which behaves like q2/o>q as q — 0,
rather than | M n | 3 /e , as in the correction Π = | M n | 2 P / e
to the phonon energy (see (A.2)).

On the basis of the ordinary perturbation theory de-
veloped above, which is based on an adiabatic expansion,
we can construct a standard diagram technique; it is
described in Appendix II.

Although in the adiabatic theory, as we have seen, the
corrections to the system energy and to the vertices
(see Appendix II) are expansions in powers of κ2, never-
theless, owing to the nonadiabatic behavior of the elec-
trons in a thin layer of thickness on the order of fiu>D
near the Fermi surface, the correction to the total <ir
function of the system may not turn out to be small.
This is the cause of such nonadiabatic effects as the
large value of the constant for the interaction of the
electrons via phonons and the renormalization of the
electron velocity on the Fermi surface, on the order of

We have seen that the perturbation operator se' in our
perturbation theory [Eqs. (11) and (13)] has a compli-
cated structure and constitutes a series in powers of κ,
with terms describing the electron-phonon interaction
and the pure phonon interaction. The peculiarity of the
operator 38' is that its leading term S6X is of the order
of ϋω£)/«, and only the next term is of the order of
Κω£), whereas the energy of the lattice vibrations in the
zero-order Hamiltonian is of the order of fiwD. Although
the largest correction to the system energy turns out to
be, nevertheless, of the order κ2Κωϋ, while the next
terms are of order κ4Κω£>, etc., i.e., they do not con-
tain nonadiabatic terms, nevertheless the more subtle
characteristics of a metal, which are determined
directly by the operator SSl inJK', namely the correc-
tion φ ' to the Φ function, the matrix element M^qx for
the transition of an electron with emission of a phonon
(~Κωϋ/«), the electron-electron interaction via virtual
phonons (~€F at | ep3 - e P l | < fio>£)), the self-energy
part Σι (~KO>D)J and the renormalization of the electron
velocity on the Fermi surface (~£), all turn out to be
large (see Appendix II). The values of these nonadia-
batic quantities increase additionally if they are not de-
termined by integrals over the entire Fermi sphere, but
the principal contribution to them is made by a layer of
nonadiabatic electrons of thickness RWD near the
Fermi surface.

4. THE FROHLICH MODEL AND LATTICE
STABILITY

As is well known, from calculations based on the
Frohlich model it follows that at small q the renormal-
ized frequency ω/ (q) for longitudinal phonons is given
by o>/(q) = w/0(q)Vl - 2ζο, where ζ0 is defined by
formula (19) with a>(q) replaced by u>o(q), where o)0(q)
is the nonrenormalized frequency; it is assumed here
that ωό = uoq as q — 0, i.e., that a)0(q) is described
by an acoustic dispersion law. The lattice should thus
become unstable at ζ0 >; y2. We have seen above, how-
ever, that within the framework of the adiabatic theory
the phonon frequency is renormalized as a result of the
nonadiabatic and anharmonic terms only by a small
amount, on the order of κ2.
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We can therefore conclude that the deduced lattice
instability at ζ0 £ l/z is illusory[ 8 ]. However, this con-
clusion must not be regarded as fully warranted before-
hand, since the nonrenormalizing adiabatic frequency
itself can depend significantly on the parameter ζ0 and
can vanish at sufficiently large go-

Indeed, it follows from (7) that the adiabatic force
matrix (32En/aXoia3XOjp) is equal to the sum of the
positive-definite matrix (^^«/(ΛΧϊαΔΧίβ) and the
negative-definite matrix <^2η/(ΔΧίαΔΧ}β) (the de-
nominators Egn - E o m are negative, since E n is the
energy of the ground state). Using (9) and the known
formula for the frequency1·161

a p ^ R o a ' ' (24)

Φ»Ρ (Km/) = dx^'koie. '

we obtain for the longitudinal frequency the expression

(25)

i.e., an expression of the same type as in the Frbhlich
model with 2ζ0 = ω2/ω|(). In this case

2 = Σ ^ Ι - e t ) - ' > 0

and is proportional to the square of the modulus of the
matrix element of the electron-phonon interaction.
However, u>?g is determined in accordance with (9) by
the force matrix

.-S|
! V ( r - Rj)

i.e., at Roij * 0 this matrix is determined only by the
Coulomb repulsion of the ions alone. Since V (Κυ)Β(̂ =ο
= Zze2/Rij, we obtain from (24) for ω/o at small q, as
in the model of "bare" ionst1 0"1 3'1 7"2 0 1,

(26)

(the term a 2 q 2 is connected with the behavior of
V(Rij) at small Rij). Consequently, ω/ο is the plasma
ion frequency and is thus described not by the acoustic
dispersion law, as in the Frbhlich model, but by the
optical dispersion law as q — 0. Whether this can lead
to a vanishing of uy(q) at large values of £0 and to
instability of the lattice can be easily resolved by cal-
culating u>j(q) from formula (25). We perform this
calculation in a somewhat different manner, which
makes it possible simultaneously to ascertain whether
the Frbhlich model is justified.

A comparison of the Frbhlich model with the adia-
batic approximation in its canonical form is difficult,
but the task becomes easier if we use in (10)—(13) adia-
batic theory in the form of ordinary quantum-mechani-
cal perturbation theory.

We have seen that according to (13) the perturbation
operator SB' for the adiabatic theory differs significantly
from SB' =&Sl in the Frbhlich model. Can we neverthe-
less find a zero-order Hamiltonian Se0, equal to the
sum of the Hamiltonians of the noninteracting electron
and phonon fields, such that the perturbation operator
Si' (which isjihe difference between the exact Hamilton-
ian (1) and $ea) is equal to &etf It is seen from (1), (10),
and (13) that this is impossible, i.e., that the Frbhlich
model in its literal form cannot be obtained from the
exact Hamiltonian (1). It is possible, however, to choose
$e0 in such a way that the corrections to the system en-

ergy and the energy of the excitations, which are of the
order of KWD, are determined only by the term SBlt

just as in the Frohlich model; the corrections of order
«2RWD will be determined also by others terms in SB1.
It is easy to see that in this case 3i0 should take the

Ro
01 = SB t (27)

which corresponds to the choice of an entirely different
force matrix in SBQi than in (10). The perturbation op-
erator is then

;2l$e., (28)

and consequently, the correction to the energy is
£nvi = ΣI S£i |iv; »μ (EU - &μΓ' ~ R°w i .e., actually the

principal correction ~fico£> is determined by the term
SB ι mSi'; the remaining terms in (28) yield corrections
~K2BCOD and higher.

Since we are starting from the exact Hamiltonian SB
(1), in contrast to the Frbhlich model, the force matrix
in<$?0 is known and, as shown above, the nonrenormal-
ized longitudinal frequency ω/ο is determined by (26).
Since Si', according to (28), does not contain the small
parameter κ, just as in the case (13), we cannot use
perturbation theory; but if we are interested in correc-
tions of order RWD only to the energy of the excitations
and the energy of the system, then we can sum all the
essential diagrams, retaining only the term Sii in SB'.
The electronic self-energy part Σ! and the phonon
polarization operator Π (see Appendix II) will then be
determined by Figs. 6 and 7, in which only the second
diagrams are retained, while Σ2 will be determined by
Fig. 8 with only the first diagram, as in the model of
"bare" ions (and in the Frbhlich model). For Π/, ac-
cording to (21) and (A.2), we then obtain[ 2 1 > 2 2 ]

At small q this corresponds to the so-called
"jellium" model, namely, Mn is determined by the
expression (A.3). In this case | M n | 2 /e ^Q l/a>0(q).
Therefore, determining u>(q) from the condition D"1

= Di1 - Π = 0, we obtain[10]

ωί(ϊ)=- \ , , ,

We can obtain a more accurate expression for u)/(q) by
using for the calculation of Mn a more exact expres-
sion for V(Rij) than in (A.3), without confining our-
selves to the high-density approximation in the calcula-
tion of P, and by calculating Mn, Vco, and Ρ with the
aid of Bloch functions rather than plane waves. The
frequency determined by an expression of the type (23)
then coincides, accurate to terms of order K2KU>D, with
the adiabatic frequency. As is well known, Eq. (29)
leads to the existence of Kohn singularities for u>(q) at
q =

We see that the model that starts out from an exact
Hamiltonian of the system of electrons and ions and is
closest to the usual Frbhlich model coincides with the
model of " b a r e " ions, which was considered earlier
independently of the Frbhlich model. It is easily seen
that the assumption on which the Frbhlich model is
based, namely an acoustic dispersion law for the non-
renormalized longitudinal frequencies, and hence the
assumption concerning the form of the perturbation
operator S£' =SBU is in fact based on the assumption
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that it is possible to choose independently the zero-
order Hamiltonian and the perturbation operator. It is
clear, however, that when the complete Hamiltonian is
specified it is impossible to choose S80 and <Sf inde-
pendently. Of course, the choice of the zero-order
Hamiltonian in the form (27) is not rational, since the
perturbation operator, just as in the Frohlich model,
does not contain the small parameter κ, and conse-
quently the correction to a>/o(q) and to the energy Env

turns out to be of the same order as the lattice-vibra-
tion energy in the zero-order Hamiltonians, and the
frequencies a>o(q) do not correspond even to the equili-
brium positions of the ions, just as in the adiabatic
theory. Whereas in the adiabatic theory the phonons are
"dressed" already in^the zero-order approximation,
they are " b a r e " for o5?0 in the form (27).

Thus, the subtraction of Z>2 from ω|ο cannot lead,
just as in the Frohlich model, to zero or imaginary val-
ues of o>/(q), since c^o(q) is described not by an acoustic
but by an optical dispersion law. It is typical, that (29)
contains (e - l)/(2e) = KQ/[2(KQ + q2)], rather than £0.
The reason is that the second diagram of Fig. 7 contains
| M n | 7 e and not | M s c | 2 = | M n | 2 / e 2 as the second
diagram of Fig. 6 (see the Appendix); therefore the
expressions for Zx and Σ2 contain ζ or λ
= £<pufq2ri//w^(q)>av (see (31), (32), and Appendix II).

Since allowance for the electron-phonon interaction
leads at any value of ζ0 or £ only to a transition from
an optical dispersion law to an acoustic dispersion law,
and not to the vanishing of ω/(ς), the conclusion of the
possible instability of the lattice in the considered
three-dimensional case, at large values of ζ0, turns out
to be unwarranted in final analysis. This result, how-
ever, is not universal. For two-dimensional or one-
dimensional systems, the situation changes greatly. In
the one-dimensional case the ion plasma frequency is
woq.=.oUo(! an<^ e(i> 0) is approximately constant. It
can be shown that at low temperatures[ 2 4 a i (see also1 2*1)
we have 2P1 Mn12/eu>0 ~ -I \n(ey/T). We therefore
get from (25) ω = o)0Vl - Ϊ ln(ep/T), i.e., at suffic-
iently low temperatures the lattice can become unstable
at any value of the parameter £.

As is well known, there are other perfectly realistic
mechanisms of lattice instability, such as the Mott
transition of a dielectric into a metal, the so-called
Peierls doubling, martensitic transformation in com-
pounds of the A-15 type, which is close in its nature,
according to the Labbe-Friedel and the Garko
models[ 2 3 > i i 4 a ] to the Peierls transition, etc. The transi-
tions of the latter type are connected with the fact that
when the lattice symmetry changes electron energy is
gained. They correspond to the quasi-one-dimensional
picture (see above), and also lead to singularities of
the phonon polarization operator. However, the insta-
bilities in structural transitions of this type are outside
the scope of the present article (see[ 3 S ]).

It should be noted that even if we assume, in contra-
diction to the Hamiltonian (1), that ω/θ = u/oq as
q —• 0, then we obtain for the renormalized frequency
the expression a>;(q) = ai/0(q)Vl - (2£0κ*ί/qz), and
not ct)/(q) = w/o(q)Vl - 2ζ0, since the second diagram
of Fig. 7 contains M n *M s c rather than | M s c | 2 as as-
sumed in the Frbhlich-model calculations. We see that
the use of the Frohlich model with a nonrenormalized
acoustic longitudinal frequency and with an interaction

of the type | M s c | 2 leads to incorrect results in the
calculation of the phonon spectrum.

5. ELECTRON-PHONON INTERACTION IN
NORMAL AND SUPERCONDUCTING METALS

We now discuss some questions connected with
superconductivity of metals. As shown in Appendix II
(see Fig. 8), the equation for the pairing self-energy
part 2 2 , which determines the superconducting gap, is
of the same form as in the Frohlich model[ 2 s l

2» (P. ω η) = - 2η)3 ^ 1
λ . <%•

Ρ, k-pl

Γϊ (Ρ- k - P -

(S

- k . ω,,-ωΒ.)

(30)

The zero-order Green's function is Go = (ΐω η - ξ)"1; ξ
is the energy of the free particle reckoned from the
Fermi energy; Go- = G0(-Wn), and Σι- = Σ ι ( - ω η ) . In
formula (30), the expressions for the matrix element
M s c and for the D function contain everywhere the
real phonon frequency, which coincides, as shown above,
with the adiabatic frequency. It is easily seen, however,
that were we not to use the adiabatic theory, but were
we to start from the Hamiltonian SS0 (27), when M s c

contains o)0(q) rather than a>(q), then the zero-order
frequency wo(q) would also drop out from Eq. (30) for
Σ 2 and from the corresponding equation for Sj (see
(32)), and therefore Σι and Σ2 will contain in this case
the parameter ζ and not ζ0. The reason is that in this
model the D function takes the form Djr = 2a>o(q)/[u)2

- o>2(q) +ϊδ], and consequently | M S C ( O > O ) | 2 D F
= |Ms c(w)rD

We change from integration with respect to i» and
| k | to integration with respect to q and ξ. We also
take into account the dependence of M s c on u;(q) for a
real dispersion law in accordance with[71, and then we
obtain from (21) pFm\Mf\V(2n2)=~ ζνλ(?)«ϊ?!/2ω,ν;
Ύλ = (β,λ, q/?)a φ (g), φ is a slowly varying function of q,
φ(0) = 1 (see[ 2 e ]), and ζ is the Frohlich parameter de-
fined by Eq. (19). We then obtain from (30) an equa-

t " 2 6 1 for

Δ Κ ) =

, 2pF).

The superconducting gap Δ(Τ), as is well known, is
determined from the equation Δ(ω)| ω =Δ(Τ) = Δ (Τ),
where Δ( ω) is the analytic continuation of Δ(ω η ) to
real continuous frequencies. It is seen from (31) that
the dimensionless interaction constant is

=Α(Τ) '

where the averaging is over the phonon spectrum, and
the value of ί(ω)/ω|ω=Δ(Τ) is close to ί(ω)/ω| ω =0,
since Δ(Τ) « ωϋ·

In the case of an acoustic dispersion law for co;(q),
for a normal metal at Τ = 0, f( ω) takes the form/*1
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at ω « ωβ Re f = £a>k?/4p|. = bω, at ω » ωη Re f
£ a / k i / 8 |

(32)

q0 is the maximum phonon momentum, and u is the
speed of sound. Κ we use the real dispersion law, then
the parameter ζ is replaced by the quantity
λ = £< I > f q8yi//wS(q)>av.

[2e·21'1 In the case of a super-
v

conductor, the correction for ί(ω) is of the order of
7£

Thus, the dimensionless effective interaction con-
stant turns out to be Xeff = λ/( 1 + λ). This change is a
consequence of the renormalization of Σ1 and Σ2.

We see that inasmuch as the expression for | Ms c 12D
contains only the real phonon frequency, the parameter
go does not enter in the equation for the gap, and conse-
quently in the equation for the critical temperature Tc.
Equation (31) contains ξ for an acoustic dispersion law
and λ for a real dispersion law. Therefore the upper
limit of Tc can obviously not be connected with the
maximum value of ζ0, which is equal to y2, as assumed
before. Besides the fact that this maximum value does
not exist, even in the case of weak coupling (ζ « 1) and
in the case of an acoustic dispersion law for the phonon
(real) frequency; Tc is determined by the formula Tc

= 1.14Κωθβχρ(-£"1) rather than Tc = 1.14fia>Dexp
χ (-£</)· For a real dispersion law, £ is replaced by
the quantity λ = ζ( S[ufq2yl//a)^(q)])av (see above). In

the case of strong coupling, on the other hand, as we
have seen from the renormalization of Σ a and Σ1( the
interaction parameter is not X but Xeff = λ/( 1 + λ),
which tends to unity even as λ — ». According to[ 7 ] it
is this constant which determines the critical tempera-
ture (see also[2Bi). The presence of a unity upper limit
for Xeff is the main cause of the upper limit of T c . In
(30) and (31) no account is taken of the Coulomb-repul-
sion effect, which decreases Tc, but allowance for this
effect entails no difficulty (seem).

Let us note one singularity in the behavior of the
electron velocity on the Fermi surface and of the
critical temperature as functions of the electron
density n. According to (32), Re Σχ and 1m Σι have a
nonanalytic behavior at the point q0 = 2pp, pp ~ hsV7i.
This singularity is of the Kohn type, but not for the
polarization operator Π (and consequently for w(q)),
and rather for the electron mass operator Σ lt and
furthermore as a function of the parameter pF rather
than of the variable ω (Π, as is well known, has a
singularity in the variable q). A similar dependence
for Σι is obtained also in the Einstein model with one
frequency[2β1 in the case of a real phonon spectrum,
owing to the upper limit ki in (32). Actually, there is
also Coulomb repulsion, and therefore b = bph + be.
The nonanalytic dependence of b, and consequently also
of the velocity ν = vo/(l + b) on the Fermi surface, and
of the effective mass m* as a function of pp ~ fin1 ,
i.e., the discontinuity of the derivatives 8b/en = am'/an,
can be experimentally observed when the electron
density η is varied (for example, by introducing impuri-
ties) in the tunnel experiments of Thomas and Rowell,
and in measurements of the specific heat and of the
cyclotron mass. A similar singularity of the Kohn type
occurs also for Σ2 in accordance with (31), owing to

the upper limit kx of the integral in (31), i.e., 2 2 also
has a nonanalytic dependence on η at the point q0 = 2pF.
Int 2 e ] we obtained a maximum of the critical tempera-
ture Tc as a function of η in the Einstein model; this
maximum was the consequence of this singularity (see
also[2t>1). A similar nonanalytic dependence of Σ2 and
Tc should also be observed in the case of a real phonon
spectrum. Allowance for the anisotropy and for Um-
klapp processes smooths this singularity out somewhat
for Σι and Σ2. It is possible that the experimentally
observed[3O] nonmonotonic dependence of Tc on the
pressure following introduction of impurities is con-
nected not only with changes in the topology of the
Fermi surface, but also with this Kohn-type singularity.

In conclusion, let us dwell on the conductivity of
normal metals. On the basis of the canonical adiabatic
perturbation theory, the matrix element A3^ of the
transition of an electron from a state k to a state k'
with absorption or emission of a phonon is given accord-
ing to[ 2 ] (see also[8]) by

l +1/2 Τ 1/2) δ*.,
(33)

where UB is the matrix element in the Bloch model.
Since ek' - ek = fi(*>qx, it follows that Aa d = UB. Thus,
the conductivity theory that employs the nonrigorous
Bloch model turns out to be perfectly correct. The
same result is obtained, of course, by using ordinary
perturbation theory based on the adiabatic expansion in
accordance with (10)—(13). The element MkqX in (33) is
determined by formulas (8) and (17), which correspond
to the so-called rigid-ion model. As shown in Appendix
II (A.7), for a real process this matrix element MkqX
is connected with the matrix element Mkq\ without al-
lowance for screening by the relation^11'31'

, ω,) 0),

, . 0 '»

The proportionality of MkqX to the quantity q//u>q' as
q — 0, which is taken into account from the very begin-
ning in the Bloch conductivity theory, is a direct conse-
quence of the screening, i.e., of the Coulomb interac-
tion of the electrons. Thus, the Coulomb repulsion be-
tween the electrons was in fact always taken into ac-
count in Bloch's theory, although it is customarily as-
sumed that the interaction between the electrons is not
taken into account in the usual formulation of conduc-
tivity theory.

6. APPLICATION TO MOLECULAR THEORY

The ordinary perturbation theory based on the adia-
batic theory, developed in Chap. 5, and the diagram
technique based on it (see Appendix II), can be fully ap-
plied to the theory of molecules, if there is no degener-
acy or quasidegeneracy of the electronic states (the
Jahn-Teller and Renner effects); in the latter case it is
necessary to use the ordinary form of the adiabatic
theory. In the case of molecules there are, however,
certain differences: 1) $e\, as is well known, can be
represented in the form of the sum №\ =SiyHa + <̂ rot>
where <8?vib * s the kinetic energy of the vibrations and
®#rot(^, R) is the rotational energy (in a moving co-
ordinate system; Ω is the aggregate of the Euler
angles); 2) the total interaction energy See\ is assumed
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to include the relativistic terms; 3) the role of the
parameters eF and ωο is assumed by €e/ and ω0

(Βωοη is the value of the vibrational quantum). The ro-
tation energy can be expressed in the form of the sum
<$?rot = Sfiot №, Ron) +~ Se'vot (Ω, AR) (Rgn now depends es-
sentially on the electronic quantum number n). Obvi-
ously, <#?rot m u s t be included in the zero-order Hamil-
tonian S£o, and <$?ί·οί must be included va.36'.
Therefore, in the case of molecules Eqs. (10), (11), and
(13) are replaced by

Gift ^f/7 ι JztD /•• W \ 1 JzlP Τ Τ Τ Γ ζίί90
Q/Ό η ~~~ QsO G ι~ Gsu ei (* ι ^^Οπ/ —Γ" 0^0 v ib ~ι *-' 2τι ~Ύ~ Q^u r o t τ

(34)

i ^ - ί±Χία ~ κ3ήω0.

Σ
«=.3

In view of this, the zero-order * function is a product
of the electronic, vibrational, and rotational functions:
*ni/j= *n( r > Run) *ηι<(Δ^) *η^](Ω). We now can use,
in Chap. 3, the formalism of ordinary perturbation
theory, which offers substantial advantages over the
adiabatic theory in the previous form, particularly
when it comes to calculating the probability of optical
transitions with arbitrary accuracy, and transtions with
emission of vibrational and rotational quanta. Perturba-
tion theory in this case, just as in Chap. 3, is construc-
ted for the n-th electronic state, and it is assumed that
it corresponds to a bound state of the molecule. Since
the lower section of the spectrum is discrete, in the
case of molecules we do not encounter the difficulties
connected in the case of a metal with the layer of non-
adiabatic electrons. In particular, the correction to the
* function of the system, namely ψ;,ν/ = 2 |<$?'LV, nVi-

n'v'j'

(Ε°ηνΙ — Ε°η.ν.ί,)-1ψϋ

η.ν.ί. will be of the order of κψο, for even
though Se' ~S(i ~ ωο/κ, we still have (En,,j - E^yjOav

The perturbation theory considered above, with ap-
proriate changes, can be used also in nuclear theory—
in the so-called unified model of the nucleus for the
description of the interaction of nucleonic (fast) degrees
of freedom with collective vibrational and rotational
(slow) degrees of freedom.

In conclusion, I am grateful to E. G. Brovman and
V. Z. Kresin for an interesting discussion.

APPENDICES

I. ALLOWANCE FOR SCREENING IN ELECTRON-
PHONON MATRIX ELEMENTS

On going over to the \S£i|nm matrix elements, and
particularly to the single-particle representation in
MkqX, we should take exact account of the Coulomb
interaction. To clear up this matter, let us find the
correction that must be added to ωςχ to account for

Replacing k by —k — q in the second term, we obtain

On the other hand, if we use diagram technique,
oiqx is determined as the pole of the phonon Green's
function D\(u>, q) (which takes into account only the
diagram corresponding to Εή,,ι): Οχ1 = D X Q - Πχ = 0,

(A.I)

FIG. 1.

is the zero-order DE>X0 = 2o>qxo/(o>2 -
function, i.e., at St' =0 and under the assumption that

Se' =SSl; Πχ (q, ω) is the phonon polarization operator.
From this we get within the framework of perturbation
theory Awqx = H\(q, wqx). If we introduce the matrix
element MP . (the vertex Γ η ) , in which screening con-
nected with the Coulomb interaction of the electrons is
not taken into account, then [ 2 1 ' 2 2 ] (Fig. 1)

(A.2)

where

' " k g *

w ^r

e(q, <a) = l-V c 0 (q)P(q, ω),

„ w * e(q.

and the polarization loop is given in the random-phase
approximation (high density; G is the electron Green's
function);

Comparing (A.I) and (A.2), we see that
(8), (9), and (15)-(18) should be equated to

l2/ * '/3

in

I M kqX l *>· A t s m a 1 1 t h e v a l u e ο ί

will obviously be the same as for free electrons, i.e.,
at ujj(r) * 1 TO have

Κ

e (q, ω,) « ε (q, 0)

Therefore

ε (ϊ. ω,,) , - (e,( X q)> (A.3)

«ρ is the Debye radius. The same result is obtained
when Δερ is calculated. It is easy to see that at Nqx
= 0 we can regard Εηί/χ (expressed in symmetrical
form) as a correction that must be introduced into the
system energy because of the interaction between the
electrons, in the form

, - * * . q)·

Within the framework of the diagram technique, the
four-pole Vep with allowance for screening is described
by the expression (corresponding to the usual grouping
of the diagrams on one side, as in (A.2))

Thus, we find again | M k q X | 2 = | Mg q X |7e(q, wq X). The
electron mass operator in symbolic notation is equal to
Sep = (VepG) (G is the electron Green's function). Ob-
viously, it is necessary to put | M | 2 = | Mn|2/e in both

n d l^z Inn·

When calculating Δ€ρ and Σι, however, it is cus-
tomary to consider immediately not only the contribu-
tion of the electron-phonon interaction (with allowance
for the Coulomb screening), but also the direct contri-
bution of the Coulomb repulsion.

Then the complete four-pole V = Veff is given by
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( A i 4 )

where Vc = Vco/(1 - PVco) and the mixed term is

From (A .4) we get

(A.5)

Expression (A.5) coincides with the known expression
for V, which is obtained by summing the geometric
progression t11»21'22!;

(A.6)

•Dl1 Π, we get (A.6) from (A.5)
Ρ I M.8?. 12 ~ n2/,.,_. The

Recognizing that D 1

and (A.2). At small q we have | Mg^ | a ~ qVwqj The

mass operator is Σχ = (VG) = Σο + Σ β ρ , Σο = (VCG),

2ep = ( [ Σ ! Mkqxl2°x]G). Usually Σο is regarded a~

the contribution made to Σι by the Coulomb interaction,
and consequently Σ θ ρ , rather than Σ^ρ, is regarded as
the contribution of the interaction between the electrons
via the phonons. Ve p and Σ θ ρ , unlike V^p and Σ™,
contain not M n *M s c , but | M s c | 2 . Thus, whereas the
screening is taken into account in the calculation of Π
in one electron-phonon vertex, and is not taken into ac-
count in another, in the calculation of Σ β ρ the screen-
ing should be taken into account in both vertices. In the
calculation of Σ ι and Π we have considered above only
the terms connected with the term <ί!?ι in Si', and did
not consider the remaining terms. Of course, they
should also be taken into account (see below). Conduc-
tivity theory contains the matrix element |ϋ?ι|ηι/;ΐημ>
or, in the single-particle representation, Mfcqx for a
real process—the transition of an electron from the
state k to the state k' with emission or absorption of
a phonon. Obviously, in this case (see[ 1 1'1 3'3 0 1) we have
Mr = Mn/e(q, wq). This result follows from the well-
known equation for the electronic matrix element in a
field with allowance for the interaction between elec-
trons, which has the symbolic form[ 3 2 ] (Fig. 2)

v~v\srsGu. (A.7)

src is the four-pole for the Coulomb interaction between
the electrons is irreducible with respect to oppositely-
directed arrows, and in the high-density approximation
can be assumed equal to the matrix element of the
Coulomb potential Vc0- A t small q we have Vco
« 4tfe2/q2; Un is the matrix element without allowance
for the interaction; since (GG) = P, we find from (A.7)
that U = Un/(1 - V C QP), whence

We see that, according to adiabatic theory,
corresponds to the rigid-ion model.

equal to[ e]The matrix element

ft Γλίλ'
. (r,) it,.

w q = wqiXi + wq2\2>
(we put g = 0)

at small q we obviously have

k'=k+,. (A.8)

II. DIAGRAM TECHNIQUE IN ADIABATIC THEORY
On the basis of ordinary perturbation theory it is

easy to develop a standard diagram technique1*1. Obvi-
ously, each of the terms S£s in<$?' corresponds, as in-
dicated in Fig. 3, by vertex parts r | in which the num-
ber of phonon ends is equal to the index s (1,2, etc.),
and with two electron ends, or else without electron
ends (owing to the term V(R, R) in Se-X& (r, R); we shall
frequently omit the polarization index λ); Γ 8 ~ Kg-χ.
Thus, Γ 8 = Γ 8 2 - r s o (the second subscript is equal to
the number of electron ends; Fig. 3 does not show the
subdivision of the vertices Γ& into r S 2 and Fso).

The term -U2n in < '̂ contributes not only to the pho-
non polarization operator Π, but also to the electronic
mass operator, since -U2n> together with its contribu-
tion to the correction to the energy Εαι,ί, is a functional
of nk and therefore makes a contribution to the correc-
tion (independent of the frequency) to the electron energy

Δ€ρ = δΕηι4/δηρ, and consequently also to Σι. Thus,
the contribution of -U2n to Σι can be taken into account
with the aid of the formula Δε ρ = δΕ η ( , ι/δη ρ . [ β 1 Α
direct check shows that the same results are obtained
for Σ ι and π by replacing the quantity n p in the ex-
pression (12) and (9) for U2n, i.e., the mean value of
the operator apap diagonal in the occupation numbers
in the immobile-ion representation, by the operator
apap itself. Even though, of course, apap * n p

= ( a p a p ) e , this procedure leads to correct results if
we disregard in the diagrams for Σι and Π all the
complications connected with the electron ends of the
vertex Γ 2 that corresponds to the term -J(?2n i n <^>
and of the vertex Γ 2 , that corresponds to the term
- |d^ 2 | n n . (This means that the operator apap is taken
in the representation of immobile ions corresponding to
the zero-order Hamiltonian[33].) The vertices Γ 2 and
Γ 2 = Γ 2 2 + Γ 2 0 are indicated in Fig. 4." It is easy to
show, using the formula[34]

: a ;«>=-2il im G(p, a>)«im'-f£-,

that

' " i-»-f-0 J 2lt Bp

(since Σ!~ ω£>; see (32)).

In[ 3 3 ], for a comparison with perturbation theory and
to relate similar terms in the expression for - H2n,

ΛΗΑΑ
r, r, r, Λ

From (A.7) we get L s c = Ln/e(q, <uq), q = qi + q2 + g, FIG. 3.

FIG. 2.

Ρ ^ Ρ ρ Γ£ Ρ

FIG. 4.
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FIG. 6.

FIG. 8

the term with % % ' was left equal to zero (see (9)), and
the corresponding vertex Γ 2 4 is not indicated_in Fig. 4.
We have combined in (13) S£2 and |<$?2|nn in &z = ^2
Z. 1̂ 2 Inn· It is therefore useful to introduce the vertex
Γ 2 = Γ 2 + Γ 2 . If we disregard the complications of the
vertex Γ 2 , i.e., use the fia>£> approximation for Σα and
Π (these complications yield values of the order K2HO>D;
as a result the third terms in the diagrams of Figs. 6
and 7 yield for Σχ and Π values ~/c2fioi£>; see j)elow)
we have r£(p, p; q, q) = - Γ 2 ( ρ , ρ; q, q), i.e., Γ2(ρ, ρ;
q, q) = 0.

The graphic equations for the vertices are indicated,
accurate to ~κ2, in Fig. 5 (the corrections to the
vertices Γ 3 etc. are similar in form). It is seen from
Fig. 5 that besides the correction 6Γ*/' to Γ 1 ; which is
of order κ2 Γι and is considered in[ S ], there arise cor-
rections represented by the last two terms, also of
order /^Γ^δΓ^ 2 ' ~ Σ ^ / Γ ^ - κ2Γ,; δ ί Τ ~ Γ 3 ~ κ 2 Γ ι ;

δΓ2

2> ~ δΓ^3) ~ κ2Γ2), D is the phonon Green's function
and F is the F-function. The equations for Zlt Π, and
the pairing self-energy part Σ2, which take the elec-
tron-phonon interaction (but not Vc) into account, are
indicated in Figs. 6—8. We have confined ourselves here
to the approximation κ2Κωο· In Figs. 6—8, r " is the
vertex r s with allowance for screening, and r s = r | c

is the vertex with allowance for screening (see above).
In the fourth diagram of Fig. 6 and in the second dia-
gram of Fig. 8 the two vertices Γ 2 are given with al-
lowance for screening, since the corresponding electron
four-pole V2ep(2<

1

4) = (V2epG)), just as in (A.4), is equal
to the sum V2ep = Γ£>ΌΓζ of the term Vep = ΓηΟΟΓ2

with the mixed term Vji'epPVc. On the other hand, the
fourth diagram of Fig. 7 can be expressed in the form
Πι4> = (WD), with the phonon four-pole W determined by
an equation analogous to (A.2).

' 3 3 ' , the diagrams of order κ2Βω£), which are
indicated for Σ[ in Fig. 9, were additionally included in
Figs. 6—8, together with analogous diagrams for n_and
Σζ. It was assumed there that the vertices ΓΊ and F 2

do not take into account the complications connected with
other vertices. When approached consistently, these
complications (the last two diagrams in Fig. 5) must be
taken into account together with the complications de-

FIG. 9

scribed by the second diagrams of Fig. 5. The diagrams
of Fig. 9 and the corresponding diagrams for Π and one
diagram for Σ2 turn out to be included in this case in
the second and third diagrams of Figs. 6 and 7 and in
the second diagram of Fig. 8.

The calculation of Σι and Π, and the analysis of the
equation for Σ2, were carried out in [ 9 ) 2 7 1 . It must be
borne in mind however, that inasmuch as we are calcu-
lating Σ θ ρ and not Z'ep, the constant term of the second
diagram of Fig. 6, which contains | M s c | 2 , and re-
normalizes the chemical potential μ, is not cancelled
out by the first diagram, which is proportional to
M n *M s c (see above). Therefore the renormalization of
the chemical potential Δμ will be of the order of fio>£).
The cancellation of these two diagrams, which is indi-
cated in [ 9 ' 2 ? I with accuracy ~K2RU)D» and the related
estimate Δμ ~ «2Bu>D, correspond to the calculation of
Σ'βρ and not Σ θ ρ. All the remaining results of these
studies remain in force. We note also that the second
term for Π in Fig. 7 contains the factor Γ ^ Γ ^ Μ ^ Μ 8 0 ) ,
which in the case of an acoustic dispersion law for
w(q) according to (A.3) behaves at small q like ~l/q,
in contrast to Γ?, which behaves like q as q— 0. How-
ever, the first term of Fig. 7, which cancels out the
second with accuracy K2RU>£), also contains Γ ? Γ 1 ( and
therefore the small difference of these two terms,
~K2fia>D,C9>27] has no singularities at all at small q.

As is well known, the imaginary part of Π, which is
due to the second diagram of Fig. 7, is of order
κ2Κωθ·[ 3 1 It is easily seen that the fourth diagram of
Fig. 7 also yields a quantity of the order of
~K2fiu>D-[9'27>33] It therefore plays an important role in
the calculation of Im Π.

Equations for the electron and phonon Green's func-
tions in general form, within the framework of the most
general scheme that does not use the adiabatic approxi-
mation, were obtained in[ 1 2 ] . They were not used, how-
ever, to calculate the self-energy parts Σ1 ; Σ2, and Π.

''in [33] the vertex Γ2 is designated Γ2 , and vice versa.
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