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This review is concerned with the structure, electrical, and optical properties of mixed-valence platinum
complexes of the K2 Pt(CN), Br0 M 3H2 Ο type and of TTF-TCNQ salts. Special attention is paid to the
experimental results on the anisotropy of electron motion in these quasi-one-dimensional crystals. The
theory of the Peierls metal-insulator transition is considered for a one-dimensional system in the molecular
field approximation, allowing for statistical fluctuations of the order parameter. It is shown that the Peierls
transition is associated with the appearance of a giant Kohn anomaly in the phonon spectrum. The
experimental results confirming the occurrence of the Peierls transition in platinum complexes (structure
data, paramagnetic susceptibility, and phonon spectrum) are analyzed from the theoretical point of view.
An analysis is also made of the influence of three-dimensional effects and of the disorder in crystals on the
Peierls transition. The possibility of the Peierls transition in TTF-TCNQ is considered and the problem of
the paraconductivity resulting from this transition is discussed.
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1. INTRODUCTION

Extensive investigations of quasi-one-dimensional
systems were stimulated by Little in 1964,[1] who
suggested that high-temperature superconductivity could
occur in one-dimensional systems. According to Little,
one would have to synthesize a long linear conducting
molecule (core) with easily polarizable side branches
(polarizers). The polarization of the bound electrons in
the side branches by the conduction electrons of the
core could, under favorable conditions, result in attrac-
tion between the conduction electrons and consequently
give rise to superconductivity. In this case, the super-
conductivity would be due to the high-frequency ex-
change of electron excitations of the polarizers (ex-
citon mechanism) and the temperature of the supercon-
ducting transition should be higher than in the conven-
tional phonon mechanism.

In attempts to realize this idea, it was found that it
would be difficult to produce a sufficiently long molec-
ular system with metallic conduction: all the polymers
produced so far are semiconductors with a fairly wide
gap. Therefore, experimenters were attracted to three-
dimensional crystals in which the electron motion was
almost one-dimensional because of the special nature of
the crystal structure. These crystals, known as quasi-
one-dimensional, contain parallel conducting filaments
and, in principle, specially selected strongly polarizable
groups of atoms can be placed between these filaments.
Systems of this kind have all the necessary elements of
the Little model but their three-dimensional nature
makes it possible to investigate them by conventional
experimental methods.

Clearly, quasi-one-dimensional crystals needed for
the realization of the exciton superconductivity mech-
anism should have a sufficiently high metallic or near-
metallic conductivity and a search for new crystals has
been made particularly with this point in mind. However,
all the quasi-one-dimensional crystals known so far are
insulators at low temperatures. This situation is not
accidental.

In fact, theoretical investigations of one-dimensional
electron systems, started well before quasi-one-
dimensional crystals were prepared experimentally,
have demonstrated that the properties of one-dimensional
electron systems differ considerably from the prop-
erties of crystals with two- or three-dimensional mo-
tion. The following three statements describe suf-
ficiently fully all the special features of one-dimen-
sional systems.

a) If the Coulomb interaction between electrons is
ignored, a one-dimensional metallic system is found to
be unstable in the presence of changes in the crystal
lattice period which split a partly filled band into com-
pletely filled and empty subbands (see Peierls1-2-1). In
other words, when the temperature is lowered, a one-
dimensional metal should exhibit lattice distortions with
a Wave number equal to twice the Fermi momentum.

b) One-electron excited states in a one-dimensional
electron system with a half-filled band are separated
from the ground state by a gap, no matter how weak the
electron repulsion.M This statement has been proved
in the case when the interaction between electrons ean
be described by the Hubbard Hamiltonian. However,
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there are no grounds for assuming that this statement is
invalid in the case of the real Coulomb interaction be-
tween electrons. Thus, even the Coulomb interaction
between electrons gives rise to an insulator (Mott tran-
sition) when the temperature is lowered.

c) One-electron states in a one-dimensional system
are localized no matter how weak the random potential.
Therefore, at low temperatures, the conductivity of a
one-dimensional electron system in a lattice with de-
fects cannot be metallic. [ 4 ' 5 : 1

All three statements show that, at least for three
reasons, a one-dimensional electron system may be
nonmetallic at low temperatures.

The question arises as to what degree all these
statements are applicable to quasi-one-dimensional
crystals in which electron motion is not strictly one-
dimensional. Clearly, in considering any one effect in
quasi-one-dimensional crystals, we obtain basically new
results typical of one-dimensional systems only if the
kinetic energy of the motion of an electron between
filaments, Ε χ is much smaller than the energy typical
of the effect in question (thus, for example, in the case
of the Peierls or Mott transition, the value of E x should
be much smaller than the corresponding Peierls or
Mott gap). We shall understand quasi-one-dimensional
systems to be only those crystals which satisfy this con-
dition because, otherwise, we have a conventional aniso-
tropic three-dimensional system and the statements
a)—c) are inapplicable to these systems.

Two classes of compounds with a fairly high (at room
temperature) and anisotropic conductivity are being
investigated at present: one class represents charge-
transfer salts based on tetracyanoquinodimethane
(TCNQ)· and mixed-valence planar square complexes
of transition metals (Pt, Ir), whose typical represent-
ative is K2Pt(CN)4Br The experi-

mental data show that the main low-temperature prop-
erties of platinum complexes are related to the Peierls
metal-insulator transition, whereas, in the case of
TCNQ salts — with the exception of salts with tetra-
thiafulvalinium (TTF) and tetrathiatetracinium (TTT)—
the localization of electrons due to the Coulomb repul-
sion and disorder in the lattice play the dominant role
at low temperatures.

In KCP and TCNQ salts, the condition for quasi-one-
dimensional structure is satisfied for almost all the
phenomena of physical interest. The current popularity
of these systems is due to the fact that we can observe
those basically new effects which are associated with the
one-dimensional electron motion. One of these effects
is the Peierls instability of a metallic one-dimensional
system which results in a metal-insulator structure
transition when the temperature is lowered. The present
review is devoted to the theory of this transition and
its experimental manifestation in quasi-one-dimensional
crystals. The Peierls nature of the transition in TCNQ
with TTF salts is established less reliably than for
KCP. Therefore, we shall concentrate our attention on
the experimental properties of variable-valence com-
plexes.

We shall conclude the review by considering the
problem of the realization of the exciton superconduc-
tivity mechanism in quasi-one-dimensional crystals
since this is closely associated with the Peierls insta-
bility of one-dimensional metallic systems.

2. STRUCTURE AND ANISOTROPY OF PHYSICAL
PROPERTIES OF MIXED-VALENCE
PLATINUM COMPLEXES

a) Crystal structure of KCP. In the platinum com-
plexes under discussion, a Pt atom and four CN groups
form a planar structure, shown in Fig. la. In crystals,
these planar Pt(CN)4 groups form chains or columns,
one of which is shown in Fig. lb. The relative positions
of the Pt(CN)4 chains, alkali atoms (K, Na, Rb), halogens
(Br, Cl), and water molecules are shown in Fig. 2. A ,
complete unit cell corresponds to the formula
K4Pt(CN)4Br0-30 · 3H2O. Thus, only 50% of the sites

available to Κ and 60% available to Br are occupied; the
positions of both these ions are random (according to
x-ray structure data). The Pt ions in KCP crystals are,
on the average, equivalent but the electrons of these
ions experience a random potential of the disordered
distribution of the Br and Κ ions.

There are ten platinum electrons and two of them
participate in the bonds with the CN groups; of the re-
maining eight electrons, a small fraction (0.30) is
transferred to the halogens. Formally, the platinum
ions have the Pt2* and Pt4* charge so that the KCP-type
materials are known as mixed-valence complexes. The
orbital degeneracy of the d levels of platinum is lifted
by the crystal field and the new levels correspond to the
orbitals which are superpositions of five atomic wave
functions of the d level (dx y, d ^ , d y z , dz2, and άχι_ ι),

which are the eigenfunctions of the orbital momentum
projection operator. According to the data on the mag-
netic circular dichroism of K2Pt(CN)4 solutions,te·1 the
energies of the orbitals can be arranged in the following
sequence: bo (d ) < e (d , d ), a, (d 2) < b, (d 2 2)H 2gv xyy gv xy' yz" lgv ζ ' lgv χ -y '

FIG. 1. Spatial distribu-
tions of Pt atoms and CN
groups in a K2Pt(CN)4

complex and a chain of
such complexes in a
crystal.
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FIG. 2. Unit cell of KCP projected on the c and b axes.
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(the coordinate ζ is normal to the plane of the com-
plexes and the indices b2g, eg, etc. indicate which ir-
reducible representations of the symmetry group of the
crystal apply to the wave functions which are the
orbitals of a given level; the parentheses following the
indices show which superpositions of the atomic func-
tions form the orbitals). The loss of some of the elec-
trons from the d 2 band to the halogens gives rise to

Ζ

holes in this band. Above the d 2 band there is another
band corresponding to the 6pz orbital of the Pt ion and
the band b (d , ,). Thus, in mixed-valence complexes,

lg x -y
the partial population of the d 2 band may give rise to

ζ

metallic properties of the investigated crystals. The
ESR spectra, which will be discussed in detail later
(Chap. 6), confirm that the electron properties of KCP
are governed by the carriers in the d_2 band.

£1

The quasi-one-dimensional nature of the motion of
holes in the dz2 band is governed by two factors. First
of all, the dz2 orbitals (Fig. 1) are directed along the
Pt ion chain and they ensure a good overlap of the neigh-
boring ions in the chain but not of the nearest Pt ions in
neighboring chains. Secondly, the distance c between the
neighboring Pt ions in a chain (c = 2.89 A) is only slightly
greater than the distance between the nearest ions in a
metal plate (2.77 A). On the other hand, the large
distance a. between the neighboring platinum chains
(a = 9.87 A) results in a very weak overlap of the elec-
tron wave functions of the neighboring conducting chains.

It follows from these very simple band representa-
tions that KCP should exhibit all the properties of a
quasi-one-dimensional metal. Optical measurements
indicate that, at frequencies Κω > 0.4 eV, the KCP elec-
trons do behave as a one-dimensional electron gas. The
room-temperature electrical conductivity of KCP is
fairly high (up to 300 β"1. cm"1) and strongly anisotropic.
However, at low temperatures and frequencies, we find
that KCP is an insulator.

b) Optical properties of KCP· Measurements of the
reflectivity of KCP have been carried out in polarized
light at room temperature in the frequency range from
Πω = 0.001 eV to 6 eV.C9"123. The results of these meas-
urements are plotted in Fig. 3. When light is polarized
perpendicularly to the conducting axis, the reflection
coefficient is small, constant in the visible range, and
represents the phonon spectrum in the infrared range.
This behavior of the reflection coefficient is typical of
an insulator. The frequency dependence of the coef-
ficient Rn for light polarized along the conducting axis
has a characteristic plasma edge in visible light. The
Β,^ω) and R|((o>) dependences allow us to determine

€±(ω) and €|j(w). In the range Κω > 0.4 eV, we obtain

= 2.1,

(1)
ωΐ = 4ne2N,/meex,

where ω ρ is the plasma frequency (2.88 eV); m e is the
mass of a free electron; N e is the electron density; τ is
the collision time approximately equal to 3.2 χ 10~15 sec;
ex is the contribution of the inner-shell electrons to the
permittivity. The value of N e represents the electron
density in the d a band, i.e., N_ = 1.7NO, where No is the

concentration of the Pt atoms. Thus, the d,2 electrons
make exactly the same contribution as free electrons.
On the other hand, the motion of electrons between the
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FIG. 3. Reflectivity of KCP for light polarized parallel and per-

pendicular to the conducting c axis (at room temperature). [12]

chains does not appear up to frequencies corresponding
to Κω « 6 eV.

This very strong anisotropy of the frequency de-
pendence of the permittivity gives rise to character-
istic frequency and angular dependences of the reflection
coefficient. ί13-15^ For example, in the case when the
conducting chains (filaments) are perpendicular to the
surface of a crystal and the electric field vector is
parallel to the plane of incidence, the dependence R(w)
has a peak at the plasma frequency if the direction of
the propagation of light does not coincide with the
normal to the surface.

At frequencies Κω < 0.4 eV, the dependence R||(w)
shows that the behavior of electrons ceases to be
metallic. In fact, if we use the Kramers-Kronig dis-
persion relationship, we can obtain from R||(o>) the real
and imaginary components of the permittivity {'"(ω)

and e |(
2)(ω)· As ω — 0, the real part of the permittivity

tends to a constant value and not to (- °°), as predicted
by the Drude theory of free electrons. Measurements
carried out at 4.2 °K at 1010 Hz give e" ' « 103.[ 1 6 ; i In

the imaginary part, there is a peak at a frequency of
about Κω « 0.14 eV and then c|| (ω) rises with decreas-
ing ω. This peak is obviously due to a transition from
the 5d,2 to the δρ, band. If this assumption is valid, the

ζ &

lower edge of the 6pz band lies about 0.14 eV above the
Fermi level and at frequencies exceeding 0.4 eV the
contribution to ω* includes transition within the d^2

ρ ζ

band and 5d 2 — 6p, interband transitions. If we also
Ζ Ζ

assume that the matrix elements of the transitions to
all the other bands are small and the excitation energies
of the inner electrons exceed 6 eV, this band picture is
in agreement with the observation that, in the frequency
range Κω from 0.4 to 6 eV, the optical properties are
associated with the dz2-band electrons and these elec-
trons can be regarded as free. This interpretation of
the peak at 0.14 eV is only one of the possible explana-
tions and a detailed discussion of the other interpreta-
tions of this peak can be found in the reviews.[ 8»1 0 4 ]

c) Conductivity anisotropy and metal-insulator,
transition. The first investigations yielded the temper-
ature dependence of the electrical conductivity along
the chains σι,.1-8'16-1 Later, the temperature dependences
of σL and the ratio an/aL were determined for the same
crystal.ClT-1 The results of these measurements are
plotted in Fig. 4. The anisotropy ο^/σ, varies from
5 χ 104 at room temperature to 2.5 χ ίθ 3 at 30 °K. The
temperature dependence of the conductivity shows
clearly the transition to the insulating state when the
temperature is reduced below 200°K. Above 200°K, the
electrical conductivity is practically independent of
temperature.
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FIG. 4. Electrical conductivity
(fl'^cm"1) of KCP parallel and per-
pendicular to the c axis [ 1 7].

The temperature dependences of the thermoelectric
properties of KCP and K2Pt(CN)4Cl0 3 · 2.6H2O are re-
ported inCs'18>lf l : i. Fedutin[19J discovered that these salts
exhibited a strong anisotropy in the temperature de-
pendence of the Seebeck effect. Above 200°K, the
Seebeck effect along the chains, an, is approximately
constant for KCP; it is small (« 1 μν/deg K) and pos-
itive, which indicates p-type conduction, in agreement
with the band representations. The coefficient a
changes its sign below 200°K and its absolute value
rises strongly when the temperature is lowered. This
temperature dependence of a „ confirms the existence

of the metal-insulator transition in the electron motion
along the chains. On the other hand, the Seebeck effect
at right-angles to the chains remain small (« 3 μν/deg
K) and positive in the range from 300 to 85 °K. This
temperature dependence α χ indicates that the motion of
electrons between the chains is of the hopping type.

Thus, electrical and optical measurements show that,
at high temperatures and high frequencies, the electrons
in KCP do indeed represent the quasi-one-dimensional
metallic system. On the other hand, according to these
measurements, the crystal is undoubtedly an insulator
in the ground state and when the temperature is lowered
the metal-insulator transition takes place in KCP.

Investigations of the Mossbauer effect have shown
that, at low temperatures, the conduction electrons are
delocalized at the Pt ions in such a way that the max-
imum variations of the electron density between different
Pt ions are much smaller than one electron per
center. '-7-1 These measurements exclude the possibility
of transition to an insulating state with strongly local-
ized electrons (such as the Mott transition'-2^1 or the
formation of small-radius polarons). Experiments on
the diffuse scattering of x-rays have made it clear that
the main low-temperature properties of KCP should be
associated with the Peierls transition.'-21^ These experi-
ments have demonstrated that the Pt chains exhibit the
same superstructure as predicted by the Peierls insta-
bility theory. Thus, in the case of Κ 2 Κ ( 0 Ν ) 4 Β Γ Λ 3 0

• 3H2O, the superlattice period is equal to six Pt-Pt
distances, whereas, in Rb2Pt(CN)4Br0#23 · 1.3H2O, it is
equal to eight c distances. These periods are exactly
equal to the value of 2kρ (kp is the Fermi momentum
of electrons), since the dz2 electron band is approxi-
mately five-sixths full in KCP and seven-eighths full in
the Rb salt. We shall analyze in detail these experi-
mental results after considering the Peierls transition
theory.

3. THEORY OF PEIERLS TRANSITION IN
ONE-DIMENSIONAL SYSTEM IN STATIC
APPROXIMATION

a) Molecular-field approximation. As pointed out in
the Introduction, if we ignore the Coulomb repulsion
between electrons, we find that, at sufficiently low tem-
peratures, a one-dimensional metal is unstable in the
presence of such lattice distortions which transform
this system to the insulating state, i.e., it is unstable in
the presence of distortions with a wave number equal to
2kp. Such distortions appear at a temperature Tp, which
is a second order phase-transition point. We shall show
that this is valid in the molecular field approxima-
tion. [ 2 2-2 4 ] We shall use this approximation to consider
the static distortion of the lattice with just one wave
number and ignore the rest of the lattice dynamics. In
other words, we shall minimize the free energy of the
system in respect of the equilibrium coordinates of the
ions and ignore the ion vibrations about the equilibrium
positions (phonons).

We shall use the tight-binding approximation to de-
scribe the motion of electrons in the ion field. '-25-1 The
applicability of this model to quasi-one-dimensional
systems is justified by the fact that the overlap between
the nonnearest neighbors in a chain is always weak. It
should be pointed out that the tight-binding approxima-
tion automatically allows for the umklapp processes,
i.e., for the lattice periodicity. The electron Hamilton-
ian is then of the form

~a ™ ' '" ™" " • " - ' " " n r l . c r , ι ι - Μ , σ m l · V

where the first term is the electron energy at the sites
η and the second term describes electron transitions to
neighboring sites, and b n n + χ is the resonance inte-
gral for the sites η and η + 1 (we shall use the single-
band approximation). If all the sites are equivalent and
the interstitial distances are equal, it follows that
b n n + ι = b, the quantities en can be assumed to vanish

(all that changes is the origin from which energy is
measured), and the electron spectrum is

where Ν is the number of sites in the lattice.

We shall consider the simplest case when there is
one external electron per atom in the lattice. Then,
below the temperature Tp, the lattice period should
double. The doubling displaces the n-th atom by an
amount

un = (-1)" u. (4)

The resonance integrals of the lattice displacements
given by Eq. (4) are characterized by bn> n_i = bt and
b n n + ι = b2 and the electron spectrum is

Ei.2(ft) = ±Vb*~bl+2b,b,cosk, k = ^ - (n = 0, ± 1 , . . . dz-4") •

(5)

If the distortion is small (Δ = |bx - b 2 | «C b, 2b = b1 + b2),

Eq. (5) can be written in the form

(B = 0, ±1, ... ±4")£i.2(k) = ±VΛ2 + 4b2cos2k, k = ~ ( 4)

(6)

In the case of a half-filled band, the chemical potential
vanishes since the subbands (1) and (6) are symmetric
relative to the energy Ε = 0 and half the states lie in the
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range E < 0. The free energy (per atom) of the elec-
trons and lattice can then be expressed in terms of the
parameter u using the relationship

F(u,T) = - (7)

where κ is the elasticity constant of the lattice sub-
jected to the displacements (4) and this constant is found
ignoring the electron transitions between centers [the
contribution of these transitions to the lattice elasticity
is governed by the first term in Eq. (7)]. We shall show
that below the Peierls transition temperature T p the
free energy minimum is reached for u Φ- 0. Clearly, Tp
is that temperature at which the nontrivial solution u ^ 0
is first obtained for the equation

Η*№<"·Τ)=,0. (8)

We shall now find the dependence F(u, 0) at Τ = 0. We
obtain from Eq. (7)

F(u, 0)= - - i - 2 VA2~- ^COS-IC + ^-KUK

We shall assume that Ν is large and change the summa-
tion in Eq. (9) to integration with respect to k. We shall
introduce a dimensionless constant g for the electron-
lattice interaction by means of the relationship KU2

= A2/2-nbg2. Then, assuming that the transition para-
meter is not u but Δ, we obtain

0)---. —,!-
(10)

It is clear from Eq. (10) that, in the case of small values
of Δ, we have F(A, 0) < 0, i.e., a lower free energy is
obtained for the nontrivial solution

Δ (0) = 8be-l''\ (11)

The value of T p is described by an equation derived
from Eq. (8) and this equation is similar to the BCS
equation for the critical temperature of a supercon-
ductor:^611

26

"21 ν ι . * 8 . · ^ = ' (12)
0

Equations (6) and (9)—(12) are valid if T p <SC b, i.e., if
g2 <?C 1. We shall confine our attention to the systems
which satisfy this condition. Equation (12) differs from
the BCS equation by the integration limit with respect
to the energy (band half-width 2b and not the Debye fre-
quency o>D) and by the factor [1 - (e/2b)2]"1/2. This

factor describes the density of electron states in the
tight-binding approximation and its appearance in Eq.
(12) is due to the fact that the contribution to the Peierls
instability is made by the whole electron band, whereas
in a superconductor the interaction between electrons
and phonons vanishes only in an energy interval of the
order of ω^ near the Fermi surface and w^ <SC 2b. In

this narrow interval, the density of states may be as-
sumed to be constant. Since ω β <C 2b and the interaction
constants governing the Peierls instability and super-
conductivity are identical (or approximately identical),
the Peierls instability is, generally speaking, a stronger
effect than the superconductivity. We find that T p is
given by the following expression derived from Eq. (12):

7·ρ=Μβ-ι/ί», • (13)

where lny = C is the Euler constant. The ratio Δ(0)/Τ
for the Peierls transition is the same as in the BCS

theory. Similar calculations carried out in the molec-
ular field approximation show that, for an arbitrary band
population, the static distortions of the lattice at the
Peierls instability point are characterized by a wave
number equal to 2kF. The formulas for Δ(0) and Tp in
the case of an arbitrary number of ρ electrons per
center (0 < ρ < 2) are obtained from Eqs. (11) and (13)
by replacing b with b sin(jrp/2) and g2 with g2/2, pro-
vided ρ is not close to a rational fraction n/m with a
small denominator m, i.e., if the Peierls distortion
period is not commeasurable with the initial lattice
period. For small deviations of ρ from unity (for
|1 - p | < Tp/b), i t i s more convenient to double the per-
iod (this is explained in Sec. 5b; the result was com-
municated to the author by Yu. P. Kopaev). If m > 2, the
commeasurability effects are less important than in the
doubling of the period when m = 1.

If we adopt the molecular field approximation, we
find that below Tp the electron spectrum acquires a gap
in accordance with Eq. (6). The point T p represents
then a second order phase transition. However, it is
clear that, since we are dealing with a one-dimensional
system, the results of the molecular field approximation
are modified greatly if we go outside the range of valid-
ity of this approximation and allow for fluctuations of
the system. In the Peierls transition case, fluctuations
of the order parameter represent displacements of
atoms from their equilibrium positions, i.e., essentially,
the allowance for fluctuations is the allowance for
phonons or, in other words, the allowance for the lattice
dynamics.

b) Allowance for fluctuations within the framework
of Ginzburg-Landau static approximation. The influence
of fluctuations (phonons) on the Peierls transition can
be allowed for if the electron energy is calculated in the
adiabatic approximation. In this approximation, the
phonon frequency is assumed to be zero because the
energies of the majority of electrons exceed consider-
ably the phonon energies. Thus, within the adiabatic
approximation, we may assume that the displacements
of atoms are independent of time and vary only with the
coordinates, i.e.,

«» = Σί""«,. (14)

Having determined the one-electron energies in the
lattice with displacements described by Eq. (14), we can
express the free energy in terms of Uq. Confining our-
selves, as usual, to the terms of the second and fourth
order in Uq and to the second derivatives with respect
to the coordinates, we obtain a Ginzburg-Landau func-
tional. If we introduce parameters with the dimensions
of energy A~ = gu (27rb/c)l/2, we find that the free energy

associated with the distortion of u^ has the following

form if 2kF £ t:

F (Δ,) = α (?) | Δ, |a + Ρ Ι Δ, |* + ν (β — (15)

where the coefficients α, β, and γ are calculated in the
molecular field approximation and »(T) vanishes at
Τ = Tp, in accordance with the Ginzburg-Landau theory.
The coefficients of the expansion of the free energy in
terms of Δ« are found in1-27-1 and, to within numerical
factors, we have a(T) (T -T p )/bT p , β l/bTp, and γ b/Tp.

All the one-dimensional thermodynamic functions
can be calculated exactly from the Ginzburg-Landau
functional.1-28-1 This procedure was applied to the Peierls
transition by Lee, Rice, and Anderson *-27] in the model
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of an electron band with an initially constant density of
states. Their calculations showed that, strictly speak-
ing, there should be no long-range order in the system
at any finite temperature because the correlation func-
tion should decrease exponentially with distance x:

(Δ (χ) Δ (0)) = <Δ2> exp [-ζξ- 1 (Τ)] cos 2kFx. (16)

The result (16) is obtained because the long-range order
in a one-dimensional system described by a real order
parameter is disturbed if the amplitude of the order
parameter vanishes due to fluctuations at just one point.
A finite energy is required for the amplitude of the real
order parameter to vanish at one point and, if Τ φ- 0, the
potential barrier can be overcome simply by thermal
fluctuations. However, if Τ < Tp/4, the correlation
length becomes very large and rises exponentially with
decreasing temperature so that we can assume that a
Peierls superlattice appears in the system at temper-
atures below Tp/4. The correlation function (16) can be
used to calculate the electron spectrum of the system
employing the approximate expression relating the one-
electron Green's function with the Fourier transform
D(q) of the correlation function (Δ (χ)Δ(Ο)):

G-' (k, ω) = ω - Ε (k)- 2 D (?) (ω
(17)

The calculation results show that the system does not
have a gap but a density-of-states dip. Only at temper-
atures Τ < Tp/4 does the density of states approach the
value which would be obtained in the molecular field
approximation (Fig. 5). Quantitatively, the static
Ginzburg-Landau approximation is exact for ω^ <ίί T p

and, as shown below in the case of KCP, this condition
is satisfied because ωρ/Τ- ^ 0.25. However, it is

difficult to estimate the precision of the calculation of
the one-electron Green's function carried out using the
approximation (17). All that we can show is that Eq. (17)
becomes exact in the limit ξ'^Γ) — 0, i.e., when
Τ < Tp/4.

4. INFLUENCE OF THREE-DIMENSIONAL
EFFECTS ON PEIERLS TRANSITION IN
QUASI-ONE-DIMENSIONAL CRYSTALS

In discussing the Peierls transition above, we have
ignored the interaction between displacements of atoms
in different chains. Clearly, if this interaction is
allowed for, the order parameter of the Peierls transi-
tion becomes three-dimensional. The interaction be-
tween displacements of atoms in different chains is due
to the Coulomb forces and due to the overlap of the
electron wave functions of different chains (electron

1 -

OJ

OS

FIG. 5. Density of electron
states D(co) in the static Ginz-
burg-Landau approximation,
normalized to the metallic
density of states Do. The value
of ω is the deviation of the
energy from the Fermi value.
The T/Tp = 0 curve corre-
sponds to the molecular field
approximation [ " ] .

transitions take place between the chains); we shall
consider these two effects separately.

a) Coulomb interaction between electrons. Since we
are assuming that all the sites are equivalent in the
original distortion-free lattice, they are all also neutral
because the electron density must be the same at all
sites. The Coulomb forces appear if the lattice distor-
tion makes the sites inequivalent and redistributes the
charges along the chain. As pointed out by Barisic, t25-1

such redistribution occurs if the displacements of atoms
are not exactly equal to twice the lattice period (see
Note 1 added in proof at the end of the paper). In fact,
the kinetic energy of the interatomic motion of electrons
decreases if electrons are transferred partly to the
sites which are closer to one another since the reso-
nance integrals of such sites are larger. An excess
electron density appears at ions located close to one
another and the region where the ion density is higher
is charged negatively, whereas the region where the ion
density is lower becomes positively charged. The order
of magnitude of the variation of the charge density is
δρ/ρ ~ Δ/b. Thus, the Peierls displacement of the
lattice ions with 2kp Φ -η gives rise to a charge-density
wave in the ground state. We shall see later that this
effect is responsible for all those features of the be-
havior of a Peierls insulator in an electric field which
distinguish it from ordinary insulators. Since the char-
acteristic electron redistribution time is governed by
the plasma frequency, ωρ S> w£,, we may assume that
the displacements u m n of sites η in chains m (the
chain lattice is assumed to be two-dimensional and the
corrdinates of a chain are given by integers m = mx, my)
result in the instantaneous appearance of charges p m n

at sites (m, n).

When this effect occurs in the metallic state of quasi-
one-dimensional crystals, it is important to note that,
as in the case of one-dimensional crystals (see1-28'29-1),
the Coulomb potential is screened even if we allow for
electron transitions between chains. In fact, a redistri-
bution of the charge in a chain in a quasi-one-dimen-
sional crystal and the associated electric field polarize
the neighboring chains and this polarization screens the
electric field over long distances and reduces the elec-
tric field energy due to the Peierls deformation.

Self-consistent calculations of the influence of the
Coulomb interaction on the Peierls transition in a quasi-
one-dimensional system have not yet been carried out.
However, we can point out one qualitative effect which
results from the Coulomb interaction. C25>313 The energy
of the electric field associated with the Peierls defor-
mation is minimal if the displacements of ions in neigh-
boring chains are in antiphase. Consequently, the inter-
action of electrons should result in corresponding cor-
relations in the displacements of ions in neighboring
chains and such correlations can be observed in studies
of the diffuse x-ray scattering and neutron scattering in
K C P C3i ,32]

ω/kJp

Allowance for the Coulomb interaction (and for all
other three-dimensional effects) in the static Ginzburg-
Landau approximation reduces to the description of the
displacement u by a three-dimensional momentum and
by the addition of a term allowing for the interaction
between charge waves in different chains to the ex-
pression for free energy. The interaction energy of
charge-density waves in neighboring chains m and m' is
Ο,Δ Δ ,/b2, where Q. is the Coulomb interaction toer

l m m x
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atom) between charge-density waves ecos(2kj.n) in
neighboring chains. The order of magnitude of this
interaction is Q^ = C^eVr^ where r^ is the distance

between the chains and the parameter Cx depends on
2kp, r r and βχ (C1 — 0 in the limit 2kF - . π ) . If we

consider only the interaction between the nearest chains,
we obtain the following expression for the free energy
F (Ak. ,) = α (Τ) Ι Λν, „ Ρ + β | Δ*. , |4 + (18)

+ ly(q — 2kFy- + δ (2 + cos kx + cos i,)] | Ak. , |2,

where δ = 6 Q ~ Q]/b2.

b) Electron transitions between chains. If we allow
for the overlap of the electron wave functions of different
chains and for the dependence of this overlap on the
atomic displacement, we find that the system is really
anisotropic and three-dimensional. A structure transi-
tion of the Peierls type should be also observed in a
three-dimensional crystal if the following symmetry
condition is satisfied by the electron spectrum:

Ε (k) - eF = -E (k + q) + eFl (19)

where q is a particular vector. When the temperature is
lowered, a Peierls deformation with a wave vector q
appears in a system with an electron spectrum given by
Eq. (19) and a charge-density wave is generated. £25>33-353
However, in contrast to a purely one-dimensional sys-
tem, such a deformation of a three-dimensional crystal
produces an energy gap on the Fermi surface only for
directions perpendicular to the vector q. Therefore,
below the structure transition point, a three-dimen-
sional metal remains a metal or becomes a semimetal.1'
In a quasi-one-dimensional crystal, the energy gap on
the Fermi surface may also be absent for the motion of
electrons between the chains but the weak overlap of the
wave functions of the neighboring chains makes the con-
duction between the chains negligible (in the majority of
the currently known quasi-one-dimensional crystals,
this conduction is of the hopping type). Therefore, a
quasi-one-dimensional crystal becomes an insulator
below the Peierls transition point. If allowance is made
for transitions of electrons between the nearest platinum
ions in neighboring chains, the electron spectrum of
KCP becomes

Ε (k) = 2b cos q + 26, (cos kx + cos ky), (20)

where b t is the resonance integral of the transition be-
tween the nearest ions in neighboring chains (compare
with the structure of KCP shown in Fig. 2). The spec-
trum (20) has the symmetry properties of Eq. (19) if
q = (ττ, π, 2kF). Thus, electron transitions between the
chains lead, like the Coulomb interaction of electrons,
to three-dimensional correlations of the Peierls dis-
tortions of the chains and, in the case of KCP, these
correlations are such that the displacements of neigh-
boring chains are shifted in phase by π.

Allowance for the electron transitions between the
nonnearest ions in neighboring chains (along the diagonal)
violates the condition (19) and such transitions suppress
the Peierls instability.C34:l If we use b2 to denote the
resonance integral of the interchain transitions violating
the condition (10), we find that the Peierls instability
temperature decreases with decreasing ratio b2/Tp (in
the molecular field approximation). However, in the
case of quasi-one-dimensional crystals, this effect can
always be neglected because these crystals satisfy the
inequality b1 <SC T p (it follows from the definition of

quasi-one-dimensional crystals) and we also have

Clearly, in the case of the spectrum (20), the inter-
action between chains in the Ginzburg-Landau functional
has exactly the same form (18) as the Coulomb inter-
action between the nearest chains but δ = δ̂  ~ bj/T^.

Therefore, these two effects can be included in the func-
tional (18) by introducing δ = 6Q + 6^.

c) Influence of chain interaction on type of transition.
We shall now consider the question of the strength of the
interaction between the chains at which fluctuations in
the system cease to be one-dimensional. This problem
can be solved in the static Ginzburg-Landau approxima-
tion by calculating the correlation function (Δ ηΔθ «)

for the order parameter A m n . Taking the Ginzburg-
Landau free energy to be given by Eq. (18), retaining
terms quadratic in Am n , and making calculations sim-
ilar to those reported by Rice,i37-1 we find that, in the
temperature range Τ < T p :

Δ 1 η η = ":+m'i>cos(2kFn),

1,9

where Ψ* = α/β is the average value of the amplitude of
the order parameter Am n in the molecular field ap-
proximation, Ν is the total number of sites in the sys-
tem, and a(Tp) = 0. The fluctuations are small if

, (22)

and, in this case, we can use the self-consistent field
approximation. It follows from Eq. (21) that

{ ΤΆ/aVay ~ τ"3'2,

Γβ/αΚδγ ~1/τΚδδ,

δ « α ,

δ» α,'
(23)

where τ = (Τρ - Τ)/Τρ and T p is the transition temper-
ature calculated allowing for the interaction between the
chains in the molecular field approximation. Since
δ = 5 Q + 6b, the parameter δ/α, which governs the role

of fluctuations, is of the same order as Q,/b + b^b/TL
In the Peierls transition, the Coulomb interaction be-
tween the charges within a chain is Qo < b (otherwise,
the Mott and not the Peierls transition would take place).
Since Qx < Q№ the degree of suppression of the fluctua-
tions governs primarily the parameter b1 ( representing
the transitions of electrons between the chains.2'

In the case of quasi-one-dimensional crystals
(b <C Tp) and if bx 2> T*/b, the fluctuations are im-
portant only in a very narrow region near the transition
point so that the molecular field approximation is ap-
plicable at almost all the other temperatures and the
thermodynamics of the Peierls transition is basically
three-dimensional. It should be pointed out that the
physical interpretation of the condition for the smallness
of the fluctuations is fairly simple. In fact, the condi-
tion b Vb reduces to the requirement that, in a

ticharacteristic correlation length along a chain
I = b/T p (i 0 is expressed in interatomic scattering
units), the total interaction between the chains b l ? 0 is
much lower than the temperature in energy units.

If b x < Tp/b, the fluctuations are important at tem-
peratures well below and above T p . It is natural to
assume that, in this situation, the results of Lee, Rice,
and Anderson,1 ΐ Ί ΐ obtained for a purely one-dimensional
system, are applicable also to those physical properties
of quasi-one-dimensional crystals which relate to one
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chain and further studies are needed to determine the
correlations of displacements in different chains. This
is basically correct but some refinements are still
necessary.

The point is that the long-range order in a three-
dimensional system with a real order parameter is
established no matter how small the value of δ (this is
not true at any temperature in a one-dimensional sys-
tem). The dependence of the transition temperature T3,
at which the long-range order is established, on the
value of δ can now be obtained using the static Ginzburg-
Landau functional and the self-consistent field method
to allow for the interaction between the chains (a sim-
ilar method was used by Efetov and Larkin[ 3 8 ] in con-
sidering the temperature of a superconducting transi-
tion in quasi-one-dimensional systems for a weak inter-
action between the chains). We shall use the Ginzburg-
Landau functional in the form

, η) = Σ [fm + Σ «.η, m'Am, nAm
in m '

(24)

where the free energy F m of a chain m is given by Eq.
(18) with δ = 0. We shall calculate the average value of
the order parameter

„/ e- (25)

using the self-consistent field approximation in respect
of the interaction between the chains

F (Δ™, η) = Σ [Fm 4 Σ δη,, π,·Δη], „ (Δ,,,., „>].
ηι in'

We then find that Eq. (26) yields the following ex-
pression for T3:

(26)

(27)

Substituting the correlation function of the displacements
along a chain, given by Eq. (16), we find that, if 2kF έ π
(see Note 2 added in proof)

(δ/2Γ3) (Δ2) |(Γ3) = 1. (28)

Since ξ (Τ) rises exponentially when the temperature Τ
approaches Tp/4, the temperature at which the long-
range order appears (T3) is close to Τ /4. However, if

b6 <S. 1, the fluctuations in the atomic displacements
remain large throughout the range Τ % T p . This means
that, in the correlation function

<Ψη,,Λ,ο) = Ψ? + ·̂  (m, n) (29)

the ratio is * 7 κ (0, 0) ~ 1 for b6 ~ 1 and Φ^Κ (0, 0)
< 1 for b6 ·< 1. The fall of K(m, n) when m = 0 and η
rises is no faster than in a purely one-dimensional case
and the correlation length of the function K(m, n) along
the chains is ξ)( i£ ξ (Γ). The correlation between the
chains, governed by the function K(m, n) with m £• 0,
appears — like the long-range order — at a temperature
~ T3. In fact, in this range of temperatures, the inter-
action between the chains in a distance equal to the cor-
relation length along the chains 6 ( Δ 2 ) | (Τ) becomes com-
parable with the temperature T. However, if b6 <§C 1,
the correlation length ξ χ of the function K(m, n) does not
become greater at any temperature (at Τ — 0, we have
to allow for the quantum fluctuation).

Thus, depending on the value of the parameter bjb/Tp,
we can either have an almost three-dimensional or
almost one-dimensional Peierls transition in quasi-one-
dimensional crystals. In the latter case, the energy gap,
long-distance correlations of displacements along the

chains, and the correlation between the chains are
practically negligible above the point T3 κ. Tp/4 and rise
strongly below this temperature. In the former case, we
have the usual gradual rise of the characteristics when
the temperature is reduced below T p .

5. CHANGES IN ONE-DIMENSIONAL PHONON
AND ELECTRON SYSTEM DURING PEIERLS
TRANSITION

a) Frohlich Hamiltonian. Even if we retain the static
molecular field approximation, we find that a Peierls
transition causes a considerable change in the phonon
spectrum in the range of quasimomentum of the order of
2kF, i.e., in the range q « π for a half-filled band. In
fact, the macroscopic displacements of atoms from their
equilibrium positions which occur below T p are equiv-
alent to the condensation of phonons whose wave number
is 2kp. However, such condensation is possible only if
the frequency of phonons with the wave number 2kF

tends to zero when the temperature Τ approaches T p .
Thus, because of the electron-phonon interaction, a
Peierls transition not only changes the electron but also
the phonon system. Therefore, in a self-consistent
analysis of Peierls transitions, we must use a Hamilton-
ian which describes electrons, phonons, and their inter-
action, i.e., the Frohlich Hamiltonian.

In the tight-binding approximation, we may assume
that only the resonant integrals b n n + χ are affected
when ions are displaced from their equilibrium positions.
The electron Hamiltonian derived allowing for the ion
motion is then

(30)

~ x («»+1 - "nf + γ Μ ('in? } ,

where b' is the derivative of the resonance integral with
respect to the interatomic distance, and m is the mass
of ions. Going over, as usual, to the phonon representa-
tion

we obtain the FrShlich Hamiltonian in the tight-binding
modelL2s l

=* Σ Ε (k) at, ,,α,,, „ + Σ

2 Σ

g (k
, q) = ib' [sin (fc-j- ? ) - s i n k] J / - ^ - , Ε (k) =

(32)
26cos k.

In the Hamiltonian (32), the frequencies o>q are cal-
culated ignoring the transitions of electrons between the
lattice centers and they correspond to the lattice vibra-
tions in the case when each ion vibrates together with
its outer electron. Since such a lattice originally con-
sists of neutral centers, it follows that &>„, considered
in the limit q — 0, gives an acoustic spectrum. The
interaction between electrons and phonons in the case
under consideration is essentially similar to the inter-
action between electrons and phonons in the deformed
potential model used for semiconductors.

b) Thermal changes in phonon spectrum above tran-
sition point. Renormalization of the phonon spectrum in
the model under consideration is understood to include
allowance for the interatomic motion of electrons on the
lattice vibrations. We shall show that such renormal-
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ization gives rise to a "soft" mode above T p with a
quasimomentum 2kF. We shall allow for the electron-
phonon interaction using the random phase approxima-
tion. We shall introduce the Green's functions of phonons
D(ci>, q) and electrons G(cu, k) exactly as was done i n [ 2 6 ] .
The random phase approximation corresponds to allow-
ance only for the polarization loops in the equation for
D(o>, q), i.e.,

D (ω, 9) = Do (ω, g) - Do (ω, q) Π (ω, q) D (ω, ?),

Π (ω, ?) = e-a>, fe-j),

ω + ω, — ίδ ) '

(33)

ο ( ω ' k> ω—£(*)-j-i6 + ω— £(*) —16 · "* ~ 1 + exp [(£ (Α) - ερ)/Τ\'

It follows from Eq. (21) that the polarization operator is
described by

Re Π (ω, σ) = s ' " ' ( ? / 2 ) f "k-"ktg dky " ZnbMian J Ε tk) — E (k-L-a)-i-ti>
o

ΙΐηΠ(ω, ϊ) (34)

sin 2 (y/2) (• ,.

0

The polarization operator governs the re normalized
frequencies fi(q), in accordance with the relationship

Ω 2 = ω|[1— Π(Ω, q)]. (35)

We can easily see that the real part of the polarization
operator becomes infinitely large for ω —• 0, Τ — 0,
and 2kF. In fact, in the one-dimensional case, the
momenta k close to k F satisfy the condition E(k ± 2kF)
- € F = -E(k) + e F and, at Τ = 0, ω = 0, the integral with
respect to k in the expression for Re Π has a logarithmic
singularity. In the isotropic three-dimensional case, the
polarization operator also has a singularity at q = 2kF

(this is the well-known Kohn anomaly in the permittivity
and phonon spectrum ^3 9 ]) but this singularity is weak
[only the derivative 9Π(0, q)/8q diverges logarithmically
for q — 2k F ]. In the one-dimensional case, the same

Kohn anomaly results in a logarithmic rise of Π(0, q) at
Τ = 0 for q — 2kF and, according to Eq. (35), it makes
the original system unstable because phonons of imag-
inary frequency are obtained when the temperature is
lowered. Thus, the Peierls transition is closely related
to the giant Kohn anomaly in the polarization operator of
a one-dimensional electron system.

If ω = 0, we find from Eq. (34) that

ΙηιΠ(0, ?) = 0, ReEl(0, q)
2b/T

*» ! . ( . . in ,/2). ( . . i n , / 2 ) f r w , x
i _ ( e r / 2 6 ) S I I . V 2)

(36)

It follows from Eq. (36) that, in the weak-binding case
(Tp <C b), when cos k F ^ 0, the contribution to Ren(0, q)

comes only from one of the two terms in the braces and
this contribution is greatest when q = 2kF. In the case
of a half-filled band (cos k F = 0), the same contribution
is made by both terms and this explains why the argu-
ment of the exponential function in the formula for T p

differs by a factor of two in the cases corresponding to
ρ = 1 (half-filled band) and to |1 - p | ~ 1 (band population
differing strongly from 1/2). When the degree of pop-
ulation of a band differs slightly from 1/2, i.e., for

small values of cos k F < Tp/B, the quantity Re Π (0, q)

reaches its maximum at q = n (doubling of the period)
and not at q = 2kF (see Note 3 added in proof).

It follows from Eq. (36) that, if a band is half-filled,
then

(37)

According to Eq. (35), the frequency of renormalized
phonons with a quasimomentum 2kF vanishes at
Π(0, π) = 1 and we again have Eq. (12) for the Peierls
transition temperature. Thus, the random phase ap-
proximation shows that, when the temperature ap-
proaches Tp from above, we obtain soft phonon modes
with a quasimomentum close to v; at Τ = Τ ρ , the phonon
frequency with q = ts vanishes, and below T p we should
observe macroscopic displacements of ions from their
equilibrium positions, corresponding to the condensa-
tion of phonons with q = n, in accordance with the re-
lationship

MNiss (π) (38)

The qualitative temperature dependences of the phonon
spectrum above T p are shown in Fig. 6 (see Note 4
added in proof).

c) Phonons in Peierls insulating phase. Below the
transition point, the lattice becomes statically distorted
in accordance with Eq. (38), the lattice period changes,
and the phonon spectrum becomes more complex be-
cause a unit cell of the new structure now contains sev-
eral atoms. It follows that the Brillouin zone has not
only an acoustic branch but also one (if the period is
doubled) or several (if 2kF £ ir) optical branches. C40"43]
If a band is half-filled, both acoustic and optical
branches appear below T p and at Τ = 0 the optical mode
frequency for g -C 1 is gu> (π) in the model with constant
density of states (Fig. 6d).

If ρ £ 1 (or, more exactly, if 2kF ^ π), we find that
there are several optical branches below T p . In this

T>TV

Zit

FIG. 6. Qualitative temperature
dependences of the phonon
spectra in the Peierls transition
case: a-b) extended zone scheme
(one atom per unit cell); c-d) re-
duced zone scheme (two atoms per
unit cell).

SI T=Ta

π Ζα

139 Sov. Phys.-Usp., Vol. 18, No. 2 L. N. BulaevskiT 139



case, the frequencies of two optical modes are equal to
zero at Τ = Τ» in the reduced zone scheme. It is im-
portant to note that one of them, corresponding in the
limit q — 0 to the motion of a charge-density wave
along the chains, retains its low frequency in the long-
wavelength limit at all temperatures below Tp. The
frequency of the second mode (corresponding to the
oscillations of the amplitude of the charge-density wave)
rises with decreasing temperature and approaches
gw(2kF). These conclusions follow from the calculations
of Lee, Rice, and Anderson. '-43] They consider collec-
tive modes in the jellium model below Tp (in the molec-
ular field approximation for the Frohlicn Hamiltonian
with a constant density of states) and find the fre-
quencies of two modes ft+(q), corresponding to oscilla-
tions of the amplitude and phase of a charge-density
wave. The mode fi-(q) corresponds, in the q — 0 limit,
to the glide of a charge-density wave along the chains.
Since the phase of this wave in the jellium model is not
locked in space, it follows that fi.(O) — 0 for all tem-
peratures below Tp and at T p we have

J2

(39)
where v F is the Fermi velocity and g is the dimension-
less electron-phonon interaction constant in the
Frohlich Hamiltonian. The U.(q) mode in the jellium
model is of the Goldstone type, i.e., its appearance is a
consequence of the breaking of the symmetry of the
original system with respect to a continuous group of
translations through any distance (above Tp, the system
is homogeneous, whereas, below T p a charge-density
wave with a period 2kF appears in the system). Nat-
urally, the frequency of this wave in the q f 0 case in
Eq. (39) is governed by the characteristics of the ion and
electron systems because the propagation of this wave
displaces ions and redistributes the electron density.

In a real lattice, where ρ is a rational fraction n/m,
the frequency of the corresponding collective mode
differs from zero below T p for q — 0 because the sym-
metry of the continuous group is no longer broken (in
other words, a charge-density wave is pinned to the
sites in the original lattice). However, the value of
k>rp = Ω-(0) decreases with increasing noncommeasura-
bility index m between 2kF and the period of the original

lattice 2ir, and ω τ « gm (A/b)m//2 ~ 1 w(2kF). The
origin of the modes Ω+ is explained in Fig. 7 with the aid
of the temperature dependences of the phonon spectrum
in the case of quadrupling of the period.

The finite value of ω τ also results from the Coulomb
interaction of charge-density waves in neighboring
chains and structure defects or impurities. A defect or
impurity is an obstacle to the free glide, along the
chains, of a Peierls wave of ion displacements and
either of them can pin a charge-density wave in space.

It is important to note that a low-frequency optical
mode Ω . is electrically active and may be excited by an
electromagnetic wave even when q — 0. This is due to
the fact that oscillations of the charge-density wave
reduce to a redistribution of charge within one unit cell
in the low-temperature phase of the crystal. Therefore,
the interaction of the mode Ω . with an electromagnetic
field is of dipole nature and the corresponding dipole
moment is governed by the characteristics of the elec-
tron and ion systems. If ω <ίί Δ and Τ = 0, the per-

TTn

n/z Zn q

s

FIG. 7. Qualitative temperature
dependences of the phonon
spectrum in the Peierls transition
with quadrupled period: a-b) ex-
tended zone scheme (one atom
per unit cell); c—d) reduced zone
scheme (four atoms per unit cell).
Modes: 1) acoustic; 2) Ω . ; 3) Ω + ;
4) optical.
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mittivity €|((ω) found allowing for the mode Ω- and elec-
tron transitions across the gap is of the form: t43-1

C|i (ω) = 1 + - (40)

The expression (40) gives rise to large values of the
static permittivity because of the mode Ω . and it also
gives rise to a peak in the absorption spectrum at a
frequency near a>rp.

Since all the conclusions relating to the mode Ω . are
obtained in the molecular field approximation, they
apply to a purely one-dimensional system and quasi-
one-dimensional crystals with bt <SC T^/b only at tem-
peratures below T3.

We must stress once again that the appearance of the
mode Ω . is associated with a charge-density wave below
T p . These two effects are specific to the Peierls metal-
insulator structure transition. Essentially, the low-
temperature phase of a Peierls insulator with 2kF ^ π
is, in many respects, similar to ferroelectric s, the
dipole moment is due to ions and collective-state elec-
trons.

d) Changes in electron spectrum and accuracy of
random-phase approximation. The interaction of elec-
trons with low-frequency phonons whose quasimomentum
is about 2kρ has almost the same effect as the scatter-
ing of electrons by steady-state lattice distortions with
wave numbers » 2kF. Thus, even above Tp, the electron
spectrum should exhibit a dip (pseudogap) in the density
of states near the Fermi surface. '-41-1 Below the transi-
tion point, the changes in the electron spectrum are due
to the scattering of electrons by static ion displace-
ments of Eq. (38) and by low-frequency phonons. There-
fore, a pseudogap exists in the electron spectrum also
below T p and approaches a true gap when the temper-
ature is lowered. Qualitatively, the electron spectrum
is similar to that obtained by Lee, Rice, and Anderson
in the static Ginzburg-Landau approximation.

Thus, using the random phase approximation, we find
that a pseudogap, a soft optical mode with q = 2kF, and
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a charge-density wave with 2k ρ Φ- π all appear at the
transition point Tp. When the temperature is lowered,
the amplitude of tne charge-density wave grows, an
energy gap appears, and an optically active mode with
a low-frequency remains even at Τ — 0 if q — 0 (pro-
vided 2kF / IT). U the period is doubled, the charge-
density wave and optically active low-frequency mode
are absent (see Note 5 added in proof).

All these results for a system of electrons and
phonons are obtained by applying the random phase
approximation to the electron-phonon interaction. The
perturbation-theory series diagrams corresponding to
this approximation are not small for g ! « l because
they diverge logarithmically at Τ — 0. However, in the
one-dimensional case, we find that, in contrast to the
three-dimensional systems, '•24-' the logarithmic di-
vergence affects not only the polarization branches in-
cluded in the random phase approximation but also the
corrections to the vertex part of the electron-phonon
interaction.I-33-' For example, a correction of the first
order in g2, shown in Fig. 8, diverges logarithmically
if the difference between the phonon momentum q and
2kF, i.e., q' = q -2kF, approaches ω/νρ. However, this
correction is small for ω <£, Vpq1. Since the range of
momenta q' < ω/νρ is very narrow, inclusion of the
corrections to the vertex part is not very important in
the Peierls instability.

The diagrams leading to the superconducting insta-
bility are also divergent. If the temperature of the
Peierls instability lies below α>ρ, we have to allow

simultaneously for the diagrams containing the Peierls
and superconducting instabilities. ^i*'i6^ in a system with
WD ~ T p ' w e c a n n a v e s t a t e s i n which the Peierls de-
formations and superconducting pairings are present
simultaneously. In this case, the equations are very
complex and can only be investiged in the "parquet"
approximation, corresponding to the self-consistent
method. The situation in the ω β > Τρ situation is far
from clear but there is little doubt that this case is of
greatest interest from the point of view of superconduc-
tivity.

If o)£j <SC Tp, the situation is much simpler (in the
case of KCP, we have ω^/Τρ « 0.25 because, accord-
ing to I-47-1 the displacements along the chain correspond
to d)D = 90°K and, as shown later, T p « 400—500°K).
In this case, the thermodynamic functions (including the
transition temperature Tp), electron characteristics,
and ion displacements can be found in the static approx-
imation discussed above. However, the temperature at
which a strong Kohn anomaly is observed can be found
only by considering the system of electrons and phonons.
If dip <iC Tp, the superconducting-type diagrams are
unimportant [-4β-1 and the Peierls transition can be de-
scribed simply by considering only those terms in the
perturbation theory series in g2 which correspond to the
polarization loops of the phonon Green's function D(w, q).
However, a quantitative description of the transition re-
quires a self-consistent solution of the equations for the
electron and phonon Green's functions. The need for a
self-consistent solution follows from the calculations of

FIG. 8. Graph showing a correction of the
first order in respect of g2 to the vertex part
of the electron-phonon interaction.

Rice and Strassler.[11] These authors calculated the
electron Green's function allowing for the soft mode and
then used this function to find the polarization operator
and instability temperature from the condition Π(0, 2kp)
= 1. The temperature found in this way was 0.28Tp.
This result shows that in order to calculate the polariza-
tion operator in the logarithmic approximation, we can
use zeroth Green's functions but allowance for non-
logarithmic corrections requires a self-consistent solu-
tion of the equations for G and D.

The author of this review is not aware of any such
calculations. Therefore, the temperature of the appear-
ance of a strong Kohn anomaly T k cannot be found more
accurately even in the case when ω,, <£i T_ (the order

of magnitude of is clearly the same as that of Τ ).

6. EXPERIMENTAL CONFIRMATION OF PEIERLS
TRANSITION IN KCP CRYSTALS

a) Structural changes and appearance of giant Kohn
anomaly. An investigation of the diffuse x-ray scattering
was carried out at room temperature on KCP and
Rb2Pt(CN)4Br0>23 · 1.3H2O crystals.[ 2 1 ] X-rays were
scattered in these crystals elastically or almost elastic-
ally and the change in the momentum was 2kρ (in
dimensionless units, 2kp is equal to τφ/c, where ρ is the
number of electrons per platinum atom in a chain). The
calculation demonstrated the sinusoidal nature of the
atom displacements, resulting in the appearance of a
superlattice (with a period 6c in KCP and 8c in the Rb
salt). The sinusoidal dependence of the displacements
confirmed the Peierls nature of the distortions and ex-
cluded the possibility of a structure with charge alterna-
tion of the type (5/6)Pt2* and (l/6)Pt4+. The diffuse
nature of the scattering indicated that there was no cor-
relation between the displacements of ions in different
chains. On the other hand, the thickness of the diffuse-
scattering layer indicated that the correlation length of
displacements along a chain was quite considerable
(about 400 A). The diffuse x-ray scattering failed to
distinguish the elastic from the almost elastic process
and, therefore, the results of these experiments failed
to indicate whether the displacement wave with the
momentum 2kp was static and corresponded to the long-
range order within a chain or whether it was due to low-
frequency phonons with momenta close to 2kp.

Studies involving inelastic scattering of neutrons '-17-'
clearly indicated that a giant Kohn anomaly was ob-
served in the phonon spectrum at room temperature.
The experimentally determined dependence of the phonon
frequency on the quasi-momentum is plotted in Fig. 9,
which shows clearly the "softening" of phonons with
momenta of about 2kF. On the other hand, there is also
a room-temperature peak in the almost elastic scatter-
ing of neutrons involving a change in the momentum

FIG. 9. Dependence of the phonon
frequency on the quasimomentum in
KCP at room temperature, deduced
from inelastic neutron scattering
data [47J.

141 Sov. Phys.Usp., Vol. 18. No. 2 L. N. BulaevskiY 141



along a chain by 2kF, [ 3 2 ] which is in agreement with the
results of the diffuse x-ray scattering.

Even these experiments carried out at room tem-
perature show that a "one-dimensional" Peierls transi-
tion (i.e., bx <3C Ti/b) occurs in KCP and that the transi-
tion temperature found in the molecular field approxi-
mation is Tp > 300°K. In fact, according to the results
given in Sec. 3 for bt 3> T2/b, the transition is practic-
ally three-dimensional and the existence of a consider-
able correlation length along the chains is incompatible
with the total absence of correlations between the chains.
If b1 ·< T2/b, this situation is possible in the temper-
ature range between T3 and T p .

The x-ray and neutron measurements below room
temperature confirmed the validity of this hypothesis.
At temperatures below 120cK (the measurements were
carried out down to 77°), the x-ray scattering became
less diffuse and the nature of this change indicated the
appearance of such three-dimensional correlations for
which the ion displacements in neighboring chains were
in antiphase. '-31·1 However, these measurements did not
yield the temperature dependence of the correlation
length across the chains but this dependence was ob-
tained from a study of the almost elastic scattering of
neutrons carried out in1-32-1 at temperatures from 300 to
6°K. Figure 10 shows the experimental results reported
in1-32-1 for the intensity of the elastic (or almost elastic)
scattering of neutrons involving the transfer of a mo-
mentum Q. At room temperature, the strongest scat-
tering involved the transfer of a momentum 2kF along
the chains. When the temperature was lowered, this
scattering became weaker but a peak appeared at
Q = (π/a, π/a, 2kF), which corresponded to such a three-
dimensional correlation of displacements in which atoms
in neighboring chains moved in antiphase. However, even
at 6°Κ the scattering with Q = (0, 0, 2kF) remained suffi-
ciently strong, i.e., the long-range three-dimensional
order was not established down to 6°K. A comparison of
the intensities for (0, 0, 2kF) and (π/a, π/a, 2kF) indicated
that the correlation length of the displacements in differ-
ent chains rose strongly at 120° Κ to 3a (a is the distance
between the Pt chains) and then remained practically
constant when the temperature was lowered down to 6°K.
The neutron measurements gave the correlation length
along the chains at room temperature, whose lower limit
was 20c.

Thus, low-temperature structure studies indicated
clearly that a "one-dimensional" Peierls transition with

o c c u r r e d i n t n e appearance of
three-dimensional correlations near 120°K corre-
sponded to T3 » 120°K and T p * 4T3 « 400-500°K.
According to the theoretical estimates given in[ 2 7 : i, the
correlation length at Τ = 300°K along the chains ξ Μ

should amount to about 7c for static distortions. The
x-ray data indicated that ξ ,, > 140c and the neutron-
diffraction data gave ξ n > 20c. This discrepancy could
be explained by the fact that the theoretical estimates
gave ξ || in the static approximation and this parameter
governed only the elastic scattering. The diffuse x-ray
scattering could not distinguish the elastic from the
almost elastic process and in the neutron measurements
the precision of the simultaneous determination of the
momentum and energy was insufficient for small energy
transfers. Therefore, the structure studies carried out
at room temperature probably gave information not on
the static ion displacements but on the critical scatter-
ing by phonons with q « 2kF, characterized by low fre-
142 Sov. Phys.-Usp., Vol. 18, No. 2
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FIG. 10. Temperature de-
pendences of the critical scatter-
ing in KCP [32] The abscissa on
the left gives the intensity scale
for (π/a, π/a, 2kp) in arbitrary
units and the abscissa on the
right gives the intensity for (0, 0,
2k F ).
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quencies and strong damping. Such phonons should
occur in the phonon spectrum due to the strong Kohn
anomaly at Τ = 300°K (Fig. 10). Clearly, the temper-
ature of this Kohn anomaly T k agreed approximately
with T p even in the "one-dimensional" transition case.

b) Change in electron state density. The appearance
of a gap in the Peierls transition could be deduced from
the temperature dependences of the optical properties.
In a brief communication,[48] Zeller reported that KCP
had a low-temperature energy gap 2Δ(0) « 0.18 eV.
Since Δ(0) = 1.76Τρ, it follows that Tp is about 500°K,
which is in full agreement with estimates of this quan-
tity deduced from the structure data.

The temperature dependence of the electrical con-
ductivity σ μ (Fig. 4) shows that the activation energy is
about 0.08—0.09 eV between 40 and 100°K. This value
is also in good agreement with the value of Δ(0) obtained
above [it should be noted that the gap is practically in-
dependent of temperature and equal to Δ(0) below
T3 « Tp/4].

According to theoretical ideas,[27:1 a "one-dimen-
sional" transition below T p produces a dip in the den-
sity of states on the Fermi surface; this dip becomes
significant only when the temperature is lowered to T3

and an energy gap appears in the region of T3. Informa-
tion on the appearance of a dip in the density of states
near e F (appearance of a pseudogap) can be obtained
by measuring those quantities which are governed
directly by the density of electron states on the Fermi
surface. These quantities include the paramagnetic sus-
ceptibility and electronic specific heat.

Measurements of the electronic specific heat are
possible only at low temperatures (the lattice contribu-
tion to the specific heat cannot be separated at high
temperatures). Measurements of the specific heat were
carried out in the range 1.5—6.5 °K by Greene and Little
on a crystal of K2Pt(CN)ClOo3 · xH2O.[49] According to
the diffuse x-ray scattering" data, the Peierls transition
should occur in crystals of this compound.[2ι] Greene
and Little failed to find any electronic contribution to
the specific heat and the precision of their experiments
indicated that the low-temperature density of states on
the Fermi surface p(0) did not exceed « 1034 erg^-mole'i

Measurements of the paramagnetic susceptibility χ
can give full information on the temperature dependence
of p(0) because

Rupp'-50-' found a small room-temperature shift of the
NMR frequency of the Pt 1 9 5 nuclei relative to the NMR
frequency of the insulating salt K2Pt(CN)4 · 3H2O and he
attributed this shift to the Knight effect. According to
the reports in^ 7 ' 2 7 ' 1 0 9 3 , this shift disappeared in the
range 100— 200°K and the NMR spectrum was inde-
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pendent of temperature in the range 1.5—110°K. A
somewhat different temperature dependence of 1.5—
110°K was deduced from ESR measurements on KCP
crystals.[5i : i Measurements of the resonance frequency
indicated that the anisotropy of the g factor was typical
of the d 2 band. According to Fig. 11, the intensity of

the signal, proportional to the paramagnetic suscepti-
bility, fell when the temperature was lowered from 130
to 65 CK (measurements at higher and lower temper-
atures were impossible because of the resonance line
broadening). These results made it possible to recon-
struct the temperature dependence of the density of
states p(0) in the investigated range (at 85CK the inten-
sity of the signal corresponded to 10 ° spins/cm3, i.e.,
to a paramegnetic susceptibility χ« « 1.2 χ 10"4 mole"1).
The conversion of the signal intensity to the value of
p(0) indicated that the density of states fell from 1.3
χ 1036 erg"1·mole"1 at 130°K to 0.4 χ 103β erg"1-mole"1

at 65 °K. In the tight-binding model, the density of states
in the original band could be expressed in terms of the
total band width (4b) with the aid of the relationship

p(0) = - (42)
nb sin np/2

and for p(0) « 1.3 χ ΙΟ36 we found that 4b « 0.6 eV.
Since the dip in the density of states was significant even
at 130°K, this value provided only a lower limit and, in
fact, the value of 4b could be 1.5—2 times greater. The
total band width in metallic platinum was 5 eV and it
should be of the order of 1-2 eV in KCP. The ESR data
were in good agreement with this estimate.

However, direct measurements of the paramagnetic
susceptibility did not agree with the ESR data. Accord-
ing to the experiments reported in1-52'53-1, only a strongly
anisotropic paramagnetic contribution was observed for
KCP. To within «10"5 mole"1, the susceptibility at right-
angles to the chains was negligible and the parallel sus-
ceptibility increased in accordance with the Curie law
with decreasing temperature and it was «10"1 mole"1 at
room temperature. Measurements of the susceptibility
reported in [ 5 2 ) 5 3 j were probably carried out not on
freshly prepared KCP crystals (these crystals were
known to lose water eventually and this would have af-
fected their structure: according to r 5 1 ] , the ESR signal
decreased with time). Undoubtedly, it would be desirable
to carry out additional measurements of the paramag-
netic susceptibility because this quantity should give
direct and unambiguous information on the appearance
of a pseudogap in the Peierls transition.

c) "Soft" optical mode Ώ.. Zeller[483 found that KCP
had a low-temperature absorption peak in the range
0.002-0.003 eV and he attributed this peak to the ex-
citation of the Ω_ mode. If we adopt this interpretation,
we find that ωτ » 0.002-0.003 eV. This low value of
the excitation energy of the optically active mode ex-
plains the high value of the low-temperature permit -

FIG. 11. Temperature dependence of the
intensity of the ESR signal of KCP (arbitrary
units) [S1]-

0 ·

tivity[43] (according t o [ e ] , the permittivity is e,, « 1200
at 4.2°K). In fact, it follows from Eqs. (39) and (40)
that if a>(2kF)« 0.006 eV (Fig. 9), g2 « 0.5, and e,,
κ 1200, we obtain ω τ « 0.002 eV, in agreement with the
observations reported in'-18·' (see Note 6 added in proof).

Thus, the existence of the Peierls transition in var-
iable-valence platinum complexes is not only supported
qualitatively by numerous experimental results but, in
the case of KCP, these results are in good quantitative
agreement with the theory of "one-dimensional" Peierls
transitions. However, the temperature dependence of
the paramagnetic susceptibility is not yet clear. Very
interesting information on the phonon spectrum in the
Peierls insulating phase should be obtained from studies
of the inelastic neutron scattering at low temperatures.

7. INFLUENCE OF LATTICE DISORDER ON
PEIERLS TRANSITION

The Peierls instability and associated Kohn anomaly '
in the phonon spectrum are due to the existence of a
Fermi step in the electron momentum distribution.
Hence, it is clear that disorder in the lattice, which
smears out the step in the momentum (but not in the
energy) space, should suppress the Peierls instability.
All the quasi-one-dimensional crystals investigated so
far, with the exception of the TTF-TCNQC54>55:1 and
TTT(TCNQ)2 salts, are characterized by an internal
disorder. As pointed out in Sec. 1, the disorder in
mixed-valence platinum complexes is due to the ran-
dom distribution of rare-earth ions and halogens. In
highly conducting TCNQ salts, the disorder is due to the
random orientations of asymmetric cations.1-6-1 Only~in~
the complexes formed by TCNQ with TTF and TTT are
the TTF and TTT cations fully symmetric. The lattice
disorder can only be due to structure defects. We shall
see later that the influence of disorder on the Peierls
transition is as strong as the influence of magnetic im-
purities on the superconducting transition. £S6-5e3
Clearly, the Peierls transition is not observed in highly
conducting TCNQ salts with asymmetric cations be-
cause of the disorder. However, the disorder can also
alter greatly the Peierls transition itself, if it occurs
at all.

a) Influence of disorder on Peierls transition tem-
perature in molecular-field approximation. We shall
consider the influence of the lattice disorder on the
Peierls transition in the molecular field approximation
in the special case when a band is half-filled. There is
then no redistribution of charge and the transition tem-
perature Tp can be calculated simply from the de-
pendence of the density of electron states p(u, E) on the
displacements of the lattice atoms u and the degree of
disorder of the lattice since the free energy can be ex-
pressed in terms of u using an expression which is a
generalization of Eq. (7):

F(u, T) = ~T j dEp(u, (43)

70 30 ItO 130
Temperature0 Κ

TJie problem is to determine the density of electron
states p(u, E) in a disordered lattice. There are doubts
about using approximate methods in the determination
of the density of states in a one-dimensional system so
that we shall consider only those disorder models which
allow us to determine the.density of states exactly. We
shall consider the Lloyd t*"1 and interrupted-strandi60^
models.
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In the Lloyd model, it is assumed that the resonance
integral b n n + χ in the Hamiltonian (2) is not a random
quantity but the potentials en are distributed at random
between the sites n. It is assumed that the distributions
of en between different sites are independent and are all
described by the Lorentz distribution

*<·> = ϊ φ Γ (44)
Clearly, this model is qualitatively adequate in the case
of platinum complexes because the disorder in the dis-
tribution of the Κ and Br ions gives rise to a random
potential acting on the conduction electrons in the chains.
In the case of the distribution given by Eq. (44), the
density of states p(u, E) in a disordered lattice (€x £ 0)
is expressed in terms of the density of states po(u, E)
in an ideal lattice (e1 = 0) using the relationship

P(».g) = -5T 3 ^ ( / -W ' + e; (45)
— 00

and the density of states po(u, E) in a lattice with a
doubled period is known from Eqs. (5) and (16). In the
Lloyd model, the free energy of electrons is infinite be-
cause of the weak fall of the Lorentzian distribution
function (44) in the limit e — °°. However, this diver-
gence is unimportant because that part of the free elec-
tron energy which depends on the displacement u, i.e.,
8F/9u, if finite. The divergence observed at high values
of Ε in Eq. (43) can be removed physically by allowing
for the ion energy in the same potential field en. Cal-
culations similar to those given in Sec. 2 yield the
following equation for the transition temperature [com-
pare with Eq. (12)]

de ε th (Ε/2Γ) = 1. (46)

Equation (46) can be transformed to the digamma
function ψ(χ)

•••£-*•• ( f ^ ) - * ( 4 · ) · r - - £ . - « · . „ (47)
which demonstrates the full analogy between the in-
fluence of the lattice disorder on the Peierls transition
and the influence of magnetic impurities on the super-
conducting transition.[β1] When ex increases, the transi-
tion temperature T p falls and the Peierls instability

disappears when ej = e l c = Δ(/2, where Δο is the
Peierls gap in an ideal crystal at Τ = 0, which is equal
to 7rTp0/r.

The interrupted-strand model is applicable if a
quasi-one-dimensional crystal contains structure de-
fects or impurity atoms which stop the conduction elec-
trons of energies lying close to the Fermi surface (for
example, impurity molecules with filled shells). In the
Hamiltonian (2), this situation corresponds to the case
when en = 0 but the resonance integral is a random
quantity which assumes the value 0 for some neighbor-
ing atoms η and η + 1, whereas, for other neighbors its
value is the same as in an ideal lattice. A linear sys-
tem of atoms then splits into a number of pieces and the
Peierls transition in each of these pieces occurs inde-
pendently at a temperature T p which depends on the
number of atoms in that piece. In a piece with Ν atoms,
the electron spectrum considered in the tight-binding
approximation is given by Eq. (6) after the doubling of
the period. For a finite' value of n, the discrete nature
of the spectrum weakens the Peierls instability and when
Ν is reduced, the transition temperature falls and tends
to zero. Next, taking Ν equal to a doubled odd number
(when e F = 0), we find that Eqs. (6) and (7) give an equa-

tion which governs the dependence of the parameter Δ
on T:

IV/2

We can find the transition temperature and gap as a
function of Ν from Eq. (48) by applying the Poisson
summation formula. *57^ The Peierls transition does not
occur in the interrupted-strand model if Ν < Nc

= 2b/Tp0.

The models discussed above are different in respect
of the nature of the disorder. To compare the results
which follow from these models and, particularly, the
Peierls transition criteria, we shall introduce a uni-
versal quantity for one-dimensional disordered systems
such as the electron localization length, which can be
calculated if we know the density of states.[62:1 In the
one-dimensional case, this quantity replaces the con-
cept of the mean free path. Clearly, the localization
length I, expressed in units of the interatomic distance
c, is identical with Ν in the interrupted-strand model.
The localization length in the Lloyd model is calculated
by Thouless[e2] and this length at the center of the orig-
inal band is 2b/e1 when the electron energy is Ε = 0 and
ex <C 2b. The parameters ex and eN = 2b/N, expressed
in terms of the localization length I and representing the
disorder in the Lloyd and interrupted-strand models,
are the same for both models and equal to 2b/TpQ. The
critical localization length in these models has very
similar values 4yb/nTp0 = 1.13(2b/Tp0) and 2b/Tp0,

respectively. Thus, the Peierls transition criterion, ex-
pressed in terms of the localization length,

'>'«*-£. {49)

is applicable to any disorder. On the other hand, the
ratio Δ/Τρ may differ in either direction from the
value η/γ, depending on the nature of the disorder.

Experimental data indicate that the disorder has a
weak influence on the Peierls transition in KCP. This
means that, in the case of KCP, we have I 2> 15
(2b > 0.3 eV, T p 0 κ 500°Κ) and the fluctuation potential
of the Κ and Br ions is much less than 0.05 eV. This
smallness of the fluctuation potential is very surprising
because the external Pt electrons cannot screen the
charge of the Κ and Br ions over distances of the order
of the interatomic spacing. However, such screening
may be due to the dipoles of the water molecules. A
strong influence of these molecules on the screening of
the Κ and halogen ion potentials was observed by Butler
and Guggenheim[63:1 in a study of the nuclear magnetic
resonance of the water molecules in K2Pt(CN)4Cl0>3

• xH2O crystals. The screening role of the water mole-
cules explains why the properties of the crystals of
variable-valence platinum complexes change very
greatly when water is lost (the conductivity falls
strongly and the ESR signal disappears; '-51·1 the para-
magnetic susceptibility in a field parallel to the chains
begins to rise with decreasing temperature, in accord-
ance with the Curie lawC52'53^. In fact, the screening
action of the water molecules shows why, when these

; molecules are lost, the electrons may be localized
spatially because of an increase in the random potential
of the Κ and halogen ions. Such localization causes
those changes in the properties of crystals which are
found experimentally after dehydration of the samples
(see Note 7 added in proof).

b) Influence of disorder on low-temperature elec-

144 Sov. Phys.-Usp., Vol. 18, No. 2 L. N. BulaevskiT 144



trical and magnetic properties of crystals. It is im-
portant to note that the Peierls transition in a disordered
system does not produce a gap in the electron spectrum
even at very low temperatures because the density of
states does not vanish due to the disorder even in the
Peierls gap range from — Δ Ο to Δ,,, where only a dip in
the density of states p(E) (pseudogap) is observed. For
example, at the center of the original band in the Lloyd
model at Τ = 0, we have po(0) = e/bA,, < po(0). The re-
duction in the transition temperature T p is essentially
due to the appearance of electron states in the Peierls
gap region.

Electron levels inside the pseudogap govern the con-
ductivity σ(Τ) at low temperatures and, therefore, the
conductivity at Τ < T3 does not decrease exponentially
with decreasing temperature, in contrast to the opposite
behavior of the Peierls transition in an ideal lattice.
Since levels inside the pseudogap correspond to local-
ized states, the conduction may be of the hopping type.
Theoretical analyses of the hopping conduction in quasi-
one-dimensional systems at low temperatures have
predicted the following temperature dependence of the
electrical conductivity: C64-68!!

, e-To/iT

where T o is a constant; the values of
(50)

are calcu-o ; | | χ

lated allowing for the electron hops between the chains.3'
The dependence (50) indeed describes well the low-tem-
perature data on the electrical conductivities σ u and σ±
of KCP below 90°K.i65^ However, at low temperatures,
the conductivity of KCP at frequencies of 1010 Hz or
higher is from three to five orders of magnitude higher
than the dc conductivity[6] (this is also true of other
quasi-one-dimensional crystals with a higher permit-
tivity). The cause of this very strong frequency dis-
persion at relatively low frequencies is not yet clear.

The levels inside the pseudogap correspond to
spatially localized states. The Coulomb repulsion be-
tween electrons with opposite spins in such states may
give rise to unpaired localized electrons at low tem-
peratures. The appearance of such unpaired electrons
implies the appearance of a Mott gap for one-electron
excitations. The Peierls transition, which reduces the
density of states at the Fermi surface, enhances the
role of the Coulomb repulsion of electrons and favors
the Mott transition at low temperatures. If the inter-
action between such unpaired spins is weak, the transi-
tion to the Mott insulating state should increase the low-
temperature paramagnetic susceptibility in accordance
with the Curie law '•"̂  (interaction between localized
spins is responsible for the slower rise of the sus-
ceptibility t68-1). Therefore, measurements of the para-
magnetic susceptibility of KCP at low temperatures
should help in understanding the role of the disorder in
these crystals.

Thus, a deviation of the fall in conductivity with tem-
perature from the exponential law, observed at the low-
est temperatures (below «40°K), is an indirect indica-
tion that the disorder in the distribution of the Κ and Br
ions still influences the physical properties of KCP but
the influence is weak. Therefore, additional experi-
mental studies of this influence are needed and these
can be made, for example, by measuring the paramag-
netic susceptibility at low temperatures. Undoubtedly,
the most interesting information on the influence of
disorder on the Peierls transition in KCP can be ob-
tained by a controlled introduction of impurities or

structure defects and simultaneous investigation of the
characteristics of the Peierls transition.

8. PROBLEM OF EXISTENCE OF PEIERLS
TRANSITIONS IN TCNQ SALTS

a) Highly conducting TCNQ salts with asymmetric
cations. One-dimensional motion of electrons in these
compounds is possible because of electron transitions
between TCNQ molecules which form parallel piles
separated by cations with completely filled electron
shells. A detailed discussion of the properties of such
crystals is given in Shchegolev's review[ 6 : ! and we shall
only consider the new experimental results which sup-
port the occurrence of the metal-insulator transition in
compounds of this type. Sufficiently convincing data are
now available which demonstrate that this metal-in-
sulator transition occurs at temperatures below ~ 20°K
in TCNQ salts with N-methylphenazine (NMP), quinoline
(Qn), and acridine (Ad) cations. A jump in the specific
heat at T o = 7 and 14°K is observed in the NMP and Qn
salts, respectively.[69:1 Measurements of the far in-
frared absorption in the NMP and Qn salts indicate that
an energy gap exists in these compounds at low tem-
peratures. For example, the gap in NMP-TCNQ at
4.2°K is «50 cm"1 and gradually disappears at temper-
atures above «15oKC 7 0'7 i : i [the gap in Qn(TCNQ)2 is about
60 cm' 1 ] ;

The metal-insulator transition is also supported by
measurements of the magnetic susceptibility of the
NMP, Qn, and Ad salts, [ 6 8>7 2 : i whose temperature de-
pendence changes near To. The susceptibility χ ρ of these
salts below T o rises in accordance with the law Xp 0 0 ! " "
with 0 < a < 1. The dependence XD(T), dependence of the

the magnetic moment on the field and temperature, and
temperature dependence of the electronic specific heat
in the range Τ < Τ,,1-69-1 can all be described quite ac-
curately by the model of localized spins with the Heisen-
berg antiferromagnetic interaction if the parameter of
this interaction J is a random quantity and we can
assume arbitrarily small values with a probability den-
sity W such that W(J) — 0 when J — 0. The random
nature of the interaction may be primarily due to the
disorder in the distribution of the cations because the
low-temperature properties of the crystals are prac-
tically independent of the preparation method [these
properties are the same for Qn(TCNQ)2 and AdCTCNQ)2

crystals prepared and investigated by different groups
of authors C68'73^]. The monotonic rise of the suscepti-
bility below T o exhibited by these salts excludes the
possibility of the Peierls transition at the point T o and
supports the hypothesis of a transition to a Mott dis-
ordered insulator state.

In the Mott-Hubbard ordered insulator state, a one-
dimensional electron system is unstable in the presence
of lattice distortions, which make the ground state
diamagnetic. In fact, the ground state and all the ex-
cited magnetic states of a one-dimensional electron
system with a half-filled band can be described in the
Mott-Hubbard insulator phase by the Heisenberg
Hamiltonian for a linear chain of spins 1/2. Such a spin
system, like a one-dimensional system of free electrons
with a half-filled band, is unstable when the period is
doubled and this gives rise to a gap in the triplet-state
spectrum. [ 7 4 ] If the band is initially not half-filled, the
situation is more complex'. However, theoretical cal-
culations C46: i suggest that, in this case, the Peierls

145 Sov. Phys.-Usp., Vol. 18, No. 2 L. N. Bulaevskn 145



transition is associated with the Mott localization of
electrons due to their Coulomb repulsion. Therefore, it
is not surprising that the majority of moderately con-
ducting TCNQ complexes are Mott insulators with
Peierls distortions t 6 ] (the activation energy of conduc-
tion of these complexes is much higher than the gap in
the magnetic excitation spectrum). The absence of a
Peierls instability of this type in highly conducting
TCNQ salts with asymmetric cations can be explained
by the disorder of the cation orientation, in agreement
with the results presented in Sec. 7.

b) TCNQ salts with symmetric cations. Two TCNQ
salts with symmetric cations are known: TTF-
TCNQ [ S 4 > 5 5 ] and TTT(TCNQ)2.

C75] These salts differ
from the TCNQ salts with asymmetric cations not only
by the cation symmetry but also by the presence of
outer electrons in the anion and cation chains. The re-
sults of x-ray structure analyses indicate that cations
and anions in TTF-TCNQL m l and TTT(TCNQ)2 crystals
form piles along which electrons can move. There are
two outer electrons per molecule in these compounds,
governed by the chemical formula, and these electrons
are distributed between both chains. Experimental
studies of the photoelectric emission indicate that some
of the electrons are transferred from TTF to TCNQ
and less than one electron is transferred per one TCNQ
molecule. [ 7 7 ) 7 8 ]

The room-temperature conductivity of TTF-TCNQ
has a record value for quasi-one-dimensional com-
pounds (up to 1000 n^.cm" 1 according t o [ 5 4 ' 7 9 ] ) . When
the temperature is lowered-from the room value to 60°K,
the conductivity of typical crystals rises by a factor of
10—351-54'55'74-1 but some samples investigated by the
Pennsylvania group[ 5 4 : i are reported to exhibit a rise
by a factor of 500. Further cooling below 60°K strongly
reduces the conductivity, i.e., the metal-insulator tran-
sition occurs at Τ = 60°K. The hypothesis of the Peierls
nature of this transition is put forward in C 5 4 ] and the
giant rise in conductivity before the Peierls transition
is attributed to superconducting fluctuations.4' The con-
ductivity investigations indicate that the ordinary con-
tact measurements may give rise to errors in the case
of strongly anisotropic systems [ 8 0 ] and the giant rise
in conductivity reported in [ 5 4 : i is doubtful. Contactless
microwave measurements of the conductivity indicate
that the σ(60°Κ)/σ(30Ο°Κ) ratio is 10-25, depending on
the sample. '-81-1 However, one cannot exclude the pos-
sibility that the Pennsylvania group workers [ 5 4 ] have
been able to grow purer crystals which do indeed ex-
hibit a rise in conductivity by a factor of several hun-
dreds. [ 8 2 ' 8 3 ]

The anisotropy of the conductivity of TTF-TCNQ
reaches «100 at room temperature and rises to ΙΟ3—104

at about 60"K.C80'82'83-1 The quasi-one-dimensional
nature of the electron motion is also supported by the
optical data.[ 8 4 > 8 5 : l At frequencies above 0.4 eV, the
electrons in TTF-TCNQ behave as if they were free and
give rise to a metallic plasma reflection edge (plasma
frequency Ruip « 1.4 eV).

The transition to the insulating state at temperatures
below 60°K is confirmed by measurements of the
specific heat[ 8 6 : i and thermoelectric powerC 8 7 ] (the low-
temperature specific heat has no linear term and the
thermoelectric power changes its sign at 60cK, becom-
ing negative at temperatures Τ < 60°K). In the region
of 60°K, there is also a jump in the specific heat, '8B1

whose value is not in conflict with the Peierls nature
of the transition.

The paramagnetic susceptibility of TTF-TCNQ falls
monotonically when the temperature is lowered and
between 360 and 70°K this fall is slow, i e 9 1 whereas it
becomes exponential below 60°K, '-90-1 This temperature
dependence of the susceptibility excludes the possibility
of the Mott transition at 60°K and supports the Peierls
mechanism. The Peierls rather than the Mott transition
follows also from the pressure dependence of the transi-
tion temperatureI-91-' (Tp rises with increasing
pressure).5' Infrared optical data obtained at low tem-
peratures can also be interpreted by assuming the
Peierls transition. ^92-1

However, the interpretation of the experimental data
for TTF-TCNQ is complicated by the fact that there are
two conducting chains (TTF and TCNQ) in crystals of
this compound. The relative contributions of these
chains to the physical properties of the system are not
known and theoretical models used to explain the meas-
urements results are far from unambiguous (in a sys-
tem with two types of conducting chain, we can have
metal—insulator transitions which are neither of the
Mott nor of the Peierls type^93-1). Recent experimental
results contain information on the state of electrons in
the TTF and TCNQ chains. A simultaneous analysis of
the ESR data for the temperature dependence of the g
factor and of the static magnetic susceptibility shows
that the TCNQ chains are in the Mott insulating state
with Peierls distortions throughout the investigated tem-
perature range Τ < 300°Κ and only the TTF chains are
metallic above 60°K.[ 9 4 ] (The same conclusion was
drawn earlier in1-89-1 from the magnetic susceptibility
data). Unambiguous confirmation of the Peierls nature
of the transition at 60°Κ could be obtained from struc-
ture studies of these crystals below and above 60cK.
However, the x-ray data available so far show no
changes in the structure at 60°K[95:i (TTF-TCNQ
crystals are small, 2 χ 0.2 χ 0.3 mm, and this makes it
difficult to carry out sufficiently precise structure
studies). A strong influence of impurities and lattice
defects on the transition temperature would be an in-
dication of the Peierls transition in TTF-TCNQ. How-
ever, the replacement of TTF with the asymmetric
ATTF cations'-54'81-1 has hardly any influence on the
transition temperature. This temperature is practically
constant for all the TTF-TCNQ samples obtained so far
(see Note 8 added in proof).

The properties of TTT(TCNQ)2 are, in many respects,
similar to the properties of TTF-TCNQ. According
to'-115^ a conductivity peak (in the region of 90°K) is also
exhibited by TTT(TCNQ)2 and the peak conductivity ex-
ceeds the room-temperature value by a factor of about
3.5. However, the rapid fall in the susceptibility of this
compound occurs not in the vicinity of 90°K but near
55°K (the susceptibility falls slowly between 300 and
55°K).

9. EXISTENCE OF PARACONDUCTIVITY
ABOVE PEIERLS TRANSITION

In the ground state of a Peierls insulator, the total
electrical current is naturally zero. The question as to
whether metastable current states can exist in a one-
dimensional system of electrons and phonons below T p

was raised by Frohlich.11223 He showed that, in the
jellium model, there could be states in which electrons
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would have a nonzero total momentum and, at the same
time, all the one-electron excitations would be separated
from these states by the Peierls gap. In these meta-
stable states, the electrons should move together with a
displacement wave so that the transition parameter Δ
should depend on time, i.e.,

(n, /) = Ι Δ (51)

where v s is the electron velocity. The presence of a
gap in the one-particle spectrum prevents the scattering
of electrons by impurities and the current in these
states does not decay.

Calculations reported in1-41-1 confirm essentially the
correctness of these representations for the jellium
model, and the collective mode Ω-, found by Lee, Rice,
and Anderson, should correspond to metastable current
states. We have a>p = 0 in the jellium model and the
conductivity σ (ω), according to Eq. (40) for £||(a>), has
the form of the delta function at ω = 0. In a real lattice,
the pinning of charge-density waves (Sec. 4) tends to
shift the frequency of the Ω . mode to ω^ φ- 0 in the limit
q —» 0 and a nondecaying constant current does not ap-
pear in the system.

BardeenC96:i suggested using the Frohlich model in
the explanation of the appearance of a conductivity of
TTF-TCNQ before the Peierls transition. His argu-
ments can be summarized as follows. In a real crystal,
the Frdhlich current states decay. Therefore, the true
superconductivity is impossible in the Peierls system.
However, the current states which appear due to fluctua-
tions near T p may increase considerably the conduc-
tivity at temperatures above Tp. Estimates based on
the molecular field approximation obtained by Allender,
Bray, and Bardeen11971' indicate that, in the case of
TTF-TCNQ, this paraconducting contribution to σ in-
creases approximately by a factor of six between room
temperature and 60 °K and this can explain the "typical"
increase of σ by a factor of 10—20. Patton and Sham [ 9 8 ]

and Strassler and Toombs '-99-1 estimated the corrections
to the normal conductivity on approach to T_ from above
and they did this using the diagram technique similar to
that employed by Aslamazov and LarkinC l 0 0 ] in the cal-
culation of the fluctuation conductivity of supercon-
ductors above T c . Their calculations demonstrated that
the increase in σ in the limit Τ —- T p should occur when
the band is not half-filled. However, there is as yet no
microscopic theory of the Peierls transition analogous
to the BCS theory for superconductors. Therefore, we
are always left with the question of the magnitude of the
terms which are ignored in the calculations reported
i n [97-99] W

crease in the conductivity on approach to T 3 although the
Ω - mode does exist in this crystal, according toC 4 8-'.
Therefore, the question of the distance and magnitude of
the paraconductivity in the Peierls transition is far from
clear in the experimental and theoretical aspects (see
Note 9 added in proof).

10. CONCLUSIONS

There are still many theoretical and experimental
aspects of the Peierls transition which are not clear and
this also applies to the properties of mixed-valence
platinum-group transition-metal complexes. The out-
standing questions include:

a) The theoretical problem of the influence of the
Coulomb repulsion of electrons on the Peierls transi-

tion and of the relationship between the Peierls insta-
bility and the Mott transition (the first steps in inves-
tigating these problems can be found inl-25' **^e»101^).

b) Theoretical and experimental problems of the
paraconductivity above the Peierls transition temper-
ature (see Note 9 added in proof).

c) Experimental aspects of the paramagnetic sus-
ceptibility of KCP.

d) Experimental aspects of the influence of the dis-
order in crystals on the Peierls transition.

e) The theoretical question of the cause of the strong
dispersion of the conductivity of KCP (and other highly
conducting quasi-one-dimensional compounds) at fre-
quencies below 1010 Hz.

There is no doubt that the properties of mixed-
valence platinum complexes are associated mainly with
the Peierls transition.

In the case of TCNQ complexes with symmetric
cations, the situation is less definite. It is possible that
the transition which occurs in these compounds is not
of the Peierls type.

The possibility of superconductivity in quasi-one -
dimensional systems still remains open in the theoret-
ical (and, naturally, experimental) sense. Generally
speaking, the Peierls instability is a stronger effect
than the Cooper instability because the Peierls transi-
tion is governed by the whole electron band, whereas
the superconductivity is due to a range of energies of
the order of ω-Q near the Fermi surface. Therefore, in
systems with ω β < Τ_, the superconductivity is clearly
impossible and one can hope for the superconductivity
(including the high-temperature effect) only in the case
of quasi-one-dimensional crystals for which u)D > T p .
In this case, the Peierls transition may be either com-
pletely suppressed or may cooperate with the super-
conducting transition. C**-*»]

The suppression of the Peierls instability in favor of
the superconducting transition may be caused by elec-
tron transitions between chains, which violate the con-
dition (19), by the presence of many bands on the Fermi
surface with different values of kp, E3»] and, possibly,
by the disorder in a crystal. The first possibility ap-
plies to systems in which electron transitions between
chains are fairly rapid (b2 ~ T p ; see Sec. 3b) and this
leads to the consideration of anisotropic three-dimen-
sional systems (see Note 10 added in proof).

The many-band case raises no theoretical doubts but
the question remains as to whether it can be realized
experimentally. In the case of the simplest method of
suppressing the Peierls instability by introducing im-
purities or structure defects, it is not clear to what
extent there is still a chance of the superconductivity
because the disorder in one-dimensional systems (which
distinguishes them from the three-dimensional case)
results in the localization of electrons. If the Peierls
instability is in some way suppressed, one may expect
a high value of the critical superconducting temperature
T c in the case of quasi-one-dimensional compounds with
the phonon mechanism of the superconductivity as-
sociated with some features of the density of states
typical of the electron spectra of one-dimensional sys-
tems (see, for example, 1 0 2-1).

There is another way of approaching the supercon-
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ducting state in quasi-one-dimensional systems which
involves an increase in the frequency of excitations,
whose exchange attracts the conduction electrons.
Clearly, it is unlikely that the value of wD can be in-
creased significantly (for almost all the quasi-one -
dimensional crystals we have ω β < 100°K). In this
sense, the exciton superconductivity mechanism pre-
sents a unique opportunity.[103: i However, this mech-
anism can be effective only in systems in which the
attraction of conduction electrons, because of the ex-
change of electron excitations, is not weaker than the
attraction due to phonons. The difficulties in attempting
to achieve this situation in the Little model are basically
similar to those which arise in the case of layered com-
pounds with molecules. '-30-1

However, we must point out that the rapid develop-
ment of the physics of quasi-one-dimensional crystals
is stimulated primarily by the exciton superconductivity
ideas. There is little doubt that this approach will be
fruitful also in future.
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meetings with them have helped in clearing up many of
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also thanks A. F. Garito for communicating privately
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fore publication and V. L. Ginzburg for reading the
paper in the manuscript stage and valuable comments.

NOTES ADDED IN PROOF

1. Strictly speaking, a redistribution of the charge
also occurs when the period is doubled, '-1 0 5·1 but it is
weak because of the smallness of the overlap of the
Wannier functions wn(r) of neighboring sites, i.e., be-
cause of the smallness of the product wn(r)wn + ^(r)

compared with |wn(0)|2.

2. DieterichC l 0 6 ] obtained by a somewhat different
method an equation for T 3 similar to Eq. (28).

3. Similar results were obtained in the tight-binding
model by Leung. ^107-1 A detailed description of the be-
havior of a one-dimensional system of electrons with a
half-filled band is given i n C l 0 7 ' .

4. The dynamics of phonons in the Peierls transition
in quasi-one-dimensional crystals is discussed in
detail inC 1 O B ] .

5. In a quasi-one-dimensional system of molecules,
the Peierls instability may be a consequence of the
interaction of electrons with intramolecular vibrations.
In this case, a charge-density wave appears below T p

even when the period is doubled and an optical mode
frequency go>(ir) is optically active.tl05-1

6. More detailed results on the Frohlich collective
mode Ω - are given in'-110-1.

7. According t o t u l ' i u : i , the Κ ions are distributed at
random and a unit cell of KCP contains one Κ atom and
two Pt atoms at inequivalent sites. This inequivalence
is weak and hardly alters the interpretation which
follows from a unit cell with one Pt atom.

8. It is possible that the Peierls instability in TTF-
TCNQ is not due to displacements of the TTF or TCNQ
molecules along the walls but to a libration mode^113'114-1

or intramolecular TTF or TCNQ vibrations. L n s l

9. The inclusion of the diagrams corresponding to
the pinning of the fi_ collective mode by impurities pre-
dicts a fall in the fluctuation conductivity on approach of
T c to Tp from above.C u e : i Further experimental in-
formation on the magnitude and origin of the peak in the
dependence σ(Τ) is reported for TTF-TCNQ i n C m : i .

ΙΟ. The superconductivity in crystals exhibiting
charge transfer from large organic molecules (such as
TCNQ or TTF*) is more likely in the non-Peierls in-
stability case (b2 > Tp) than in the quasi-one-dimen-
sional situation. It follows that, to obtain organic super-
conductors, one should try to reduce rather than in-
crease the "one-dimensional nature" of the crystals. In
organic systems with metallic conduction and free of
Peierls instability, the superconducting state may be
prevented only by the Coulomb repulsion of electrons.
However, in the case of TTF-TCNQ, even when the band
width is «0.1 eV, the Coulomb repulsion is unimportant
(because of the large dimensions of the molecules and
their strong polarization by conduction electrons).
Therefore, it is quite realistic to expect the supercon-
ductivity of crystals made up from molecules of this
type and characterized by b2 > T p . A strong interaction

between conduction electrons and intramolecular vibra-
tions (whose frequencies reach 0.1 eV) may give rise to
fairly high values of T c of such systems.

''it should be noted that structure transitions of this type have been
observed in layered dichalcogenide compounds [ 3 6 ] .

2'ln the case of the hopping motion of electrons between the chains,
the parameter bi should be replaced withn/τι, where rj_ is the time
for an electron jump between neighboring chains.

3)The following simple considerations lead to the dependence of Eq.
(50). If an electron hop occurs between centers separated from one
another by a distance R, it follows that σ <χ exp[-aR - (ΔΕ/Τ)],
where ΔΕ is the difference between the energy levels of these centers.
The greater the distance R, the more likely we are to find two levels
with similar energies and ΔΕ α R'3 in the three-dimensional case. The
optimization of σ with respect to R gives Eq. (50).

"'Subsequent theoretical calculations failed to confirm this hypothesis.
5)In the Mott transition, the paramagnetic susceptibility tends to a

constant value or rises when the temperature is lowered [68] and Tp
decreases with rising pressure.
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