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Various formulations of problems in the statistical theory of diffraction and wave propagation are
discussed: excitation of fields by random sources, diffraction of partially coherent waves, diffraction of
waves by bodies having random shapes or positions, and diffraction and propagation of waves in a
randomly inhomogeneous medium. For each of these types of problem, physical problems from acoustics,
radio astronomy, radiophysics, optics, and other branches of physics are given as examples, and the
methods (mostly approximate ones) most widely used for solving them are indicated. Among the problems
discussed are those of the diffraction content of the radiation transport equation and the back scattering
enhancement effect observed in the diffraction of waves by small bodies immersed in a randomly irregular
medium. Examples of statistical problems of mixed type are also given.
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1. INTRODUCTION

In the theory of diffraction, as in other branches of
physics, problems are frequently encountered that in
principle require a statistical approach. In these prob-
lems one is interested rather in certain averaged quan-
tities than in the actual values in particular instances.
As in statistical physics, even if we could predict all the
actual values ("microstates") of the diffraction field, we
would still resort to an averaged description, if only be-
cause the actual values of the scattered field in indi-
vidual instances are virtually never repeated and hence
are of no interest in themselves. The statistical
moments and probability distributions, on the other hand,
are stable characteristics of the stochastic field, and it
is they that enable us to obtain a natural and adequate
description of stochastic processes.

The statistical problems of diffraction theory are
extremely varied. They encompass a multitude of phys-
ical objects and are frequently closely associated with
applications. On first encountering these problems, one
may get the impression that he is dealing with a multi-
tude of diverse problems. This impression is reinforced
by the fact that many different methods and approxima-
tions are used in diffraction theory to solve both dynam-
ical and statistical problems. Actually, however, the
pattern becomes less confused if we classify the statis-
tical diffraction problems according to their physical
formulation, and not according to the mathematical
methods used to solve them nor according to the tra-
ditional "branch" of physics (optics, acoustics, radio-
physics, etc.) to which they belong. In this review we
shall attempt to systematize statistical diffraction phe-
nomena, limiting our discussion to linear and classical
(nonquantum) problems of the statistical theory of waves.

2. CLASSIFICATION OF STATISTICAL
DIFFRACTION PROBLEMS

It is natural to tie the classification of the statis-
tical phenomena to the formulation of the dynamical
problems of diffraction theory. A rather broad class
of these problems are formulated as follows.

Let a body (or a system of bodies), bounded by the
surface S, lie in a medium (homogeneous or inhomo-
geneous) in which waves of some definite physical type
(electromagnetic, acoustic, elastic, spin, etc.) can
propagate. We denote the corresponding linear wave
operator (this is usually a differential operator—less
frequently, an integro-differential operator) by L, so
that in a region free of sources, the wave equation has
the form

Lu = 0, (1)
in which u is the field quantity, which may be a scalar
or a vector (in the case of a vector field, L is a tensor
operator).

The primary wave that strikes the body S (Fig. 1) is
either produced by specified real sources q or is ex-
cited by virtual sources, in which case one assumes
that the specified quantity is, for example, the field u0
of the initial wave (which is most frequently a plane
wave). The unknown quantity to be found is the scattered
diffraction field. Of course, in addition to the sources,
the wave equation, and the shape of the boundary surface
S, one must also specify certain homogeneous boundary
conditions on S as well as the conditions at infinity (the
radiation conditions).

The same equation (1) and the same boundary con-
ditions also serve for a statistical problem, but now

118 Sov. Phys.-Usp., Vol. 18, No. 2 Copyright © 1975 American Institute of Physics 118



Real
sources

1

Virtual
sources, e.g

Medium in which ,
the wave equation
takes the form

La-a"~"

FIG. 1. Typical formulation of a problem in diffraction theory.

Eq. (1) is a stochastic equation, i.e., an equation that
the individual realizations of the stochastic field must
satisfy. In other words, the parameters, functions, and
operators involved in the problem (all or some of them)
are now random quantities, i.e., they are specified by
their probability distributions. For example, if the
primary field u0 is specified on the surface So (virtual
sources) in the dynamical problem, it is the statistics
of this field that is to be specified in the corresponding
statistical problem. In particular, one may specify only
the second moment of this field,

Γ°(1, 2) = <«„(!) ut (2)), (2)

which in optics is usually called the second order co-
herence function, or simply the coherence function (if u0

is a vector field, the product uo(l)uj(2) must be re-
garded as the outer (dyadic) product, so that in this case
r u ( l , 2) will be the coherence matrix). Higher moments
(higher-order coherence functions) of the primary field
u0 may also be specified. Of course a complete statis-
tical description of the field u0 is given by the set of all
η-dimensional (n = 1, 2, ...) probability densities. If we
start with the dynamical problem formulated as above,
we can treat any of the following as random variables:

a) the real sources q,
b) the virtual sources (say u,/S0),
c) the shape and position of the boundary surface S,

and/or
d; the properties of the medium, i.e., the operator

L itself.

In accordance with these different possible random
variables, we may introduce four basic statistical
schemes, which we shall'arbitrarily call primary statis-
tical schemes. Let us briefly sketch the mathematical
"formulation" of these primary schemes.

a) Excitation of fields by random sources. The prob-
lems of this group are described by the inhomogeneous
equation

Lu — q.

(For the present we shall mark the symbols of stochastic
quantities with a tilde; here these quantities are the
sources q and the field u itself). For brevity we shall
refrain from discussing the necessary homogeneous
boundary conditions on S and the conditions at infinity:
these conditions are mandatory for dynamical problems,
as well as for statistical ones.

b) Diffraction of stochastic (partially coherent)8'
fields. The problems of this group are described by the

homogeneous wave equation

Lu = 0,

but with inhomogeneous stochastic boundary conditions
of the type C Q | S , which reflect the fact that the initial

wave u0 is a random quantity.

c) Diffraction by bodies with random shapes and/or
positions. Here the boundary conditions are imposed on
a random surface S, while the wave equation may be
inhomogeneous (Lu = q) in the case determinate real
sources or homogeneous (Lu = 0) but with inhomogeneous
boundary conditions on So in the case of determinate
virtual sources.

d) Diffraction and propagation of waves in a randomly
inhomogeneous medium. Here we are dealing with a
stochastic operator !• for the propagation of waves in the

is a linear differential operator the coef-medium. If
f icients of the derivatives may be random variables,
while if L is an integro-differential operator, its kernel
may be a random function. Thus, when the field is ex-
cited by real determinate sources, for example, the
equation for the problem is Lu = q.

It is actually found that the overwhelming majority of
statistical problems in linear diffraction theory reduce
to these four primary schemes. Of course problems of
mixed type are also possible, but up to now there has
been very little discussion of such problems. We shall
discuss them briefly in Chap. 7.

Of course the mere formulation of the problem does
not predetermine the methods (usually approximate ones)
to be used for solving it. Actually, the fluctuations of
various of the parameters and functions that occur in
the conditions of the problem may be large or small (on
some characteristic scale), smooth and slow or, on the
contrary, sharp and fast, strongly or weakly correlated,
and so on. These differences in the physical conditions
require different approaches to an approximate treat-
ment of the problem. That is why there are so many
secondary statistical schemes that are not associated
directly with the formulation of the problem, but with
the various approximate methods that can be used for
solving it. Moreover, it is just the fact that there are
so many statistical schemes that makes it difficult to
orient oneself among the problems of wave statistics.

In the subsequent exposition we shall first of all
attempt to distinguish between primary and secondary
statistical schemes. To do this we shall examine sev-
eral important and interesting groups of statistical
problems, adhering to the classification of the problems
adopted above, based on their formulations. Incidentally,
we shall touch upon the most widely used methods for
solving them. Almost every one of the problems dis-
cussed below has generated an abundant literature, so
here we shall merely cite summarizing monographs and
review articles, citing the original papers only in
special cases.

3. EXCITATION OF FIELDS BY RANDOM SOURCES

Let G = L"1 be the inverse of the operator L for the
dynamical problem, i.e., the Green's function in terms
of which the solution to Eq. (1) can be written in the
form3' u = Gq. This equation is a linear (operator) re-
lation between the random sources q and the stochastic
wave field u. The moments of the field u will therefore
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also be linearly related to the corresponding moments
of q:

<u) = G<g>, (u1u5) = G1G,(91g5), etc.

(the angle brackets denote statistical averages, i.e.,
averages over the statistical ensemble).

If we know (and use) the exact Green's function, we
obtain exact expressions for the moments, but if we use
various approximate Green's functions whose adequacy
has not been tested by diffraction theory, we obviously
obtain only approximate values for the moments. Thus,
we have essentially a single method of solution for the
problems of scheme (a) of Chap. 2. Here the great
variety of problems is due mainly to the abundance of
specific physical and technical problems that reduce to
this scheme.

The best known group of applied problems of type (a)
comprises those concerning the statistics of antennas,
and in particular, problems concerned with the fluctua-
tions of real currents. In these problems one is mainly
interested in the statistical characteristics of the direc-
tional pattern g(0, φ ) , so that the Fraunhofer approx-
imation can be used for the Green's function. In this
approximation u ~ g e ^ ' R / R , and the angular pattern
g is related to the fluctuating currents in the antenna by
a Fourier transformation. Here the principal results
are well known and are described, for example, in
Shifrin's book1-1-1. The distortion of the pattern is best
seen in the case of antennas that are large (as com-
pared with the wavelength) and therefore have narrow
patterns (Fig. 2). As the antenna-current fluctuations
increase, the radiation in the direction of the principal
lobe falls off and the lobe itself broadens. In addition,
the zeros (or minima) of the pattern become smoothed
out and the side radiation (i.e., radiation in directions
other than that of the principal lobe) increases.

The main difficulty in investigating the statistics of
antennas does not seem to be in calculating the various
integrals that arise (although we are far from over-
coming all the difficulties even here), but in specifying
the fluctuating currents along the antenna flare in a
physically justified manner. The guiding role here must
be assigned to experiment, since the current fluctuations
are mainly due to er rors in fabricating the antennas
(spread of the'parameters or uneven spacing of the
radiating dipoles) and to random variations in the "feed-
ing" of the dipoles.

Of the physical problems belonging to scheme (a) of
Chap. 2 we first note the problem of the electromag-
netic radiation from hot bodies. Here the statistics of
the currents excited by thermal radiation is known: it
is determined by the fluctuation-dissipation theorem as
generalized to distributed electromagnetic systems
(see f 2 : l ) . These problems differ from those of the pre-

FIG. 2. Distortions of the
directional pattern of an an-
tenna due to the presence in
the antenna of current fluctua-
tions: 1—no current fluctua-
tions; 2-weak current fluctua-
tions; 3-strong current
fluctuations.

ceding group in that the greatest difficulty in solving
them lies in finding the Green's function. Here we shall
mention three problems whose solution requires cal-
culation of the diffraction of thermal radiation.

a) Calculation of the intrinsic thermal radiation in
antennas, waveguides, and other uhf electronic devices.
The distinctive feature of this problem as compared with
the problems of antenna statistics is that here one must
also know the fields close to the antenna, and this nat-
urally complicates the calculations'-2-1.

b) Measurement of the parameters of large antennas
(in particular, of radiotelescope reflectors) from the
characteristics of the radiation received from hot
bodies. A black disk is generally used as the standard
body against which to calibrate the antenna system.

c) Determination of the properties of lunar and
martian formations and of the surface of the earth (the
ocean, arctic ice, deserts, etc.) from the intensity of
the thermal radiation received from them at a distance.
It is comparatively simple to calculate the thermal rad-
iation for inverse problems of this type if the radiating
medium is modeled as a uniform half-space with a plane
boundary, but the calculations are much more difficult
if the boundary is uneven or the radiating medium is
inhomogeneous.

Another problem of general physical interest is the
statistics of the field emitted by a large number of un-
correlated sources. Under certain assumptions (and
sometimes quite rigorously) this problem encompasses
the problems of the optical radiation of the atoms of a
hot gas, the radiant emission from electrical discharges
incident to snowfalls, the acoustic noise from rustling
leaves on trees or from air bubbles bursting at the sur-
face of the sea, and many others. Since the sources are
independent, it is the intensities of the radiated fields
that are additive. It would seem that there could be no
question of diffraction phenomena under these conditions,
since the fields of independent sources do not interfere
with one another. Actually, however, interference still
takes place, though it is not manifest in the spatial dis-
tribution of the intensity, but in the behavior of the co-
herence function of the radiated field.

Let the sources (for definiteness we shall assume
them to be the atoms of a self-luminous body—a star,
for example) occupy some finite volume of diameter a.
We denote the intensity within the cloud of sources, re-
duced to the central plane ζ.= 0, by J(p'), where
p' = (x'y1) is a vector in the plane ζ = 0 (Fig. 3). Then
the spatial coherence function of the radiated field at the
plane ζ = const is given in terms of J(p') by the diffrac-
tion integral

Γ«(ρ)~ j/(p') «<*·«''« dy, (3)

in which p(xy) is a vector in the plane ζ = const. In other
words, the coherence function Tu(p) is the Fourier
transform of J(p'), i.e., it behaves like the field of a
wave that has passed through a variable-transparency
screen whose transmission factor is proportional to
J(p').

Equation (3), which expresses the so-called van
Zittert-Zernike theorem'-3-', is widely used in optics
and radioastronomy—we shall speak more of this later—
but specialists in diffraction theory, who are used to
dealing with coherent fields, know little about it. Never-
theless, the theorem can find interesting applications in
diffraction problems too.
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FIG. 3. The coherence function of a field
excited by a swarm of independent sources.
The coherence function r u ( p ) (b) is related
to the reduced intensity distribution J(p')
(a) by the Fourier transformation (3).

The theorem is valid for ζ 3> a, where a is the
transverse size of the cloud of radiators. When a is
large (ka 3> 1), therefore, the theorem is valid both in
the distant zone (z 2> ka2) and in the near zone (z <C ka2,
but ζ > a). Use can be made of this circumstance to
find the directional pattern in the distant zone from
measurements in the near zone (a <ίί ζ <§C ka2) of the
coherence function of the thermal radiation field from
the appropriately heated antenna, for the coherence
function and the directional pattern are expressed in
terms of the same Fourier transformation. Another
example concerns the acoustics of open concert halls
(in closed rooms one would have to take the reflection
from the walls and ceiling into account). The orchestra-
say a group of violins—may be treated as a set of un-
correlated radiators (although the musicians play in
unison, their violin strings vibrate with different, and
indeed independent, phases). Let us ask how far from
the stage the stereophonic effect will be perceptible.
Following V. A. Zverev^4-1, we may assume that the
stereophonic effect will be perceived when the range I
of the correlations of the acoustic field is small com-
pared with the distance y between the listener's ears
(I < y), i.e., when the two ears receive uncorrelated
vibrations. The van Zittert-Zernike theorem (3) gives
the estimate I ~ z/ka for the correlation (coherence)
range I. It follows that the stereophonic effect disap-
pears when I Si y, i.e., when ζ < kay. This is not a very
great distance: for a frequency of 3 kHz it amounts to
~ 30—60 m. If one wishes, one may regard this as a
"diffraction explanation" for the lower price of tickets
for the last rows.

The van Zittert-Zernike theorem can also be gen-
eralized to the case in which the sources are partially
correlated. The coherence function Tu(p) obviously
"perceives" this correlation only when the correlation
range of the sources exceeds the wavelength.

4. DIFFRACTION OF PARTIALLY
COHERENT FIELDS

A typical formulation of a problem of type (b) would
be as follows: The statistics of the primary field u,,,
i.e., its moments (coherence functions), are specified
on the plane ζ = 0, and it is required to find how these
functions vary on moving away from that plane provided
the field is subjected to certain transformations on the
way (the wave passes through stops, lenses, etc.).

Formally, this problem is easy to solve, if one knows
knows how a determinate (fully coherent) wave is trans-

formed, one need only average the solution to the de-
terminate problem over the ensemble representing the
statistics of the "incoming" field u0. However, this
natural approach usually leads to integrals that it is
difficult to evaluate. For example, to calculate the
relative intensity fluctuations β = <(I — <1>)2>/<1>2 (the
"flicker index") one must evaluate an eightfold integral.
One cannot evaluate this integral rigorously even for the
simplest possible model problem of the intensity fluctua-
tions behind a random phase screen4' (Fig. 4).

Fortunately, qualitative physical considerations fre-
quently suggest approximate methods for calculating
the complicated multiple integrals. In the phase screen
problem, the calculation of the flicker index β can be
carried through to the end for the case of weak phase
fluctuations «ψ2) < 1). For medium and strong phase
fluctuations ((φ2) 3> 1), on the other hand, one can use
perturbation theory to calculate β at small distances ζ
(the intensity fluctuations directly behind the screen
are small), while at large distances one can simply use
a normal field distribution. The field distribution be-
comes normal at large distances ζ because at such
distances many uncorrelated waves from different parts
of the screen arrive at the same observation point.
Finally, in the intermediate focusing region one can find
the asymptotic behavior of the field for large phase
fluctuations «ψ2) > 1). In this way we obtained the
approximate β(ζ) curves shown in Fig. 5 (see1-5'6-1 and
the references cited i n [ 7 ] ) .

Calculations of this type are used in radioastronomy.
A random phase screen serves as a (not entirely sat-
isfactory) model of the ionosphere or the interplanetary
plasma with random irregularities. On traversing the
randomly inhomogeneous ionospheric plasma or solar
corona, the wave becomes randomly phase modulated,
and this leads to amplitude fluctuations at the Earth.
From an analysis of these fluctuations one can derive
information about the parameters describing the irreg-
ularities in the ionosphere or the solar corona.

However, the principal "user" of the theory of the
diffraction of partially coherent fields is of course
optics, in which the concept of coherence arose about a
century ago. For a long time this remained a qualitative
concept of the "yes-no" type, and only in the last 15—20

Τ
FIG. 4. Intensity fluc-

tuations I(x) (b) in a wave
that has traversed a phase
screen (a).

FIG. 5. Approximate be-
havior of the flicker index be-
hind a random phase screen;
curves 1 and 2 are for weak
«Φ2>« 1) and strong
« ψ 2 ) » 1) phase fluctua-
tions, respectively.
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FIG. 6. Schematic diagram of the
Michelson stellar, interferometer.

FIG. 7. Schematic diagram of the
intensity interferometer of Brown and
Twiss: PhM—photomultiplier; Corr-
correlator.

years has the necessity of a quantitative measure of
coherence been recognized and the corresponding theory
(including the theory of partial polarization) been con-
structed. This theory reduces essentially to the calcu-
lation of the statistical moments of the wave field, i.e.,
the coherence functions of various orders, and mainly
the second order coherence function. These coherence
functions describe the statistical relation (correlation)
between the field values at different points in space and
at different instants in time. Now let us consider a few
typical problems selected from those that arise and are
solved in statistical optics.

a) Optical interferometry. Interferometry not only
enables us to measure the coherence function (spatial
or temporal) of the optical field, but in a number of
cases also directly to see it. The temporal coherence
function is related to the spectrum of the radiation by a
Fourier transformation, and this makes it possible to
measure the line shape. Such line shape measurements
are actually made with interferometers intended for
spectral analysis. As regards the spatial coherence
function, we note that for self-luminous objects it is
related by a Fourier transformation to the brightness
distribution J(p') on the surface of the radiating body
(the van Zittert-Zernike theorem). Hence by measure-
ment of the spatial coherence function we can (in prin-
ciple) recover the surface brightness distribution J(p'),
i.e., we can recover the shape of the luminous object or
can at least determine its angular dimensions. This
possibility is realized in the Michelson stellar inter-
ferometer. In this instrument (Fig. 6) one observes the
interference between two light beams "cut" by two
mirrors from the field of the partially coherent wave (a)
emitted by a star. The visibility of the interference
pattern (c) is determined by the degree of coherence of
the field at points separated by a distance d equal to the
interferometer base length (b). If the distance d between
the mirrors is smaller than the coherence range I of

the incident wave, the two light beams will be coherent,
and when they are brought together at the center one
will observe a contrasty interference pattern, whereas
if d >, I, the interference pattern will be "washed out."
From Eq. (3) we see that I ~ 1/kfl, where θ = a/z is the
angular diameter of the star. Hence by determining the
base length d0 at which the interference pattern dis-
appears one can estimate the angular diameter of the
star: θ ~ l/k6 ~ l/kd2. Further, by analyzing the be-
havior of the visibility of the interference pattern as a
function of the base length d we can (in principle) meas-
ure the coherence function ru(p), and from it we can
determine the brightness distribution J(p) over the in-
vestigated object.

b) The intensity interferometer. The use of the
Michelson stellar interferometer to measure the spatial
coherence function involves great difficulties associated
with the high sensitivity of the instrument to the phases
of the interfering waves. Even slight fluctuations of
these phases and of the directions of the wave front at
the two interferometer mirrors such as might be caused
by atmospheric effects smear out the pattern of inter-
ference bands (just as would vibration of the widely
separated mirrors) and thereby make it difficult to
measure d0. These difficulties do not arise when work-
ing with the intensity interferometer proposed by Brown
and Twiss'-8-' (Fig. 7). With this instrument one does
not measure the spatial correlation function of the wave
field u itself, but rather the intensity fluctuations of this
field:

Moreover, this quantity is not measured by optical
(interference) methods, but electrically, using a cor-
relator to which are fed electrical signals proportional
to the intensities Ix and I2 measured at points separated
by the distance d. From this point of view the term
"intensity interferometer" may not be entirely suitable:
the device is essentially an intensity correlator, i.e.,
a device for measuring the correlation of the intensity
fluctuations of the light field.

The light field of a star is a superposition of fields
from a great number of independent sources and there-
fore conforms to Gaussian statistics. For a Gaussian
field u with zero mean, however, the intensity corre-
lation function is related to Tu(p) by the simple equation
Bj(p) = |ru(p)|2. Hence the measured values permit us
to draw virtually the same conclusions concerning the
brightness distribution over the visible surface of the
star as would the values of Tu(p). Thus, not only the
coherence function for the field itself, but also the in-
tensity correlation function, carries diffraction informa-
tion concerning the light field of the star. Moreover,
what we measure here is the modulus of ru(p), which
is not highly sensitive to fluctuations.

c) Optical image formation. It seems obvious that
the degree of temporal and spatial coherence of the field
illuminating the object must affect the quality of the
image formed in cameras, microscopes, and other
optical instruments, since the field at each point of the
image plane is a superposition of waves emitted (or
reemitted) by the object. Actually, however, in most
cases the image quality depends little on the character
of the light that illuminates the object. This is due to the
fact the field at a point A' in the image plane (Fig. 8) is
made up of contributions from only a small neighbor-
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FIG. 8. Diagram illustrating
the formation of an optical image
under partially coherent illumin-
ation: 1-partially coherent light;
2-object plane; 3-optical sys-
tem; 4-image plane.

hood of the optically conjugate point A of the object
plane, the diameter δ of this "formation region" being,
in the case of good optical instruments, of the order of
the Rayleigh limit of resolution. The path' difference for
rays from the center and periphery of this region is
about a half wavelength, and this is less than the length
Δ of a coherent wave train for any illumination since
even for illumination with daylight we have Δ ~ 3Λ,,,
where λ0 is the mean wavelength of visible light. That
is why a photographic image formed with daylight illum-
ination is almost indistinguishable from an image
formed with strictly monochromatic illumination.

The problem of the effect on image formation of the
spatial coherence of the illuminating light is solved in a
similar way. It is clear that the spatial incoherence can
have an effect only if the coherence range I is shorter
than the radius 6 of the image forming region, but since
the instrument does not resolve details smaller than δ,
the image quality will be virtually the same for I ^> 6
(only the illuminance at A1 will be different). Neverthe-
less, there are definite differences between coherent
and incoherent illumination. These differences are man-
ifest, for exampke, in the resolving power, and also in
the fact that with incoherent illumination, the degree of
coherence of the field after passing through the optical
system is independent of the aberrations. From this,
for example, we can draw the practical conclusion that
it is entirely unnecessary to use a good aberration-free
condenser to illuminate the field of a microscope.

When the image is recorded photographically, the
quality of the final image will depend not only on the
illumination, but also on the structural irregularity
(graininess) of the photographic emulsion. The fluctua-
tions due to graininess can also be described by statis-
tical methods. Various models of the grain structure
have been proposed; with the aid of these models one can
estimate the maximum information that can be carried
by a photographic image[9-'.

d) Holographic image formation. We recall that a
hologram is an interference pattern formed by bringing
together into a single plane a reference light beam from
a laser and a second beam from the same source that
has been diffracted by the object (Fig. 9 is a simplified
diagram illustrating hologram formation). The contrast
of the interference pattern is determined by the degree
of coherence of the reference and diffracted light. The
theory of the diffraction of partially coherent fields
made it possible to establish the requirements on the
degree of monochromaticity of the light for the success-
ful formation and reconstruction of holograms. It was
found that under certain conditions holograms can be
obtained with incoherent illumination, i.e., by using
"ordinary" light sources (rather than lasers), which,
however, must be very nearly monochromatic if a high-
contrast hologram is to be formed. The quality of a
holographic image, like that of an ordinary photograph,
still depends on the graininess of the photographic film
on which it is recorded. Here, too, the statistical dif-

FIG. 9. Simplified diagram illustrating the formation of a hologram:
1-partially coherent light; 2-semitransparent mirror; 3-reference
beam; 4-semitransparent object; 5-interference pattern (hologram).

fraction theory enables us to estimate the optimal
achievable characteristics of a hologram. What was
just said applies equally to diffraction estimates of the
random errors introduced by irregularities in the re-
fractive index and by other defects of lenses, photo-
graphic films, and other elements of optical systems [ i o ; i .

The results of the theory of the diffraction of partially
coherent fields are widely applied not only in optics, but
also in other branches of physics.

1) As. is well known, the primary limitation on the
possibilities of x-ray structure analysis are due to the
low degree of coherence (monochromaticity) of the χ
radiation. Because of the short coherence length of the
x-rays one can observe the interference only of waves
scattered from atoms lying close together in a crystal
lattice, but not the interference of waves scattered from
large crystals. This reduces the accuracy in determin-
ing interatomic distances and other characteristics of
the crystal. If one could obtain sufficiently mono-
chromatic x-ray beams, one would obviously be able
sharply to improve the results obtained by x-ray struc-
ture analysis. In this connection we recall that when
Gabor proposed holography he was pursuing this same
goal—to enhance the information borne by x-ray photo-
graphs. Of course the difficulties in producing sources
of sufficiently coherent χ radiation (x-ray lasers) are
rather of experimental than of theoretical type: the
problem is to find materials with suitable properties
and to achieve sufficiently powerful and at the same time
sufficiently monochromatic pumping.

2) The use of the theory of the diffraction of partially
coherent fields in radioastronomy is not limited to the
calculations of fluctuations beyond a phase screen that
we discussed above. This theory finds considerably
more important applications in the development of
radiointerferometers, which can be used, in particular,
to measure the angular dimensions of extraterrestrial
radio sources. The radiointerferometer operates on the
same principle as the Michelson stellar interferometer,
but the actual device is based on an entirely different
technology. First, large radio antennas (Fig. 10) are
employed instead of spaced mirrors. Further, the base
d for the measurements is not just a few meters long,
but may amount to several thousand kilometers. This
makes it possible to equal, and even to exceed, the
angular resolution of optical interferometers, despite
the enormously longer wavelength. The radio signals
received by the antennas are recorded on magnetic tape,
the recordings being synchronized with standard atomic
clocks. The recordings are subsequently processed to-
gether to determine the degree of coherence of the two
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FIG. 10. Diagram illustrating the measurement of the spatial co-
herence function of the radio emission from extra terrestrial· radio
sources, using a long-base radiointerferometer: Η-heterodyne, A.C.-
atomic clock, Corr—correlator.

signals, and from this one can judge the angular dimen-
sions of the radio s o u r c e s i u l . O£ course the technical
differences should not mask the essence of the inter-
ference method of measuring angular dimensions, which,
in the last analysis, is based on the van Zittert-Zernike
theorem.

Having constructed interferometers with bases com-
parable with the radius R E of the earth, the radioastron-
omers are now discussing an even more impressive
project: to join all the large radiotelescopes on the earth
earth together into a single system. This amounts es-
sentially to constructing a peculiar radio reflector with
dimensions of the order of Rg that consists of separate

"fragments"—the individual radiotelescopes. The prin-
cipal difficulty in producing such a reflector is en-
countered in attempting to "phase" the individual "frag-
ments." In optics this problem is solved by properly
choosing the positions and orientations of the reflectors,
whereas here it can be solved by introducing appropriate
time delays in the tape recordings. In this case the in-
evitable errors in synchronizing the recordings will
play a part similar to that played by random aberrations
in optical systems.

3) The principle of holography finds application in
radiophysics in the so-called synthetic aperture
method [-1 2 '1 3 ]: In this method one undertakes coherent
processing, i.e., one records not only the amplitude, but
also the phase, of the radar signals emitted from an
airplane or artificial earth satellite and reflected from
the earth's surface. The motion of the receiver replaces
the long and, in general, wide-aperture antenna. The
recording that preserves the coherence data (radio-
hologram) is analogous to the interference pattern in
optical holography (here the emitted signal plays the
part of the reference beam in the optical case). On
"reconstituting" the hologram, one can resolve details
with angular dimensions of the order of λ/νΤ, whereas
the usual limit of resolution is λ/a (a is the size of the
radio antenna, ν is the velocity of the aircraft, and Τ is
the coherent processing time); the product vT is the
effective size of the synthetic aperture.

Without dwelling on the details of radioholography,
we note that the limiting accuracy with which a region
can be mapped is mainly determined by the phase errors
in the transmitting and receiving channels: the per-
missible coherent processing time Τ is limited to the
time during which the random phase excursions remain
small as compared with π. Here, too, the phase fluctua-
tions are analogous to random aberrations in optics.
The difficulties associated with preserving the phase are
also the limiting factor in another application of radio -

holography to radar astronomy: the mapping of lunar
and planetary surfaces using the motion of the earth as
the basis for the synthetic aperture method1 1 4 ].

Coherence theory also provides an adequate statisti-
cal description of partially polarized waves. Here the
basic statistical characteristic is not the coherence
function, as in the scalar theory, but the coherence ma-
trix (polarization matrix) Γ^(1,2) = (Ei(l)E£(2)), where
Ei and Ek are components of the electric field vector.
This matrix provides a complete description of a vector
field in the context of correlation theory. It is better,
however, to expand the stochastic wave field in plane
waves and deal with the latter. Such quantitative char-
acteristics of a partially polarized wave as the degree
of polarization and the Stokes parameters, which are
unambiguously related to the elements of the polariza-
tion matrix, can be introduced for a plane wave.

The theory of partial polarization, like scalar coher -
ence theory, finds an extremely wide range of applica-
tions : in astrophysics it serves as a basis for choosing
between various mechanisms for optical, radio, or x-
ray emission (thermal emission, synchrotron radiation,
etc.) that might explain the observed polarization data;
in atmospheric optics the degree of polarization makes
it possible to judge the characteristics of the scatterers;
and so on. In order fully to solve vector problems of
types a), b), c), and d) one must, in general, evaluate the
elements of a coherence matrix.

5. DIFFRACTION BY BODIES HAVING RANDOM
SHAPES OR POSITIONS

The problems of this type can be separated into two
subgroups: diffraction from bodies with random shape,
and from bodies with random position. Let us consider
these subgroups one at a time.

If there are many random irregularities on a surface,
we say that the surface is rough or statistically uneven.
All real surfaces are rough, some being rougher than
others. From the point of view of diffraction, even the
"ideally flat" surface of a liquid at rest is rough, for it
actually fluctuates as a result of the thermal motion of
the molecules. Random irregularities are also present
on ideally polished telescope mirrors and lenses, as
well as radiotelescope reflectors, not to mention such
uneven surfaces as the agitated surface of the sea, the
lunar landscape, asphalt, and paper. The principal mea-
sure of the degree of roughness is the ratio of the height
£ of the irregularities to the wavelength λ. The same
surface can obviously be very rough for short waves
(e.g., ripples on the water for light waves) and practi-
cally smooth for long waves (e.g., those same ripples
for long radio waves).

Problems of the scattering of waves from rough sur-
faces can be solved only by approximate methods. Two
methods, developed originally for dynamical problems,
have been most widely used: perturbation theory, and
Kirchoff's method. Perturbation theory is suitable for
irregularities whose height ζ is small compared with the
wavelength λ (Fig. 11, a), while Kirchoff's method is
applicable not only to the case of low irregularities, but
also to that of high ones {ζ » λ), which, however, must
have a large radius of curvature (R » λ) (Fig. 11, b).
Both methods require still another condition to be met:
the irregularities must be mildly sloping, i.e., if I is a
characteristic length of an irregularity, we must have
ζ « I. When this condition is violated it proves to be
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FIG. 11. Types of surface irregularity for which approximate cal-
culations of the scattered field can be made by different methods:
a) perturbation theory (f, « λ, fj « / i ) ; b) Kirchoff's method
(f2 « h, R2 » λ); c) a combined method (the surface roughness
consists of "small ripples on a large wave," and in addition to the
inequalities required for cases (a) and (b), here we must also have
li «/2); d) the Green's function method (f « λ, / « λ).

virtually impossible to carry through the required stat-
istical averaging of the formulas of the dynamical theory.

The overwhelming majority of the results obtained
up to now have been obtained by the two methods men-
tioned above. A unified exposition of scattering theory
including the new approaches to the problem is given in
the book by Bass and Fuchs £ 1 5 ] and in the brief but capa-
cious review ar t ic le t l 6 ] . The main application of the
theory has been to the scattering of radio waves, light,
and sound by the statistically uneven surface of the sea.
The radiation scattered from the agitated sea surface
bears useful information on the spectrum and height of
the waves, on the vertical and horizontal velocities of
the oscillatory motion of the particles in the wave, on
wind directions, etc. Relatively little attention has been
given to other applications, although the theory does not
suffer from a lack of objects for study.

The large reflecting antenna of a radiotelescope is
one of these objects. The irregularities of such a dish
are especially noticeable at short wavelengths. They
lead to essentially the same effects as current fluctua-
tions in real antennas. In open resonators, irregularities
of the mirrors tend to reduce the Q factor (since part
of the radiation gets "splashed" out of the resonator on
account of scattering from irregularities) and to shift
the eigenfrequencies (because of an effective change in
the distance between the m i r r o r s t l 7 ] ) . In optical sys-
tems, surface irregularities of the lenses, as well as
bulk irregularities in the refractive index of the glass,
lead to certain image defects, and in particular, to
broadening of the diffraction spot. In microwave wave-
guides, irregularities in the walls are responsible for
the transformation of some types of waves into other
types1-183. Phenomena that lead to similar results also
arise in quasioptical microwave transmission lines on
account of defects in the lenses and reflectors. We note
further that in the propagation of light in thin films, ir-
regularities in the interfaces result in strong damping
of the waves on account of radiation losses.

The statistical theory of scattering from rough sur-
faces has been employed to analyze the reflection of
radio waves from the moon and planets. The main dif-
ficulty here was to choose an appropriate model cor-
relation function for the irregularities. Attempts to
introduce an effective impedance of the earth to describe
the propagation of surface waves as well as the propa-
gation of ultralong radio waves in the waveguide bounded
by the ionosphere and the earth's surface have been

more comforting. The theory has also been applied to a
number of phenomena in solid state physics (the interac -
tion of phonons with walls) and seismology (the litera-
ture on these topics is summarized in c 1 5 3 ) .

In addition to the two basic methods discussed above
one also sometimes uses a combined approach (per-
turbation theory together with Kirchoff's method), which
is suitable for analyzing scattering in the case of two-
component roughness of the "small ripples on a large
wave" type (Fig. 11, c). In particular, with this approach
one can successfully account for certain features of the
large angle scattering of radio waves from the agitated
surface of the sea. These features are not in accord-
ance with a theory that takes into account only fine or
only coarse irregularities of the sea swell.

Multiple scattering (or multiple rereflection) of the
waves, which would greatly complicate the problem, is
neglected in all three methods: perturbation theory,
Kirchoff's method, and the combined method. Attempts
have recently been made to overcome this difficulty
within the context of the integral-equation and Green's-
function methods. In the first of these attempts, pro-
posed by U. P. Lysanov, Green's integral formula is

treated as an integral equation for the field on the
rough surface. This equation can be solved under the
assumption that the surface slopes even less steeply
than is permitted for the perturbation-theory or Kir-
choff's -method calculations. But then the results of
both these methods are obtained from the integral equa-
tion as particular cases 1 1 6 : .

Another approach, the Green's function method, was
taken from quantum electrodynamics and is based on the
approximate selective summation of infinite perturba-
tion-theory series. In this method we escape from the
requirement that the irregularities be gently sloping,
but at the price of submitting to a new limitation: the
scale of the irregularities must be small (I « λ; Fig.
11, d).

The Green's function method proved to be very effec-
tive for analyzing the transformations of waves of var -
ious types in rough-wall waveguides, and also for de-
scribing the propagation of long radio waves above the
uneven surface of the earth1-15 ] .

Diffraction from irregularities that are neither small
nor gently sloping is, as before, a bottleneck of the
theory. Correlation theory, which relates the statistics
of the scattered field to the statistics of the irregulari -
ties as specified by their correlation function alone,
proves to be ineffective here. In this direction we have
still not gotten beyond the use of model ideas119-1 (e.g.,
hemispheres, semicylinders, or semiellipsoids random-
ly distributed on a plane (Fig. 12, a) or a set of plane
areas with random dimensions and inclinations (Fig. 12,
b)). Lambert's law (the cosine law), which describes
what is called diffuse scattering, is frequently used for
approximate calculations of the scattering from a strong-
ly broken up surface, although the conditions under which
the scattering of radiation would rigorously obey Lam-
bert's law are still unclear (from both the theoretical
and the experimental points of view).

Now let us consider the other subgroup of the pro-
blems of group b of Chap. 2-scattering from bodies hav-
ing random positions in space. If we are dealing with
just one body, then obviously no fundamentally new prob-
lems arise. Scattering from a multitude of bodies, how-
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FIG. 12. Models of highly uneven surfaces used in wave scattering
calculations: a) hemispheres randomly distributed on a half plane;
b) an aggregate of plane areas with random inclinations.

FIG. 13. Example of the ir-
regular diffraction patterns ob-
served in the scattering of short
waves from bodies having com-
plex but determinate shapes.

ever, is an extremely general and important problem that
has a wide range of applications and involves the prob-
lem of allowing for multiple scattering. In radiometeor -
ology we deal with the scattering of radio waves from
raindrops, snowflakes, hailstones, clouds, and mist; in
atmospheric optics, with scattering from aerosols; in
radar, with the reflection of radio waves from clouds of
metallic needles; in sonar, with the scattering of sound
from air bubbles and plankton; in astrophysics, with scat-
tering from interplanetary and interstellar dust clouds;
and so on.

Related problems arise in the treatment of molecular
scattering in liquids and gases, in the analysis of in-
coherent scattering of electromagnetic waves by free
electrons in laboratory and ionospheric plasmas, etc.
Under these conditions the diffraction (boundary) prob-
lem itself simplifies greatly since here the problem is
that of the diffraction of waves by point scatterers.

The problem of the diffraction of waves by a multi-
tude of scatterers is most often (more accurately,
"almost always") solved in the single -scattering approx-
imation^203. In this approximation one assumes that each
scattering object scatters the incident wave as though
the other objects were not there. The randomness of
the field reemitted by an individual scatterer is due to
the scatterer's random position (and sometimes orienta-
tion), which may be correlated with the positions and
orientations of the nearest neighbors. Formally, the
single-scattering approximation fits into scheme (a),
since it is a problem of the radiation from many discrete
random sources whose statistics are fixed by the prop -
erties of the primary field and the statistics of the posi-
tions (orientations) of the scatterers.

In many cases the single -scattering approximation
proves to be entirely satisfactory. As the number of
scatterers increases, however, the single-scattering
theory finally ceases to be justified and multiple scat -
tering must be taken into account. The simplest way to
do this is to introduce the extinction of the primary
wave, i.e., to take into account the attenuation of the
primary field as a result of scattering. Neither this
method, however, nor a consistent calculation of the dou-
ble or tripple scattering can be effective enough: if the
contribution from double scattering is appreciable, then
as a rule the contribution from higher -multiplicity scat -
tering cannot be neglected. Under these conditions all
we can do is to describe the multiple scattering by
means of a radiation transport equation, which is usual-
ly introduced phenomenologically (from energy balance
considerations) and in recent years has received sup-
port from statistical wave theory (we shall discuss this
later).

We can also assign the problem of the diffraction of
short waves by bodies of complex shape, e.g., by air-
planes, to scheme c), even though this assignment is
somewhat arbitrary. Although in this case the surface
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of the scatterer is determinate, the scattering pattern
g(0) is so complex and irregular a function of θ that it
is expedient to describe it in terms of probability con-
cepts (Fig. 13).

The random character of the behavior of the scatter-
ing pattern g(6) is to be attributed to the fact that many
"highlights" ("bright spots") form on the surface of a
body of complex shape when it is irradiated, and refl.ec -
tions from these highlights break up the interference
pattern. Various probability models of the "highlights"
are discussed, for example, in [ 2 1 ] .

We note still another nonstandard problem of type (c),
which lies somewhat to one side of the traditional path:
the diffraction of waves by plane screens with statisti-
cally uneven edges. Such a screen can serve as a model
for a mountain ridge in calculating the diffraction of uhf
radio waves1 2 2 ] or for the edge of the lunar disk, which
diffracts light waves from stars and radio waves from
extraterrestrial radio sources.

6. DIFFRACTION AND PROPAGATION OF WAVES IN
A RANDOMLY INHOMOGENEOUS MEDIUM

The problem of the fluctuations of waves in randomly
inhomogeneous media (scheme (d) of Chap. 2) has been
comprehensively treated in monographs'23"253 and in a
number of review articles (see, e.g.,[7>26: ι). Here we
shall therefore merely recall the approaches that have
been adopted and give an account of some of the practi-
cal problems.

As a rule, the operator Ε describing the propagation
of waves in a randomly irregular medium will contain
a " large" regular part L and a small perturbing part V,
so that the field will satisfy the equation

Lu = (L + V) u = 0. (4)

The simplest thing one can do with this equation is to
solve it by perturbation theory, taking V as the perturb-
ing part of the operator. Then in the first approxima-
tion we obtain the single-scattering approximation. The
singly scattered field Ui satisfies the equation

where u0 is the primary field. This is obviously another
variant of scheme (a) of Chap. 2^the excitation of fields
by distributed random sources.

The single -scattering approximation is usually called
the first Born approximation, or simple the Born approx-
imation, since Born successfully employed it to solve
the quantum mechanical problem of the scattering of an
electron by a nonuniform potential5'. The Born approxi-
mation gives an entirely adequate account of a wide
range of phenomena associated mainly with light scat-
tering. The spectral analysis of light scattered by li-
quids or transparent solids can provide information
concerning certain parameters of the material that it
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would be difficult or quite impossible to measure by
other methods. As examples we may mention the study
of scattering from the thermal fluctuations of the dielec -
trie constant (Rayleigh scattering of light), the study of
the critical opalescence, etc. The Born approximation
gives a good account of the scattering of uhf radio waves
in the ionosphere and of many important features of the
far tropospheric propagation of these waves. The scat -
tering of microwaves has recently come to be used to
investigate the characteristics of laboratory plasmas.

As the distances become longer or the fluctuations V
become greater, the first Born approximation eventually
becomes inadequate and multiple scattering has to be
taken into account. In the case of large and smooth ir-
regularities with dimensions I » λ, one can take multi -
pie scattering into account by the geometric optics me-
thod, Rytov's method of smooth perturbations, or the
parabolic equation method. Unlike the geometric optics
method, the last two methods describe the diffraction
phenomena and involve the so called parabolic equation,
i.e., the wave equation for the complex amplitude U
(u = U e ^ z > where ζ is the wave propagation direction)
from which the second derivative 92U/9z2 has been
dropped, only the first derivative 8U/9z being retained.
This approximation is valid precisely when the irregu-
larities are large. The difference between the smooth-
perturbation and parabolic -equation methods is that in
the first of these methods the parabolic equation is writ-
ten for the complex phase (i.e., essentially for the log-
arithm of the amplitude U), while in the second, it is
written for the complex amplitude itself.

Despite the fact that the initial (unaveraged) equations
of the geometric-optics and smooth-perturbation methods
describe multiple scattering, one actually solves them
by perturbation theory, taking the deviations of the di-
electric constant of the medium from the average value
as the small perturbing factor. Of course the perturba-
tion series obtained by these methods, unlike the Born
approximation series, are not expansions of the field
itself, but of the phase (in the geometric -optics method)
or the complex phase (in the smooth-perturbation me-
thod). Even though one has to limit the calculations to
the first approximation, the geometric-optics and
smooth-perturbation methods are still fairly effective
in accounting for multiple scattering at not very great
distances, provided the relative intensity fluctuations
are not large. By now a great many specific problems
of atmospheric optics, sonar, radar, and radioastronomy
have been solved by these methods[ 7 ] .

The study of light intensity fluctuations on paths near
the earth's surface has now become an effective method
of investigating the microstructure of turbulent streams
in the atmosphere. A similar method, but using uhf
radio waves, has received general recognition in r e -
search on plasma turbulence.

The intensity fluctuations of starlight (twinkling) also
can provide a source of valuable information about t ro-
pospheric turbulence. Similar information on the elec-
tron concentration fluctuations in the ionosphere and
interplanetary plasma can be extracted from radioastro-
nomical observations of radio waves from extraterres -
trial radio sources. Similar studies of the fluctuations
in the interstellar plasma became possible with the dis-
covery of quasars and pulsars.

The study of fluctuations of light in the atmosphere
has recently received considerable stimulus from laser

technology. Broadening of laser beams and phase, prop-
agation-direction, and field-intensity fluctuations in the
beam are of interest in connection with laser communi-
cation and ranging systems. Related problems also
arise in radar and sonar.

Unlike the geometric-optics and smooth-perturbation
methods, the parabolic-equation method enables us to
go beyond the limits of perturbation theory and derive
equations for the coherence functions of arbitrary order,
which are valid not only in the region of small intensity
fluctuations, but also in the region of strong fluctuations.
Moreover, the equation for the second order coherence
function can be solved exactly. The principal efforts of
investigators working in this field are now being direc -
ted toward the solution of the equation for the fourth
order coherence function, which is just the one that de-
scribes the intensity fluctuations (see, e.g.,126"283).

The general theory of multiple scattering does not
make use of the parabolic equation, but employs the com-
plete wave equation and is therefore competent to deal
with problems involving not only large irregularities,
but also fine bulk irregularities6'. Approximate equa-
tions in closed form for the moments of the field have
now been obtained within the limitations of the general
theory of multiple scattering. The derivation of these
equations was actually based on the selective summation
of perturbation series, i.e., on the Green's function me-
thod developed in quantum electrodynamics, very di-
verse methods being used to sum the series (diagram
techniques, perturbation theory for statistical operators,
etc.-see [ 2 5 ' 2 6 ) 2 9 J ) .

Multiple scattering theory has not yet had any very
great specific successes. Essentially new results have
been obtained, unfortunately, only in the problem of the
propagation and scattering of waves in a medium with
strongly fluctuating parameters (when the perturbation
operator V in Eq. (4) is "not small"). Of course here,
as in the problem of scattering from a rough surface,
the irregularities must be on a small scale (l « λ).
Nevertheless, multiple scattering theory has yielded a
number of results of some theoretical importance.

First, within the context of the general theory of
multiple scattering one can derive all the equations ob-
tained by approximate methods and, what is even more
important, one can determine the limits of applicability
of these approximate methods. In other words, multiple
scattering theory enables us to mark out the places oc -
cupied by the various approximate methods in the gen-
eral scheme.

Second, it has been possible, by the aid of multiple
scattering theory, to provide a "statistical-wave" basis
for the radiation transport equation and to determine the
"diffraction" content of that equation.

As we mentioned above, up to now the radiation trans-
port equation has been introduced phenomenologically on
the basis of the concept of ray tubes (i.e., within the
limitations of geometric optics) and the energy balance
condition. In the simplest case (the stationary scalar
problem) the transport equation has the form

dl (o, R)
1 SR

= —a/(n, (n, n') 7(n', R)d2n'. (5)

The left-hand side represents the change in the "beam
intensity" l(n, R) in the direction n, while the first term
on the right describes the extinction and attenuation,
i.e., the decrease in energy as a result of scattering
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and absorption (α represents the sum of the extinction
and absorption coefficients), and the second term repre-
sents the increase in the energy in the direction η as a
result of scattering from directions η' (σ(η, η') is the
scattering cross section per unit volume). In the phen-
omenological derivation, the "beam intensity" l(n, R) is
treated as a photometric quantity without considering
the microscopic meanings of a and σ.

A new view of the radiation transport equation was
reached in recent years when it was shown in several
ways that the radiation transport equation could be de-
rived, under certain assumptions, from the equation for
the coherence function, i.e., in essence, directly from
the stochastic wave equation (see t 3 0 ] , where the perti-
nent literature is cited). In such a derivation the pheno-
menological parameters a and σ can be related to the
statistical characteristics of the medium, and in parti-
cular, to the spectral density of the fluctuations of the
parameters describing the medium, while the beam in-
tensity I(n, R), i.e., the energy characteristic of the
field, can be related to the second order coherence func -
tion r u ( r , R) (here r = Γι - r2 is the distance between
the observation points Γι and r2, and R = (rx + r2)/2 is
the coordinate vector of the "center of gravity").

The relation between l(n, R) and r u ( r , R) is simple:

Γ» (r, R) = & I (n\ R) eik»''<Pa' (6)

(the integration here, as in Eq. (5), is taken over the
unit sphere). This relation was first noted by Dolin t 3 1 ]

in the small-angle approximation, i.e., in the case in
which the wave is scattered at small angles and the beam
intensity l(n, R) differs appreciably from zero only in a
narrow cone about the primary wave propagation direc -
tion.

Since the coherence function r u ( r , R) = <u(l)u*(2))
satisfies a set of two wave equations corresponding to
the equations for u(l) and u(2), and thus describes the
diffraction of waves, it follows from Eq. (6) that even
the beam intensity l(n, R) also bears diffraction infor -
mation. In particular, in the small angle approximation
the radiation transport equation is equivalent to the
parabolic equation for the coherence function. In other
words, solving the radiation transport equation in the
small angle approximation is equivalent to solving the
diffraction (parabolic) equation for the coherence func -
tion. Still another example illustrating the diffraction
content of the radiation transport equation was given by
Watson[ 3 2 ], who showed that if we solve the transport
equation by perturbation theory (this is possible if a and
σ are small enough or if the dimensions of the scattering
volume are small), then in the first approximation for
the coherence function as calculated with Eq. (6) we ob-
tain the result of single-scattering theory, i.e., the re-
sult of pure diffraction theory. A few more subtle ques-
tions concerning the relation between the radiation trans-
port equation and the theory of coherence (the conditions
for unambiguous correspondence of these theories to one
another, differences in formulating the boundary condi-
tions for I and r u , etc.) are discussed i n [ 3 3 : .

In the statistical wave derivation of the radiation
transport equation one also obtains other important and
useful results. First, the transport equation can be
derive with allowance for the transformation of the coher -
ent component (u) of the field into an incoherent part
(the corresponding equations have been obtained not only
for the scalar problem: 3 0 ] , but also for the electromag-

netic problem1-34:). In calculating the coherent field one
simultaneously determines the refractive index of the
stochastic medium1 3 5 ]. The attenuation (extinction) of
the coherent field is to be attributed precisely to the
fact that it "feeds" the incoherent component. Such a
refinement of the radiation transport equation is mean-
ingful for problems of coherent optics and radiophysics,
but not for the traditional problems of the transport of
radiant energy, in which there is no coherent field.

Second, the wave derivation of the transport equation
reveals the role of a specific interference effect that
may be called ''back scattering enhancement". This
effect manifests itself, in particular, in the fact that the
back scattering cross section of a body that is small
(compared with λ) and is immersed in a medium with
large random irregularities increases with increasing
fluctuations of the dielectric constant of the medium, the
angular dependence of the scattering cross section as-
suming the form shown in Fig. 14 [ 3 6 ] . As the figure
shows, the enhancement of the back scattering (θ ~ -n)
is accompanied by a weakening of the scattering in dir-
ections close to τι, the total cross section remaining the
same as in the absence of fluctuations. It turns out
that when the back scattering enhancement effect is
taken into account the radiation transport equation be -
comes ineffective in certain parts of space, e.g., in a
small neighborhood of a point source1 3 7 1 or in a narrow
sector about the backward direction, provided the scat-
tering volume is irradiated by a plane wavet 3 1 }. This
effect does not appear when radiant energy is being
transported in stellar and planetary atmospheres, how-
ever, because there the sources are spread throughout
the entire scattering volume.

Within the limitations of multiple scattering theory
one can obtain approximate equations in closed form
for the moments of a wave field not only in the case of
a continuous randomly inhomogeneous medium (bulk
irregularities), but also for the moments of a wave field
scattered by a multitude of discrete disseminated cen-
ters (diffraction from bodies or point particles occupy-
ing random positions statistical scheme c)). Here, too,
one can derive the radiation transport equation from the
general equations for multiple scattering theory (see,
e.g.,[39>4°3) and establish the microscopic meanings of
the phenomenological parameters a and σ. It turns out
that σ, the scattering cross section per unit volume, is
not in general equal to the product OgpN of the scatter -
ing cross section σ3ρ for a single particle by the parti-
cle concentration N: the equality σ = σδρΝ is valid only
for small N; when Ν is large the so-called cooperative
effects predicted by G. V. Rozenbergc 4 1'4 2 ] come into
play· In the papers just cited, and also in [ 4 3 ' 4 4 ] , Rozen-
berg discusses a vector form of the radiation transport
equation that describes the behavior of the Stokes -
parameter vector. Thus, the radiation transport equa-
tion can provide a complete description of the coherence
characteristics of the field, including the polarization
characteristics.

FIG. 14. Angular de-
pendence of the scattered
intensity from a small body
immersed in a medium
having large random irregu-
larities, showing the en-
hanced scattering in the
backward direction (Θ ~ π).
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7. MIXED PROBLEMS

Up to now we have been discussing what we may call
" p u r e " statistical schemes. Actually, various combina-
tions of these schemes may be encountered, say of type
(ac) or (bd) of Chap. 2. Since the number of mixed -
type problems that have been solved is still not very
great, we shall merely mention a few particular prob-
lems of this type.

a) Thermal radiation from a randomly irregular
layer. Such a problem has been treated (in the Born ap-
proximation) in ' 4 5 3 (also see the bibliography in that
paper) in connection with the analysis of experimental
data on the thermal radiation from antarctic ice.

b) Thermal radiation from rough surfaces has been
discussed inL*O] as applied to good conductors (e.g., the
reflectors of radio antennas) and in ' 4 7 ' 4 8 3 in connection
with the statistically uneven surface of the sea. The
analysis of the thermal radiation from the disturbed
sea is much complicated by the appearance of a third
statistical factor-discrete scatterers consisting of foam
or air bubbles.

c) The diffraction of waves in a randomly inhomogen-
eous medium in the pfesence of discrete randomly dis-
tributed scatterers has been investigated inC49: l, where
the radiation transport equation for this case is de-
rived. The range of application of this theory includes
the transport of radiation in a turbulent atmosphere in
the presence of an aerosol. One result of1-493 is (at
least at first glance) somewhat unexpected: the cross
sections for scattering from bulk turbulent irregulari-
ties and from the aerosol are not additive; on the con-
trary, the expression for the scattering cross section
contains a term due to the correlation between the bulk
irregularities and the aerosol concentration.

d) The diffraction of partially coherent fields in a
randomly inhomogeneous medium is of interest in con-
nection with many applications: the passage through the
earth's ionosphere or the interplanetary medium of
radio waves from a radio source of finite angular dim-
ensions1 5'5 0 3, the broadening of a partially coherent (in
cross section) laser beam in a turbulent atmosphere[ 5 1 3,
etc.

e) The scattering of waves from a rough surface sur-
rounded by a randomly inhomogeneous medium is dis-
tinguished by a number of special features, some of
which have been analyzed in c 5 2 > 5 3 ] .

f) The diffraction of partially coherent light by a
screen with a statistically uneven edge is of interest in
connection with the determination of the angular diame-
ters of stars by the lunar occultation method, since the
unevenness of the edge of the lunar disk may limit the
scope of this method.

Of course the above list is far from complete, but it
may give some idea of current trends in linear statisti-
cal wave theory. The statistical phenomena incident to
the propagation of waves in nonlinear media and quan-
tum effects incident to the diffraction of electromagnetic
waves require separate treatment.

In concluding, the authors wish to thank G. V. Rozen-
berg for valuable remarks.

2>As applied to random wave fields, the terms "stochastic" and "par-
tially coherent" are synonymous.

3)We no longer mark the symbols for stochastic quantities with a tilde.
4)That is what a layer that alters the phase of a wave crossing it is called:

if the plane wave e falls on the screen, the field directly behind the
screen will be given by u 0

 = ^ + ίψ, where ψ(χ, y) is a random
phase function. Specifying the statistics of the field at the screen
obviously also fixes the statistics of the field at the plane ζ = 0. In
this case the "system" that "transforms" the field after it crosses the
screen is simply free space. Because of diffraction, the wave exhibits
fluctuations after passing through the random phase screen (Fig. 4, b),
even though it has a constant intensity on the phase screen itself
(Fig. 4, a).

s'From a historical point of vie w this might have been called the
Rayleigh approximation, since Rayleigh was the first to use perturba-
tion theory to calculate the scattering of light by small particles; even
now in optics one speaks of "Rayleigh scattering" and not of "Born
scattering."

"See below concerning multiple scattering from a multitude of discrete
scatterers.
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