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Analysis of the physical properties of surfaces should be based on the maximum possible amount of
information deduced from studies of the propagation of surface rather than volume electromagnetic waves,
in which the energy is transported only along surfaces or separation boundaries between media. The
present review, therefore, discusses a broad range of problems in the crystal optics of surface
electromagnetic waves (surface polaritons), a subject developed in the course of the last few years. Various
theoretical and experimental methods of investigating surface waves in crystals are discussed and compared,
including a detailed review of Raman scattering of light. Other topics discussed include different effects in
the spectra of surface waves due to the transition layer, the role of damping and spatial dispersion, the
transformation of surface into volume waves, and so on. Possible fields of future research are suggested.
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1. GENERAL REMARKS. CRYSTAL OPTICS OF
SURFACES

It is well-known that the development of any particu-
lar topic in solid state physics is determined, above all,
by the internal logic of the studies themselves and by
possible practical applications. Whenever both stimuli
are acting simultaneously, in any particular field, the
subject attracts wide interest and develops very rapidly.

One such rapidly developing field of study is the phys-
ics of the surfaces of condensed media and, in particu-
lar, the physics of the surfaces of solids. Duke and
Park1-1-1 have rightly pointed out that "the scientific in-
terest in surfaces, however, arises from their unique
properties, which frequently have no counterpart in bulk
solid-state physics. The renewed sense of excitement
that currently pervades the surface-science community
stems from the construction of new techniques for ob-
serving these surface properties and of theoretical
models that convert observations into quantitative meas-
ures of the condition of the outermost layers of a solid.
The confluence of these two developments is transform-
ing the study of surfaces from a qualitative art into a
quantitative science."

The latter fact is particularly important for practical
purposes since the properties of various thin films,
layered structures, and, generally, separation boundar-
ies between media play a determining role in the func-
tion of many physical instruments (see, for example, '-2-1).

The usual question that arises when the properties of
a surface are investigated is : what is its structure?
There is also the associated question as to what is the
spectrum of the surface excited states. Many very effec-
tive methods of investigating the structure of surfaces
have been developed in recent years (they are reviewed
in1-1-1). The spectrum of surface excited states, i.e.,
states due to the very presence of the surface or of a
separation boundary, is an old problem (it will be suffi-
cient to recall Rayleigh'waves in the theory of elasticity
or the Tamm states of electrons), but it continues to
remain very topical. There are many examples of
specific physical situations for which it is important to
know the excited states of the surface, and this occurs
not only in physics but also in physical chemistry (for
example, in the analysis of the mechanisms responsible
for the catalytic action of the surfaces of solids), biology,
and elsewhere. We shall confine ourselves to recalling
only some of them. Thus, for example, in searches for
high-temperature superconductors with the exciton mech-
anism of Cooper pairing in planar geometry (the sand-
wich model, seeC33), there is particular interest in ex-
cited states and, generally, in the electron structure of
the metal-dielectric or metal-semiconductor contact.
The electronic changes in the spectrum of surface exci-
tations of dielectrics and semiconductors (their analysis
is only just beginning; see I-4-1) must be taken into account
in any theory of the effect of nonmetal coatings on the
temperature of the superconducting transition in thin
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(~ 10—20 A) metal films. The role of small-radius sur-
face excitons is interesting in connection with the struc-
ture of the spectrum of low-temperature luminescence
of molecular crystals and the surface quenching of exci-
tons. t e 3 There is a whole series of problems involving
excited states of surfaces (surface phonons, excitons,
magnons, electrons, and so on) that arises in connection
with the very interesting possibility of observing sur-
face, i.e., two-dimensional or quasi-two-dimensional
analogs of ferromagnets, ferroelectrics, piezoelectrics,1'
superconductors, superfluids, and so on (see1-8-1), and
also the many other problems connected with the proper-
ties of the spectrum of surface excitations.

In our review below, we shall discuss the spectra of
excited states of surfaces or separation boundaries that
can be studied within the framework of crystal optics.

We note that crystal optics is usually employed to
investigate the propagation of plane monochromatic light
waves through the body of a crystal, with definite values
of frequency ω and wave vector k. Experimental deter-
mination of the dispersion relation for these waves
[i.e., of the function to = co(k), or the equivalent depend-
ence of the complex refractive index η or ω], followed
by comparison of this relation with the phenomenological
Maxwell equations (using the permittivity tensor), yields
information on, mainly, the spectrum of bulk excitations
of the medium or, for example, its conductivity (metal
optics). It is clear that the maximum information about
the surface properties of a medium is likely to be ob-
tained by studying the propagation not of body but of sur-
face electromagnetic waves in which energy is trans-
ported only along surfaces or separation boundaries.
Studies of the attenuation of such surface waves, and of
their reflection and refraction at separation boundaries
(lines), which can be referred to as the crystal optics of
surfaces, will probably play a fundamental role in the
physics of surfaces in the same way as ordinary (bulk)
crystal optics has in spectral studies of the bulk proper-
ties of crystals. The main problem which arises in this
connection is that it is essential to have sources and re-
ceivers of surface waves which are sufficiently conven-
ient in practice. We shall touch on the question of possi-
ble devices of this kind in our account below, when we
consider methods of transformation of body waves into
surface waves. Since the properties of surface waves
themselves are very important for the analysis of these
problems, we shall start by discussing possible disper-
sion relations for them, their polarization and attenua-
tion, and the influence of these parameters on the prop-
erties of the surface layers of a crystal.

2. VOLUME AND SURFACE POLARITONS. ATTENUA-
TION OF SURFACE POLARITONS AND THEIR REFLEC
TION AND REFRACTION ALONG SEPARATION LINES

The dispersion of long-wave (λ 3> a; a is the lattice
constant) electromagnetic waves in an isotropic medium
is completely determined by the frequency dependence of '
the permittivity e = €(ω) (when spatial dispersion is
ignored). In particular, the function ω = u>(k) for trans-
verse waves [electric field Ε l k, k = (co/c)n(a>)s, s = k/k,
and η(ω) is the refractive index] is determined by the
formula

Near the resonance ω = Ω χ, the permittivity can be
written in the form

ε (ω) = ε» + {(e» - ε») Ω 1 / [ Ω 1 - ω2]}, (2)

where «^ is the asymptotic value of e(to) for ω ^,
whereas e0 is the permittivity for ω <C Ω χ . Hence, if
we use (1) and (2) to determine the function ω = co(k),
we obtain two frequencies for each k, namely, ω^ 2

(Fig. 1). Elementary excitations with energy Ko>(k), the
dispersion of which is determined by the function ω^ 2,
are usually called polaritons. For isotropic media,
polaritons with the dispersion relation w\)2 (k) are
strictly transverse.

The frequencies of longitudinal electromagnetic waves,
on the other hand, satisfy the condition € (co) = 0. Using
(2), we find that to.. = Ω,. = • in accordance with
the Lyddane-Sachs-Teller relation. The essential point
is that the frequency of the longitudinal electromagnetic
wave (longitudinal polariton) is independent of k in this
approximation, i.e., when spatial dispersion is ignored
(see Fig. 1). Moreover, it follows from (1) that, when
retarded effects are ignored (i.e., when c —• °°), the
transverse-wave frequencies satisfy the condition e(co)
= °o which, in the model defined by (2), corresponds to
the resonance at ω = Ω χ . Therefore, it is clear from
Fig. 1 that retarded effects are important only for trans-
verse waves in the region where k ^ (nx/c)Ve^"(ni/c)Ve^T
If, on the other hand, k » (aL/c)Je^, then (o-'-(k) « QL,
so that, in this case, the polariton belonging to the lower
branch is not very different from the optical Born phonon.
Since, however, even when spatial dispersion is taken
into account the macroscopic analysis used above is
valid only for wavelengths λ that are large in compar-
ison with the lattice constant a, the above solutions do
not describe the actual oscillations of the crystal for
wave vectors k satisfying the inequality ka <; I. The
microscopic theory is necessary in this part of the spec-
trum.

We note that, although the dispersion relation for
polaritons reflects the well-known relation n2 = e(to) for
transverse and e(o>) =0 for longitudinal waves in iso-
tropic media, its representation in the form ω = w(k),
shown in Fig. 1, has appeared only relatively recently in
the papers of Tolpygo and Huang (see '-7-1), who used
specific models of oscillations in ionic crystals. It is,
of course, clear that the dispersion relation for polar-
itons illustrated in Fig. 1 is, in general, independent of
the model and is valid for arbitrary nongyrotropic and
nonmetallic isotropic media near permittivity resonan-
ces, including resonances in the electronic part of the
spectrum. Moreover, this analysis can be generalized
in a natural fashion to the case of anisotropic media
(see, for example, m). The dispersion relation for
polaritons belonging to the Z-th branch of cô  = coj(k) in
such media is then found from the equation k^^co2

= η|(ω, s), s = k/k, where η(ω, s) is the refractive index
for the Z-th normal electromagnetic wave. At present,
the dispersion of polaritons in the region of lattice-
vibration frequencies is being extensively investigated
through studies of Raman scattering of light by polar-

FIG. 1. Dispersion of polaritons
with allowance for a plane separation
boundary between the media.

Jr
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itons in both cubic and anisotropic crystals. A review of
the resulting extensive information on the properties of
elementary excitations in crystals is, however, beyond
the scope of the present work, and would take us outside
the main theme of the present paper.

We must now return to the crystal optics of surfaces,
and continue our analysis of the spectrum of electromag-
netic waves in isotropic media, taking into account the
presence of a plane surface or a separation boundary
(see below), which leads to the appearance of surface
electromagnetic waves (Zenneck-Sommerfeld waves,
1907-1909).2'

We shall suppose that a sharp separation boundary
between two media with permittivities ti (z > 0) and
e2 (z < 0) is located in the (x, y) plane, and that the
y component of the wave vector of the required surface
waves is zero (ky = 0). The Maxwell equations for a
nonmagnetic medium are then of the form (for surface
waves in magnetic media—see1-14'59'72-1)

» . E - i H , ro.H — , . ^ W

and their solution (see, for example,Cio:! Sec. 68) can be
sought in the form:3)

and similarly for the field E, where K1 = [kz -

. ω Γ 1 dHy

c . e dz

so that the continuity condition for Εχ is also satisfied
if — «iAi = K2/e2 which, for positive κ ι and κ2, is possi-
ble only when ex and e2 have opposite signs. To be
specific, let us suppose that ex > 0 and €z = — | e2J < 0.
If we then use the explicit expressions for κ1 and κ2, we
find that the dispersion relation for the surface wave is

u _ ω! s,e2 (4)

precede our discussion of these effects with a few re-
marks concerned with the formulation of the problem.
The point is that attenuation can manifest itself in differ-
ent ways, depending on the experimental situation. Thus,
when a source of surface waves of given frequency ω is
present on the separation boundary between media then,
for complex permittivities, i.e., when dissipative proces-
ses are taken into account, the surface waves excited by
the source will be attenuated during their propagation
along the separation boundary. As in body crystal optics,
we can then introduce a complex refractive index η for
the surface wave, defined by k = (u>/c)ns, θ = k/k,
k = (kx, k2). According to (4),

n2 — In iu\2 — e < e a (7)

Let us consider the functions η = η(ω) and κ = κ (ω) in the
case of sufficiently weak attenuation (κ <SC n), assuming
that €i = const and ε2(ω) is represented by the following
natural generalization of (2):

ε2 (ω) = ε (ω) = e»
(ω) " (2')

Substituting (2') in (7), we obtain

ε-,ω'-ΒΪ-ίωΓ

and hence (see also Fig. 2)

and «2 = [k2 - (u>2/c2)e2]
1 . The vector Η may be assumed «2 (<») =

to be parallel to the y axis, and the continuity of H y "^
across the boundary is ensured by the condition H*o = H-o
= H. The second Maxwell equation in (3) then yields

ε, + ε» (ω2 —Ω,!)2-ί-ω!Γ2 ι + e» (ω2—
(8)

Therefore, the frequency ω = Ω 8 is a resonance fre-
quency for surface polaritons. When ω — Sis and the
attenuation is weak enough (i.e., Γ is small enough), the
quantity n2 increases rapidly, so that spatial dispersion
effects may also become important near resonance. We
shall discuss them below (see Chap. 7). Here, we shall
confine our attention to estimating κ and comparing it
with the corresponding values for body waves. Outside

2 2
an absorption band, i.e., for Ω 2 - ω2

ωΓ,

QJ — ω 2

It follows from this result that k2 > 0 if |e 2 | > elt which
is to be expected for real k, ω and ex, e2. Thus, when
ex = 1, i.e., when the crystal has a vacuum on one side,
the dependence of the frequency o>s of the surface polar-
iton on k is as shown in Fig. 1. It follows from this fig-
ure that the surface-wave spectrum lies between ω = Ω χ

and ω = Ω δ , where fig is the solution of (4) when c — °°
(i.e., when retardation is ignored). It also follows from
(4) that the frequency as satisfies the equation

β! + ε2 = 0, (5)

and, when €i = const, e2 = e(w) [see (2)], we find that

(6)

Therefore, the position of the frequency Ω δ is essentially
dependent on the permittivity £i of the substrate. Thus,
when eL <S £0, e^, the frequency Ω 8 approaches the fre-
quency Ω ρ of the longitudinal oscillations and may be
difficult to observe (for more detailed discussion of the
role of the substrate, see Chaps. 4 and 5)4 ). .

So far, as i n C l 0 ] , we have neglected the attenuation of
the waves. When attenuation is taken into account, this
leads to a number of interesting effects, many of which
can probably be found experimentally. However, we shall

Assuming, for example, that Ω ^ ~ 500 cm"1, €i = 1,
e0 = 5, eM = 2, and Qs - ω « 100 cm"1 [in which case

Ω
2 - ω2 =

s

ω2 = 1Λ(Ω2 - ω2)] we obtain

' 12 Si, — ω '

and, therefore, when Γ ~ 10 cm"1, we have κ « 10"2/3.
The path length L over which the intensity of the surface
wave decreases by a factor of e, i.e., L = c/2avi is, in
this case, of the order of a millimeter. For another
choice of the band parameters, it can be several times
greater, or smaller. One way or another, this length is
much greater than the penetration depth for all body
waves. All this follows quite simply from an analysis of
the resonance situation. In fact, when ω = Ω 3 ,
η2 = £!€«/(€! + e J [see (8)] and

FIG. 2. Complex refractive index ft = n—i/c
of dielectrics as a function of frequency ω.
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: Ω,, η2 =-ii5=_(cM. (8)), a

ΐ Ί / ~ ΐ ^ Γ 0 Ί ι - 0 !
2 V ε, + e» Ω,Γ

At the same time, for body waves with ω = Ω χ , we have
η2 = εβ, « b « (e0 - €0Ο)Ωι/2Γ·ν'€0Ο. Therefore,

(e0 — ε») Ωj_r (0.)

"suif

Assuming that Γ ( Ω Β ) « Γ ( Ω Χ ) , and using the Lyddane-
Sachs-Teller relation for Ω Ν and (6), we obtain

(9)

Subject to the above assumptions with regard to the
quantities elt e 0 , and £„, we have Kb/«surf * 6.5, and
this ratio has a comparable value in the nonresonant
situation. This Is very important because it facilitates
the design of experiments on the attenuation of surface
polaritons (see Chap. 4, Sec. d).

Let us now consider the reflection and refraction of
surface waves at separation boundaries. In particular,
let us suppose that medium I in which εχ(ω) > 0 (ω is the
surface-wave frequency) has a plane separation boundary
(x, y plane) with medium Π in which e2(w) < 0 for χ < 0
and with medium ΠΙ in which e3(w) < 0 for χ > 0 (Fig. 3a).
In this case, the separation line, i.e., the Oy axis, divides
the surface into two. The dispersion relation for the
surface polaritons is different in each of these regions,
and we therefore have the natural question as to what are
the laws of reflection and refraction which the surface
wave must obey on the separation line. Since, in this
situation, translational symmetry obtains only for dis-
placements along the Oy axis, reflection and refraction
should conserve the y component of the wave vector.
Hence, it follows immediately that the angle of incidence
must be equal to the angle of reflection (Fig. 3b). How-
ever, the angle of refraction θ must be determined from
the condition5'

This means that total internal reflection of the surface
wave occurs for φ > ψο· This does not, however, mean
that the energy of the reflected wave is equal to the en-
ergy of the incident wave. The point is that we have been
concerned only with the refracted surface waves. On the
other hand, in the case we have considered, reflection
from the separation line may be accompanied by the ap-
pearance of a body wave in medium I. This is connected
with the violation of translational invariance along the
Ox axis, and can readily be seen from the following sim-
ple considerations. Let us suppose, for the sake of sim-
plicity, that the angle of incidence is φ = 0. We then
have k y = 0 and, therefore, with the corresponding choice
of the values of q x and q z for the body wave in medium I
(q is the wave vector of the body wave and q y = 0), we
can always satisfy the resonance condition

j , n sin φ = sin θ, ΟΓ
sin φ

«I. II
»i, in '

(10)

where n^ is the refractive index for the surface wave at
the boundary between the media i and k. In this case, the
incidence of a surface wave on the separation line is not
accompanied by a surface wave propagating along the
separation boundary between media Π and ΠΙ, since we
have assumed that e2 and e3 are negative. However, in
anisotropic media, the appearance of two refractive
waves is possible, in principle. It is interesting that if
nj jj/nj JJJ > 1 then for a certain value of the angle of

incidence, φ = φ 0 , we have θ = y2ir(sin φ 0 =
 η ΐ , π ΐ ^ η Ι , Π ^

V'ei

An analogous situation occurs for ψ 4 0, provided only
that for such angles there exist q z and q^ for which
there is a real k y satisfying the equation

Thus, it follows from the foregoing that the transforma-
tion of a surface wave into a body wave is possible on
the separation line. Analogous phenomena occur when a
medium with e(uj) < 0 forms a wedge of the form illus-
trated in Fig. 3c. If a surface wave arrives from infinity
in the ζ = 0 plane on the Oy axis, then, in addition to the
reflected wave R, we have the refracted wave S propagat-
ing in the χ = 0 plane. As in the preceding case, we then
have the transformation of surface into body waves along
the Oy axis.

Calculations of the intensity and angular distribution
of the induced body wave, and of the amplitude of the re-
flected wave, for the situation shown in Fig. 3, require
solution of the diffraction problem for a wedge (see Fig.
3c) or two contacting wedges (Fig. 3a). It is well-known
that these problems have been encountered in connection
with radiowave propagation, and are among the funda-
mental problems of the mathematical theory of diffraction
(see, for example, l-8a-' for a review of these problems).
They have been solved only in the impedance approxima-
tion. iSh^ In this approximation, the analysis of the elec-
tromagnetic problem in the region external to the wedge
(or wedges) ignores the fields inside the wedge and uses
the Leontovich boundary condition

Ε, = ΖΙΗ,Χη],

where Et and Hj. are the tangential components of the
electric and magnetic fields, η is the normal to the wedge
surface, and Ζ is the surface impedance. The use of im-
pedance boundary conditions is justified only for | e | S> 1.
For surface waves, this inequality is always satisfied
for frequencies ω ί£ Ω χ (Fig. 1), and is also satisfied for
the entire branch of surface-wave frequencies provided
only that the wedge [€ϋ(ω) < 0] does not lie in a vacuum
but in a medium in which ei > 1 (see Fig. 3). Assuming
that | e(a>)| 5> 1, we can estimate the intensity of body
waves which appear as a result of diffraction of the sur-
face wave by the impedance wedge (Fig. 3c). In accord-
ance with'-8 , the modulus of the amplitude of the reflec-
ted surface wave (the incident amplitude is assumed
equal to unity) is

FIG. 3. Reflection and refraction of surface waves at separation
boundaries (lines).

H = sh-2s-l l-i-cos(nz/a)
.) — cos'tn'
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whilst the modulus of the amplitude of the reflected
wave (cf. Fig. 3) is

1—cos(n!/a)
a. V ch (2π|/α) -f- cos (π=/α)'

where α is the external angle of the wedge (a = 3ττ/2 in
Fig. 3c) and the quantity ξ is determined from the form-
ula ζ = - i sinh ξ. If the wedge is in a vacuum, then
sinh ξ = 1/vTiT, and for |e | > l w e have ξ « 1//[ΪΤ· It
follows from the above expression for R and S that, when
|e| 3> 1, we have R <C 1 and S <S 1, so that practically
the entire energy of the incident surface wave is trans-
formed into the energy of the generated body waves.6'

This fact is very important in the light of the fore-
going remarks about the necessity of having surface-
wave receivers in crystal optics, since it means that,
when separation lines are present or can be produced,
detectors of body radiation can be employed to determine
the surface-wave intensity.7' As the frequency of the
surface wave deviates from ω = Clj_ (cf. Fig. 1; this is
accompanied by an increase in the wave vector and the
wave itself becomes increasingly mechanical), the rate
at which the wave is transformed into electromagnetic
body waves should fall. However, this fall occurs when
the impedance boundary conditions are not suitable, and
this complicates the numerical estimates.

We have considered some of the most characteristic
questions in the crystal optics of surface waves. In the
ensuing account, we shall emphasize more specifically
the new possibilities for investigating the physical prop-
erties of surfaces with the aid of these waves. Here,
however, we shall merely note that, as already indicated,
the crystal optics of surfaces is concerned with the study
of the propagation of waves along a surface with fre-
quency ω determined by the source. However, the dis-
persion relation (4) also gives information about waves
for which the given quantity is not the frequency but the
wave vector k (for example, in experiments on ATIR and
in Raman scattering of light by surface polaritons). In
this case (see Chap. 4), the intensity of the process is

/ (k, ft'—ĉ2 e, e.

and hence the use of (2') with fixed k leads to a Lorentz
dependence on ω - ω (k) for I(k, ω) (ω is the polariton
frequency when the damping is neglected), with the line-
width a function of k (cf. Chap. 4 for further details).

3. SPECTRA OF SURFACE POLARITONS IN ANISO-
TROPIC CRYSTALS

The spectra of surface polaritons in anisotropic crys-
tals have a number of specific features . t u ' 1 2 ] These
include, above all, the fact that surface electromagnetic
waves in anisotropic crystals may not exist in a given
frequency band for all orientations of the crystal surface
relative to the crystallographic axes, and there is also a
strong dependence of the dispersion of the surface polar-
iton on the direction of its two-dimensional wave vector
(nonanalyticity in k).8)

These properties of the spectrum of surface polar-
itons have now been investigated experimentally as well
(see Chap. 4 below). Calculations of the spectra of sur-
face polaritons in anisotropic crystals, on the other hand,
for a series of simple orientations have also been re-
ported in'·1 3"1 8'7 2-'. In particular, the properties of sur-
face waves in uniaxial crystals were investigated in^14'15^
and in1-11'12·1, whereas the properties of surface polar-

itons in biaxial crystals were investigated in'-16"18-'. The
main, although purely formal, difficulty which makes
calculations of the dispersion of surface polaritons
rather laborious arises when the normal to the surface
or to the separation boundary between media is not
parallel to one of the principal axes of the tensor £- (o>).

In all other respects, however, these calculations are
very elementary although they are given in the above
papers only for a number of special situations. Because
of this, we shall start by deriving the basic relationships
for the dispersion and polarization of surface Η-waves in
arbitrary anisotropic crystals, using the reciprocal ten-
sor ejj(u)) = Ay instead of the tensor £y(w), which will

be found to simplify substantially the derivation of many
of the results. We shall then consider the derivation of
surface waves of a more general form and, without tak-
ing delay into account, we shall discuss surface waves
in anisotropic crystals of arbitrary symmetry for arbi-
trary directions of propagation.

As in the analysis of the properties of surface polar-
itons in isotropic media (Chap. 2), we shall suppose that
the separation boundary lies in the xy plane and that the
medium is isotropic for ζ > 0 (permittivity tensor
eij = € ι δ ϋ ' € l > ")» w n e r e a s i o r ζ < 0 it is anisotropic
[permittivity tensor e^ = £^(ω),

It follows from Maxwell's equations that the ampli-
tudes of the required fields satisfy the following set of
equations for ζ > 0 (subscript I) and ζ < 0 (subscript Π):

Dn-_—-[K°XH],
(11)

where Κ is a vector with components (ki, k2, )
(Re «i > 0) for fields corresponding to ζ > 0 (Κ = Κ1),
and components (ki, k2, — i/c2) (Re κ2 > 0) for ζ < 0
(Κ = Κ11). Equation (11) takes into account the fact that
all three components of Η are continuous across the
separation boundary (H1 = H n = Hm). It then follows
from the orthogonality conditions K1 · Η = 0 and K n • Η
= 0 that in waves with Η / 0 we must have H3 = 0. Fur-
ther simplification can be achieved by choosing the set
of coordinates so that the χ axis lies along k(ki, k2) (in
which case k2 = 0). We then have from (11) E{ = Εψ = 0,
H{ = Hj1 = 0, whereas H* = H*1 = Η t 0. Thus, the waves
which we are considering are Η-waves as in the case of
isotropic media (see above and^1^). Hence, substituting
the expression Ej = -(c/wJA
tion in (11), we obtain

) , g
χ Hi into the first equa-

AaK\ (12)

which gives «i and κ2 in terms of k and ω for both ζ > 0
and ζ < 0. In particular, for ζ > 0 we have A u = A33

= l/ei., A13 = 0, K3 = i/Cj, so that

X l = j / * Z I | ^ . (13)

For ζ < 0, we have K3 = — ϊκ2 and when Re /c2 > 0 we find
that9'

- ^ A;}. (14)

It follows from (13) and (14) that the conditions Re «i
> 0 and Re «2 > 0 can only be satisfied for frequencies
ω such that

(13')
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and

Λ

(14')

(14")

It follows from (14') that A33 and A u should have the
same sign. From the condition E2 = 0 we also have

A^D! + Α,,Ω, = 0,

so that the frequencies of the surface waves which we
are considering must be such that

A13k = 0. (14'")

This is a very stringent condition and restricts the reg-
ion of existence of the H-waves.

The last boundary condition which must still be satis-
fied is the continuity of Ei across the separation bound-
ary. We find from (11) that the condition E{ = Ep is
satisfied if

He ) = E\ = t κ,,

i.e., if

In view of (14), we can rewrite (15) in the form

(15)

(16)

and hence it follows that, in the frequency band of the
surface polaritons, Au(w) < 0 [and hence A33(u>) < 0; see
(14') and below]. The quantity ex is assumed positive, as
already noted.

Substituting the explicit expression for «i in (16) and
determining k2 from the result, we finally obtain the fol-
lowing dispersion relation for the surface wave:

(17)
e» ΑΗΑΧ,-ΑΙ,-ΖΪ*

To illustrate (17), let us consider some of the most
interesting examples. In particular, when the χ and ζ
axes lie along the principal axes of the tensor Ay, i.e.,
if Ay = 6y/cy, then (14) is satisfied and (17) can be

written in the form

which was previously derived inC i e : i and becomes iden-
tical with (4) when €n = e33 = e. In the case of uniaxial
crystals, the condition given by (14") can also be satis-
fied when the optic axis lies in the xz plane at an arbi-
trary angle θ to the ζ axis (with this orientation A2l = A23

= 0). Since, under these conditions,

We have already emphasized that (17) describes dis-
persion only in the case of the simplest surface Η waves.
However, in anisotropic crystals, the structure of the
surface waves may be substantially more complicated.
The point is that the Fresnel equation for an anisotropic
crystal with given ω and k(k1; k2) can be used to obtain
two, in general different, values of κ2, Re κ2 > 0. This
means that, when general surface solutions are found, a
superposition of two solutions must be matched to the
field in medium I on the separation boundary, which is
the usual situation in the case of body waves in the pres-
ence of birefringence. This more general approach
turns out to be very laborious even for uniaxial crystals
(see[15-1), and has not as yet led to any useful results
which could not be obtained within the framework of
H-waves.10) At the same time, as already shown, the
Η waves are realized only for special directions of
propagation of the surface waves, and therefore provide
a very incomplete picture of their spectrum. In view of
the foregoing, let us consider the spectrum of surface
polaritons, using the same geometry as before, for suffi-
ciently large k 3> ω/c, where delays can be ignored
( S e e [ l l ' 1 2 ] for an analogous analysis in the case of uni-
axial crystals). In this case, as c — °°, the Maxwell
equations reduce to the form

rot Ε = 0, div D = 0, D, = el}EJt rot Η = 0, div Η = 0.

Let us consider fields with Η = 0, since for fields with
Ε = 0 but Η ^ 0 it is readily seen that surface waves will
not appear in nonmagnetic media.

For a plane wave with wave vector K(k, 0, K3), we
have D · Κ = 0, Ε = CK, where C is a scalar and, there-
fore,

ε,-j (ω) KiKj = 0. (%0\

This enables us to express K3 in terms of ω and k. In
particular, in medium I, K3 = iK1; where Κχ = k. In med-
ium Π, K3 = -ΐκ2, where

κ 2 = _ ^ + λ . / ϋ ι _ ( ϋ ! ) 2 . (21)
633 ' e13 * e33 '

It follows from the condition Re K2 > 0 that, at the sur-
face-wave frequencies, the quantities en and e33 should
have the same sign. The continuity of Ej. across the
separation boundary is ensured by setting c = c '
quantity D3 is continuous, i.e., Di= Dp if * v l =

cos» θ , sin1 θ
: — i r — 5 —

it follows that

and hence

A33 *J-
sin θ cos θ(-1—£-)

2 ω3 (β11 cos*8+eJ-sin'8) , (19)

It follows from this relation that resonances in the re-
fractive index n2 = kV/ω2 occur for frequencies ω which
satisfy the condition elen = e\ in such a way that their
position is independent of the angle θ (only the intensity
of the resonance depends on Θ).

if
The

= e3ik

i.e.,

< 2 2 >

For real €\Λω) and ei > 0, the expression given by (22)

is valid only when e33 < 0 [and, consequently, £χι(ω) < 0);
see above]. Under these conditions, (22) assumes the
form

81 = (ω)ε33(ω) — ε%{ω). (23)

This completely determines the limiting frequencies of
surface polaritons in arbitrary crystals for k » ω/c
(with spatial dispersion ignored), and it is precisely
these frequencies, i.e., ω = 12S, which satisfy (23) and
determine the resonances in the refractive indices n2(u>)
for the possible surface wave. For the Η wave found
above, this follows directly from (17) and, provided only
we allow for the fact that when (14'") is satisfied, i.e.,
A12 = 0, A23 = 0 (and hence e12 = e23 = 0),

However, this is also valid for the dispersion of surface
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waves which are not Η waves, and the dispersion rela-
tion for which has not yet been found in explicit form.

For the set of coordinates used here (z axis parallel
to the normal, wave vector parallel to the χ axis), the
components of the tensor e^ in (23) turn out to depend on
the orientation of the principal axes of the tensor e^.

This leads to a strong dependence of the frequencies fis

which satisfy (23) on the direction of propagation of the
surface wave (i.e., the nonanalyticity of the dependence
of Ω 3 on k when k — 0), as already mentioned.

We note in conclusion that, in addition to these
branches of the spectrum of surface waves ω = o>(k)
which propagate into the region of larger k, there may
also, in general, be surface polaritons which are real-
ized for values of k bounded not only from below but also
from above.Cl3-1 It is clear that states of this kind can
correspond only to k ~ ω/c but when delay is ignored
they cannot be investigated. Observations of such states
are discussed in'-2 5'2 7 .

4. EXPERIMENTAL METHODS FOR STUDYING
SURFACE POLARITONS. REVIEW AND COMPARISON
OF RESULTS

There has been clear progress in recent years in the
development of experimental studies of surface polar-
itons in semiconductors and dielectrics. These elemen-
tary excitations are being successfully investigated by
the method of attenuated total internal reflection (ATIR).
In addition, experiments using low-energy electron dif-
fraction (LEED) and Raman scattering of light (RSL)
have been initiated. These methods are based on differ-
ent physical processes and have different precision, as
is clear from their designations. Nevertheless, they are
all important since they augment one another and enable
us to investigate surface wave spectra in a broader
range of wave vectors. We shall illustrate the foregoing
by considering the different methods of investigating
surface polaritons and the results obtained thereby.
Here, we only emphasize that ATIR, LEED, and RSL can
also be used to excite surface polaritons and this must
be remembered in connection with the possible types of
sources and detectors of surface waves (see also Chaps.
1 and 2) which are necessary for the development of the
crystal optics of surfaces.

a) The ATIR method and possibilities of ATR. ATIR
has long been known (see, for example, '-19-') and was used
by Otto in 1968 as a method of investigating surface
plasmons in metals. '-20-' It was subsequently noted in'-21-'
that this method could also be used to investigate sur-
face phonons. The first experimental studies of the
spectra of surface polaritons using ATIR were carried
out for the cubic crystals NaCl, HBr, NaF, I i F , CdF2,
GaP, and many others. [22"253 On the other hand, the
spectra of surface polaritons in uniaxial crystals MgF2,
TiO2,

 [ 1 5 ' M ] quartz, sapphire, and lithium niobate1 2 7 '2 8^
were investigated only recently for certain orientations
of the crystal surface and directions of propagation of
polaritons, and the results are in reasonable agreement
with theory.

In the ATIR method, measurements are made of the
spectrum of reflected electromagnetic radiation, where
the incident radiation arrives from the denser medium
on the plane separation boundary which acts as the plane
of total internal reflection (Fig. 4). The presence of an
absorbing medium (medium ΠΙ in Fig. 4) leads to a re-

FIG. 4. Ray paths in the ATIR method.

duction in the scattered intensity. Penetration beyond the
plane of total internal reflection, and possible dissipation
of the electromagnetic field in the optically less dense
medium was investigated experimentally as far back as
the beginning of this century (see, for example,J-2*·1)· On
the other hand, the significance of the remarks in'-2O'21^
is not at all trivial since the basic possibility of absorp-
tion does not in itself signify that this absorption may
be due to the excitation of a surface polariton. To eluci-
date the situation, let us return to the polariton spectra
(see Fig. 1). It follows from the form of these spectra
that for surface-polariton frequency wp(k) we have the
condition o>p(k) < ck/Vi~^ < ck, where k ^ , k ) is the
wave vector of the surface polariton. Since in processes
involving the interaction of a photon incident, for exam-
ple, from vacuum on the surface of the crystal, the com-
ponent of the wave vector along the surface of the crystal
must be conserved, the inequality ω = cVk2 + k | > ω (k)

(ω is the photon frequency in vacuo, and phonons and
other similar factors are ignored) means that the excita-
tion of surface polaritons by the usual volume photons is
impossible. If, however, we consider plane waves with
imaginary kz, i.e., fields which decrease exponentially
with distance from the ζ = 0 plane, then the conservation
of energy Κω = fiwp(k) can be satisfied. It is this fact
that lies at the basis of the application of ATIR to the
study of surface polaritons. At the same time, one must
always remember the following. It would seem, at first
sight, that the excitation of surface polaritons will be
particularly intensive for d — 0 (Fig. 4). In reality, these
waves are not excited at all for d = 0 because there is
then no spatial region in which the excited waves have
imaginary kz (there is, at the same time, a slight
deformation of the spectrum of the surface waves; see
below for the role of the substrate). The gap length d is
therefore chosen to have the optimum value, i.e., large
enough for the presence of the prism to have practically
no effect on the spectrum of surface polaritons, but such
that the reduction in the reflection coefficient is still de-
tectable. Calculations of the reflection coefficient in the
ATIR method have frequently been carried out (see, for
example,[ 2 3 ]) and we shall therefore simplify and repro-
duce the formula for this coefficient in the case of the
situation illustrated in Fig. 4 and sufficiently large d . u )

If ei and e2 are the permittivities of the prism and of the
material in the gap, respectively, and e3(w) is the per-
mittivity of the crystal which is less than zero (ci, ez,
and e3 are assumed real), then the reflection coefficient
is given by

i(.)*i-i^i[f+i]r-, (24)

where κ^ = [k2 — (w2ej/c2)]1 . It follows from this that
the reflection coefficient becomes less than unity only
for frequencies ω and angles of incidence φ for which
ω and k Ξ (u>/c)VeTsin φ are such that

ε3(ω) ι e t _ Q

X3 Ή '

which, in fact, determines the dispersion of a surface
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polariton on the boundary between media Π and ΠΙ when
d — °° (see Chap. 2). The presence of the δ function in
(24) is due to the fact that dissipation processes were
ignored. On the other hand, the integrated reduction in
the reflection coefficient, which is independent within
certain limits of this dissipation, and is proportional to
the total probability of excitation of a surface polariton
with wave vector k in the ATIR method, is given by

κ* (25)

where the frequency ω must be looked upon as equal to
the frequency a>s(k) of the surface polariton with wave
vector k, and C(k) is given by

C(*)·
(26)

If T(k) is the linewidth for the surface polariton, then
the reduction in R(w) within this width is roughly
W(k)/r(k). Let us estimate W(k) approximately, neglect-
ing the relativistic terms in Kj. In this approximation,
κί = k so that, using (2) for e3, we have

*(l!0-8,)Ql (27)

Consequently, we have the order of magnitude result
C(k) ~ k«j/lO. Therefore, W/t1 ~ 20(ni/r)exp(-kd),
and when w/r ~ 10 and d = λ, we have w/r ~ 0.5. It is
precisely the large values of w/r that have ensured the
success of this method. Figure 5 gives typical experi-
mental curves showing the frequency ω at which R(w) is
a minimum for given k as a function of the angle φ. This
figure also shows the function ws = ws(k) (all the data
are taken from1-28-1).

We note that the ATIR method can be used to investi-
gate the spectrum of a surface polariton only up to wave-
vector values k ^ (ω/cy/TT, so that this method will not
yield the surface-wave dispersion in the nonrelativistic
region of k. Raman scattering and LEED may be par-
ticularly useful in this region. Before we proceed to
discuss these methods, we must make one further point
in connection with light reflection as a means of inves-
tigating surface-polariton spectra. It was noted in Chap.
2 that, when lines of separation are present on the sur-
face of a crystal with e(a>) < 0, and they are of the form
shown in Fig. 3, surface waves can transform into vol-
ume waves and vice versa. This means that, as in ATIR,
the surface light-reflection coefficient should fall in the
case of resonance with the surface wave (i.e., the pres-
ence of the separation lines also leads to attenuated total
reflection of light-ATR). The question is: can this effect
be used to determine the dispersion relation for the sur-
face polariton? We shall show that, at least in principle,
the answer is yes. Thus, let the separation Une lie along
the y axis, so that only the component of the wave vector
along this axis is conserved. The reflection coefficient
should then fall when the following condition is satisfied:

cu = c γ ϊΐ-r-a»-r ϊ« — " i v i · " sin φ '

where ω is the frequency of the volume photon in vacuum
(€i = 1), q = (qx, qy, qz) is its wave vector, and φ is the
angle between the surface-polariton wave vector and the
χ axis. Since the frequency ω and wave vector q are
known for the incident photon, once we determine the
reflection minimum (for example, by varying the direc-
tion of q), we can use (28) to calculate the frequency ω8

of the polariton and the corresponding vector k. There-
fore, all that remains is the absolute magnitude of the
effect. Quantitative estimates of the transformation of
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FIG. 5. Experimental results obtained in [ 2 S ] : (a) position of mini-
mum transmission 1 - R as a function of Q x (the projection on the plane
of total internal reflection of the wave vector of the volume photon; Q x

= k o n o sin ψ, φ is the angle of incidence, n0 is the refractive index of the
prism material, and k0 = ω/c); (b) frequency of the surface phonon (dif-
ferent curves correspond to different surface orientations; see [2S] for
details).

volume waves into surface polaritons in the presence of
surface separation lines can only be made in the imped-
ance approximation at the present time. According
t o t 8 b ] , the incidence of a plane wave on a wedge results
both in a reflected wave, an edge wave (the bright line at
the edge of the wedge is due to this wave), and surface
waves. We shall not reproduce here the expressions for
the amplitudes of these waves and will merely note that
they are of the order of the surface impedance Z. They
are therefore small in the region in which the impedance
approximation is valid. This means that ATR is not
very effective as a means of studying the dispersion of
surface waves. At the same time, when lasers are used,
ATR can effectively be employed for pumping surface
polaritons.

b) Periodic set of lines on a surface. Suppose that
parallel lines are drawn on the surface of the crystal
(z = 0) at constant distance d from one another, all of
them being parallel to the Oy axis. When light waves
interact with the surface polariton, the wave-vector com-
ponent kjj is then conserved only to within 2n/d. Despite
the fact that the inequality

*i >«>.(**),

is satisfied for certain values kx =
the condition

, we can satisfy

by suitably choosing one of the values m = ± 1, ±2, ... .
This condition expresses the conservation of energy and
of the wave vector k^ and the transformation of volume
photons with frequency ω = ω3(1^) into polaritons [with
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a simultaneous reduction in the reflection coefficient
R(u>)] becomes possible. It is clear that this reduction
in R(a>) can occur for angles of incidence φ given by the
formula (ω/c) sin φ = 1^ — (m2w/d), and this has been ob-
served experimentally. [34~383 in most experiments, the
surface periodicity was produced mechanically which, of
course, led to changes in the structure of the surface
layer that were difficult to control, and to the additional
attenuation of the waves. Surface acoustic waves
(Rayleigh waves) were therefore employed i n t 3 9 ] to pro-
duce the surface periodicity. On the whole, however,
this method has turned out to be less convenient than
ATIR because calculations of the reflecting power of a
set of lines are very approximate in the case of photons,
or require detailed knowledge of the line profile (see [41^
and 1 - 5 , a similar problem for waveguides is discussed

At the same time, when the separation between the
prism and the surface of the crystal is large enough in
ATIR, the minima of R(u>) are very accurately equal to
the frequencies of the surface polaritons, as already
shown.

c) Raman scattering by surface polaritons. The pos-
sibilities of RSL as a means of studying surface polar-
itons has frequently been discussed in the literature
(see C 3 O ' 3 1 ] ) , i 2 ) but the first successful experiments
which resulted in the surface-polariton spectrum were
published quite recently in'-32·1. The RSL spectra were
measured in these experiments at room temperature for
a thin (~ 2500 A) film of GaAs grown epitaxially on
sapphire. The radiation source was a continuously
operated argon laser (4880 A) with an output power of
400 mWcw. The exciting radiation was polarized at
right-angles to the plane of scattering and was incident
normally on the plate (Fig. 6). Although gallium arsenide
is a strong absorber of the laser radiation (penetration
depth »900 A), the use of a thin film meant that trans-
mission experiments could be carried out. If ws is the
measured photon frequency at angle φ to the direction of
incidence of the laser photons (ω = ω^) on the film, the
surface-polariton frequency ω = ω± — ws corresponds to
the wave vector k = Q sin ψ where Q = (ajj/cni) is the
wave vector of the laser radiation and nj is the refrac-
tive index of GaAs at WJ. The experimental results re-
ported in '-32-1 are shown in Fig. 7. The figure also shows
the solid line based on results obtained in1-33-' as a result
of calculations of the surface-polariton dispersion in the
vacuum-GaAs-sapphire system. As can be seen, the
agreement is good but only for large enough k. It is pos-
sible that the inferior agreement between theory and ex-
periment for small k is due to the fact that the attenuation
of the laser beam in the GaAs film, which leads to an
uncertainty in the wave vector of the surface polariton,
was not taken into account (this question was not consid-
ered quantitatively). It is shown in1-33-1 that the disper-
sion of surface polaritons in the structure illustrated in
Fig. 6 is described by

( 2 9 )

where d is the thickness of the film

x0 =Vk2 -

- (ε (ω)

FIG. 6. Experimental arrangement used
in [32] to investigate RSL by a surface
polariton in gallium arsenide.
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FIG. 7. Experimental data on the dispersion of surface polaritons on
the boundary between gallium arsenide and sapphire. [32] Solid curve-
theoretical. I33]

mittivities of sapphire (uniaxial crystal; its optic axis
lies at right-angles to the separation boundary between
media in the experiments described in1-32-1). As expected,
(29) defines two branches of surface polaritons.13' As
d — », these branches are transformed into a surface
polariton on the vacuum-GaAs boundary and a surface
polariton on the GaAs boundary. However, the branch of
the first of these polaritons is found to lie in the immed-
iate neighborhood of the longitudinal-wave frequency in
GaAs because the ratio (e0 - e»)/(eo + Ο is small for
GaAs, and the broadening of the RSL lines for longitud-
inal volume waves was not noted in1-32-1. The second
branch, on the other hand, which as d — •» becomes
transformed into polaritons on the GaAs-sapphire boun-
dary, turns out to be substantially shifted away from the
frequencies of transverse and longitudinal volume waves
because of the high values of eN and e ± for sapphire
(en = 11.6, £j_ = 9.35), which ensured the success of the
experiment. To understand the "mechanisms" whereby
the substrate makes its presence felt, we note, first of
all, that for sufficiently large k, such that k2

2> (o>2/c2)|ejj and k ^> l/d, the polariton dispersion law
is independent of d [which is clear from (29)] and is the
same as the dispersion law in the nonrelativistic region
for d = °°. Hence, in layered structures of the kind con-
sidered i n M , limiting values of the surface frequency
ils can be found from the simpler formulas given by (6).
Since the frequency of the longitudinal volume wave is

Λοο)172 (see Chap. 2), we have, in this case,

e(co) is the permittivity of gallium arsenide, SiL

« 270 cm"1, e 0 = 13.1, e(a>) < 0, and ey, e^ a re the p e r -

so that on the vacuum-GaAs boundary (ei = 1, e0, cx

» € ι ) Δ Ω « n | | ( e ^ 1 - e i 1 ) / 2 « lO^B,, < δ where δ ~Ω Ν /30
is the RSL linewidth in GaAs. On the GaAs-sapphire
boundary, we have ΔΩ > δ and, moreover, the approach
of the ws(k) curve for d = 2500 A to the asymptotic value
is slower than on the vacuum-GaAs boundary (Fig. 8).

It is evidently not accidental that the first experiments
on RSL by surface polaritons were carried out for GaAs,
since these crystals have very high nonlinear polariza-
bility χ ^ which is determined by the intensity of the
process. However, the high nonlinear polarizability is
not the only factor which dictates the choice of materials
for RSL by surface polaritons. The point is that the rate
of RSL by volume phonons and polaritons increases with
increasing crystal thickness, whereas the rate of RSL
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by surface polaritons depends on the crystal thickness
only for d % κ = [k2 - (o>7c2)e(w)]l/2. Therefore, for
large d, RSL by surface waves is drowned by the back-
ground of RSL by volume polaritons. The use of thin
films, on the other hand, leads to technologic problems
associated with their preparation, and this has probably
impeded the development of studies of RSL by surface
polaritons.14'

d) Propagation of surface polaritons along separation
boundaries. The first successful observation of the
propagation of surface polaritons over macroscopic dis-
tances was reported in^42^. This paper was concerned
with the propagation of a surface wave along the copper-
air boundary in which coupling between volume light
waves and surface waves was achieved with the aid of
two NaCl prisms (Fig. 9). The surface waves were
pumped by a ~250 mW cw laser (λ0 = 10.6 μ). The
length L in which the intensity of the surface wave fell
by a factor of e turned out to be 1.6 cm. At the CO2 laser
frequency, the field penetration depth in copper is about
250 A. Copper films, 3000 A thick, deposited by evapora-
tion on glass, were therefore used. The gap g between
the prism and the metal was 15 μ.

In the case of the normal skin effect (see t43-1 for non-
local corrections), the permittivity of the metal is e (ω)
= 1 - [ωρ/(ω2 + ΐωΓ)] where ω ρ is the prism frequency
and Γ is the reciprocal of the relaxation time for a con-
duction electron. Substituting this expression into (7)
with ei = 1 and €2 = c, we find that when ω <sC ω ρ we have

(n + i«)2 « 1 + [(ω2 + ΐωΓ)/ω2], so that η w 1 and
κ « ωΓ/2ωρ. Consequently, the attenuation length is
L = C/2U>K « οτ(ωρ/ω)2, τ = 1/1% so that for ωρ/ω « 20

and τ « 5 χ 10"14 sec, the final result is L » 1 cm. This
was, in fact, observed in1-42-1. Further experiments on
the propagation of surface polaritons along a plane sur-
face will undoubtedly result in much valuable information
on the structure and properties of excited states of con-
tacting media, and their value to the development of the
physics of surfaces cannot be overestimated.

e) Low-energy electron diffraction (LEED). Recent
progress in producing slow monochromatic electrons
has led to a realization of the method of characteristic
losses as a means of analyzing surface oscillations in
crystals. Since the depth of penetration of slow elec-
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FIG. 8. Results of calculations [33] of the dispersion of surface
polaritons in a GaAs film on a sapphire substrate.

FIG. 9. Experimental arrange-
ment t 4 2 ] used in the study of the
propagation of surface polaritons
to macroscopic distances.

trons (electrons of 1—100 eV are usually employed) is
very small in crystals (a few lattice constants), an analy-
sis is made of the spectra of electrons which have been
reflected from the surface. This, of course, requires
ultrahigh vacuum (~ 10'10 Torr) and atomically pure
surfaces. Modern spectrometers used for this purpose
are described in t 4 5 ^. Here, we shall merely note that
the energy resolution achieved so far for slow electrons
is no better than 10"2 eV and this means that the struc-
ture of the surface-oscillation band cannot be investiga-
ted by LEED. On the other hand, the frequencies of sur-
face oscillations of atoms determined from the loss
spectra, for example, in the case of mirror reflection
of electrons, are comparable with the limiting values of
the optical lattice vibration frequencies.

The first successful experiments of this kind are
described in^4 8 ' 4 7^. In particular, the frequencies found
for different crystal faces by studying surface oscilla-
tions C 4 6 ] in a ZnO crystal turned out to be in very good
agreement with the frequency of surface oscillations
found from the condition e(u>) = - 1 (ω8 w 0.068
± 0.005 eV).

The probability of excitation of a surface oscillation
found from the phenomenological t h e o r y w is given by

d(ha)

where ao is the Bohr radius and k0 is the wave vector of
the excited electrons. This, too, is in agreement with
experimental data. '-46-1 The use of the phenomenological
theory is justified if sufficiently long-wave photons are
excited (k <̂C jr/a, where a is the lattice constant). This
occurs when ν » ω&, where ν is the velocity of the ex-
cited electrons. When ω ~ 1013, this inequality is satis-
fied even for 1 eV electrons, so that the region in which
the phenomenological description can be used turns out
to be very broad. We also note that estimates of the
wavelengths of excited phonons, based on an analysis of
the angular distributions of electrons reported in^46^1,
yield λ ~ 20 A. LEED can therefore be used to obtain
the frequencies of surface phonons for wave vectors
greater by roughly two orders than those which can be
reached with RSL.

We note in conclusion that LEED can be used as
shown in1-47-1 to investigate not only the surface oscilla-
tions of atomically pure surfaces, but also to judge the
appearance of local oscillations on the crystal surface,
due to the presence of adsorbed impurities. We note
also the theory of Cerenkov emission of surface waves
developed in Μ .

5. THEORY OF RAMAN SCATTERING OF LIGHT BY
SURFACE POLARITONS, INCLUDING MEDIA WITH A
CENTER OF INVERSION (METHOD OF MODIFIED
SYMMETRY)

a) General theory and compensation effect. Among
the methods of studying surface polaritons which were
reviewed in the preceding section, RSL is distinguished
by the fact that this phenomenon is based on the nonlinear
interaction between electromagnetic waves. The general
features of this method are therefore connected not only
with the "linear" susceptibility of the contacting media
(these quantities determine the dispersion relation for a
surface polariton; see Chaps. 2 and 3), but also with the
corresponding nonlinear properties. This leads to a,
number of features when surface polaritons are studied
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by RSL which, in some cases, can be used to great ad-
vantage.

In particular, we have already noted that RSL is one
of the main techniques used to investigate volume polar-
itons. However, this method cannot be used in media
with a center of inversion because the nonlinear suscep-
tibility tensor χ^ which governs the rate of the process
is then identically zero. The situation is, however,
modified if we consider RSL by surface polaritons when
the medium under investigation is in contact along its
entire surface with a medium which does not have a
center of inversion. Since the electromagnetic field in a
surface polariton is nonzero at distances of the order of
its wavelength (λ « 10 μ) on either side of the separa-
tion boundary and, consequently, in the region where
*ίϋ ^ *•*' * n e r a * e °* ^ ^ ky surface polaritons is non-
zero and sufficient for observation, as shown above (see
also'-44-'). However, the fact that the surface-polariton
field differs from zero on either side of the separation
boundary, and the rate of RSL depends on the tensor
χ ^ in both media may, in some cases, lead to the re-
verse effect, namely, to a reduction in the rate of RSL
by surface polaritons (the compensation effect).[57-1

To explain the foregoing, we must start by calculating
the cross section for RSL by a surface polariton, as-
suming, for the sake of generality, that the tensor χ ^
is nonzero in both bounding media.

We shall suppose that the separation boundary be-
tween media I and II lies in the ζ = 0 plane and that in
medium I (z > 0) χ... = χί., and in medium Π (z < 0)

χ.. = χίΤ-, Neglecting possible anisotropy in the media,

we shall suppose that the permittivity for ζ > 0 i s e i > 0
and the permittivity for ζ < 0 is e2 = e(o>) < 0. The dis-
persion of the surface polariton in this case is given by
(4). The perturbation operator which leads to RSL is

(30)= —f \Xiil(z)EiEiErdT.

where Ε and Ε!^ are operators representing, respec-
tively, the high-frequency electric field (for example,
the laser field or scattered-wave field) and the field in
the surface polariton. Neglecting the difference between
the refractive indices for the laser radiation in media I
and II, we shall ignore the possible reflection of the hf
field from the separation boundary, which is unimportant
in approximate calculations of the cross section for the
process.1 5' Moreover, we shall suppose that the laser
beam travels along the χ axis (wave vector ka) and is
polarized along the χ axis, whereas the scattered light
(wave vector k® Ξ k|, 0, k^) is polarized along the y axis
(Fig. 10). In view of the account given in Chap. 2, the
relation between the nonzero amplitudes of the electro-
magnetic field in a surface polariton with wave vector
k = k° — k^ lying along the χ axis is

^ - ^ - e , at

_ ^ . e at z<0. (31)

The absolute values of these amplitudes, on the other
hand, are determined from the normalization conditions,
i.e., the fact that Κω is the energy of the electromag-
netic-wave field in the polariton. In a dispersive non-
magnetic medium, the electromagnetic energy density is
given by[ i o : i

FIG. 10. Wave vectors of surface (ka) and volume
^) waves in RSL transmission experiments.

where we have ignored spatial dispersion, £ Ρ and HP
are space varying amplitudes which determine the real
fields E(r, t) = E p ( r ) e - i w t + E * p ( r ) e i w t and so on.
Recalling the dependence of these amplitudes on x, y, ζ
(Chap. 2), and the equations given by (31), we find that, in
the above case of contacting isotropic media

··. .<o. (33)

where € = e + o>(de/dcci)«. Consequently, from the condition
Κω = JWdr and (31), we find that

( 3 4 )

where S is the area of the separation boundary and

? i
(35)

We shall choose the initial phase so that E? is real and
positive. We then have

τ-Ρ , * ,
β 3 = — l-ΤΓ- at

a t

The fact that Ef is the only quantity in (30) (for the
chosen polarizations of incident and scattered light) that
is different in both absolute magnitude and sign in media
I and Π leads, in some cases, to the suppression of RSL
by surface polaritons through the compensation of the
contributions, as shown above. Since in isotropic media
xijZ = x'eii/' ' w n e r e eH/ i s t n e f u l l y antisymmetric unit
tensor of rank three, the matrix element of the operator
(30) corresponding to RSL with the creation of a polar-
iton turns out to be

where we have taken into account only the chosen polar-
izations of incident and scattered radiation. In this ex-
pression, E? and E° are the amplitudes of the electric
field in the exciting and scattered laser radiation, χ α )

and χ are the nonlinear polarizabilities for ζ > 0 and
ζ < 0, respectively, Δ = k a - k b , and η(ω) = [exp(Ra>/kT)
- I]" 1 . The probability of the process, on the other hand,
is

where A(k) is the Kronecker symbol and vb = da>i,/dkb

is the group velocity of the scattered photon. Hence, the
second-order differential efficiency is

a — c»b— ω).
• Λ» I™ I J ( ! , ) 1 V I

If we now use (36), we can rewrite this in the form

(37)

- η (ω)] Χ"»
κ,, (κι — (Δ)

δ ( ω α — cob—ω).

(38)

(32) Before we consider numerical estimates, we note certain
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properties of (38). Thus, for small angles of scattering,
Δ ~ ka0

 2/2, whereas κ ~ ka9. Consequently, we have the
approximate result16'

-X

so that when κ2/κ\ = χ/χ α ) , the efficiency of RSL by sur-
face polaritons is zero. It is clear that this compensa-
tion of contributions to the RSL cross section is not
always possible and occurs only for media for which χ
and χ( 1 ) are both positive or both negative. It is not,
however, a unique condition. In fact, the ratio κζ/κ\ be-
comes infinite for ω = ωι, and for large k it is equal to
unity [see (31); e(w) < 0). The compensation effect is
therefore possible when χ/χ( 1 ) > 1. When this inequality
is satisfied, the compensation effect enables us to com-
pare the values of χ for the contacting media, and when
the value of χ for one of the media is known, we can de-
termine the value of χ for the other. We must now con-
sider some special cases and estimate the RSL cross
sections. Let us suppose that medium I is a vacuum, so
that χ'1' = 0, €i = 1 and

In the relativistic limit, where k 3> (w/c)|e(u>)| we have
·Φ(1Ε) « k(n2/w2)(e0 -£«,)/(£„ + 1). Under these conditions,
the intensity integrated over the polariton linewidth is

dl

da

and decreases with increasing k. When wa/c = 105,
k = 1000, Ω χ = 1013, 1 + €«, = 10, €o - £«, = 3, and χ = 10"6

(to be specific, we are using the data for GaP and the
helium-neon laser radiation—all in cgs units), we obtain
dl/dU « 4 χ 1011 which is sufficient for the observation
of RSL by a surface polariton (this is, of course, indica-
ted by the observations described in Chap. 4c). It must
be remembered that RSL processes result in the excita-
tion of both surface and volume polaritons under these
conditions, so that, when thick crystals are employed,
processes with the excitation of surface waves will sink
into the background of volume processes. This means
that RSL by surface polaritons is difficult to observe,
and sufficiently thin media must be used. This was taken
into account in'-32-1.

b) Method of modified symmetry. Surface pyro- and
piezoelectricity in ionic crystals. It follows from (38)
that when medium Π has a center of inversion (i.e.,
χ = 0), the cross section for RSL by a surface polariton
with e(w) < 0 is nonzero provided only that in the med-
ium (i.e., the substrate) Ι χ α ) Φ 0. This enables us to use
RSL to investigate the spectra of surface polaritons in
the case of centrally symmetric media, and then use
these spectra to deduce, for example, the permittivity
[according to (4), the effect of a nonlinear substrate on
the spectrum of surface polaritons, in this case, can
readily be taken into account].

The above method is, in fact, the method of modified
symmetry and has a number of features which deserve
attention. In particular, in the above situation, volume
polaritons are not excited. It is therefore important that
overtones or component tones of the nonlinear substrate,
which are active in the RSL spectra, should not enter the
surface wave spectrum region. If this is unavoidable,
their role can be reduced, other things being equal, by
using a sufficiently nonlinear substrate. Estimates of
RSL obtained by the method of modified symmetry
(see [ 4 4 3 ) show that this cross section is roughly the

same as for a nonlinear medium bounded by vacuum for
the values of the parameters chosen in Chap. 5a.

In conclusion, we must consider the further basic
possibility of exciting polaritons in crystals with a cen-
ter of inversion, which does not involve the artificial
choice of a nonlinear substrate (i.e., a substrate with
xiiZ ^ °)* T n u s > i n i o n i c crystals, the concentrations of
cation and anion vacancies in thermodynamic equilibrium
are, generally speaking, equal only well away from the
separation boundaries. In the surface region, local neu-
trality is violated because of the different effect of the
crystal surface on the energy of formation of vacancies
of different sign and, as shown by Frenkel,[70-1 a double
electric layer with a thickness of a few hundred angstrom
is produced. The equilibrium distribution of vacancies
inside this layer was found in'-71-'. It is clear that the
region of this layer is pyroelectric, with the spontaneous
polarization perpendicular to the surface of the crystal,
and varies with layer thickness. For our purposes, the
important point is that the region of this layer is also
piezoelectric, since the deformed layers should exhibit
additional polarization proportional to the deformation.
This type of surface piezoelectricity can lead to a whole
series of effects, for example, it can affect the spectra
of surface Rayleigh waves and their damping. Moreover,
nonlinear optical processes such as RSL by polaritons
and frequency doubling are allowed in the region of the
piezoelectric surface layer (these effects are forbidden
well away from the crystal boundary because of the
presence of the center of inertia). The associated series
of problems, and the possibility of their experimental
investigation, require separate analysis.

c) Linewidth of RSL by surface polaritons. The broad-
ening of the RSL line due to the attenuation of light can
be found from the condition giving the pole of the Green
function for the electromagnetic field in the presence of
a separation boundary (the corresponding analysis for
volume polaritons is given in [ 3 1 ' 4 9 : ! ) . It is quite clear
that this condition has the form given by (4), or

Α { ω ] = ΐ(ω)^ t , _ e ' e | M , / c t ) = 0 ,

where, when damping is taken into account,

(4')

(39)

Since the frequency of the polariton is several hundred
times lower than the laser light frequency, we can neg-
lect the difference between the moduli of the vectors
k a and kb when the polariton wave vector k = kb - ka is
determined. This means that, in RSL processes in which
the wave vectors k a and k*3 are at an angle Θ, the polar-
itons created in the crystals have the same wave vectors
(in fact, predetermined by the experimental conditions).
However, because of dissipation processes, this value
of k corresponds to a whole set of polariton frequencies.
It is clear that, to determine the width of this set, we
must separate the real and imaginary parts in the ex-
pressions for Α(ω) [see (4')] and, apart from an unim-
portant common factor, write the result in the form

ω — ω, (k) + iT (A:),

where ω (k) is the dispersion of the surface polariton
[Re A(o>g) = 0] and T(k) is the required width. Since, as
a rule, ω5 >· T(k) for these waves, it is clear that

To within terms which are quadratic in Γ ο (they can be
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neglected when ω — Ω . > Γο), the formula given by (4')
takes the approximate form

Ω!

± (eo-e.)
Α (ω) =

a\ (so—

Since, for arbitrary k, the expression for T(k) is some-
what unwieldy, we shall consider the two special cases
k2 > ε1ω

2/ο2 and k2 « eifi^/c2. It is readily verified that,
in the former case, F(k) « Γ ο and, in the second case,

Γ (k) = Γ0ί:
2[> + (e0 - e.) - ^ ] "'.

Since, for large k, this tends to the correct limit
[r(k) — Γο], it can be used as the interpolation expres-
sion for the entire region of allowed values of k
[k > (ω±/c)e[/z]. In particular, when k2 = εχΩ 2 ^ 2 , r(k)

= Γο €i(ei + to - Ο l> s o t n a t f o r e° ~ e « > e i t n e RSL
line is substantially narrowed as the angle of scattering
is reduced. If, on the other hand, 6 ο - £ Μ < ε ι , Γ is
practically independent of k. We note in conclusion that,
in the approximation which is linear in Γ , the quantity
(i>g(k) is equal to the surface-polariton frequency when
damping processes are ignored (when Γο = 0; these re-
sults can be readily generalized). The function T(k)
for multilayered media can be discussed by analogy.

6. TRANSITION-LAYER EFFECTS IN SURFACE-
POLARITON SPECTRA

The phenomenologic Maxwell equations were used in
Chaps. 2 and 3 to discuss the properties of surface
polaritons with boundary conditions specified on a sharp
separation boundary in the absence of surface currents
and charges. In this simplified situation, the properties
of surface waves are completely determined by the
permittivity tensors of the contacting media, so that the
information on polariton dispersion, obtained by their
experimental investigation, can be used and is being used
to determine these tensors.

When surface currents and charges are present on
the surfaces or separation boundaries or, more gener-
ally, there is a certain surface transition layer, the
characteristics of the surface polaritons are found to de-
pend on the properties of this layer, and we have the
possibility of studying the properties of such layers.
There appear to be only two nontrivial situations where
allowance for the surface layer may lead to qualitative
effects insofar as surface polaritons are concerned. The
first of these corresponds to the presence of a thin metal
film on the surface of a dielectric, which leads to the
"metal quenching" of the surface polariton.17' This
quenching is accompanied by a substantial broadening of
the surface-polariton lines, and it is shown below
(see '-49-1) that measurements of this broadening can be
used to determine the electrical conductivity of thin-
metal films in the polariton frequency band.

The second nontrivial case corresponds to the pres-
ence of a dielectric transition layer, when one of the
proper frequencies of its dipole oscillations lies in the
surface—polariton frequency band. The resonance situa-
tion which appears in this case results in a gap in the
surface-polariton spectrum.[ 5 0 ] It is usually considered
that the presence of the transition layer leads to optical
effects of the order of l/λ, where I is the thickness of the
layer and λ is the wavelength of light. This is, in fact,
valid in the absence of resonance with the surface polar-
iton. On the other hand, when resonance occurs, the re-
sulting gap in the surface-polariton spectrum is of the

order of VZ/λ. These two situations are discussed in de-
tail below.

a) Transition layers with high electrical conductivity,
We shall illustrate the foregoing by considering the ex-
ample of a semi-infinite isotropic crystal, the surface
of which is coated with a thin metal film with conductivity
σ. If the thickness d of the film is much less than the
skin-layer depth, its presence can be taken into account
by introducing surface currents. It is then readily veri-
fied by taking into account the discontinuity in the tan-
gential component of the magnetic field H( 1 ) — H<2)

= (4ir/c)ffdEi which is due to the surface current adEt

(the second boundary condition is still Ei1' = E^2'), that
the frequency of the surface polariton satisfies the equa-
tion

_ε_ _ 1 _
κ2 κ ι

inad . (40)

where e(w) is the permittivity of the crystal given by
(39), K l-= (k2 - a>7c2)l/2, κ2 = (k2 - ea>2/c2)2, k is the
wave vector of the surface polariton, and ω is its fre-
quency. In particular, in the nonrelativistic region
[k » ω/c, k » (w/c)|e|] it follows from (40)

·2πσ(Εη— 8 -kd. (41)

The appearance of the additional term in (41) is obviously
due to Joule losses of polariton energy in the metal
film.18'

A particular feature of (41) is the appearance of a
linear increase in Γ with increasing k. Since Γ and Γο
for the system under discussion can, in principle, be de-
termined experimentally, we have here the possibility
of determining the electrical conductivity σ of, thin films,
including its dependence on various factors (magnetic
field, temperature, etc.) at the frequencies of the surface
polaritons, i.e., for ω = 1 0 u - 1 0 " sec"1).19' This does not
at all require that the film be continuous, since the me-
thod does not involve the use of contacts. The only es-
sential limitation is that Γ must be small in comparison
with the width of the gap between the frequencies of the
longitudinal and transverse volume phonons, which en-
sures the existence of the surface polariton, other things
being equal. However, even for very thin films of good
metals, this condition may not be satisfied. For example,
when the surface of quartz is coated with a gold film of
thickness d = 10 A we have ΔΓ = Γ - Γ ο » 4 χ 10" sec"1

for a polariton with frequency u> « ωχ = 1072 cm"1

(eo = 3.03, £M = 2.36), while the gap width is approxi-
mately 1013 sec"1. If, instead of this situation, we con-
sider a layer of dielectric of finite thickness D with the
metal film deposited on one side only, the quenching of
the surface polariton localized on the other surface may
be substantially weakened. However, if we suppose that
the layer of the dielectric with ε(ω) < 0 along the metal
film "lies" on a substrate with permittivity ei > 0, we
obtain the system which differs from that discussed
in'-33-' (see also Sec. c in Chap. 4) only by the presence
of the metal film. Assuming that the substrate occupies
a half-space, we can show that the equations for the
surface-polariton frequencies have the form

4πσ OY.
(42)

where κ0 = (k2 - u>7c2)l/2, κ,, = (k2 - ew2/c2)l/a,
K3 = (k2 - ε1ω

2/ο2)1 . This defines two branches of sur- .
face polaritons in each of which the polaritons experience
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metal quenching. However, the rate of quenching is dif-
ferent for polaritons belonging to different branches. In
view of the foregoing, this result is clear even from
purely qualitative considerations, especially when
Dk > 1. In view of our discussion of the determination
of σ (ω) from the broadening of the surface-polar iton
lines, the importance of these lines is that they can be
used to find σ even for very good metals. For example,
the broadening for a polariton localized on the boundary
with the substrate is large in the nonrelativistic limit
and is given by

Γ-Γ
° (e i- l )[(e» + ej) (ε0 + ε1)+ί-2*Γ'(3β}4-εοε, + ε««ι-εοβοο)1

(43)
which is identical with (41) for Dk > 1 and €i = 1. On
the other hand, for a polariton localized on the boundary
with vacuum, the metal broadening is exponentially
small:

Γ - Γ ο = -(ε- + ει) (ε0 + eO + e " •auJ (3ε? + εοε( + 8=<,et - ε
(44)

so that by choosing the film thickness D to be sufficiently
large, this difference can be made as small as desired.
According to (44), the dependence of Γ on k will then be
nonmonotonic.

In conclusion, we must consider the quenching of
polaritons when the dielectric layer [e(a>) > 0] of thick-
ness D is in contact with a metal along the ζ = - D plane,
the thickness of which is large in comparison with the
skin-layer depth. In this case, we can use the Leontovich
boundary condition for polaritons on the ζ = - D plane:

Ε, = Ζ [Η,χη], (45)

where Ζ is the surface impedance and η the normal to
the surface. When the region ζ > 0 is filled with a med-
ium for which ei > 0, and the polariton wave vector
k(kx, ky) lies along the χ axis, the only nonzero compon-
ent of the magnetic field H2 has the form

(46)

Using Maxwell's equations (3) and (46), we find that the
χ component of the electric field in the above regions of
space is given by

OJBj.

so that from the continuity of H2 and Hi on ζ = 0, and the
boundary condition (45), we obtain the following set of
three equations for a, b l ; b2:

0 = 6! + i>s, μα = 6, - 6,, ft^p - 1) + ί>,β-·̂ (ρ + 1) = 0,
(47)

where μ = εκχ/ei/c and ρ = ic/<A)€Z. Since the determinant
of (47) must be zero, we obtain the following equation for
the spectrum of polaritons:

In general, this defines two branches of surface polar-
itons, but for sufficiently large D, when exp(-2kD) < 1,
the polaritons localized along the separation boundaries
ζ = 0 and ζ = - D are found to "split" and, in the first
approximation, can be studied independently. In particu-
lar, in the above system of layers, the polariton local-
ized along the ζ = - D plane is strongly damped and,
probably, difficult to investigate experimentally. We

shall therefore consider in detail the properties of the
polariton localized on the ζ = 0 plane, for which the dis-
persion relation is (

' ' = 0 .p - 1

It follows from this that the surface-polariton linewidth
in the nonrelativistic region (k 3> ω/c), which is rele-
vant for the RSL spectra, is given by [in deriving (48),
we are assuming, in addition, that (we^ck) |Z| <£. 1)]:

(48)
-ReZ.

At frequencies corresponding to the normal skin effect
Re Ζ = VU>/8JKT and, therefore, in contrast to the case
where the quenching of the surface polariton is due to
the presence of thin metal films [see (41), (43), and (44)],
the contact with thick metal leads to quenching which de-
creases with increasing σ, which was previously connec-
ted with the reduction in the penetration of the field into
the metal as σ increased.

b) Dielectric transition layers in the presence of
resonance with a surface polariton. The boundary condi-
tions used in the preceding section are, in general,
inadequate when we investigate the properties of a
dielectric transition layer. This is so because we have
ignored the polarizability of the transition layer in the
direction perpendicular to the separation boundary be-
tween the media although, of course, it is possible to
have situations where resonance with the surface polar-
iton is due to the presence in a transition layer of
oscillations which are at least partially polarized at
right-angles to the layer. More general boundary condi-
tions must be used when tyis type of oscillation in a
transition layer is to be taken into account. To do this,
we note, to begin with, that the effect of macroscopic
transition layers (thickness I S> a, I <S λ, where a is
the lattice constant or the size of the molecule and λ the
wavelength of light) on the properties of condensed media
(although, it is true, not in connection with their effect
on the properties of surface waves) has a very long
history and has been considered in great detail (see, for
example, r s 3 " 5 5 ^ ) = The well-known simplicity of this case
is due to the fact that, in the presence of a macroscopic
transition layer, the derivation of the boundary condi-
tions for fields outside the layer can be carried out
directly within the framework of the phenomenologic
Maxwell equations. Assuming, for example, that the
permittivity inside the layer (0 < ζ < I) is constant
(e'jj = c^yi ?! = ?2), we shall integrate the equation
div D = 0 for ζ between 0 and I.

For fields of the form D = D(z)exp(ikxx + ik2y), this
integration leads to the condition

D3 (I) — Ο 3 (0) = — ivk,E,(0),

where 1^ Ξ (k 1 ; k2), γ =lei. Since D3(/) = D2(l) and
D3(0) = D3(2), where the subscripts 1 and 2 correspond
to media for ζ > I and ζ < 0, respectively, the following
is one of the boundary conditions:

ο,(2)_ζΜΐ) = »ν№(ΐ), <49a>

where the presence of the transition layer is taken into
account to within small quantities of the first order in
k2 <§C 1. The other boundary conditions can be obtained
in a similar way (see, for example,[ 5 2 : i):

E, (2) - E,(l) = -ίμΕη (1) k, + ikol [nH (1)], (49b)
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H,(2) - H,(l) = -UHn (1) k, - ikay [nE, (1)], (49c)

//„ (2) - Hn (1) = «k,H,, (49d)

where k0 = ω/c, μ = Z-/i7° If in these boundary condi-
tions2 0 ) we execute the transition to the metal transition
layer (fê l ~3> 1), retaining only terms of the order of σΐ,
where σ is the electrical conductivity of the metal, we
obtain the boundary conditions which we have already
used [we must then use the formula 7,. = 1 + (4πσ/ϊω) for
the metal].

In a series of papers, '-56-1 Sivukhin showed that the
general form of the boundary conditions given by (49) re-
mains the same even for microscopic transition layers.
There is merely a change in the relationships giving μ
and γ in terms of the polarizability of the molecules in
the transition layer. We shall not consider these rela-
tionships in detail because they are very dependent on
the model of the transition layer. We shall merely use
the fact that, since γ and μ depend on the polarizabilities.
of the molecules along and at right-angles to the layer,
their resonant frequencies will, in general, be different.
Bearing this in mind, let us consider, for example, the
frequency region ω « ω0, where ω0 is the resonance fre-
quency for γ(ω) [ γ(ωο) = °°; the role of the damping of
the excitations will be discussed below]. We then need
to retain only terms proportional to γ on the right-hand
side of (49), so that (49b) and (49c) assume the form

E,(2) - E,(l) = 0, H,(2) — H,(l) - -ikay [nE,(l)l. (50)

/Μ2) -/ ) = γ-^- Ηυ(ί),

which have a nontrivial solution only when

(51)

In the resonance region γ(ω) ~ Αωο/(ωο — ω), A > 0. If
ct>s(k) is the dispersion relation of the surface polariton
corresponding to the solution of (51) for γ = 0, then when

o>s(k)

ω — ω 5 (ft)

Cjk)
(52)

where C *(k) = 3/θω(ε1/κ1 + ε/κ)ω = ω (k) = °· Substituting

(52) into (51), using the explicit expression for γ (ω), and
solving (51) for ω, we obtain the following dispersion re-
lation for the surface polariton:

(53)± 4- V [ω, (ί·) - 0C (k).

If ω0 falls into the band of the surface polariton c<Js(k),
i.e., if for a certain k = k0 we have ws(k0) = ω0, then in
the presence of the transition layer the spectrum of
polaritons contains the gap Δ = 2VAu)0C(k0) at k = k0

(Fig. 11). If the quantity Δ exceeds the surface polariton
linewidth due to damping, the gap in the polariton spec-
trum can be appreciable and measurable. For a rough
estimate, we may suppose that A « / and C(k0)
~ (eo-^ojcooko, so that Δ *» 2woV/ko(eo - ex) for
I » 10 A, k0 » 5 χ 103 cm"1, eo~ ex = 4, and Δ/ω0 « 8
χ 10"2. This gap size may exceed the polariton linewidth
(Γ ~ 2 χ 10~2) and, consequently, the gap may be detec-
table. For example, when the ATIR method is used, two
reflection maxima with similar positions and intensities

FIG. 11. Dispersion of surface polari- °i?
tons in the case of resonance with oscil-
lations in the transition layer.

should appear in the region of the gap. If, on the other
hand, we consider experiments in which the propagation
of surface waves of given frequency is investigated, the
presence of the transition layer leads to the appearance
of a resonance in the refractive index at surface-polar-
iton frequency ω = ω0. Of course, this conclusion follows
immediately from Fig. 11. Moreover,

£ - * (ω) (»»-»·(«)), (54)

We shall suppose that the wave vector kj. of the surface
field lies along the χ axis, and we will denote the per-
mittivities of media I and Π by €i > 0 and ε(ω) < 0. Using
(31), we find that Hy(l) and Hy(2) satisfy the following
equations:

where ηΙ(ω) is the refractive index for the surface polar-
iton when γ = 0 and B(o>) > 0, so that, using (51) and (54)
with γ έ 0, we have

We must now consider the case of a macroscopic tran-
sition layer. Neglecting anisotropy (el = ei = ? 3 = e), it
is readily verified that the equation for the surface-
polariton frequencies is then of the form

^ ^ ^ L ^ ' + e)-^]· (55)

The right-hand side of this vanishes when 1=0 either for
£i = ? or ? = e. In the latter two cases, the transition
layer also vanishes, and the separation boundary is
shifted by an amount equal to I. Assuming that

«(">) = β- " 1 " " * " .

we find that the resonances of the right-hand side of (55)
occur for ω = Ω ^ and ω = Sy. If, in each of these cases,
we retain only the resonant terms, we obtain an expres-
sion of the form given by (51), where

A1 = ie« A"-

(we have assumed that €i = 1). Thus, in the case which
we are considering, and with a suitable choice of 7(ω),
the surface polariton will resonate with both longitudinal
and transverse oscillations of the transition layer, lead-
ing, in some cases, to the simultaneous appearance of
two gaps (which may overlap) in the surface-polariton
spectrum.

We note, in conclusion, that the transition layer need
not necessarily be connected with the presence of foreign
molecules on the surface of the crystal. In those cases
where the surface of the crystal (with retarded interac-
tion ignored) leads to the appearance of microscopic
surface excitons, i.e., excitons with a penetration depth
I of the order of the lattice constant, the boundary condi-
tions given by (49a)—(49d) will retain their form although
the quantities μ and γ may be very different for different
exciton models. The foregoing results will therefore
remain qualitatively valid even in this case and, there-
fore, enable us to understand how the presence of micro-
scopic surface (Coulomb) excitons affects the surface
polariton spectrum. The most interesting case is prob-
ably that where the frequency of the microscopic surface
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exciton falls into the surface-polariton band. Experi-
mental studies of the gap which appears under these
conditions should, in principle, yield information about
the characteristics of the surface exciton as well.

7. EFFECT OF SPATIAL DISPERSION ON THE SPECTRA
OF SURFACE POLARITONS AND ADDITIONAL SUR-
FACE WAVES

It follows from (8) that, in the case of weak damping,
i.e., for sufficiently small Γ , the refractive index of a
surface polariton, η(ω), may become anomalously large
as ω — Ω 8 . We must then, of course, consider the de-
pendence of the frequency of the surface Coulomb exci-
ton, (ls, on the two-dimensional wave vector k ^ , k y ).

When spatial dispersion is ignored, this frequency is de-
termined by the equation e(w) = - € L If, on the other
hand, we take spatial dispersion into account, then
e = €(ω, Κ), Κ = (k, - ί κ ) , where, in the nonrelativistic
limit, κ = k. However, in an isotropic medium and in the
case of weak spatial dispersion, e (ω, Κ) = e (ω) + αΚ2

= e(a>), since for surface waves Κ2 = Κ · Κ = k2 - k2 = 0.
This means that, for the model of the medium which we
are considering, the usual elementary continuum ap-
proach will not yield even the first terra in the expansion
of fis in terms of k. This was emphasized in c e 9 : i in con-
nection with the dispersion of surface oscillations for a
model of ionic crystals (the results of this were also re-
flected in [ 2 5 ^). In particular, an analysis was given of
the interaction between surface and volume bands, '•6e-1

which became possible because of their overlap when
spatial dispersion was taken into account. This interac-
tion ensures that surface waves are damped even when
anharmonism is ignored and, moreover, leads to the ap-
pearance of terms which are linear in k in the disper-
sion relation (with the exception of special cases of
crossing through the van Hove point)21'.

The present author is unaware of any information on
the dispersion of surface waves of a more general char-
acter and, in particular, for crystals of other nature. In
view of this, we shall show below that the transition
layer, which is always present in bounded media, will
also lead to a linear dependence of fig on k. In fact, in
the relativistic limit k0 — 0, and the boundary conditions
for Ε and D assume the form

On(2)-Dn(l) = ivk,Ei(l), Εί(2)-Ε,(1)=-ίμειί;η(1)Μ1. (56)

When retardation is ignored, Ε = AK, where A is a
scalar, so that in media (1) and (2) we have E(l) = AJCi,
E(2) = ΑίΚ2, Ki = (k, 0, ik), and K2 = (k, -ik). Substi-
tuting all this in (56), we obtain two linear and homo-
geneous equations for Ai and A2. If we now equate to
zero the determinant of this set of equations, we obtain
the required dispersion relation

e (ω) + β, = —(γ — e-ιμ) k.

We now use (2) to show that, when the transition layer is
taken into account, the surface-polariton frequency is

G.(*)

where
, _ (y—

difficult to control. The situation is quite different for
macroscopic layers for which γ - ζ\μ = l[e - ε2/?] when
the transition layer is macroscopic and homogeneous,
where I is the layer thickness and ? its permittivity.
Therefore, when ? > e1( we have a' > 0.

An additional surface wave appears when a' > 0. In
fact, fi2 = Ω8(0) - a'k in this case. Substituting this in
(8), and ignoring damping, we obtain the following ex-
pression for n(u>):

where

and, like €i, the quantities μ and γ are assumed inde-
pendent of ω near ω « Ω 8 . 2 2 > For microscopic transitions
layers, the coefficient a' can, of course, be either posi-
tive or negative, and it is important that the sign of a' is

α '

2cG8(0) ' ει + εο

|—an

of,-
• 2Ω»

Β· (Ρ) '
(0) '

t Ω, (0)-ω
!,(ϋ)

(57)

Let us estimate the parameters in (57) using, for exam-
ple, the data for NaCl ( Ω χ = 3.1 χ 1013 sec'1, e 0 = 5.6,
e w = 2.25) and assuming that e1 = 1. In this case,
A ~ 0.2, α « 1(7- 1/e) χ 102 cm"1 and, when 7 = 5 and
I = 500 A, we have a ~ 0.002. The function η(ξ) is shown
in Fig. 12, from which it follows that, when ξ < ξ0, for
each value of the frequency there are the two values
Πχ, 2. The quantity £ = ξ 0 , where ^ = n2, is given by
£o = (3/V3)a2/3Al/3. Using the parameters for NaCl, we
find that ζ0« 0.01. On the other hand, the surface-
polariton linewidth is also Γ « 0.01 Ω ± . This means that
damping must be taken into account when ζ = ξ 0. How-
ever, when ζ < ζ0, the effect of damping on the disper-
sion relation is reduced. For ξ <C Co, the additional
wave (n = n2) is described by the dispersion law (56),
whereas for ni one can use (8). The dispersion relation
(56) can probably be detected by studying RSL by surface
polaritons at large scattering angles. On the other hand,
when waves of given frequency propagate along a surface
(see Chap. 4d), the additional wave may give rise to in-
terference effects of the type discussed for volume
waves with spatial dispersion (see'-9-').

Let us discuss this by considering waves on the sur-
face formed by two adjacent wedges (Fig. 3a). We sup-
pose that, in the plane of the separation boundary between
media I and II, a surface wave has been excited and is
propagating, say, at right-angles to the line of separation
of the media, i.e., at right-angles to the y axis. Let us
further suppose that this wave has a frequency ω which
corresponds not to one but two surface waves in the
plane of the separation boundary between I and Π. Since,
in this case, the wave-vector component perpendicular
to the separation line, i.e., kx, is not conserved, two
surface waves with the same frequency ω will, in gen-
eral, be excited under the influence of the primary sur-
face wave in the separation boundary between media I
and III, and these will also propagate at right-angles to
the y axis but with different values of kjj.

To find the amplitudes of these waves, we must take

nta»

fs 0 0

FIG. 12. Dispersion of surface polaritons, including spatial dispersion:
(a) refractive index for a surface wave as a function of frequency (ignor-
ing damping), and (b) frequency of surface wave as a function of wave
vector.
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into account spatial dispersion within the framework cf
the theory of surface waves on a wedge, and determine
the relationships for the wave amplitudes which will be
the additional boundary conditions (ABC). This problem
has not as yet been investigated in this formulation. We
shall, therefore, only touch upon possible experimental
observations of the interference effects.

Let us introduce rulings on the separation boundary
between the media, drawn at right-angles to the direction
of propagation of the "ordinary" and "additional" surface
waves, so that these waves will be transformed into vol-
ume electromagnetic waves of the same frequency ω
(see Chap. 4b in connection with the role of these
rulings). The total volume-wave intensity should then
oscillate, depending on the path length traversed by the
waves up to the rulings, and these oscillations should be
an indication of the role of the particular spatial disper-
sion effect. It is clear, of course, that one can, in prin-
ciple, use other surface imperfections instead of the
rulings.

8. POSSIBLE FURTHER STUDIES AND CONCLUDING
REMARKS

In dielectrics and semiconductors, the spectral bands
within which surface waves may exist are relatively
narrow and form a discrete set of frequency regions.
Nevertheless, the use of surface polaritons in surface
physics and, in particular, in the study of chemiadsorp-
tion, surface electrical conductivity, surface phonons,
excitons, and so on, may turn out to be very useful. This
is so not only because, by suitable choice of materials,
one can cover a very broad range of frequencies, but
mainly because of the strong effect of the properties of
near-surface layers of crystals on the surface-wave
spectra. As noted in Chap. 6, it is precisely this prop-
erty of surface waves which reveals new possibilities
for the study of excited states of the transition layer.

However, the development of extensive studies in the
optics and spectroscopy of surface waves is closely
connected with the development of effective sources and
detectors of such waves, i.e., the development of a very
specialized branch of the optical instrument industry. It
is, therefore, very desirable to perform further theor-
etical analyses (outside the framework of the impedance
approximation) of the reflection and refraction of surface
waves along separation lines, diffraction by a dielectric
wedge with e(w) < 0 (when surface waves become possi-
ble), and transformation of surface waves into volume
waves and vice versa, all of which should provide the
foundation for the development of the necessary devices
and instruments. Moreover, there is considerable inter-
est in the above topics in connection with anisotropic
media and magnetic materials. Surface waves in mag-
netic materials have not as yet been observed experi-
mentally. The experimental difficulties are connected
with the relatively small contribution of magnons to the
magnetic susceptibility, as compared with the contribu-
tion of photons, excitons or plasmons to the dielectric
susceptibility (see t 5 8 3 for further details).

The development of linear surface-wave optics will
stimulate the development of the nonlinear theory and, in
particular, the crystal optics of a broader range of
effects that are the surface analogs of nonlinear "volume"
optical phenomena (for example, Raman scattering of
surface light waves by surface lattice oscillations, non-
linear optics of surface waves, and soon). It should also

lead to experimental studies of the collective properties
of surface excitons.23' The various possibilities which
will ensue from this as a result of the particular proper-
ties of surface excitons are difficult to foresee, but the
topically of these problems is undoubted.

The author is indebted to V. L. Ginzburg for useful
advice and to A. V. Popov, V. I. Yudson, and E. P.
Fetisov for discussions of some of the topics reviewed
in this paper.

''For one of the possible models of surface piezo-electricity see Chap. V,
Sec. b below).

2)The importance of the Zenneck-Sommerfeld theory of the propagation
of radio waves around the earth surface was discussed in detail more
than fifty years ago (see [4 0]).

3)Another method of finding surface waves was developed in [ 7 2 ] , using
the extinction theorem of Ewald and Oseen).

"'For metals and plasmas, ε(ω) = 1—(cjp/ω2), where cjp is the plasma
frequency. Therefore, on the boundary with vacuum, for example,
surfaces waves exist at frequencies ω ^ ωρ/\/2· They have been ex-
tensively investigated (see ["] and the references therein).

s)We are assuming that the frequency ω lies in the surface-wave band of
the separation boundary between media II and III.

6'This lies at the basis of the idea put forward by Nafman, [73] who sug-
gested the development of radio antennas for surface waves, using the
radiation from a bend on a slowing-down surface (see [8 b] for further
details, where the angular distribution of the body radiation is also
discussed).

7)The fraction of energy carried by the resulting body (edge) wave is

8'Similar properties are encountered in the case of surface waves on a
plane boundary of magnetoactive plasma (see, for example, [63] and
references therein).

9)The fact that Im κ2 ^ 0 leads to oscillatory damping of the fields for
ζ -* —o°.

10)See, however, the recent paper [ 6 7 ] , where this discussion is used for
the analysis of surface plasmons in semiconductors in the presence of
a magnetic field.

' " in the experiment, for each k one chooses the minimum value of d for
which the frequency at the minimum of R(a>) is independent of d.

12)This problem was considered for plasma by Alanakyan. I 6 4 ] .
I3)See [2S] for a review of the phenomenological theory of surface waves

in plates. The spectra of crystals with small linear dimensions are also
discussed in [ 2 5 ] .

14)We note the paper [ 6 8 ] , where surface phonons were observed in the
radiative recombination spectrum on the GaAs surface.

15)This effect is taken into account in [ s l ] .
1 6 Ά more rigorous discussion is given in [ s l ] ,
17>An analogous phenomenon occurs in the presence of a sufficiently

high surface conductivity.
18)The first observations of the metal quenching of surface polaritons

were published in [74] (Au on SiO2) and in [75] (Ag and Bi on SiO2).
19)The phenomenon we are discussing may also possibly be used to in-

vestigate the surface conductivity of semiconductors, which depends
on many factors (effect of the field, etc., see [2]). Equation (41) will
then still retain its form except that the product ad must be replaced
by oeff—the surface electrical conductivity of the semiconductor.

20)Of the four conditions, only two are independent. We shall use (49b)
and (49c).

2l)Similar questions are also discussed in [61] within the framework of
the phenomenologic description. Since the interaction of surface-wave
bands with volume-wave bands always occurs for large k < ττ/a, i.e.,
outside the range of validity of the phenomenologic description, the
results established in [61] have only qualitative validity.

22)The dependence of μ or 7 on ω becomes important if the resonance
frequency for μ or 7 is close to Ω 5 ( 0 ) . In particular, when these two
frequencies are equal, the dependence of Ω 8 on k for small k is not
linear, but is of the form\/k.

23)See [62] and the references therein for nonlinear effects involving the
participation of surface waves on plasmas. The interaction of two sur-
face waves is discussed in [ 6 6 ] .
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