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A study is made of the interaction of a random field of electromagnetic radiation with the free electrons of
a plasma, with applications to astrophysical problems, in particular the theory of how thermodynamic
equilibrium of the radiation in a hot universe is established. A kinetic equation describes the variation of
the spectrum; special attention is devoted to induced scattering and the classical interpretation of induced
energy and momentum transfer. In the spectra of radio sources with a high luminosity temperature,

- induced scattering can lead to a Bose condensation of photons, a shock wave and solitons. The scattering
of strong low-frequency waves is considered in connection with their effect on pulsars and laboratory

coherent generators.
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I. INTRODUCTION

Physicists have been studying the interaction of free
electrons with electromagnetic radiation from the mo-
ment that J. J. Thomson formulated the theory of the
electron. These investigations have had different goals
at various stages, but they have always been of great sig-
nificance.

In classical physics, Thomson himself determined the
scattering cross section, as well as its angular depend-
ence, polarization and phase. We speak of ""Thomson
scattering''; the "Thomson cross section'' has the num-
erical value
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In this approximation, scattering occurs with no change
in frequency of the radiation in the rest system of the
electron,

As was discovered later, Thomson’s results consti-
tute the asymptotic form of the quantum theory in the
case when the photon energy Kw is small in comparison
w1th the unique characteristic quantity, the rest energy
me? of the electron.

Thomson’s theory therefore remains meaningful for
scattering of radio waves in the ionosphere and for scat-
tering of light by a hot plasma. In astrophysics, the
velocity with which the energy of radiation is transmitted
depends on Thomson scattering. Scattering involves a
transfer of momentum. A certain force acts on an elec-
tron in a flux of radiation. From the condition that this
force is equal to the gravitational force, one obtains the
limiting flux of radiation of a star—the so-called Edding-
ton limit, which exceeds the solar luminosity by a factor
30,000. A stronger flux would strip off the stellar atmos-
phere.

In 1905 Einstein formulated the theory of light quanta.
This theory was based on Planck’s theory, but at the
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same time it represented a significant step forward—
Planck originally assumed that only the emission and
absorption of light are "quantized," without encroaching
on its propagation, which is so well described by
Maxwell’s theory.

The study of scattering acquired the significance of a
decisive experiment! The quantum theory, making use of
nothing but the laws of conservation of energy and mo-
mentum, leads to a definite change in the energy and fre-
quency of a quantum (photon) as a function of its scatter-
ing angle.

The experimental investigations of Arthur Compton
confirmed the theoretical dependence
=¥ Jr‘ —(1—

me cos 8),

where X = /27, A is the wavelength after scattering,

2o is the initial wavelength, and 6 is the scatiering angle.
This result was of profound significance for the entire
subsequent development of physics. This is even reflec-
ted in our terminology: we speak of the Compton wave-
length of the electron, fi/mc = 3.86 x 107" ¢cm, and of
other particles.

It is customary to speak of Compton scattering (as
opposed to Thomson scattering) when allowance is made
for the change in frequency of the photon in the rest sys-
tem of the electron.

We note that the picture of Compton scattering is
essentially statistical. The same photon can be scat-
tered by the same electron through different angles ac-
cording to the laws of chance.

This statistical character was reflected fully only in
quantum mechanics®

It was not immediately recognized that the scattering
angle is ‘'statistical’ but that the conservation laws are
not. In 1924 Bohr, Kramers and Slater proposed a theory
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in which the law of conservation of energy and the law of
conservation of momentum are violated in individual
elementary scattering events and hold in macroscopic
physics only as a result of the averaging over a large
number of elementary events. Before long, they aban-
doned their theory. Later, however, in 1933, there ap-
peared an experimental work in which it was claimed that
the Compton formula is incorrect. Confusion developed.
New careful experimental investigations were required
{the first and best of which was the work of the brothers
A. I and A, I, Alikhanov and L. A. Artsimovich) to re-
establish the truth and rehabilitate the Compton formula
and the applicability of the conservation laws in elemen-
tary events. This episode is quoted here neither to con-
firm the aphorism of Artsimovich that "there is nothing
worse than a 'dirty' experiment to confirm a 'dirty'
theory" nor to compromise Bohr and his famous co-
authors. The story of the supposed nonconservation of
energy and momentum in elementary events is instruc-
tive in giving some idea of the predicament of theoretical
physics during the period from 1905 (or from 1899) to
1925: quantum concepts had already been conceived, but
there was no rigorous theory; "'quantization” was more
of an art than a strict science, its success depended on
intuition, and it was necessary to create something new,
but with due regard for the old and for the principle of
correspondence with classical mechanics and electro-
dynamics. The modern reader sometimes sees the
operator formulation of quantum mechanics as a prac-
tical complication, perhaps an unnecessary one, For the
physicists of the first quarter of the twentieth century,
guantum mechanics made its appearance as a long-
awaited deliverance from the agonizing uncertainty in all
the discussions and calculations.

In nonrelativistic quantum mechanics, the hamiltonian
of a neutral particle contains the Kinetic energy p?/2m.
The prescription for going over to a charged particle
interacting with an electromagnetic field is to make the
substitution p — p — (e/c)A, where A is the vector poten-
tial of the electromagnetic field. In the resulting expres-
sion
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the last term proportional to A® contributes directly to
Compton scattering: in the language of Feynman dia-
grams, this term corresponds to a four-point function—a
vertex at which two electron lines and two photon lines
meet (Fig. 1). The second term (e/mc)pA corresponds to
a three-point function involving one photon line (Fig. 2).

The study of Compton scattering played a major role
in the relativistic theory of the electron. The Dirac equa-
tion is of the first order, corresponding to the first power
of the momentum in the Hamiltonian. The equation for a
charged particle involves A to the first degree, and only

FIG. 1 FIG. 2

FIG. 1. Diagram for the direct scattering of a photon by a spin-zero
particle.

FIG. 2. Diagram for the emission or absorption of a photon by a
charged particle.
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the three-point vertex occurs (see Fig. 2), This means
that the Compton effect in the Dirac theory corresponds
to second-order diagrams involving the two sequences
""absorption followed by emission" (Fig. 3) and "emission
followed by absorption" (Fig, 4).

In the interval between the formulation of Dirac’s
equation (1928) and the discovery of the positron (1932),
there was a period of 3 or 4 years during which there
was no common attitude towards the prediction of nega-
tive-energy levels contained in the equation, The proton
could obviously not be regarded as the antiparticle of the
electron. Should one perhaps somehow forbid the nega-
tive-energy levels and give Dirac poor marks for not
having done so himself?

Calculations of the Compton effect hinted at the cor-
rect answer long before the discovery of the positron.
The point is that the diagrams (see Figs. 3 and 4) involve
a dominant contribution which depends on the ways in
which the intermediate-state electron finds itself in a
negative-energy state”. These states cannot be forbidden
without spoiling the agreement of the theory with the
trivial limiting case of scattering of low-frequency elec-
tromagnetic waves. It was unambiguously concluded that
all the predictions of Dirac’s theory are real. Another
few years passed, and this was also acknowledged by the
Nobel Prize Committee.

The study of the relativistic problem provided not only
a confirmation of the principles. At the same time, one
obtained the scattering cross section as a function of the
photon energy: the cross section drops to half its value
at iw = 0.7 me” and by a factor 10 at hiw = 13 mc? (the
Klein-Nishina-Tamm formula). The diagrams describing
the scattering when viewed from another direction (the
reader should lie on his side if he does not wish to turn
the journal) correspond to two-photon annihilation of the
electron and positron and the inverse process of e'e”
pair production in a photon-photon collision. The fore-
going historical reminiscences bear relatively little
relation to the subject of the present review. We shall
make direct use of only one fact here: all the variants of
quantum theory (nonrelativistic, relativistic, the Dirac
equation and other equations) give a result in agreement
with the classical theory at low frequencies.

But there is still another aspect of the matter: the
history of the study of the Compton effect shows how
many facets are revealed by an intense, carefully con-
sidered and persistent investigation of a single phenom-
enon, This conclusion still holds today; it is corrobora-
ted by the subsequent investigations which are properly
described below,

The motives for these subsequent investigations were
as follows.

1) The development of lasers and masers, i.e., the
emergence of powerful sources of highly coherent elec-
tromagnetic waves. One was led to the problem of scat-
tering of an intense electromagnetic wave. After the
discovery of pulsars, it became clear that a pulsar—a
rotating magnetic dipole—is also a source of very long

radio waves with a period between 0.03 sec and 5 sec.

This is the motivation for the investigations summar-
ized in Chap. II (the "strong wave'’).

The basic criterion for a wave to be "strong' is the
relativistic velocity of the oscillations of the electrons
under the influence of the wave.
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FIG. 3 FIG. 4

FIG. 3. Diagram for the scattering of a photon by an electron.
Variant 1: absorption of the incident photon and subsequent emission
of the scattered photon.

FIG. 4. Diagram for the scattering of a photon by an electron.
Variant 2: emission of the scattered photon and subsequent absorption
of the incident photon. :

Relativistic electrons radiate higher harmonics. The
total scattering cross section becomes larger for a
strong wave., At the same time, the contribution of the
electrons to the index of refraction of a plasma becomes
smaller, and a strong wave of a given frequency passes
through the plasma more easily than a weak one.

2) In astrophysics, bodies and situations have been
observed for which there is characteristically a strong
predominance of Compton scattering over the emission
and absorption of photons. This relationship holds when
the temperature is high and /or the density of electrons
and nuclei is low.

It is characteristic of these problems that photons
are produced in numbers many times smaller than in
equilibrium and with a spectrum which is unlike the
equilibrium Planck spectrum. After this, each photon
undergoes Compton scattering many times. In addition to
the recoil effect, allowance is made for the Doppler
effect, which depends on.the motion of the electrons. At
a nonrelativistic electron temperature, each scattering
event changes the frequency of an individual photon only
slightly and has a small effect on the overall spectrum.
However, when repeated multiple scattering occurs,
there results a spectrum having a quite specific form,
which is essentially different from both the initial
bremsstrahlung spectrum and the equilibrium Planck
spectrum,

A. S. Kompaneets takes the credit for a lucid formu-
lation of the problem as to the nature of the process by
which thermodynamic equilibrium is established in a
rarefied plasma '],

A precise formulation of the problem leads to an in-
tegral equation for the photon spectrum. However, as the
transfer of energy in an individual scattering event is
small, the change in the spectral density at a given fre-
quency depends only on the spectral density at neighbor-
ing frequencies, so that the integral equation can be
effectively replaced by a differential equation. The
Kompaneets differential equation has also served as a
reliable basis for other problems which arose later.

We note some applications of the theory:

1) The laboratory analysis of a plasma with the aid of
Compton scattering is in principle trivial. The plasma
is exposed to a beam of highly monochromatic laser
radiation. By determining the spectrum of radiation
scattered at various angles, one can find the electron
density and momentum distribution, i.e., in the simplest
case, the electron temperature.

2) The clouds of hot plasma within our-galaxy or be-
yond it cannot be "‘illuminated" at will. But these clouds
are exposed to the relic equilibrium radio waves of tem-
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perature 2.7°K. Compton scattering by hot electrons
displaces the entire spectrum on the average into the
region of higher frequencies. Theory predicts 2] 3 re-
duction of the intensity in the low-frequency part of the
spectrum (hw <XkT, = k*2.7°K), since some of the pho-
tons from this region enter the region iw > kT. The
effect is proportional to the product of the path length,
the density of electrons and their temperature, It ap-
pears that an effect of order AI/I =—2 x 10™ (where I is
the intensity at a wavelength of about 3 cm) has been ob-
served for the plasma in the great Coma cluster of gal-
axies [*3. This cluster is also an x-ray source, but
x-rays depend on another combination of parameters, so
that x-ray and radio measurements complement each
other,

3) The universe—a hot universe filled with photons—
is a particular case® of an astrophysical s§stem to which
the Kompaneets equation can be applied a3,

1t is well known that the density of protons and elec-
trons in the universe amounts to only 10—107° of the
density of photons. Owing to the low density of p and e,
the number of electron-proton collisions (which deter-
mines bremsstrahlung, i.e., free-free radiation) is ex~
tremely small and is far less than the number of elec-
tron-photon collisions, which lead to Compton scattering.
At a plasma temperature above 3 x 10° °K, the equili-
brium contains many positrons and electrons in addition
to those electrons which at the present time compensate
for the charges of nuclei (chiefly of hydrogen and hel-
ium). We are therefore sure of complete thermodynamic
equilibrium and, in particular, the Planck radiation spec-
trum at a high temperature.

It is a remarkable fact that the expansion of the uni-
verse which occurs in accordance with the theory of
A. A, Friedmann does not upset the equilibrium. Ina
uniform (everywhere identical) and isotropic (with the
same expansion in all directions) universe, radiation
undergoes a red shift and the energy density decreases
with the passage of time. But the red shift is independent
of the direction of propagation of the photons: the rela-
tive change in frequency is also the same for all photons.
The Planck spectrum is transformed in the course of the
expansion into a Planck spectrum with a lower tempera-
ture.

Current observations confirm the Planck spectrum
(although with a limited accuracy of order 5—10%). But
this does not mean that some processes are now sustain-
ing the equilibrium. There are no such processes. The
universe in its present state is transparent.

It is sufficient that there are no processes which upset
the equilibrium, At the 1973 symposium of the Inter-
national Astronomical Union in Cracow, the relic radia-
tion was compared with an unattractive centenarian vir-
gin: she remained a virgin, not because she was very
virtuous, but because nobody encroached upon this vir-
tue.

The real astrophysical interest in this problem is due
to the fact that the universe does not correspond exactly
to the Friedmann cosmological model. The existence of
galaxies is evidence for a certain nonuniformity in the
density of the plasma and for certain motions of this
plasma (more or less random and irregular motions in
addition to the overall cosmological expansion) during
the early evolutionary stages of the universe.

A detailed investigation shows that the large-scale
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perturbations due to the nonuniform density become
stronger in the course of time as a result of gravitational
instability. However, small-scale perturbations are
damped out because of the viscosity of the plasma. The
kinetic energy of the random motions is transformed

into heat. This is in fact an example of an "encroach-
ment" on the Planck radiation spectrum.

Can we distinguish the "heat" energy produced in this
way from the original energy of the plasma? Is it possi-
ble to ascertain the amplitude of perturbations that were
damped out long before the present era? It turns out that
a detailed study of the Compton effect and the application
of the Kompaneets equation makes it possible to draw
important conclusions. A comparison of the theory with
observations leads to strong constraints on the energy of
the perturbations, We quote only the main conclusion:
the universe is practically uniform and isotropic, not
only on a scale of thousands of megaparsecs (with devia-
tions less than 107), but it has always been just as uni-
form and isotropic to an accuracy of order 10 ona
scale starting with 100 parsecs when converted to the
present scale of distances[®’%,

The point is that the production of heat in the plasma
after the loss of the positrons increases the energy den-
sity without changing the density of photons. After this,
the Compton effect causes a displacement of the photons
over the scale of frequencies and gives rise to an evolu-
tion of the spectrum towards equilibrium—but an incom-
plete equilibrium, with a given number of photons. Such
a restricted equilibrium corresponds to a spectrum of
the so-called Bose~Einstein type, which differs from the
Planck spectrum, The theory provides clear recommen-
dations as to the frequencies at which we should seek the
deviations. The redistribution of the photons enhances
the sensitivity of the observations: a 1% production of
heat alters-the spectral density in the long-wave region
by more than 209 %3,

4) The requirements of astrophysics have led to the
formulation of the problem of random radiation, but with
a spectrum which differs appreciably from the Planck
spectrum, The low-frequency part of the spectrum
corresponds to a very high temperature T, which is also

-frequency-dependent; the high-frequency part of the
spectrum is practically absent; and the total density of
radiation is much smaller than the black-body radiation
aT* at high temperatures.

Radio emission of pulsars is the most striking exam-
ple of this type: at a wavelength of the order of meters,
the effective temperature of the source is as high as
10%* °K for the first pulsar. The detailed picture of such
sources of radiation is unclear. Most likely, there is
some kind of transformation of the energy of macroscopic
motion from the large scale to the small scale. The tur-
bulent sea has a spectrum of oscillations corresponding
to an effective temperature of order 10%® °K at a fre~
quency of the order of an inverse second. The high-fre-
quency part of the spectrum, at 10'° Hz and above, corre-
sponds to a temperature of the water of 298°K. In itself,
a temperature which varies over the spectrum is not
extraordinary, particularly for the oscillations of a
plasma. The chief theoretical difficulty is the mechanism
by which the oscillations are transformed into electro-
magnetic waves. But the problem of the structure of the
radiating region of a pulsar is beyond the scope of the
present paper. Spectra having a high effective radio
temperature with weak optical and x-ray emission are
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also characteristic for radio galaxies and quasars. A
likely explanation in this case is synchrotron radiation
of relativistic electrons., The maximum temperature is
reached at a frequency at which a role is played by the
inverse process of absorption of radiation by electrons
in a magnetic field. At the maximum, kT is of the order
of the electron energy; in the high-frequency region, the
source of radiation is transparent and accordingly radi-
ates little. In a sense, the question as to the origin of
the high-energy electrons has not been answered, but
has merely been brushed aside. Again, the source is
ordered motion,

The subject of this review is the behavior of such
radiation in a relatively cold plasma outside the source.

But apart from the astrophysical proposals there is
also the internal logic of the investigations. Photons are
bosons. The probability of a process which gives rise to
a photon having given properties (frequency, direction
and polarization) is proportional to (n + 1), where n is
the number of photons which are already in the state in
question. The celebrated factor (n + 1), which describes
stimulated (we sometimes say "induced") emission, is
the basis of the theory of masers and lasers. But this
factor, or, more properly, the induction effect, must also
occur in scattering. In this sense, it is highly instructive
to consider the early works on the theory of thermo-
dynamic equilibrium of a system consisting of free elec-
trons and electromagnetic radiation.

One of these works [*) considered a gas consisting of
two types of atoms—electrons and photons, which collide
elastically with one another like hard spheres. Equili~-
brium is then attained when the electrons have a Maxwell
spectrum and the photon7 have the so-called Wien spec-
trum, F, = const »’e"h/KT  corresponding to the same
temperature. The exact (Planck) radiation formula is
not obtained.

Slightly earlier, the young Pauli ({%23; see also[*%7)
had already shown that, for thermodynamic equilibrium
of the electrons and radiation obeying the Planck form-
ula, allowance must be made for induced scattering.

The probability of a photon-electron collision also de-
pends on the intensity of radiation having the direction
and frequency acquired after the scattering. The dual—
corpuscular and wave-like—nature of the photon and the
way in which photons differ from hard spheres become
apparent here.

The Kompaneets equation also includes the contribu-
tion from induced scattering in the simplest case of a
uniform and isotropic problem. The limiting case of high
temperature of the low-frequency part of the spectrum
corresponds to lax}'_lge occupation numbers n, since in
equilibrium n = (eh@/KT —1)~ and hence n = kT/hw in
the limit kT > hw.

Thus, there arises a problem regarding the
Kompaneets equation (i.e., the equation for the evolution
of the spectrum) when n > 1 and the induced scattering
proportional to n’ is dominant over the spontaneous scat-
tering proportional to n.

It turns out ®7 that the equation subject to certain
initial conditions leads to shock waves in phase space,
i.e., discontinuities in the dependence n{w). Further
analysis [*°J of the structure of a shock wave predicted
the occurrence of sharp maxima, i.e., in essence broad
lines which do not correspond to any proper frequencies
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of the plasma. Such lines have so far not been seen; it
would be of particular interest to find them in nature or
in the laboratory.

5) In addition to the problem concerning the evolution
of the radiation spectrum, there arises the question as
to how the electrons behave in a given radiation
field ****3, Moreover, a consistent treatment of both
problems is required in the majority of cases. The con-
servation of energy relates the change in the radiation
energy (which follows from the evolution of the spec-
trum) to the contribution associated with the energy bal-
ance of the electrons. It turns out that there is no prob-
lem regarding the energy distribution for the electrons
(analogous to the problem regarding the spectrum): the
electrons gain and lose momentum in small random
amounts, so that their momenta have a Gaussian distri-
bution. But the Gaussian law for nonrelativistic electrons
is the same as the equilibrium Maxwell-Boltzmann dis-
tribution. There need not be collisions between the élec~
trons to establish this distribution, so that the distribu-
tion will hold even in a rarefied system. One quantity
remains to be determined—the dispersion of the Gaussian
distribution, i.e., the temperature of the electrons. A
single energy-balance equation is sufficient for this
purpose®.

6) The theory of induced scattering is also of interest
because, as is well known, the limiting case of bosons
with large occupation numbers represents a classical
wave field, We obtain a typical example of how "class-
ical theory helps us to understand quantum theory" (we
remind the reader of Sov. Phys.-Uspekhi of a note by
P. Paradoksov!'*) bearing a similar title). It is neces-
sary to rectify this indirect path (in German,
"Herumfithrung' instead of "Einfiihrung'' =" round tour"
instead of "introduction") and to demonstrate the signifi-
cance of the results directly in the language of the class-
ical theory of Maxwell and the equations of motion of
Lorentz,

It turns out that second-order effects, such as the
Lorentz forces of the magnetic field of one wave acting
on an electron oscillating under the action of a second
wave, play a decisive role. The case of anisotropic fluxes
of radiation is also of great interest and of practical im-
portance. On the whole, induced scattering does not tend
to smooth out the anisotropy: if there is no radiation in
some solid angle, then no radiation will get into that solid
angle in the approximation n >> 1. Anisotropic radiation
produces an anisotropic electron temperature; whether
this latter anisotropy is smoothed out depends on the
interactions of the electrons with each other and, in par-
ticular, on the collective plasma interactions and insta-
bilities.

Finally, anisotropic induced scattering produces a
force acting on an electron which is proportional to the
square of the intensity, i.e., to the fourth power of the
field and accordingly to the fourth power of the electron
charge [*®), It is a curious fact that this force vanishes
both in the case of isotropy (which is obvious, by sym-
metry) and in the case of maximum anisotropy, when all
the waves are strictly coincident in direction. This may
be the reason why the force of induced scattering was not
noticed until 1971, although this force is in fact a class-
ical one and could have been calculated even in the nine-
teenth century.

7) A very important domain of applicability of the
theory is the case of processes in the gas surrounding
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neutron stars and collapsed stars—black holes 1*¢1, 1t
can be regarded as established that x~rays are emitted
by a gas which is heated as a result of its fall in the
gravitational field of a super-dense star. The brems-
strahlung of the hot gas can then be significantly modi-
fied by scattering by the electrons. The radiation pres-
sure largely determines the motion of the gas and its
density.

In a real situation, particularly in the case of neutron
stars, the theory is complicated to a great extent by the
magnetic field.

In our brief introduction, we have enumerated only
the main problems which are considered in the following
chapters of the review. The introduction is no substitute
for the review, just as the review is no substitute for the
original papers. In addition, the arrangement of the ma-
terial in the chapters which follow does not fully corre-~
spond to that of the introduction. We completely omit the
theory of scattering by ultrarelativistic electrons ac-
companied by the conversion of radio and optical radia-
tion into x-rays and gamma radiation.

A thorough study of this problem has been made by
Ginzburg and others ["7**1, In the following chapters we
also give references to the original literature. The
astrophysical problems mentioned above are an excep-~
tion: a detailed discussion of these problems within the
framework of the present review would require excessive
space and would be a digression from the physics of the
phenomenon. We therefore confine ourselves to what has
been said above and the references to the original pa-
pers. The astrophysical problems deserve a separate.
detailed exposition! -

Radiation and scattering by electrons in a constant
magnetic field are of great importance for astrophysics.
The radiation (so-called synchrotron radiation) has been
studied thoroughly and discussed in a number of mono-
graphs and reviews [*"**], The scattering by magnetized
electrons has been studied especially actively in recent
years in connection with the conjectured fields of up to
10¥—10" G at the surface of pulsars. It is very tempting
to include this subject in our review, but, given the vol-
ume of this paper, this would adversely affect the com-
pleteness and intelligibility of the main part of the re-
view. Let us hope that the authors of the original
papers ®7®®) on the properties of magnetized electrons
will complete this series in their own way.

Finally, electromagnetic waves interacting with elec-
trons may be regarded as a particular case of interact-
ing plasma oscillations, Compton scattering in this con-
text is discussed, in particular, in the reviews and mono-
graphs of Tsytovich and Kaplan *+%), Some of the re-
sults and methods are general ones. However, the pecul-
iar properties of electromagnetic waves, particularly
their velocity, which is equal to the velocity of light
(pardon the tautology, for light = electromagnetic
waves), and their special significance in astrophysics
justify the separate discussion given here.

I take this opportunity to thank my colleagues of the

"Institute of Applied Mathematics, the results of whose

work became known to me long before their publication.
I am particularly grateful to R. A. Syunyaev and A. F.
Illarionov, in collaboration with whom many results on
the subject of this review were obtained, for discussions
and assistance in writing the review.

The review is organized in such a way that the reader
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who is interested in only the general aims of the series
of works under consideration can dwell upon this,

The following chapters contain concrete calculations
and methodological remarks of interest to theoretical
physicists. These chapters can be considered as a sup-
plement to the short popular article which is in essence
contained in this introduction. It is for this reason,
bearing in mind those who will read no further, that the
acknowledgements have been inserted here, at the end
of the introduction, and not at the end of the paper.

It is also appropriate here to touch upon one deeply
personal matter. The original version of this paper was
submitted for publication during the lifetime of A. S.
Kompaneets. All that is said in the paper about his con-
tribution remains strictly unchanged. But it is only now,
after his sudden death, that this review is devoted to his
memory. The author cannot help re-reading what has
been written earlier with different feelings; but let it
remain unchanged, let the sorrow of the loss not affect
our appreciation of the work of A. S. Kompaneets on
which this review is based.

Il. THE STRONG WAVE

1. The Thomson theory (reminder). The classical
Thomson theory begins with the solution of the equation
of motion of the electron. A plane-polarized electro-
magnetic wave propagates along the z-axis, with

E.=E,=Ecos(kz—at), k=%;
the remaining field components are equal to zero. For
the motion of the electron, we write

:‘t.=—£cosmt, = —-isinmt, 2= cosot. (1.1)
. m mw mw-

The other coordinates of the electron are taken to be

y =z = 0, This equation is written without relativistic

corrections, and no allowance is made for the Lorentz

force in the magnetic field of the wave or for the radia-

tion reaction.

In a wave which is weak with respect to the motion
specified by (1.1), we find that the radiation of the elec-
tron has an instantaneous intensity W and a time-aver-
aged intensity W given by

2e3 ¢,

ig2
W= 2 ‘.
3e3 xe,

3c3m? °

W=

The flux of energy in a plane electromagnetic wave is

Q= (B2+ B, Q=g E%
The cross section is
w 8n et 8n _ e

o 3 micd 3

Numerically, o = 6.65 x 107 c¢m?® and ro = 2.82 x 10 em.’

The scattered radiation is plane-~polarized. Its intensity
is proportional to the square of the projection of the vec-
tor x onto the plane perpendicular to the direction n of

the scattered ray,
I~ sin?a, a= (fx).

Accordingly, the differential cross section is

@g _ 3gsin’a (1.2)
4@ 8
In the Euler coordinates (¢ = (ng), ¢)
7"%:%;—(cossz—sinzesin2 ). (1‘3)
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For an unpolarized ray, we must take an average with
respect to the angle ¢. We obtain

do 3o
éQ ~ Bn

(COSz 9+%sin39) =%l- (1.4)

(1 +cos?6).

Here 0 is the scattering angle. The scattered radiation
is partially polarized (completely polarized for 6 = n/2).

The induced dipole moment per electron is given by
(1.5)

e2

dy= —ex= —
x mw?

E,.

Accordingly, the dielectric constant € and the square of
the index of refrcction a for a plasma with a density ng
electrons/cm’ have the values
e=a2=1~4nnge—:, (1'6)
may
from which we also obtain an expression for the critical
(Langmuir) frequency we, at which € = 0;

o.=1/ B 5 65101/ 7, sec™, 1.7
As the motion of the electron was determined without
allowance for the radiation reaction, the corresponding
dielectric constant was found to be real.

2. Criterion for the strength of a wave. Let us deter-
mine the amplitude E, of a wave for which the velocity of
the electron, when calculated naively in a nonrelativistic
manner, becomes equal to the velocity of light. We de-
note by b the dimensionless ratio of the actual amplitude
to E:

mew
B0,

b=

&

@.1)

A weak wave (for which the formulas of the preceding
section are valid) obviously corresponds to b < 1, while
a wave with b 2 1 must be called strong. According
to [“], the required intensity of the ray per unit area has
the value (at b = 1)
0=17

Suppose that the ray has a circular cross section and
a radius ax, where a is a dimensionless number that
cannot be less than 1; A is the wavelength divided by 27
(i.e., the inverse wave vector k™). The intensity of the
ray is

W/em? =10 W/em? for A==10¢A,

a%3m2cd

W, =8Q=mna%? = BE ="

ahrmcic
8rg
~a2.101 erg - sec 1= a22.10° W

2.2)

The critical intensity required to accelerate the electron
to a relativistic velocity turns out to be independent of
the frequency. Its absolute value is not large, corre-
sponding to 1 J/nsec in the pulsed regime.

In a plasma exposed to a ray with b > 1, the elec-
trons, in colliding with nuclei, can produce electron~
positron pairs or can emit gamma rays (by bremsstrah-
lung). However, these processes are proportional to the
square of the plasma density. For large b > 137, pair
production due to electron-positron collisions exceeds
annihilation and, for sufficiently long exposure and re-
tention of the plasma, there occurs an avalanche-like
process involving the growth of the number of pairs
(cf. ["3, where an analogous process is considered for
electrons having a Boltzmann distribution). We recall
that with two colliding light beams it is possible to have
direct electron-positron pair production in a vacuum,
without an initial plasma and, in addition, not as a result
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of the frequency of the colliding beams, but as a result
of the quasi-static field. The corresponding critical field
li:pc is determined by the condition

eE oA

me

=me?, Ep =%:3 = -—E;'::z .
Consequently, for a quasi-static field, i.e., when hw

< mc?, pair production in a vacuum is more difficult
(requires a larger amplitude of the field) than the accel-
eration of electrons to a relativistic velocity and the

production of pairs in a plasma.

3. Motion of an electron and scattering of a strong
wave. Let us return to the subject of the review. Suppose
that we have a rarefied plasma. We shall neglect the
collisions and study the motion and radiation of the elec-
trons in a strong electromagnetic wave in greater de-
tail.

This problem has been solved in a number of papers
with exact allowance for the relativistic mechanics of the
electron and the Lorentz forces, but with neglect of the
radiation reaction. The problem has been solved in quan-
tum theory (see the very detailed papers of Nikishov and
Ritus [**7) and in classical theory for a point charge (the
most recent such work is{?®7),

Qualitatively, the result of the classical calculation is
that the motion of the electron actually becomes rela~
tivistic for b > 1:

Te = —p) P xb, 1—pabr, p=t. (1)
The Lorentz forces become comparable to the electric
forces in order of magnitude. The electron describes a
closed figure-of-eight trajectory in the xz-plane (Fig. 5).

This result refers to a plane-polarized wave with
E, = Hy # 0. The amplitude of oscillations along both the
x- and z-axis reaches the value A = ¢/w (in order of
magnitude, but remaining smaller).

It is significant that the trajectory is closed. More
precisely, there exists a coordinate system in which the
electron merely oscillates, and in this system® its mo-
tion is periodic and the trajectory is closed; this closure
property is obviously not preserved if we transform to
another system in uniform motion with respect to the
first one.

The law of motion which is found can be used to de-
termine the radiation of the electron. The radiation of a
relativistic electron is characterized by the fact that this
radiation is confined at each moment to a narrow cone
about the instantaneous direction of motion of the elec~
tron (the central angle of the cone is of order y™*). With
the turning of the trajectory, the radiation at a given
point of observation starts and stops abruptly. The
radiation spectrum therefore contains higher harmonics
of the fundamental frequency with which the electron ro-
tates®.

The total radiation for b > 1 is found to be larger than
that given by the Thomson formulas by approximately a
factor b®%. Consequently, the scattering cross section is

FIG. 5. Motion of an electron in a plane
£ passing through the direction of a wave
and the electric vector. The arrows at the
side indicate the polarization of the wave

O®H and its direction.
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also enhanced by the corresponding factor. The law des-
cribing the cross section o(b) as a function of b for scat-
tering of a strong wave is given below; in this formula,

o with no indices or function sign is the Thomson cross
section. Omitting numerical factors, we write

SE
micte?

e8E?
T mAgd

o (b) =ob?= X2, (3.2)
We note in particular that in the ultra-relativistic limit
the dependence of the radiation and scattering on the rest
mass of the scattering particle does not vanish, but be-

comes stronger.

The full problem of the interaction of an electromag-
netic wave and an electron is solved by successive ap-
proximations: we are certain that the forward radiation
of the electron in the direction of propagation of the
strong wave, in interfering with the strong wave, weakens
this wave precisely in accordance with the intensity
scattered in other directions. .

The forward radiation contains no higher harmonics!
This fact'®%] is non-trivial; it implies that a strong
wave retains its sinusoidal form in passing through a
rarefied plasma. The wave is weakened and altered in
phase (in accordance with the real and imaginary parts
of the dielectric constant), but there is no saw-tooth
effect or tendency to form a ''shock wave.,"

4, Radiation reaction and longitudinal acceleration.
What change takes place in the next approximation, when
allowance is made for the effect of the radiation reaction
on the motion?

The main effect is a systematic acceleration of the.
electron in the direction of propagation of the wave, The
origin of this effect is obvious: the electron, in absorb-
ing energy from the strong wave, also absorbs a corre-
sponding momentum, which is equal to the energy divided
by ¢ (more precisely, we should speak of the intensity W
and the force F = W/ec). The energy is not accumulated
by the electron but is re-emitted, However, the re-
emitted energy is not directly exactly forward. The mo-
mentum lost by the electron is proportional to cos 9 and
is less than the momentum gained by the electron, The
average force acting on the electron is given by
F = (W/k)(1 —cos 6). ¥ allowance is made for this force,
the trajectory of the electron is not closed in any coor-
dinate system.

If b >> 1 but is not too large (b < A/ry), i.e., b <10*°
for centimeter radio waves or b < 10° for optical radia-
tion, then an appreciable change occurs in the forward
velocity after a large number of oscillations, and we can
speak of the instantaneous coordinate system in which
the electron only oscillates.

It is a remarkable fact that the parameter b charac-
terizing the strength of a wave is Lorentz-invariant. In
the system of an electron in motion (on the average) in
the direction of the wave, the fields E; and Hy are
smaller than those in the initial rest system, but the fre-
quency is also smaller in the same ratio! Denoting the
average forward velocity (in units of ¢) by B, we obtain

Ex ~Hy ~w~ V(I =B)/(1 + B), so that b = const (8).

The electron always remains equally relativistic, its
characteristic velocity of oscillations being constant,
while the amplitude of these oscillations increases with
time like w™. The fact that b is constant means that there
exists an automodelic solution for the motion of the elec~-
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tron in the field of a wave with allowance for the radia-
tion reaction, this solution being similar to the solu~
tion[**] for a weak wave.

In a realistic situation, when we are dealing with not
a single electron but a plasma, the overall average mo-
tion of the electrons is hindered by the longitudinal field
arising from the separation of the electrons and nuclei,
i.e., from the violation of electric neutrality.

5. Solution for a wave with circular polarization.
However, there exists a formulation of the problem for
which these collective effects strikingly facilitate an
exact solution. Let us consider a strong wave with circu-
lar polarization and a longitudinal field, adjusted so as to
eliminate the longitudinal drift of the electron™ [*°3,

It is then obvious from the symmetry of the problem
that the electron undergoes circular motion with a period
equal to the period of the wave. Thus, the functional
form of the trajectory is determined, and it is not neces-
sary to solve the differential equations! It remains to
determine several numerical parameters: the radius of
the orbit R = v/w and the velocity of the electron v, as
well as the shift in the phase of the rotation of the elec-
tron with respect to the phase of the wave, this shift be-
ing characterized, for example, by the angle ¢ between
E and R, the radius vector of the electron (E is the elec~
tric field of the wave; the longitudinal component E, is
time-independent).

One obtains for these quantities a system of equations
which follows from the energy and momentum balance.
In essence, use is made of the well-known classroom
method of determining the frequency of a circular pendu-
lum by considering the centrifugal force, the tension in
the string and gravity. One obtains finite equations,
whereas a plane-polarized pendulum leads to a differen~
tial equation.

Let us return (from school) to the electron: we em-
ploy the well-known formulas for synchrotron radiation.
The intensity of radiation, expressed in terms of the
velocity and frequency, is

= (3) (1—7) -
Moreover, it is obvious that the radiation is symmetric
about the plane z = const.

The equations have the following form:

(5.1)

2
w=2

eEvsin o=W (v, o), (5-2)
W_L:;_—I—/CKO):eEcos Q, (5.3)
eE—:—sian =eE,. (5.4)

Here (5.2) is the equation for the energy, (5.3) is the
equation for the centrifugal force, and (5.4) is the equa-
tion for the Lorentz force (we have made use of the fact
that |H| = |[E| and H . E), balanced by the longitudinal.
field. It is convenient to write the result in parametric
form by expressing the dimensionless quantities

- b) P&
v=(—p)1t =20, p=p

b B==,

as functions of an angle ¢, where 0 <¢ < 7/2. The fol-
lowing explicit expressions are obtained®:

B2yt
g=n 2 PV

gc 4n PR

si;"-“-, B =bcos ¢,

p=%cosq>.

Wsinp=2 (5.5)
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If we wanted to express all the quantities explicitly in
terms of the natural parameter b characterizing the
strength of the wave, we would have to solve a transcen-
dental equation. If the radiation reaction is taken into
account, there arises a fundamentally new circumstance:
the solution as a whole (expressed in terms of dimen-
sionless quantities) depends on the two initial dimension-
less parameters b, characterizing the strength of the
wave, and A/ro, characterizing the frequency. However,
the limiting cases are described by the simple formulas

i
Vige '

p=(%_%)m

\
oct, <Y I, s=tip =

(5.7)

Foect, >V 5 =gt
The first region yields results similar to those for a
plane-polarized wave, but by a much easier method. The
equations of motion of the electron in a2 strong wave are
non-linear. Consequently, if the problem is solved for a
plane-polarized wave, it is not possible by a direct
superposition of solutions to arrive at the solution for a
wave with circular polarization. Nor is it possible to go
the other way. These two solutions together demonstrate
that the basic properties of the solutions are stable—the
increase of the scattering cross section in a strong wave
and the absence of higher harmonics in the wave scat-
tered in the forward direction apply to both cases. In the
first region, A/r, plays no role.

b7, (5.8)

But the solution for circular polarization also takes
into account the radiation reaction; this effect becomes
dominant in the second region (¢ is close to 7/2). The
maximum intensity which the electron can extract from
a given field is eEc. Since the flux of energy of a wave is
cE?%/4n, the scattering cross section cannot exceed 4ne/E.
It is this limit, which is inversely proportional to the
amplitude of the wave, which is reached in the second
region.

A wave with circular polarization® also admits an
exact solution for an electron in a longitudinal magnetic
field; in this case, one can readily study the resonance
behavior at the gyroscopic frequency in the non-linear
region[®3, A circularly polarized wave combines prop-
erties which it would not seem possible to combine. It
has a definite wavelength and frequency. In addition, the
motion of an electron in such a wave is independent of
time-all scalar quantities, such as the velocity or the
angle between the velocity and the field, are constant.

The energy density and other scalar quantities char-
acterizing the wave itself are constant in space. As a
result, it is possible to construct a strictly uniform solu~
tion throughout all of infinite space, just as in the case in
which gravitational effects are taken into account. In
other words, there exists a spatially uniform combined
solution of the equations of the general theory of relativ-
ity and Maxwell’s equations corresponding to a circularly
polarized wave 133,

If we took plane polarization instead of circular polar-
ization, the uniform solution would only be an approxi-
mate one: the energy density in a plane wave depends on
the coordinates in the form cos’kz = (1 + cos 2kz)/2.

6. Estimate of the strength of a wave for a pulsar.
From the hymn in honor of waves with eircular polariza-
tion, let us return to concrete astrophysics. Consider a
pulsar having a period 0.03 sec, w =~ 200 sec™ and a
magnetic moment 3 x 10°° (dimensions 10° em, field
3 x 10'? G at the surface, and moment u = HR® in order
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of magnitude). I the moment is perpendicular to the axis
of rotation, such a pulsar radiates W = (2/3)p°w%ec® = 3
x 10°® erg/sec.

Let us determine the field E of the wave and the char-
acteristic number b at a distance r from the pulsar.
Averaging over the angle, we find E = 10'%r in CGSE
units and b = 10*/r (since E, = mew/e = 107 at w = 200).

The distance beyond which the field can be regarded
as wave-like is ¢/w = 1.5 x 10® ¢cm. Consequently, the
maximum value of the parameter b is approximately 10,
The strong-wave zone extends to a distance of order
10*® = 0.3 parsec, where the value b = 1 is attained.

On the axis of rotation, the wave is circularly polar-
ized; the results outlined above then hold literally, and
not merely in spirit. Let us also determine the value b,
at which the transition occurs from the dominant role
of the radiation reaction (for b > be) to the possibility
of allowing for the radiation as a small correction to the
equations of motion (for b < bg). We find by = */A/ro =
% 10% for w =200 and » = 1,5 x 10%. Thus, the rad1at1on
reaction dominates in the wide range 107 <b < 10*,
10° < r < 10, However, b, is not Lorentz-invariant.
For a plasma escaping with relativistic velocity, X is
effectively increased and r, = const, in contrast with the
parameter b, which remains unchanged.

In this review, we cannot analyze the concrete situa-
tion in pulsars in greater detail. We confine ourselves
to the statement that the electrons and protons are sub-
jected to a strong electromagnetic wave, in which the
Thomson formulas are inapplicable. The selection of en-
ergy from the wave becomes larger (than in the Thomson
theory), the energy is re-emitted in higher harmonics,
and in a large region the radiation reaction has a pro-
found influence on the motion of the electrons, The
forces of longitudinal acceleration are large.

The theory outlined above is essential for an under-
standing of the ejection of relativistic particles by a
pulsar. The long-wave radio emission of pulsars, by
means of which pulsars were discovered, can apparently
be explained only by collective effects and not directly
by the theory of the strong wave.

We quote several references from the litera-
ture ©¥°3:%°1 (for the reader who wishes to delve into
the theory of pulsars).

IN. THE KINETIC EQUATION OF A PHOTON GAS

7. Formulation of the problem. Occupation numbers.
Let us consider the problem of the evolution of a free
electromagnetic field, which is on the average uniform
in space. By the evolution, we mean the variation with
time. This formulation of the problem applies directly
to the hot universe[723%*1 in which the uniformity of
the electromagnetic field follows directly from observa-
tions. To be more precise, the observations prove only
the isotropy of the radiation, but it is known that a strong
nonuniformity would also destroy the isotropy, so that

we infer from the observed isotropy that there is at least

large-scale uniformity. Thé evolution of the universe is
associated with the general expansion, in the course of
which there is also a variation of the temperature, and
with the occurrence of perturbations leading to a macro-
scopic motion of the:plasma. The evolution does not re-
sult in a trivial propagation of photons in a space with a
given metric (in the language of the general theory of.
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relativity) because the radiation field contains free elec-
trons, i.e., we are dealing with a plasma.

In many problems, the volume occupied by the plasma
is not too large and one observes radiation emitted from
the plasma, i.e., both the nonuniformity and the aniso-
tropy of the radiation are important. Nevertheless, a
given plasma cloud can be characterized approximately
by a certain averate time during which the photons re-
main in the cloud, and one can solve the problem of the
evolution of uniform radiation during this time. This
formulation of the problem greatly reduces the number
of parameters and variables and makes it possible to find
the general regularities. We assume that the electro-
magnetic field is random and has a continuous spectrum,

We shall characterize a random free electromagnetic
field by the distribution of the photon occupation numbers
n;(k). The wave vector k also characterizes the direc~
t1on of propagation (the unit vector is r =k /{k|) and fre-
quency of the wave, w = ¢|k| and hence also the energy of
a single photon, hiw. The index i, which takes two values,
characterizes the two orthogonal polarization states, for
example left-handed and right-handed circular polariza-
tion.

Macroscopic quantities such as the den51ty of photons,
N, and the energy density per unit volume, g, or the
spectral density of radiation energy can easily be ex~
pressed in terms of n:

N= 3 ,;a jn,dk £erg/em®)— 2 Zma 5 mihod%, (7,1)
=, 2 i=1
~y u-hol:i

£ 2ags”
i=1,2

mr‘=

(7.2)

The assignment of n;(k) obviously leads to a partial
loss of information about the phase. For example, the
statement n,(k) = nz(k) does not permit us to distinguish
an unpolarized wave from a plane-polarized wave., How-
ever, we shall not dwell upon these details here; we

- shall return to them in part later, in connection with the

situation n >1, when the quantum-mechanical uncer-
tainty in the phase is small, and, in particular, in con-
nection with the theory of induced scattering of (spec-
trally and spatially) narrow lines.

8. Thomson scattering. The equations for Compton
scattering in the lowest approximation, with no allow-
ance for the change in the photon energy, have the form

____011(‘(; 9D _ oo { —ny (v, ©) F o S[a (B) ny(r’, @) + B (8) na(r, m)] dr’} .
(8.1)
Instead of the 3-vector k, we have taken the argument
here to be the (unit) 2-vector having direction r and the
frequency w = cjk|. The integration is carried out only
with respect to r or, more precisely, with respect to r’,
and the angle between r and ¢’ is denoted by 6; a(9) is
the differential cross section for scattering with no
change in the polarization (i.e., left-handed to left-handed
or right-handed to right-handed polarization), and §(8) is
the same but with a change of polarization. Obviously*”
( ) S(a-}-ﬁ dar’ =1, a+ﬁ=mn(1+cosze). (8.2)
In the overall factor in Eq. (8.1), p is the density of elec~
trons, o is the Thomson cross section, and c¢ is the
velocity of light. The product pcot = r is the so-called
optical thickness for Thomson scattering, i.e., the aver-
age number of scattering events for each photon during
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the time t. With the Thomson cross section, 7 is inde-
pendent of the frequency. The stationary solution of Eq.
(8.1) and the analogous equation for n. is n, = n; = n(w),
where n(w) is an arbitrary (!) function of the frequency.
It is easy to see that during a time interval correspond-
ing to the thickness 7 = 1 there is a decrease by approxi-
mately a factor of two or e in the difference n, — nz, as
well as in the angular dependence of n, and n; (both with
some constant w). This result is readily obtained by ex-
panding n, and n; in spherical harmonics. All the har-
monics are damped out at roughly the same rate, since

a and B have a weak angular dependence. We note in
particular that in this approximation the induced scatter-
ing drops out identically from the considerations. In fact,
if there are two beams with nj(r:, ) and ng (rz, w),
where w is the same for both beams and i and k are the
same, for example, then in the expression for the tran-
sition from the first beam to the second we have

i’d"T' = —pea{an (ry, ©) {4 4-nk (r2, ©)] — a@ny (rs0) [1 45 vy, ©)]}. (8.3)
The products njny obviously cancel, since the angle ¢
and the function a(#) are the same for the transition
n; (1) ~ m (rz) and the inverse transition ny (r2) — ny(r,).

This result should be borne in mind in order to com-
pare it with the role of induced scattering with allowance
for the change in frequency.

9. Integral equation for the variation of the spectrum.
The change in frequency in an individual scattering event
is small, since we shall be considering electrons with a
nonrelativistic temperature and photons with an energy
which is small in comparison with me®. Therefore ap-
preciable effects take place when the interaction time
corresponds to 7 ~ (fiw/me?)™ > 1or 7 ~ (kT/mc?)™*
>> 1. According to the results of the preceding section,
it follows from this that for practically the whole time
(except the first few units of 7) the radiation is isotropic
and unpolarized, even if it did not have these properties
initially. Consequently, for the main period of time we
are considering the case nj = ny = n(w, 7), i.e., we have
a single function of two scalars: the frequency w and the
thickness 7 (by introducing the thickness instead of the
time, we can get rid of the factors poc in all the equa-
tions). For the convenience of astrophysicists, we shall
go over from the angular frequency w to the frequency
in hertz. The normalization factor in the expression for
the density of unpolarized photons in an isotropic distri~
bution will be denoted by a single symbol A:

N=—§%I-S nvde=ASnvzdv. ©.1)
In an exact formulation of the integral equation, a major
role is played by the "kernel” K(y;, vf)—the probability
of a transition of a photon with initial frequency v; into a
single cell of phase space with frequency vg.

The probability is normalized to the scattering cross
section, so that A [K(v;, vg)vjdvy = 1. We shall hence-
forth not write the indices i (initial) and f (final), bearing
in mind, for example, that K(v, v') involves » = y; in the
first position and v’ = v; in the second. The function
K(v, v') depends on the electron temperature T as a
parameter: K(v, v’, T); for brevity, we shall sometimes
omit this dependence on T. We shall also write n(v) in-
stead of n(v, 1), dropping the quantity 7, which is the
same in all terms of an equation.

If no allowance is made for induced scattering, i.e.,
for the Bose factors (1 + nfx) in the scattering probability,
the kinetic equation would have the form
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LLIC .

) () AS K@, v)veidv + A S K, vn(v)v2dy

=—n(v)+4 5 K, v)n()vidv.
(9.2)

When induced scattering is taken into account, both terms
are modified:

n (V) -

) (1) 4 S K (v, v) {14 n(v)]vEdv'

+UAn )14 [ K, w0 ) vedy
=—n((v)+4 S K (v, v)n(vyv2dv
+n(v) AS K (v, %) K (v, v')] 0 (v') v'2 dv".
(9.3)

The formulas contain the limiting case of scattering with
no change in frequency:

S(v—vh

K, v)=—p3

(9.4)
In this case, dn(v)/37 = 0, as was to be expected. The
induced term vanishes not only for K equal to a §-func-
tion, but for any symmetric Kg(v, v’) = Kg(v', v).

The function K(v, v/, T) is rather complicated; it is
not easy to write it in an approximate form which pre-
serves all the fundamentally important general proper-
ties. The small value of the change in frequency on scat-
tering implies that K differs little from a §~-function. But
this small difference is essential for the evolution of the
spectrum. At T = 0 only a decrease in frequency is pos-
sible, in fact by not more than the amount Avy,
= 2hv®/me?. Thus, Ko(v, v') is non-zero only in the range
0< v—v < Ay, (the index 0 on K means T = 0). Ata
finite electron temperature, there is also the Doppler
effect, depending on the motion of the electrons. The
corresponding function Kp(v, v') has an approximately

Gaussian structure ~exp[(v ~ v')*/2a%] with width

A ~ Vv%e? ~ VKT /mc?. The complete function K(v, v', T)
is neither a sum nor a product of K, and K. At small T,

the complete function is a convolution of Ko and K.
However, when we later turn from K(v, v/, T) to the
calculation of physical effects, these effects will natur-
ally prove to be sums of zero-temperature and finite-
temperature effects.

10, The Kompaneets differential equation. As there is
little change in frequency for each scattering, it is
natural to expect that dn(v)/37 will depend only on the
values of n(v') in neighboring regions of the spectrum,
where {v' = v| < v. Consequently, it will be possible to
express an(y)/a7 in terms of n(v), n'(v) = 8n/dv, n"(v)
=3%n/a1? ..., i.e., as a function of the occupation number
and its derivatives at the same value of v. The function
n(v) is required to be smooth: in order of magnitude, we
must have n ~ yan/3y ~ 1?8°n/av%. Mathematically, the
transition from the exact integral equation to the differ-
ential equation for an/a7 is accomplished by means of
the formulas

A4 S K (v, V)n (v')vidv =qqn (v)+a1—‘;'—:—'raz%+

g, =A \ K(v,v)vidv', ay=A “K (v, V') (v — v} v'2dV', (10.1)
a, :% S K{v, v') (v' —v)2v'2dv.
However, the obvious physical requirements on the equa-
tion actually impose such strong constraints on the

parameters that the equation can be derived without ex-
plicitly writing down the cumbersome function K(v, v’, T).
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This method was elegantly and systematically ex-
ploited by A. S. Kompaneets in 1956[‘], in a paper con-
taining the first lucid formulation of the problem of how
the equilibrium spectrum of radiation is established in
a rarefied plasma.

Let us first consider the case of cold electrons and
small occupation numbers, when the n® terms can be
neglected. The coefficient a, (taken with the + sign) is
the average decrease in frequency for a single scatter-
ing; for scattering at an angle 9, it is equal to Av
= Avp (Ll — cos 6)/2, i.e., it has the value'" a; = Ap
= hy®*/me® The coefficient a, is equal to the mean squared
change in frequency. In our case,

ay = (B ~ (Bv)t ~ (2% )%2 & vAv. (10.1a)
Therefore a; can be neglected.
Thus, we are left with the equation .
(a1 g 12T (10.2)

me? gv "

Let us make use of the fact that the density of photons
is conserved in the scattering. The equation must satisfy
the condition

LAY
dt

. @ an o —
—Ad—r = dv=0,

5 nvidve- A )
If this relation is to hold for any n(v), the right-hand
side of Eq. (10.2) must have the form

an 1[/(

TR

on \
v, IL,W}.

(10.3)

W e say that the divergence structure of the equation en~
sures that a conservation law holds: we can think of q as
the flux of photons through a spherical surface in phase
space corresponding to a given frequency v. Comparing
this with what we already know from Egq. (10.1), we ob-
tain

hve

2

1 hv? on
£ f ® et ov !

n h 1 9
RN
gt mes N gy i

an
av

g=f{v)n, f-=

(10.4)

It is worth noting how the general principles have en-
abled us to avoid a difficult calculation of a, from the
function Ko(v, 1'): this difficulty is due to the fact that we
must calculate the small difference a, — 1 = 4hy/me?, for
which the approximation K ~ 6(v ~ v’} is inadequate.

Equation (10.4) describes a very specific physical
situation, from which we can draw conclusions regarding
the propagation of x-rays in a cold plasma, Here we shall
proceed with the derivation of the general equation, Let
us turn to the quadratic term describing induced scatter-
ing, keeping the electrons cold as before. It follows from
the integral expression that

an o an
(W)‘md =byn-+tyn w0

where by and b, are functions of v; moreover, b,
= 2hv%/me? = 2a,. Applying the divergence principle, we
finally obtain

—f:—i—ziv‘(n~i—nz). (10.5)

Many of the applications of the theory involve this
equation and its limiting form for n > 1, when allowance
is made for only induced scattering: :

dan A 1 9 44
5T T mE vEoaw Ve

(10.6)

Let us turn to the case of hot electrdris, assuming,
however, that kT < mc? and retaining the higher-order
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terms in the expansion in the small parameter kT/mc?,
The shift in frequency in an individual scattering event
is ~vv/e, and its square is vv?/c?® ~ yKT/nc®. Thus, the
Doppler broadening of a line gives a certain large value
of the coefficient a;.. We recall that this corresponds to
a term proportional to a(kT/mc?)v%%n /61 in the equa-
tion for an/or. However, the frequency shift, i.e., A,
does not contain a term vv/c have both signs, as the fre~
quency increases and decreases, and the term of order
vv/c vanishes when the average is taken. The symmetry
of Kt (v, v') also implies that there is no temperature-
dependent induced contribution to the scattering which is
quadratic in n.

The equation which takes into account the tempera-
ture must satisfy a thermodynamic principle: the equili-
brium Planck distribution of photons should remain un-~
changed when interacting with electrons having the same
temperature. This means that én/5v = 0 for
n = (/KT — 1)~', without any calculations, this thermo-
dynamic principle together with the principle of conser-
vation of photons gthe divergence principle) fix the factor
o accompanying 8°n/3v* and the remaining terms propor-
tional to the temperature. We finally obtain the Kompan~
eets equation:

on h 1 @

T met w2 Gy

(i genew). o
For a constant temperature of the electrons, it is con~
venient, following the author of the equation, to replace
the frequency by a dimensionless photon energy x and to
change the variable which characterizes the interaction -
time:

y=1-L. (10.8)
In the new variables, the equation contains no param-
eters:

an 1 9 an
—_— =l 2
3y 22 511(01 +ﬂ+ﬂ).

(10.9)
In the general case, there are the effects of the produc-
tion of new photons and the absorption of photons in addi-~
tion to scattering effects. If the production and absorp-
tion are due to a plasma with a given temperature, their
contribution can be written in the form

an

9y

=B(z)(1+n) —nB (z) e (10.10)

e a

This equation takes into account the fact that, in addition
to the spontaneous emission B(x), there is also induced
emission (the term nB(x)); it also takes into account the
thermodynamic relation between the emission B(x) and
absorption nB(x)eX. The quantity B{x) is proportional to
the square of the electron density. In most of the prob-
lems involving a rarefied plasma which we consider be-
low, B(x) can be completely neglected, or neglected
everywhere except in a small region x < x,, as a result
of the fact that B, being small, grows like x* as x — 0.

A brief historical survey. The earliest work involving
a partial (without induced processes) formulation of the
problem of the evolution of the spectrum in the presence
of Compton scattering was due to Dirac Lad Kompaneets

-carried out his investigation in 1949; a major contribu-

tion to this work was due to the prematurely deceased
young gifted physicist S. D’yakov. The work came to the
notice of the author of this review. For reasons beyond
the control of the participants in this work, its publica-
tion was delayed until 1956. The astrophysical signifi~
cance of the work remained unclear until 1964,

Weyman 3, who was unaware of the work of Kompaneets,
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arrived at the same equation much later, in 1965. The
priority of Kompaneets is now universally recognized.

11. Properties of the Kompaneets equation. Two of
the most important properties (namely, the fact that
dN/dt = 0 and the fact that P(x) = (¢X — 1) = const (y) is
a solution) were used in deriving the equation and hence
are satisfied identically, Here P(x) is the equilibrium
Planck radiation function corresponding to the electron
temperature; we also use the notation P(v)
= (e¥/KT — 1)!, We naturally have in mind the
Kompaneets equation (10.7) without absorption and emis-
sion. However, P(x) = const (y) is not the only solution:
it is easy to see that the Bose-Einstein expression BE(x)
= (e *# — 1), which differs from the Planck expression
by the presence of the chemical potential y, also reduces
the guantity (3n/8x + n + n®) to zero. This result is not
unexpected: BE(X) solves the problem of thermodynamic
equilibrium of a specified number of photons in a speci-
fied volume at a given temperature. Since N remains
constant in a scattering process, we are justified in ask~
ing what frequency distribution the photons will have
(i.e., what form the function n(v) or n(x) will have for a
given electron temperature and a given number N). The
Planck formula gives a definite value of N for a given T
and hence does not answer this question. We require one
more parameter, and u is such a parameter. The chem-
ical potential u can be expressed in terms of T and N by
means of the equation

i (ex+u— 1)“:2dz-——°°n;:'1v .

Only P(x) and BE(x) are equilibrium solutions which
reduce the photon flux q in v-space to zero.

There also exist the stationary but non-equilibrium
solutions q = const # 0, aq /bv = 0, 8n/87 = 0; however,
these solutions obviously do not play such a fundamental
role as the equilibrium solutions. The stationary solu-
tions with q # 0 exist only because of an influx of photons
at v = ©» and an outflow of photons at v = 0 (or an influx at
v = 0 and an outflow at v = =),

The Kompaneets equation enables us to determine the
rate of change of the density of radiation energy for a
given spectrum and a given radiation temperature. It is
convenient to revert to the dimensioned equation'®

4% d P n s
T:—d—‘—AShvn(v)v dv_AhS RV dy

o

~ 80 (4TS — A2 { (nrm)viav).
o

(11.1)
The energy gained by the radiation is obviously lost by
the electrons, so that we can write the following equation
for the electron temperature:
s . (11.2)

3 daT
In particular, the preceding equation enables us to
calculate the stationary electron temperature (from the

condition dT/dt = 0):

Ty = (11.3)

4kE

Equation (11.3) makes it possible to determine Ty in
an isotropic and unpolarized radiation field, but with an
arbitrary spectrum. In the special case of a Planck or
Bose-Einstein spectrum having a definite radiation tem-
perature T, this equation gives Tgt = Ty identically.
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IV. INDUCED SCATTERING AND THE CLASSICAL
THEORY OF THE INTERACTION OF WAVES
WITH ELECTRONS

12, Evolution of the spectrum and the Bose condensa-
tion, Let us make use of the Kompaneets equation to
study the evolution of the spectrum in the limiting case
in which the quadratic term (nz) describing induced scat-
tering is dominant,

The equation reduces to
an h 1 43 -

—_—= — —— vin?.

ot me2 v: av

(12.1)

We introduce the quantity f = hnv®. The equation for the
new function f(v, 7) has the form

of _ 2t of
gt~ mcE gy "

(12.2)

But such an equation can be solved in terms of charac-
teristics; this means that it can be subjected to the fur-
ther transformation

di
4 =0 along (12.3)

dv me2 *
The solution v(f, 7), given implicitly, has the form

v(f, )= (f)—%ijf2 T. (12°4)

The evolution of the spectrum corresponding to these
equations is very easy to visualize. Let us construct the
spectrum in the f—v» coordinates at the instant 7 = 0
(Fig. 6a). Each point of the curve moves to the left with
a constant, time-independent velocity. However, this
velocity is different for different points—it is propor-
tional to the ordinate of a point.

Thus, for each point of the initial curve fo(v), it is
easy to determine the instant at which it intersects the
vertical axis. As a result of induced scattering, photons
of all species (excuse me—all colors, all wavelengths)
“harmoniously'' reduce their frequency and hence their
energy, losing it to the electrons. Each group (with an
initial frequency in a given interval from v, to vo + dvo)
moves independently (in this approximation!) and dis-
appears after a certain interval of time, when v — 0
(Fig. 6b). Now what are zero-frequency photons?! Some
mechanisms of genuine absorption are bound to appear
as v — 0, so that the rhetorical question about a photon
with v = 0 no longer arises.

But the situation is not so simple for any form of the
initial spectrum.

Under certain conditions, we can expect a spectrum f
which has a bend (Fig. 7). In that case, even before the
Bose condensation, the formal application of the rule
governing the evolution of the spectrum leads to the
formation of a characteristic three-valued structure or
"overspill" *J, This phenomenon is completely analogous
to the formation of a shock wave in gas dynamics or the

FIG. 6. a) The initial photon spectrum (on the vertical axis we plot
the product nv?, which is proportional to Fy/v, where F is the spectral
energy density); b) Bose condensation of photons whose frequency
vanishes.
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a)

FIG. 7. a) An initial photon spectrum with a bend; b) the forma-
tion of a region of triple-valuedness during the evolution of the
spectrum in a).

overspill of waves in the sea onto a shoal. The formation
of "shock waves'' in the spectrum has been noted previ-
ously in connection with the study of plasma turbulence,
i.e., the study of the spectrum of random plasma oscilla-
tions (47 4]

But what is the structure and subsequent fate of a
shock wave? .

To study this question, we must return to the integral
equation. We recall that the Kompaneets differential
equation was derived under the assumption that the spec-
trum is smooth, and this smoothness of f(v) is destroyed
when a shock wave is produced. We recall the expres-
sion for induced scattering:

'—V%L:consl-n(v) j A(v, vyn(v)vidv'y
Ly ) =K (v.v) —K (v, v).

The kernel A is antisymmetric (the dependence of A
on the difference v — ' is shown qualitatively in Fig. 8),
and the characteristic width of A is of order

/u

(12,5)

\_\IN\_,,V\I (12.6)
This quantity represents a sort of free path length of the
photons in the scale of frequencies. It would be natural
to conclude that the structure of a shock wave in the
photon spectrum in momentum space is similar to the
structure (in ordinary coordinate space) of a shock wave
in a gas with a given path length. However, it turns
out [ that these two structures have nothing in com-
mon. The integral equation—or, more properly, the in-
duction process itself—is such that, instead of the
smoothing of the S-type wave in a gas, one finds an ac-
cumulation of photons within a narrow frequency range,
an oscillatory structure of n(v) and quasi-lines in the
photon spectrum (Fig. 9).

Let us begin with the simplest case: suppose that
initially £ = 0 for v < vo and that a curve having a dis-
continuity is specified at t = 0 (Fig. 10a).

The number of photons which get into a given cell is
proportional to the number of photons which are already
in that cell: we are neglecting the "'spontaneous' unity in

FIG.9

FIG. 8

FIG. 8. The kemel for induced scattering.
FIG. 9. Structure of a shock wave formed mstead of the tnple—valued
region shown by the dashed curve.
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g w > {4 iy >

FIG. 10. a) An initial photon spectrum with a discontinuity; b) the
formation of quasi-lines during the evolution of the spectrum in a).

the Bose factor (n + 1), and the "“induced" n remains, In
that region (v < vo) in which n = £ = 0 at the initial instant,
the condition n = f = 0 will be preserved at all times.

But to the right, in the region v > vy, where n # 0 and

f # 0, there is a flux of photons moving towards lower
frequenc1es“’

These phonons must accumulate near the discontinuity,
for vo < v < v + Ay, and in the course of time must form
a pronounced maximum there—a quasi-line (Fig. 10b).

We can consider a finite discontinuity in the initial
conditions:

n=n,v=v—0,n=mn, v=v,4+ 0, ng > n,.

It follows from the integral equation that the discontinuity
is not washed away: nz/n1 = const(r) > 1. In fact, the
integral I{v, 7) = fA(u, VvIn(’, T)w'%dy’ is a smooth func-
tion of v even if nin the integrand is discontinuous, and
it follows from the equation that the rate of growth

8 1lnn /57 depends only on I and hence is the same on

both sides of the discontinuity.

We have made a detailed study (including numerical
analyses) of the evolution of an initially smooth n(v) or
f(v). We have considered a case in which a simple dif-_
ferential equation predicts the formation of a shock wave
and is subsequently no longer applicable. The solution of
the integral equation leads to the formation of several
quasi-lines, whose number and amplitude grow with time.
So far, the possible observation of quasi-lines remains
an open question. If induced scattering is to dominate, a
high effective radiation temperature is required. It is
natural to suppose that the source of radiation is a tur-
bulent and possibly magnetized plasma and that the scat~
tering is geometrically separated from the radiation,
i.e., that it takes place in different shells of the plasma,
which are colder and more quiescent, practically in
equilibrium and non-magnetized. But in that case there
arise problems regarding the angular distribution of
radiation: for induced scattering, there is no tendency
towards isotropy!

13. The electron temperature for induced scattering.
So far, we have been concerned almost exclusively with
the evolution of the radiation spectrum in the presence
of thermal electrons., There is another problem which is
no less fundamental: the evolution of the energy spec-
trum of the electrons in a given radiation field. The
answer is trivial if the radiation is the equilibrium
Planck radiation corresponding to a definite radiation
temperature T,. The electrons will clearly acquire this
temperature: T — T,. Since the average photon energy

~in the Planck distribution is ~2,7kT,, we can also say

that the average energy of an electron in equilibrium is
of the same order of magnitude as the average energy of
each photon.

However, the problem becomes non-trivial if the
radiation spectrum is not an equilibrium spectrum. In
astrophysical applications, we frequently encounter a
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gituation in which the effective temperature is very high,
but only in the low-frequency region. There is an effec-
tive cut-off in the spectrum at a frequency v, which is
many times smialler than the frequency v = kT./h at
which the quantum character of light shows up

A high effective temperature certainly indicates the
presence of radiating ""units' with a large energy. These
"units" may be relativistic electrons or clusters with
large effective charges (see the literature on
pulsars 131y, At low frequencies, the absorption of
radiation by these same "units" is important, and the
radiation temperature does not exceed the average en-
ergy of each unit. At high frequencies, the system is
transparent and the absorption is small, but the radiation
of the "units" is also small. The radiation is exponen-
tially small, but the exponent here is not of Maxwell~
Boltzmann origin; the exponent comes from a convolu-
tion of a rapidly varying function (characterizing a high~-
frequency wave) and a smooth function characterizing the
dimensions or the trajectory of the radiating "unit.”

Thus, we come back to the problem of scattering for
an unusual radiation field. In astrophysics, particularly
in "'plasma" astrophysics, a typical radiation field has
n=KkT,y/hv > 1for v <woand n K kT /hv for
v > vo, with hvy < kTpg.

Accordingly, the total density of radiation in such a
field is much less than the equilibrium value. Omlttmg
dimensionless tactors, we write

g (erg /em®) ~ kT3 ¢ aTy, (13.1)

Now that the situation is completely determined, we try
to choose the correct answer from the three possible
solutions: the electron in the given radiation field will
acquire a temperature:

(kT
=

a) such that kT is of the order of the average energy
hy, of a single photon;

b) equal in order of magnitude to T, i.e., to the
radiation temperature in the region of the spectrum
where the radiation is concentrated;

¢) corresponding to the total density of rad1at1on i.e.,
Tegr Such that & = aTge, 80 that Tege = T (huo/k)a/‘

The difficulty in choosing the correct answer is due
to the fact that a free electron which gives rise to
Thomson scattering experiences the radiation of all
frequencies.

Einstein solved the problem of the Brownian motion
of an oscillator in a radiation tield. In this case, the
answer is clear: the oscillator experiences the effective
radiation temperature at the resonance frequency and
nothing more. Knowing this answer in advance, Einstein
drew far-reaching conclusions about the quantum struc-
ture of the radiation field itself.

Let us return to the electron. The equation written
above yields
ht g nivi dv _ kT

==
AhSnvsdv 4

(13.2)

Thus, the second answer proves to bé correct (in order
of magnitude); the electron ''feels' the temperature of
the low-frequency radiation.

Let us introduce the spectral density of the flux of
radiation energy:

F,(erg/cm’sec-Hz-sr)= 27 n, &=L {F.av. (13.3)
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The expression for the electron temperature in an iso-
tropic radiation field, written in terms of F,, takes the
form

KT = (c*/8) j Fi‘v'zdv/ j F,dv. (13.4)

We note that, for an admissible F,, (such that f F,dv con-
verges), even if F, — 0 as v — 0, it is possible to have
the solution T — «, and the integral in the numerator
may diverge.

14. The classical interpretation of the theory of
induced scattering. As is well known, large values of
the "occupation number' n > 1 correspond to the possi-
bility of making the transition to the classical (non-quan-
tum) Maxwell theory of electromagnetic waves.

As regards the class of phenomena under considera-
tion, a formal confirmation of the classical domain is
provided by the disappearance of Planck’s constant in the
final equations after the variable n is replaced by the
spectral density F, which is a classical quantity. This
disappearance of Planck’s constant in the final equations
applies to both the evolution of the radiation spectrum
and the behavior of electrons in a given classical radia-
tion field.

The foregoing derivation of the equations was carried
out by considering the quantum problem, introducing the
Bose factors (1 + n) and making the transition to the
limit n > 1. It is obvious that there must also be a
direct approach to the classical problem™?,

On logical grounds, it is curious that this direct ap-
proach proves to be much more complex than the circuit-
ous route (cf. the paper (4] mentioned in the introduc-
tion). From the point of view of the history of science,
it may be noted that all the initial conditions required
for the solution of the problem were already in existence
towards the end of the last century among the works of
Maxwell, Lorentz, Rayleigh and Jeans. If the problem
was not formulated and solved 100 years ago, it is
mainly because there was no taste (or fashion) for
plasma, turbulence, or random fields and processes.

Let us return to the problem of the interaction of
radiation and electrons. We shall begin the direct class-
ical investigation of this problem with the simpler prob-
lem concerning the behavior of an electron in a random
field; we shall only briefly touch upon the more complex
problem of the evolution of a random field, i.e., the evo~
lution of the radiation spectrum.

It is easy to solve the problem of the motion of an
electron in the lowest approximation, which is linear in
the field. This solution had already been obtained in the
derivation of the Thomson scattering formula. The
mean-square velocity of the electron is given by the
formula

- E2et

via= —
m2e?®

(14.1)

For a random field, i.e., for uncorrelated waves, the
mean-square velocity is composed of the mean squares
corresponding to each individual wave. The square of
the field can be expressed in terms of the energy flux,
Thus, we obtain several equivalent formulations for the
total energy of oscillatory motion:
g2 =2 S %dv:—_f— S———

2 me

(14.2)

In particular, in the case of a Planck radiation spectrum, -
the electron energy has the order of magnitude
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(14,3)

Just as a long sentence in German may end with the
particle of negation "nicht," we conclude the present
calculation with a firm denial. The energy of oscillatory
motion is not the energy of the electrons in which we are
interested. The energy of the oscillations must be
classed as a correction to the energy of the electromag-
netic waves due to the fact that the index of refraction of
the plasma is different from unity.

But the foregoing calculation made no allowance for
the translational motion of the electron. In a theory
which is linear in the field, this translational velocity
may be arbitrary. It is only in the next approximation
that the translational velocity varies with time; this
process represents a gain and loss of energy by the elec-
tron.

What effects must be taken into account in the next
approximation?

Let us first consider a single plane wave propagating
along the z-axis, with fields E; and Hy In the linear ap-
proximation, the electron oscillates, with V¢ = sin wt

- eE/mw. In the next approximation, there occurs a
Lorentz force directed along the z-axis and having the
order of magnitude

1 2E2
FL:EIU':eE.
c mew

(14.4)

However, this force is proportional to sin wt * cos wt

~ sin 2wt; its average with respect to time is equal to

zero. It is only allowance for the radiation of the elec-

tron which shifts the phase of the velocity,

v ~ sin (wt + ¢), and as a result there is a non-zero

average value sin (wt + @) cos wt = (1/2) sin ¢ and also
= (1/2)(e®E" sin ¢/mc w) ~ 0E.

In order of magnitude,

,,,\-iuq’vf\/ﬂf\r "o
; R A

o] (14.5)
In essence, the result obtained earlier from the con-
servation laws is explained here in detail in the language
of forces. The scattering of a flux of energy by an elec-
tron produces a force in the direction of the flux. This
force is small, many times weaker than the Lorentz
force. The average flux of energy is zero in an isotropic
radiation field. But the concept of an isotropic field
singles out a particular rest system. An observer mov-
ing together with the electron with respect to this system
perceives the radiation as anisotropic: the radiation
moving against him is shifted towards the blue and more
energetic end of the spectrum. The radiation moving
with the observer is ""reddened' and weakened. The flux
of energy relative to the electron is
q:——c?s—(%g)—%~%’%, (14.6)
where & is the density of radiation energy in the system
in which the radiation is isotropic. Consequently, the
force acting on the electron and corresponding to the en-

ergy loss is

406v

Fe_ , 40602 8 €ac my?
3c

WPy A o BT agoe
(14.7)
In the last expression, we have substituted the value of
the kinetic energy of the electrons with temperature T;
we find the expression for the energy lost by the elec-
trons. The preceding lengthy arguments would have been

useless if they had not suggested an effective mechanism
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of heating the electrons by the Lorentz forces: it is suf-
ficient to get rid of the condition which relates E and H
in a plane wave! In a random (on the average, isotropic)
radiation field, there exists a Lorentz force of the mag-
netic field H, of one wave acting on an electron whose
velocity v. depends on the electric field of a second wave
E:. When the wave vectors k, and k; of the two waves do
not coincide in direction, there is no reason why the
force should be precisely zero over a long period of
time. The force is proportional to the square of the
amplitude, i.e., to the intensity of radiation. The change
in energy of the electron is proportional to the square of
the impulse of the force; thus, the classical heating
mechanism considered here leads to an expression for
W, proportional to F F . A difficult statistical calcula-
tion gives—for a broa.d rad1at10n spectrum—the expres-
sion const - [ (F3 /v*)dv, in agreement with that found
previously.

The picture becomes clearer if we introduce the con-
cept of a quasipotential (QP). The role of a QP is played
by the kinetic energy of the oscillations of the electron,
evaluated in the lowest approximation.

As has been shown by Gaponov and Miller **}, the
time-averaged force, which is quadratic in the amplitude
of the field'®, is equal to the gradient of the kinetic en-
ergy of the oscillations, evaluated in the lowest approxi-
mation.

Following the ideas of [*1, let us consider a standing
wave in which E; = E cos wt « cos kz, with k = w/c. The
energy of the oscillations of an electron in such a stand-
ing wave is

Eny= ,mﬁ, cos®kz (14.8)
and, accordingly, the averaged force'® directed along the
axis is

F.o = cos kz sin kz.

e2E2
2mew

(14.9)

Cold electrons accumulate at the nodes, i.e., at the
planes z = n7/2k on which E; = 0. A standing wave is a
superposition of two oppositely travelling waves of the
same frequency. K the frequencies of the latter are
slightly different, the nodes undergo a slow displacement
in space; strictly speaking, the resulting field is not a
standing wave.

This is the basis of certain ideas of employing laser
light beams to accelerate particles (7781,

The subject of the present paper is a random field.
In such a field, both the quasi-potential &,, and the
corresponding'” force F(z) = —V &, are random func-
tions of the coordinates and the time,

It is possible to expand &, and F(;, in elementary
waves in the same way that the field E, H itself is ex-
panded in individual waves.

What is the difference between these two expansions?

The quantity ¢(,, is a scalar; the vector F;, is poten-
tial and can be expanded in longitudinal waves. For a
given wave vector k, the expansion of F(.) contains all
frequencies w from 0 to clk|. This means that the field
of the force F (s, regarded as a function of the coordin-
ates and the time, contains components having an arbi-
trary phase velocity, including small values. Thus, each
slow electron finds in the field F(z) a matching compon-
ent (a wave synchronized with its translational velocity)
which continually accelerates it. To first order, when
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the force is F(y, = eE, there is no such synchronous
wave—the field E is transverse, and its phase velocity
is equal to c. It is for this reason that the effect of heat~
ing the electrons in the classical theory takes place only
in second order and is quadratic in the intensity.

Thus, it is actually possible to construct a classical
theory of the heating of electrons by a random field; in
the course of the development of the theory, there emerge
the important qualitative concepts of a quasipotential,
Gaponov-Miller forces and synchronism. If we are only
dealing with the derivation of the expression for W,, then
the quantum "tour" (''Herumfiihrung") is shorter. How-
ever, it is not possible to attain a complete understand-
ing without combining the exact quantum equations with
the classical approach.

15. The classical theory of the evolution of the spec-
trum, Let us return to an elementary gedanken experi-
ment: the scattering of a monochromatic beam with fre-
quency vo by a plasma situated in a radiation field having
a broad spectrum directed at an angle to the monochrom-
atic beam (Fig. 11).

Let us first consider electrons at rest in the quantum
theory of induced scattering. The change in intensity is

(15.1)

dnp
de

=const (ngnyV; —ngiyvile
where n, is the occupation number at the frequency v,
which gives the frequency v, after scattering:

fn\[", (1 —cos 6)] .

Similarly, n: is the occupation number at the frequency
vz which results after scattering,

(15.2)

Vi:"o[i +

hvy
me?

(15.3)

V2=Vo[1— (i—cose)].
Consequently, the change in intensity of the beam de-
pends on the difference of n, and n: at nearby frequenc-
ies; for a broad spectrum, this difference can be re-
placed by the derivative:

dinn _dlnly__ 2hv? [
3 =g —const: (1 ~cos B) 5 (V).

(15.4)

Thus, depending on the spectrum of the "illumination"

(in particular, depending on the sign of the derivative of
nv®), the plasma either effectively weakens or strengthens
the beam.

If 8(nv?)/6y > 0, the plasma is like a providing med-
ium, i.e., it strengthens the beam. It has been proposed
to use this effect under laboratory conditions [**3, but it
turns out that the maximallg possible amplitude of the
enhanced waves is small (%%,

How can the effect of enhancement of a monochromatic
beam be explained in classical electrodynamics?

When a plasma is exposed to the action of two waves
with frequencies v, and v and amplitudes E, and E, there
occur Gaponov-~Miller forces with the difference fre-
quency vo— v and the amplitude EcE. These forces pro-
duce a perturbation of the electron density which is pro-

FIG. 11. Interaction of monochromatic
radiation with a spectrally broad beam in a
plasma.
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portional to E¢E(ve — v) in amplitude and time-varying
with a frequency v, — v. The index of refraction of the
plasma and its dielectric constant depend on the electron
density. The perturbation in the density implies a per-
turbation in the index of refraction.

The enhancement wave (v, E) is scattered by the per-
turbations in the index of refraction'®, The frequencies
(vo—v) and v then add, and there results a wave with
the frequency of the beam, v

Thus, we obtain

dE,
dat

~ 80 ~ (BoE) E ~ E B (15.5)

or

dly  dE: .
T~ g~ BB~ Ll (v, ).

(15.6)
The dependence of dIo/dt on I, and the enhancement in-
tensity is quadratic, i.e., it corresponds precisely to the
induced scattering. The dependence on the frequency v
(which we have not followed) is such that we have the
function f(v, vo) & d[6(v ~ vo)]/dv for electrons at rest
(T = 0) in the classical theory. For a finite electron
temperature, (v, vo) is an antisymmetric function of

v — o differing from zero in the region v — vl

S voVKT/mc?. For a broad enhancement spectrum,
dlo/dt ~ Io [ K dv reduces to the expression involving a
derivative written at the beginning of this section.

16, Anisotropic fields, narrow beams and the condi-
tions for the applicability of the theory. The Kompaneets
equation and the conclusions drawn from it apply to an
isotropic radiation field. The study of an isotropic field
was justified by the fact that each scattering event halves
the anisotropy, while multiple scattering is required for
the evolution of the spectrum: the number of events
needed to change the frequency by the order of magni-
tude of the frequency itself (Av ~ v) is given by me?/kT,
i.e., is much larger than unity.

However, while induced scattering plays a major
role, it may happen that for large n the rate of induced
evolution of the spectrum is even greater than the rate
of the spontaneous tendency towards isotropy of the
radiation field. The criterion is (for a broad spectrum,
when an/6v ~ n/v)

me?
* n e

v

(16.1)

i.e., the effective luminosity temperature of radiation is
kT > mc?. However, we recall that this temperature
refers to the low-frequency part of the spectrum

v < me?*/h, so that neither relativistic effects nor e'e”
pair production ocecur.

If there is a high luminosity temperature, we can con-
sider induced processes for anisotropic beams. The
total angular width of a beam does not increase, but the
angular distributions of various wavelengths evolve dif-
ferently. With decreasing scattering angles, all effects
are suppressed in proportion to 82. The details of aniso-
tropic effects can be found inl%:%4J,

The polarization of the radiation is also not smoothed
out in the regime of induced scattering; the problem re-
quires a strict investigation. A number of papers [%7¢]
have been devoted to the evolution of spectrally narrow
lines in the presence of induced scattering. This prob-
lem is of interest in connection with laboratory experi-
ments; lasers provide a very high effective temperature
within a narrow spectral interval.

L]
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In this regime, not all the electrons of a Maxwell
distribution take part in the scattering. Accordingly, in
the case of heating by spectrally narrow radiation, there
results a distribution of electrons which falls off more
rapidlg' at large electron velocities than the Maxwell
law 583,

The limitations of the theory are evident from the
classical picture of induced scattering: the perturbations
in the density result in an electrostatic repulsion of the
excess electrons. If this effect is to be neglected, the
frequency difference |vo — v| must be greater than the
Langmuir plasma frequency.

For a broad spectrum, the condition on the frequenc-
ies leads to the requirement that the wavelength of the
radiation is less than the Debye radius.

The limitations due to plasma effects have been
studied int®:%®], The authors find that the conditions
quoted above are sufficient but not necessary, i.e., they
are too stringent.

Finally, we note that induced scattering in an aniso-
tropic radiation field results in an average force acting
on the electrons which is proportional to the square of
the intensity, i.e., to the fourth power of the amplitude of
the field and the fourth power of the electron charge[*3,
In order of magnitude, this force is F; ~ oq &/mv°, How-
ever, the dependence of ¥: on the angular distribution
and the spectrum is given by a complicated double in-
tegral with respect to the angle and an integral with
respect to the frequency.

For an isotropic distribution, g = 0 and F; = 0; for an
axially symmetric distribution, ¢ and F, are directed
along the axis, but it is not excluded that their directions
are opposite; both signs of the ratio F/q are possible.
The force F: vanishes for a narrow beam (with respect
to the angle), in spite of the fact that q is then maximal
(for a given ¢&). The force F: is of the same order of
magnitude as the known F, = 0q /c if the luminosity tem-
perature of the radiation is T, ~ mc*/k.

An important case is the small anisotropy which re-
sults from a slow (v/c = 8 < 1) motion of an electron
with respect to an isotropic field. It can be shown that
this average force is proportional to the velocity and is
opposite in direction, i.e., that it decelerates the elec-
tron'®. A comparison of the average decelerating force
with the random force which produces the heating of the
electrons shows that the deceleration effect is unimpor-
tant for a nonrelativistic electron temperature; the
Kompaneets equation and all the foregoing calculations
and arguments are inapplicable to relativistic electrons.

A classical determination of ¥F: (which may be called
the super-Gaponov-Miller force) would be difficult., The
calculation in terms of the quantum expressions presup=-
poses the random phase approximation in the theory of a
random field. This approximation must be verified when
considering spectrally narrow (and narrow in the angle)
fluxes of radiation: the initial radiation may not be com-
pletely random, and in fact a correlation may occur in
the process of scattering. On the other hand, the results
referring to isotropic or almost isotropic radiation with
a broad spectrum are very reliable, and they provide a
firm basis for the solution of many astrophysical prob-
lems.

17. Nonuniform distribution of electrons in space. So
far we have been concerned exclusively with the spon-
taneous or induced scattering by a single electron.
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It was understood that, under the realistic conditions
of scattering by an electron gas, one must add the radia-
tion fluxes, i.e., the radiation intensities of many indi-
vidual electrons, It is obviously possible to have a situa-
tion in which the amplitudes add. Suppose that there are
N electrons inside a sphere of radius much greater than
the wavelength of the incident radiation. All N electrons
oscillate in step, their radiation is coherent, and the
amplitude of the scattered wave is N times as large as
the scattering amplitude of a single electron, so that the
intensity of the scattered radiation is increased by a fac-
tor N2 Thus, a group of N electrons has a cross section
g = oN?, where ¢ is the Thomson cross section of a

single electron.

It is easy to derive this result formally: we shall re-
gard the group as a single particle with charge Ne and
mass Nm. The cross section is ¢ ~ e*m™%; substituting
Ne and Nm instead of e and m, we obtain precisely the
above-mentioned relationship between Og (for the group)
and o.

What happens in the case of a unifom (homogeneous)
distribution of electrons in the plasma? We must stipu-
late that statistical homogeneity is implied here: the
probability AP of finding one electron in a small volume
AV is given by AP = naV, where the coefficient ng is
independent of the coordinates x, y, z and the positions
of the other electrons and ions; ng is the density of elec-
trons.

In this case, is it not necessary to mentally divide
space into cells of dimensions A/2 and volume A%/8 and
to combine into groups the electrons found within the
same cell in the quantity N = ng A°/8? Such a procedure
would lead to an erroneous result; if we mention it here,
it is only in connection with the saying of Niels Bohr:

"A good specialist is one who knows the most common
errors in his field and is able to avoid them."”

In calculating the radiation scattered at a definite
angle from a wave with wave vector Kk, into a wave with
wave vector K;, there occurs an expression of the form

j=Njwoo
S
o =g| 3

- Htkz-kor; lz.

=i

The cross-terms in this expression give a contribution
of the form

A= 3 cos (ke —ky) (1;— r).

When an average is taken over a statistically homogene-
ous ensemble of electrons in a large volume (of dimen-
sions L > A), we obtain A = 0, leaving Og = N, which

corresponds to the addition of the intensities. This re-
sult clearly has a simple explanation: the electrons in a
layer whose thickness is of order A or, more precisely,
(A/2) cos (ky, k;), actually "interfere constructively"
and the amplitudes add for them. However, the next
layer gives an interference of the opposite sign—
"destructive''—and so on. The terms depending on the
interference of the waves vanish on the average.

- This complicated way of looking at a simple result is
useful because it gives us a better feeling for the domain
of applicability of the equations. As a rule, we are deal-

" ing with the case nA® >> 1. Even in interstellar gas, we

have ng ~0.1—1 cm™, and one studies the scattering of
radio waves with A < 10* cm, so that ngA® is as high as
10! The addition of the intensities is as a result of an
exact cancellation of the large effects of constructive
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and destructive interference. A relatively small pertur-
bation in the electron density, such as an acoustic wave,
is sufficient for the scattering cross section to rise
sharply in certain directions. This effect has recently
been confirmed experimentally. The general formulas
also contain a reflection of a wave from the boundaries
of an abrupt variation in ng. In an equilibrium plasma,
there are corrections associated with the electrostatic
interaction of the electrons; the characteristic dimen-
sion here is the Debye wavelength. However, the devel-
opment of these topics would lead us deep into plasma
theory. The effect of a nonhomogeneity on spontaneous
scattering is discussed here to emphasize the nature of
induced scattering. :

A spatial nonhomogeneity in the distribution of elec-
trons has no effect on induced scattering!

Let us begin with a limiting case: the kinetic equation
for photons involves the electron density and the Thom-
son cross section divided by the mass of the electron,
i.e., the combination

= R0t

a=- a0

Let us combine the electrons into compact groups of N.
The density of the groups is n, = ne/ N, and their charge
and mass are Ne and Nm. Substituting these values, we
conclude that a remains unchanged. A different argument
involves the heating of electrons in a given external
radiation field. If allowance is made for effects non-
linear in the field (but not for the self-radiation of the
electron or its ""radiation resistance'), we obtain an ex-
pression for the rate of heating which is independent of
where the neighboring electrons are situated. But the
process of heating the electrons is the reverse side of
induced scattering. The energy balance of the electrons
and the radiation interrelates the evolution of the spec-
trum in the presence of induced scattering and the heating
of the electrons described just above. In a somewhat dif-
ferent way, we deduce once again that the spatial distri-
bution of electrons does not affect induced scattering.

A particular conclusion which follows from this is that
it is possible to make the limiting transition to a smeared
electron fluid having a given mass density p = ngm and
charge density q = nge—the transition opposite to that
which considers groups of electrons.

The evolution of the spectrum can be studied by writ-
ing Maxwell’s equations and the equations of motion of
the continuous electron fluid, Without considering indi-
vidual point electrons, we automatically exclude spon-
taneous Thomson and Compton scattering and, at the
same time, quantum effects. It is well known that the
plasma frequency and the index of refraction of a plasma
may be determined in the electron-fluid approximation;
they depend on ne’/m and are unchanged if the electrons
are grouped. '

This review will not have been written in vain if there
exists a reader who will carry out the program which we
have sketchily outlined above.

DIt is important for what follows that the classical and quantum theories
differ less in this respect (change of frequency) than one might think
at first sight. In the classical theory, an electron which undergoes
scattering acquires a momentum in the direction-of the incident wave
and the Doppler effect causes a spread of frequency that grows with
time in the system in which the electron was initially at rest. The
quantum and classical average spreads of frequency are the same.
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Dn fact, this conclusion was drawn from old-fashioned calculations
without Feynman diagrams, which appeared 20 years later; during the
period of controversy about the positron, Feynman was a high school
student. On the other hand, high school students nowadays know
about these diagrams, which justifies the violation of the chronology
in the text.

3The blasphemous phrase “The universe is a particular case” is never-
theless true from the narrow point of view of a physicist studying the
interaction of electrons with radiation.

“The situation is essentially different if the radiation is anisotropic or
has a narrow spectrum (see Sec. 16 and [5%]).

$The choice of this system is not unique. In particular, if we stipulate
that the electron is at rest before the arrival of the wave and consider
a wave which rises gradually from zero to some large amplitude, it
turns out that the electron (with no allowance for the radiation reac-
tion!) acquires a relativistic longitudinal velocity. If the radiation re-
action is taken into account, this longitudinal velocity varies with
time, so that a strictly stationary solution of this type does not exist.

Later we shall consider a different formulation of the problem—
the radiation in a coordinate system in which the oscillating electron
is at rest on the average as a result of the longitudinal field; for details
about this field, see Sec. 5 below.

SThese properties are well known from the theory of synchrotron
radiation; see the reviews and monographs mentioned in the intro-
duction.

We are considering only a strictly stationary state, and the interval of
time during which the wave is inktiated is not taken into account.

®P(b) and P denote the projection of the electron dipole moment on
the electric field of the wave; in a strong wave P(b) = —eR cos ¢

= —e(v/w) cos ¢, and P = —e?E/mcw? according to the Thomson formula.
The real part of the dielectric constant in a strong wave is

4 2
Ree=1— P (b) .
mow

(5.6)

MAnd with an appropriate longitudinal electric field.

10gpecifically, & = (3/327)(1 + cos 8)? and 8 = (3/327)(]1 — cos 8)% Here
o and f§ refer to the average Thomson cross section. It is much more
convenient to consider circulat polarization than plane polarization;
the statement that a wave has a given circular polarization is invariant
with respect to any proper coordinate transformation (rotation or
Lorentz transformation).

D1t is readily verified that in our case (owing to the symmetry of the
indicatrix of scattering ~(1 + cos?8)) the average change in » is equal
to the change for scattering at #/2 and has half the maximum value.

12)The derivation of the last equation involves an integration by parts,
which requires that n decreases faster than ¥™3 as v = o0 and grows
more slowly than ™25 as » = 0. These conditions are not satisfied for
the stationary but non-equilibrium solutions with q # 0.

!39We recall that, in accordance with the definition of the flux q (see
Chapter III), q = const * »*n?, the corresponding average photon
velocity in the scale of frequencies is dv/dt = —g/np? = —f/mc?. For
induced scattering, the velocity depends on the amplitude (n or f) but
not on the gradient (3n/dv); this is different from the diffusion of
photons for spontaneous scattering by moving electrons. The velocity
of motion is half the translational velocity of the point with f = const,
i.e., the “‘mass” velocity is half the phase velocity (the velocity of a
characteristic).

9 An interesting example is the work of Dirac and Kapitza [*°] on the
diffraction of electrons by a standing wave. Here the electron is re-
garded as a quantum object, and the standing wave is classical. This
wave can be represented as a superposition of two travelling waves of
the same frequency but opposite directions. The authors first cin-
sider the spontaneous scattering of a photon corresponding to one of
the travelling waves into the state of the other travelling wave. Allow-
ance is then made for the induced character of the scattering: this ex-
plains the scattering into the other travelling wave and not into any
other state. However, at the same time, the transition is made to the
classical theory of the electromagnetic field.

1)This refers to the Lorentz force described above and other similar
terms which must be taken into account together with it.

For a simpler mechanical system with one-dimensional motion—
a pendulum—this principle of introducing a quasi-potential was
formulated even earlier by Kapitza [#°] and has found its way into-
textbooks (see [*]).

16)The indices in parentheses show the order of the approximation:

1) the first estimate of the velocity, linear in the field, from which the
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energy of the oscillations is determined, 2) the approximation
quadratic in the field; we note that Fz(1)=0.

The kinetic energy from the first approximation is quadratic in the
field.

!®This is the general method of studying forced scattering processes [5152],

19)This force can be represented in the form F, = —(vo/m)p f 2
X [a(FV )/9v]? dv; according to a calculation of A. F. Illarlonov and
D. A. Kompaneets (Jr.), p. = 7/60x,a= 1 x4/15/7 and b = —a/2.
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