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The connection between the exclusion principle and the principle of indistinguishability of identical
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"Seek the source of everything,
and you will understand much."
Koz'ma Prutkov

1. INTRODUCTION. THE EXCLUSION PRINCIPLE
Even though Pauli had established his principle even

before the creation of quantum mechanics, and the more
general exclusion principle immediately after its birth,
nevertheless even now, when quantum mechanics has
marked its 50th anniversary, there is no meeting of
minds when it comes to the question: Is the exclusion
principle a postulate that stems from the experimental
data, or a consequence of other postulates of quantum
mechanics ? I shall discuss in this note the existing
viewpoints, and in concluding, I shall prove rigorously
that the exclusion principle stems from the principle of
indistinguishability of identical particles and Pauli's
theorem on the relationship between spin and statis-
tics. But let us have a little history to start.

Wolfgang Pauli arrived at formulating his principle
in explaining the regularities in the classification of
the spectral terms of atoms in a strong magnetic field.
In a i , which was submitted for publication in January
1925, Pauli formulated his principle as follows:

"In an atom there cannot be two or more equivalent
electrons for which the values of all four quantum
numbers coincide. If an electron exists in an atom for
which all of these numbers have definite values, then
this state is 'occupied'."

For Pauli, the fourth quantum number was not de-
scribed by any model. He called the property associated
with it the "characteristic two-valuedness of the quan-
tum properties of the electron, which cannot be de-
scribed classically. "C21

Now we call this two-valued nature of the electron
that is not amenable to classical description the spin.
In anticipating the quantum nature of the magnetic
moment of the electron before the creation of quantum

mechanics, Pauli exhibited striking intuition. Interest-
ingly, this same intuition together with Pauli's inherent
rigor of thought did not allow him immediately to ack-
nowledge the spin hypothesis that had been advanced by
Kronig and independently by Uhlenbeck and Goudsmit
to explain the source of the fourth quantum number of
the electron. Pauli's objections involved the fact that
this hypothesis was based on the classical concept of
rotation of the electron about its own axis. And even
though Uhlenbeck and Goudsmit13] explained the doublet
splitting in the spectra of the alkali metals by assuming
that the ratio of the intrinsic magnetic moment of the
rotating electron to the mechanical moment was twice
as great as in orbital motion, Pauli was very skepti-
cally inclined toward their hypothesis. Upon meeting
Bohr, who had fallen under the influence of explaining
the doublet splitting by favoring the rotating-electron
hypothesis, Pauli expressed the regret that a new
"heresy" had arisen in atomic physics.L4]

Now we know that Pauli was right in not agreeing
with the classical interpretation of the fourth degree
of freedom. The spin cannot in principle be described
by a classical model. In his Nobel lecture, Pauli re-
calls:151

" . . . Although at first I strongly doubted the cor-
rectness of this idea because of its classical mechani-
cal character, I was finally converted to it by Thomas'16-1

calculations on the magnitude of doublet splitting. On
the other hand, my earlier doubts as well as the cau-
tious expression 'classically non-describable two-
valuedness' experienced a certain verification during
later developments, as Bohr was able to show on the
basis of wave mechanics that the electron spin cannot
be measured by classically describable experiments
(as, for instance, deflection of molecular beams in ex-
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ternal electromagnetic fields) and must therefore be
considered as an essentially quantum mechanical
property of the electron."

The first studies devoted to applying the newborn
quantum mechanics to many-particle systems were
those of Heisenberg"3 and Dirac.[ 8 3 These studies de-
rived the principle that Pauli had formulated, that two
electrons are forbidden to exist in the same quantum
state, as a consequence of the antisymmetry of the wave
function of the system of electrons. Dirac[ 8 3 came to
the conclusion here that light quanta must be described
by symmetric wave functions. He especially noted that
a system of electrons cannot be described by sym-
metric wave functions, since the latter allow any
number of electrons to exist in a single quantum state.

Thus, with the creation of quantum mechanics, the
prohibition on the occupation number of states of a
system of electrons was replaced by the more general
prohibition of all types of permutational symmetry of
wave functions except for antisymmetry. Analysis of
experimental data later permitted formulation of an ex-
clusion principle for all known particles, rather than
electrons alone. Namely: the only states of a system
of identical particles of spin s that are realized are
those whose total wave function is multiplied by (-1)
upon interchange of any pair of particles. That is, it is
symmetric for integer values of s (Bose-Einstein sta-
tistics) and antisymmetric for half-integer s (Fermi-
Dirac statistics).

The exclusion principle also holds for the permuta-
tional symmetry of the constituent particles, e.g., of nu-
clei. Depending on the value of the spin of the nuclei,
one can speak of boson nuclei and fermion nuclei.
Moreover, if an arbitrary system of particles can be
represented as a set of identical subsystems, the sym-
metry of the wave function of the system with respect
to permutations of the subsystems is determined by
the value of the total spin of the latter. This permits
one to classify subsystems into boson and fermion
types. This approach has proved to be very convenient
in finding the allowed states of complicated many-atom
systems.1 9 1

In the formulation given above, the exclusion princi-
ple leads to an entire series of physically important
consequences. One of them is the effective repulsion
between constituent particles that consist of identical
fermions. [ κ μ"1 1 ] Repulsion arises at interparticle dis-
tances at which the overlap of their wave functions be-
comes appreciable, and it is entirely due to the re-
quirement of antisymmetry of the wave functions of the
system with respect to interchange of fermions between
the particles.

Another well-known example consists in molecules
having identical nuclei. Let us consider the 16O2 mole-
cule. The 16O oxygen nuclei consist of an even number
of fermions, and hence they are bosons. Moreover,
the nuclear spin s = 0. This inplies that the total wave
function of the 16O2 molecule, which coincides in this
case with the coordinate wave function (since s = 0),
must be symmetric with respect to interchange of the
nuclei. In the ground electron-vibrational state, this
leads to forbidding all rotational levels having odd val-
ues of the rotational moment.

The exclusion principle is a generalization of the
experimental data. This fact never satisfied Pauli.

In his Nobel lecture"3 which he read in 1946, he said:

"Already in my original paper I stressed the cir-
cumstance that I was unable to give a logical reason
for the exclusion principle or to deduce it from more
general assumptions. I had always the feeling, and I
still have it today (my underlining-I.K.), that this is a
deficiency."

Pauli U 2 3 made a substantial step forward in creating
a basis for the exclusion principle in 1940 in his famous
theorem of the relation of the spin to statistics. In
this theorem, Pauli showed that the field operators
of particles with integral spin cannot obey the fermion
commutation relationships, since this leads to violation
of the causality principle. The field operators of parti-
cles of half-integral spin cannot obey the boson com-
mutation relationships, since this leads to negative values
of the total energy of the system. Hence he concluded
that particles of integral spin obey the Bose-Einstein
statistics, while particles of half-integral spin obey the
Fermi-Dirac statistics.

This proof, just like the subsequent ones,1 1 3'1 4 3 impli-
citly postulates that only two types of commutation re-
lationships are possible for the field operators: boson
and fermion. Yet GreenU 5 3 and independently Volkov'163

had shown that field operators that satisfy the principle
of causality, relativistic invariance, and positive energy
can obey commutation relationships that are more gen-
eral than boson and fermion types. These are the so-
called paraboson and parafermion commutation rela-
tionships. The parastatistics corresponding to them
is characterized by p-fold occupancy of the one-parti-
cle states. When ρ = 1, the parastatistics goes over
into the Fermi-Dirac statistics, and when ρ — °°, into
the Bose-Einstein statistics/1 7 3 While bosons and fer-
mions show a one-to-one correspondence between
the description of the system in configuration space
by symmetric and antisymmetric wave functions and
the commutation relationships for the field operators,
this is no longer the case for the parastatistics. One
cannot establish a one-to-one connection between the
form of the permutational relationships for the para-
field operators and the permutational symmetry of the
wave function in configuration space.1 1 8 3 This implies
that the Pauli theorem leaves open the problem of the
relation between the spin value and the permutation
symmetry of the wave function, independently of whether
parastatistics is realized.1'

In order to show that the exclusion principle rigor-
ously follows from the Pauli theorem, we must prove
that a system of identical particles can be described by
only two types of wave functions: symmetric and anti-
symmetric. This does not follow from the Schrodinger
equations, since solutions having arbitrary permuta-
tional symmetry satisfy it. The next section is con-
cerned with discussing the situation that arises in this
regard and with analyzing critically the existing view-
points.

"No particles obeying parastatistics have been discovered among the
currently known elementary paricles. As Chernikov ["] has shown
(see also [20>21]), ordinary fermions that differ in internal quantum
numbers obey parafermion commutation relationships. Thus, the
nucleons in the nucleus (n, p) can be described by a para-Fermi
statistics with a maximum occupation number p=2, and the triplet of
quarks (Qn> Qp> Qx) by a para-Fermi statistics with p=3 [21>22]. One
can show that quasiparticles in a periodic lattice (Frenkel excitons,
magnons) obey a para-Fermi statistics.
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2. THE PRINCIPLE OF INDISTINGUISHABILITY OF
IDENTICAL PARTICLES AND THE SYMMETRY
POSTULATE

By its very definition of identity, the Hamiltonian of
a system of identical particles is invariant with respect
to permutation of the particles. Consequently, the
Schrodinger equation of a system of Ν identical par-
ticles is satisfied by any linear combination of solu-
tions that differ by permutations of the coordinates
of the particles. As we know from the theory of per-
mutation groups, these linear combinations can be
classified in terms of symmetry type into different
sets that do not mix with one another in the permuta-
tions. In other words, they form bases for the irre-
ducible representations of the permutation groups. It
is pertinent here to recall to the reader that every ir-
reducible representation of a permutation group can be
correlated with some division of the number Ν into inte-
gral positive terms \W (Σ \(i) = N), as can be depicted
graphically in the form of the so-called Young pat-
tern.1 2 3"2 4 1 Young patterns are customarily denoted by
the symbol [λ] s [\(i) . . . \(m>], where λ(ί) is the num-
ber of cells in the ith row; the existence of rows having
the same number of cells is denoted by the order of
the corresponding λ(ί). The Young patterns characterize
the symmetry type of the basis functions with respect
to permutation of the arguments. A Young pattern of
one row [N] corresponds to a symmetric function, while
a Young pattern of one column [l N ] corresponds to an
antisymmetric function (the irreducible representations
Γ IN] and Γ[ΐΝ] are one-dimensional). All the other
Young patterns [λ] correspond to intermediate sym-
metry types. The irreducible representations ΓιΑ] that
they characterize are always multidimensional. That
is, they describe states that are degenerate with re-
spect to permutations.

According to the exclusion principle, a system of
identical particles can only exist in states that are
nondegenerate with respect to permutations: symmetric
and antisymmetric. All other symmetry types are for-
bidden. It is a valid question whether this restriction
on the solution of the Schrodinger equation stems from
the fundamental principles of quantum mechanics, or
is an independent principle.

A number of investigators/25"281 including one of
the founders of quantum mechanics, Dirac, believe that
there are no fundamental rules forbidding the existence
in nature of particles described by wave functions
having more complex permutational properties than
those of the fermions and bosons, while the existing
restrictions arise only from the properties of the
particles known to us. Messiah even introduced the
term: the symmetry postulate, thus emphasizing the
primary nature of the restrictions on the allowed types
of permutational symmetry of the wave function. Upon
applying Schur's lemma, Messiah and Greenberg:2e ]

showed that the existence of a permutational expres-
sion should introduce no additional uncertainty into
the characteristics of a state. The latter result is
also directly implied by the Wigner-Eckart theorem in
the form in which Koster cast it.[ 2 4>2 9 1 The matrix ele-
ment of any operator L that is symmetric with respect
to all particles, according to Eq. (4.40) in : 2 4 ] , is equal
to

< Ψ [>.] 1 1 < Ψ1>-]> = 6 r - ([/.] || 11| [λ]>, ( 1 )

Here the subscript r gives the order numbers of the

basis functions of the representation of the permutation '
group r M . The double line in the matrix element on
the right-hand side of (1) indicates independence of the
subscripts r and r. Thus, the mean value of the operator
L is the same for all of the functions * M r that belong
to the degenerate state.

On the other hand, a number of textbooks and
monographsC23'30"321 derive the exclusive realization of
states that are nondegenerate with respect to permu-
tations from the principle of indistinguishability of
particles in quantum mechanics. However, as is cor-
rectly noted in C281, the usually supplied proofs contain
additional conditions that do not stem from anything.
Thus, the following proof is typical.

From the requirement that the states of a system
which one gets by permuting identical particles are
physically completely equivalent, the conclusion is
drawn that the wave function must vary only by an in-
consequential phase multiplier upon transposition of
two particles:

ι,. xL) = e<* Ψ (.>•„ j s ) . (2)

Here α is a real constant, and χ is the set of spatial and
spin variables. The subsequent action of the permuta-
tion P12 on (2) gives

Ψ ( ί , , X2) =«•=« ψ

or

= 1, = ± I.

(3)

(4)

Since all the particles are assumed to be identical, the
wave function must behave exactly in the same way with
respect to interchange of any pair. That is, it should
be either fully antisymmetric or symmetric.

The given proof associates the indistinguishability of
identical particles directly with the behavior of the
wave function. Moreover, since the wave function is
not an observable, the indistinguishability principle is
associated with it only indirectly via the expressions
for observable quantities. The widespread opinion is
false that wave functions that describe the same particu-
lar physical state can differ only by a phase coefficient.
Thus, according to (1), the values of the physical quan-
tities that characterize a system of identical particles
are the same for all functions that belong to a single ir-
reducible representation of the permutation group. Hence
all these functions describe a single physical state. The
requirement that the function can vary only by a phase
coefficient upon permutation is actually to postulate
that the representation is one-dimensional. If only
the one-dimensional representations ([λ] = [2], [l2]) are
realized for two particles, then for Ν > 2, all of the
representations except [λ] = [Ν], [ l N ] are multidimen-
sional, and we must still prove that a wave function
that transforms in permutations into a linear combina-
tion of functions that belong to a given degenerate state
is incompatible with the principle of indistinguishability.

One can rigorously carry out such a proof, but here
one must start with a correct formulation of the prin-
ciple of indistinguishability of identical particles. One
of these formulations is the following:

All observable quantities are invariant with respect
to the operation of interchange of identical particles,
and conversely, interchanges of identical particles can-
not be observable.
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Since physical quantities are expressed in the matrix
formulation of quantum mechanics as bilinear forms
of the wave functions, the indistinguishability principle
requires the invariance of these bilinear forms:

Ρ (Ψ \L Ι Ψ> = (Ψ I L Ι Ψ). (5)

Since the operators Ρ are unitary, Eq. (5) implies that
the following commutator is zero:t 2 8 :

[PL] = o. (6)

Often one restricts the treatment to requiring that the
probability of a given configuration of a system of iden-
tical particles be invariant with respect to permuta-
tions r"3"353

Ρ Ι Ψ (Χι *.ν) Ι2 =

(7)

Evidently, (7) is a special case of (5). In order that a
function should satisfy (7), it suffices that permutations
should transform it as

ΡΨ(χ, i.v) = e'W "-ν'ψ^, xx), (8)

That is, in contrast to the requirement (2), the phase
in the general case is a function of the coordinates and
of the permutation. Evidently, the equations (3) and (4)
are not satisfied here.

By adducing the topological properties of configura-
tion space, GirardeauC34] has proved that functions that
satisfy the indistinguishability principle in the form of
(7) are transformed according to one of the one-di-
mensional representations of the permutation group at
all points of configuration space. Preliminary proofs
with a series of restrictions have been given in [ 3 3>3 5 ].
(For a critique of the proofs of the symmetry postulate
that are found in the earlier studies, see t28>33].)

SalzmannC36:l has proposed another approach to prov-
ing the symmetry postulate. It is based on the asser-
tion that the result of permutations is unobservable, and
therefore, a permutation operator cannot be used to
distinguish the wavefunctions that belong to a given
energy level. Hence the mean value of the permutation
operator must be the same for all functions. And the
latter is fulfilled only for one-dimensional representa-
tions. We cannot grant that this proof is convincing.
The possibility of identifying the wavefunctions in terms
of the eigenvalues of a permutation operator need not
lead actually to distinguishing the states. When degen-
eracy exists with respect to permutations, the mean
value of physical operators is the same according to (1)
for all basis functions, although the diagonal matrix ele-
ments of the operators differ.

The traditional formulation of the indistinguishability
principle is the requirement of invariance of ob-
servable quantities with respect to permutations of
identical particles (Eqs. (5)-(8)). However, one can
approach this from the standpoint of indistinguishability
of properties of differing particles. These properties
can naturally be described by using a one-particle
density matrix. A density matrix that is defined for
states having arbitrary permutational symmetry is
used below in order to formulate the indistinguishability
principle directly with respect to the properties of the
identical particles themselves, without involving their
permutations. This has made possible a direct proof of
the distinguishability of particles in all permutational
states except for nondegenerate ones, i.e., except for
symmetric and antisymmetric ones.

Thus, our results as well as those of Girardeau1341

inply that the restrictions on the permutational sym-
metry of the solutions of Schrodinger's equation stem
from the indistinguishability principle. This conclusion,
together with that of Pauli's theorem that particles of
integral spin cannot be described by antisymmetric
wavefunctions, while particles with half-integral spin
cannot be described by symmetric functions, fully
proves the exclusion principle.

3. FORMULATION OF THE INDISTINGUISHABILITY
PRINCIPLE IN TERMS OF THE DENSITY MATRIX
AND PROOF OF THE SYMMETRY POSTULATE

Let us introduce the one-particle density matrix
for a system of Ν particles in a state having a permuta-
tional symmetry characterized by some standard Young
pattern [λ] consisting of Ν cells. In line with the fact
that the wavefunctions that describe such states belong
to an fx-dimensional representation r M of the permu-
tation group 7TN, the density matrix is characterized by
two further indices in addition to the index of the repre-
sentation [λ]: the index r of the column of the represen-
tation with respect to which the given wavefunction is
transformed, and the index t that distinguishes the
equivalent irreducible representations

(>(.!·'(*,. i,) • ( M ^ V , r, χ^'Ύι»(τ, r, ry)dV">:

(9)
Here dV^1' denotes a volume element of the configura-
tion space of the system lacking the i-th particle; in
order to abbreviate the notation, the summation over
the discrete spin variables is included in the integral
sign.

The mean value of the one-particle operator f (XJ)
that characterizes some property of the i-th particle
of the system2' in a state having the wave function of
the system * M r t is defined as

1, \ \ i (•'•,) f t f 1 ! * ; . r ; ) | v . x_dx,.

If particles are to be indistinguishable, the condition
must be satisfied that

h It- J for all i, j . (11)

That is, the quantity (10) must depend on the order num-
ber of the particle. A dependence of (10) on the order
number of the particle implies that the particles are
not equivalent in the state being studied, and hence,
they are distinguishable. We shall treat Eqs. (10) and
(11) as being a mathematical formulation of the indis-
tinguishability principle.

Let us restrict the treatment to nonrelativistic sys-
tems that exist in steady states. We can easily show
that it suffices here to study a system of noninteracting
particles. The wave vector ΙΦ) of a system of inter-
acting nonrelativistic particles that is characterized by
the Hamiltonian

ά^&,-,-ν. (12)

is defined in the same Hilbert space as the wave vector

2'Such a directly observable property might be, e. g., the probability that

the i-th particle will be removed from a bound state of Ν particles by

an external action on the system. Thus, the probability of photoioni-

zation in the nonrelativistic theory is determined by the value of the

matrix element of the operator fj=(e-pi) e ' k r i , where e and k are the

polarization vector and the wave vector of the photon, and pj and η

are the momentum operator and the radius vector of the i-th particle.
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ΙΦ0> of the system lacking interaction, and it can be de-
rived from the latter by using some unitary transfor-
mation

Ι ψ > = 0 | ψ0 >.

In order to find the form of this unitary transformation,
we can use the well-known relationship that the series
of the Brillouin-Wigner[37] permutation theory is based
on:

(14)

Here Q is the projection operator that projects an ar-
bitrary vector onto the multitude of vectors of Hilbert
space that are orthogonal to the vector ΙΦ0>· Upon sub-
stituting Eq. (13) into (14), we get an equation for U,
from which we find

E— •!№„
-V.

(15)

Since the interaction operator V of the identical parti-
cles, just like Xo, is invariant with respect to permu-
tations of identical particles, the operator U is also
invariant. Hence, according to (13), the permutational
symmetry of the states ΙΦ) and ΙΦ0) coincides.

Let us treat a system of Ν noninteracting identical
particles. Each particle is characterized by an ortho-
normal set of one-particle functions {*a}. The state of
the entire system is characterized by assigning a cer-
tain configuration of the one-particle states

K:

"a > "b • • • > « ,

(16)

(17)

and the permutational symmetry of some Young pattern
[λ] consisting of Ν cells. We shall impose no restric-
tions on the values of the occupation numbers n c in (16).
The ordering in (17) is convenient for characterizing
the state with a standard Young pattern whose row
length satisfies the condition

λ ' 1 1 > η α , λ 1 2 ' > Β , , , . . .

We shall construct the wave functions of the system
that belong to the basis of an irreproducible represen-
tation Γ Μ of the permutation group from products of
the one-particle functions

by using the Young operators «W r i (see Eq. (2.30)
£24]».

in

1 (Κ) - ωί','Ψ» (Κ) = Λ* 1 (Κ) Σ Γί5•' (/') Μ Γ ο [Κ).

(18)

(19)

The subscript r gives the order number of the f χ basis
functions of the representation ΓΙΜ, and the subscript
t gives the order number of the independent bases that
can be constructed from the functions ΡΨ0(Κ). In line
with the fact that the one-particle functions in (18) in-
clude some coincident ones, the normalizing factor is

, Γ (20)

Before we study the expression for the mean value
of the one-particle operator (10) in the general case
of a system of Ν identical particles, let us study a sys-
tem of three particles for the sake of its graphic quality.
Here we can easily write out the explicit form of the
functions that belong to the irreproducible represen-
tations of the permutation group of three objects, and

calculate "in our heads" the mean value of the one-
particle operator.

Let us study a configuration of the one-particle
(13) states: ,. We can construct for such a configura-

tion one totally symmetric function
*Ft3) = -yj If « (1) <U (2) Ψ* (3) + fa (1) fa (3) f „ (2) - i n (3) ψα (2)

and two functions that transform according to a two-
dimensional irreducible representation Γ ft] that are
characterized by the Young patterns

(21)

r

1

3

1

2 1 3

2 I
We can easily find the form of the functions by using
the Young operators ω!2.13 and col?13 (see Eq. (2.39) in
C243) (only one basis of the representation r C 2 i 3 can be
constructed for the configuration ψ&

2ψ0> and hence the
subscript t that normalizes the bases is not needed):

6 ( 3 ) -

Ψ - Ϊ Ι Ι =
(22)

Direct calculation shows that if the following ex-
pression holds for the function φ " 1 :

(Ψ1311ΛΙ Ψ[31) = -1 (2/αο 4 /«,) for i = i. 2. 3,

where f^ denotes (φΛ(ϊ)\ΐχ\φα(ϊ)), then for the function
of (22),

for « = i,

for « = i , 2 .

(Ψ1/11 \h

(23)

The matrix elements for the third particle differ from
the corresponding ones for the first two particles. Hence,
the indistinguishability criterion is not fulfilled for
states that are described by wave functions belonging to
the two-dimensional representation Γ £ 2 1 3 . The coinci-
dence of the matrix elements for the first two particles
involves the fact that the function * i 2 1 3 is symmetric
with respect to them, while * " 1 ] is antisymmetric.

Now let us examine an arbitrary state of a system
of Ν particles having the configuration of (16), as
characterized by the wave function of (19). Let us sub-
stitute the expression for * M r t (κ) into the definition
of the density matrix in (9):

- Λ' [ λ Ι (JC)* Γ£! (P)

x\

The permutations Ρ can always be represented as pro-
ducts Ρ'Piic, where the P U C bring the particle ijto the
site of a particle existing in the state tpc, while P' does
not act on the particle i. That is. P' belongs to the per-
mutation group i r j j - 1 t n a t i s obtained from ITN by re-
moving the i-th particle. This permits us to remove
4>c (XJ) from inside the integral in (24). If the function
ipe is contained several times in the configuration (16),
then the transfer of the i-th particle to the site of the
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arguments by a series of standing functions ipc is car-
ried out by the permutation P i i c +1> which is related to
P i i . by

Since the order numbers of the arguments in the re-
peated one-particle functions lie in a single row of the
Young pattern, the properties of the standard represen-
tation of the permutation group imply that (cf. i3a]):

i

i i c ) . (25)

Let us rewrite (24) by replacing the summation over
Ρ by summation over P ' and c and taking (25) into ac-
count :

(τ\. x,) = ")* ΣΣΣΣΣ
(26)

Here Kc denotes the configuration Κ lacking the orbital
c. Further, let us represent P ' in the form Q ( c ) p e ,
where Q(c) interchanges particles only between differ-
ent one-particle functions of the configuration Kc, while
P c interchanges them between like functions. If we take
account of the orthogonality of the one-particle func-
tions and the properties of the standard representation
of the permutation group, after some simple transfor-
mations we get3'

x,) = £ M%!le(Λ) ψ,, ψ,, (χ,).

where the coefficients are

When we substitute the expression (27) for the
density matrix into the definition (10), we find

(27)

(28)

(29)

The coefficients MlxJrt,ic depend on the order number
of the particle i. Hence' the mean of f will generally
differ for different particles. We can easily convince
ourselves that a calculation of the coefficients MW r t ; i C

according to Eq. (28) for [λ] = [21] and K: i>^% gives
the same values as those obtained above upon directly
calculating the matrix element; see (23).

Thus the particles are distinguishable in the case
of an arbitrary irreducible representation. The excep-
tions are the one-dimensional representations r l N J and

]. In this case, for all permutations,

and

We find

rt, ic _\

(30)

That is, the particles are indistinguishable.

3 )In the special case of the antisymmetric representation Γ [ 1 N ] , all of
the n c = 1, and in the converse case the function of (19) vanishes. As
we should expect; Eq. (27) goes over into the well-known expression
for the Dirac density matrix [3 7]:

Thus, in spite of the fact that the mean values of
the operators that describe the properties of the entire
system coincide according to (1) for all wave functions
that belong to a state that is degenerate with respect to
permutations, an analysis of the one-particle proper-
ties shows that the particles are distinguishable in
these degenerate states.

This implies that the particles are also distinguish-
able in states described by a non-symmetrized wave
function. One can always represent such a function in
the form of a summation:"3'2 4 3

ψ = y , ψ [ λ ) /<M\

Since the particles are. distinguishable for all irreduci-
ble representations r M except r[N] and r U N J , then
the particles must be distinguishable in a state having
the function (31). Only one-dimensional representations
are realized for two particles. Yet, evidently, a su-
perposition of the functions Φ [2] + ψ[1 ] does not satisfy
the indistinguishability principle in the form of (7).

We emphasize that the condition that the wave func-
tion should belong to a one-dimensional representation
of the permutation group is a necessary but not suffici-
ent condition for indistinguishability of particles. A de-
scription of a system of particles that differ in their
properties (in charge, magnetic moment, etc.) by
symmetric or antisymmetric functions does not make
them indistinguishable.4' A well-known example is
the nucleons in the nucleus. The Hamiltonian that in-
cludes only the strong interactions is symmetric with
respect to the protons and neutrons (isotopic invari-
anceC231). We can treat formally the proton and neutron
as two states of a single particle, the nucleon, which
differ in the value of the projection of the isotopic
spin. The wave function of the nucleus must be anti-
symmetric with respect to permutations of the co-
ordinates of all of the nucleons if we permute also the
isotopic coordinate along with the spatial and spin co-
ordinates. However, if we take account of the electro-
magnetic interactions, then the protons become dis-
tinguishable from the neutrons, even though one can
construct also in this case a symmetric Hamiltonian[33:

that allows antisymmetric functions as solutions.

Identical particles can be considered to be dis-
tinguishable when they are localized in spatially re-
mote wells. Formally, when we use symmetrized
wave functions, we cannot say exactly in which potential
well a given particle lies. However, at great distances
between the wells, the exchange effects become negli-
gibly small, and cannot be manifested experimentally
in any way. The result of a measurement will not
contain interference terms, and in line with the ap-
proach of Feynman,140-1 we must consider the particles
to be distinguishable. This can be illustrated graphically
by the example of the behavior of the photoionization
cross-section of the H2 molecule as the nuclei are
separated.

An expression for the differential cross-section for
photoionization of the H2 molecule has been derived in
[ 4 i ] by approximating the ground state of the molecule
by the Heitler-London function and the wave function
of the ejected electron by a plane wave. It can be

as defined in terms of the determinant wave functions.
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4)Lyuboshitz and Podgoretskii have treated cases of indistinguishability
of non-identical particles [3 9].
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represented in terms of the atomic photoionization
cross-section:

daK

(32)

Here k and q are the wave vectors of the proton and the
electron, IRI is the eauilibrium distance between the

nuclei, and s ab = (<Pa

S I <P\)) i s t n e overlap integral of
the atomic wave functions. Z* = 1.19 is the effective
Slater charge, the value of Z* * 1 because of perturba-
tion of the atomic electron cloud by the adjacent Η
atom. The cross-section contains the interference
term 1 + cos (k - q, R) that arises from the equal
probabilities of ejection of the electron from the
centers a and b.

As the distance between the atoms is increased,
their interaction declines, and Z* — 1, while the over-
lap integral sab — 0. In the final state, an electron can
be ejected either from atom a or atom b. The expres-
sion for the photoionization cross-section as derived
with the antisymmetrized functions has a form analo-
gous to (32) with s ab = 0:

<ίο - = (l±cos(k-q. (33)

The upper sign corresponds to a state that is sym-
metric with respect to the inversion operation, and the
lower sign to an antisymmetric state. Both of these
states correspond to the same energy for separated
atoms, and hence

da " ' - " dQ '

That is, the cross section contains no interference
terms. The photoionization process occurs independ-
ently in each of the atoms. In principle, we can identify
the atom from which the electron was ejected.

In conclusion, I take the pleasant occasion to thank
Ya. B. Zel'dovich for examining this article in manu-
script and for valuable remarks, and Ya. A. Smorodin-
skfl for useful discussions of problems treated in this
study.
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