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This review provides an introduction to the theory of supersymmetry. The algebra of supersymmetries is

developed, and its representations are given together with the ensuing surprising property of vanishing of

the vacuum average of the energy-momentum tensor in supersymmetrical theories. Particular attention is

paid to superfields—objects that combine fermion and boson fields with the aid of auxiliary anticommuting

spinor coordinates. The Lagrangian formalism and the equations of motion for superfields are discussed. A

detailed analysis is presented of the simplest supersymmetrical model of a chiral scalar superfield and its

exceptional renormalizability. Gauge supersymmetrical theories are analyzed. The possibilities are discussed

of a nontrivial unification of internal symmetries and supersymmetries. The article concludes with first

attempts of spontaneous supersymmetry breaking, which is needed for the construction of future realistic

supersymmetrical models.
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"Nobody can foresee the next such law
(of nature) that will be discovered. Never-
theless there is a structure in the laws of
nature which we call the laws of invariance.
This structure is so far-reaching in some
cases that laws of nature were guessed on
the basis of the postulate that they fit into
the invariance structure"

E. P. Wigner in "The Role of Invari-
ance Principles in Natural Philosophy" (Sym-
metries and Reflections, MIT Press, Cam-
bridge, Mass., 1970)

1. INTRODUCTION
Symmetry principles have always played a very im-

portant role in physics. This role has grown particu-
larly in recent times. An enormous number of new
particles and resonances have been discovered, but
the laws of nature which would describe quantitatively
and exactly the interactions between the elementary
particles, the spectrum of masses, etc., are not yet
known. Only quantum electrodynamics can pretend to
a quantitative description, of the purely electromag-
netic interactions.

At the same time, a number of exact and approximate
symmetry principles have been established, which en-
able us to find our bearings in the existing experi-
mental data, suggest theoretical models and prompt the
setting-up of new experiments facilitating a deeper
understanding of nature. The isotopic invariance of the
strong interactions and its generalization-the hypothe-

sis of unitary SU(3) symmetry-have led to the hadron
classification of Gell-Mann and Nishijima. During an
investigation of the invariance with respect to the dis-
crete symmetries (space reflection, time reversal and
charge conjugation), one of the most beautiful effects in
elementary-particle physics was discovered-the Gell-
Mann-Pais-Piccioni effect for Κ mesons—and a phe-
nomenological theory of the weak interaction was con-
structed. The recently discovered new narrow reson-
ances, the ψ particles, are being discussed intensively
on the basis of hypotheses of higher, charm symmetries,
and the quark models, etc., associated with them.

Hypotheses concerning symmetry principles lead in
certain situations to the construction of consistent
theories. A combination of the idea of gauge symme-
tries and the idea of spontaneous symmetry-breaking
has made it possible to construct a unified renormaliza-
ble theory of the weak and electromagnetic interactions.
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Reigning supreme amongst the symmetries is the
invariance under the Poincare group, consisting of the
Lorentz transformations, rotations and translations in
space-time. Also of fundamental significance is the
symmetry under permutations of identical particles,
which leads to the classification of particles into fermi-
ons, possessing half-integer spin and obeying Fermi-
Dirac statistics, and bosons, possessing integer spin
and obeying Bose-Einstein statistics.

The transformations associated with all the tradi-
tional symmetries do not mix particles with different
spins. Thus, the nucleons and the Λ, Σ and θ particles
appear in the same unitary-symmetry baryon octet and
all have the same spin, equal to l/2.

In the last few years, a new trend in the theory of
elementary-particle symmetries-the study of super-
symmetries-has appeared, and is developing rapidly.
However paradoxical, it has turned out to be theoreti-
cally possible to connect the fields of particles with
integer and half-integer spin, obeying different statis-
tics, by supersymmetry transformations, and bring to-
gether bosons and fermions into generalized multiplets.
The introduction of supersymmetries considerably ex-
tends the range of symmetry principles that are po-
tentially applicable in relativistic quantum field theory
and the theory of elementary particles. The first steps
have already led to surprises: a new conserved spin-
vector current is connected by a supersymmetry trans-
formation with such a fundamental quantity as the
energy-momentum tensor'3 6 ' 1 0 2 ]; in the simplest super-
symmetry model the number of divergences is sharply
reduced in comparison with the usual field-theory
models (only one renormalization constant is necessary,
in place of the large number expected); all vacuum-loop
diagrams and the vacuum-average of the energy-mo-
mentum tensor vanish, and so on.

We emphasize that, as yet, no realistic super-
symmetry theory has been constructed. The equality
of the masses of the fermions and bosons from the
same irreducible supersymmetry representation forces
us to seek a suitable supersymmetry-breaking. There
are also other obscurities, e.g., associated with con-
servation of the number of fermions. We recall, how-
ever, that the Yang-Mills theory of gauge fields was
also unrealistic (zero masses of the vector fields) at the
time it was constructed. About fifteen years were
needed to construct on its foundations, by invoking the
idea of spontaneous symmetry breaking, a realistic uni-
f ied-theory model of the weak and electromagnetic in-
teractions, renormalizable and containing massive inter-
mediate vector bosons. We can hope that a physical
theory applying supersymmetries will be constructed in
a shorter period. Already, supersymmetry is now of
assistance in constructing field-theory models with
asymptotically free masslesst 8 0 ' 1 0 0 1 and (when the super-
symmetry is broken) massive1213 particles. Supersym-
metries are very unusual, distinctive and unfamiliar. In
writing this article we have pursued the aim of giving
as clear an introduction as possible to the theory of
supersymmetries and assisting the reader to become
accumtomed to them. We shall trace the characteris-
tics of supersymmetry using the example of the sim-
plest supermultiplet. It consists of a complex spinless
field Ai(x), a two-component spinor ψα(χ) and an auxili-
ary complex spinless field F^x). The infinitesimal su-
persymmetry transformations mixing bosons and fer-

mions are written in the form

M i (*) = ϊ"ψβ (*), 6 t

f f (*) =

(x) = 2r (σμ) . jPflMi (χ
ap

as· (1.1)

where ζ is the spinor parameter of the transformation
((σμ)α& = (1, σι); for the notation, see below). Since fer-
mion fields anticommute and boson fields commute,
there arises a very unusual situation in which the par-
ameters of the transformation should anticommute
({ζα> ζβ} = 0), instead of being c-numbers as usual. The
group property of these transformations is expressed
in the fact that the commutator of two supersymmetry
transformations is a translation. For example,

(1.2)
6η6:.4, (χ) = 2i (ζσ^η) S 'J , (χ) - ζαη.ί, (χ),

(β,δ; - 8 t 6J Λι (χ) = 11 (ζσμη - ησμζ) d»A1 (χ).

The translations commute with the transformations
(1.1) and with them form a supergroup—a generalized
group containing both commuting and anticommuting
parameters. The mathematical theory of such general-
ized groups was developed quite recently, in 1970, by
Berezin and Kats" 1 . In order to obtain the corres-
ponding generalized Lie algebra, we represent the
transformation (1.1) in the form

where Q and Q are the spinor generators, the explicit
form of which is defined in the appropriate field-theory
model. In the commutator (1.2) of two such transfor-
mations, on account of the anticommutativity of the
spinor parameters, anticommutators of the spinor
generators arise, instead of commutators. The alge-
bra

} = 2 (σ

(1.4)

arises, where Ρ μ = - ϊθμ is the generator of transla-
tions. The fact that the generators transforming fer-
mions and bosons into each other should satisfy anti-
commutation relations is due, on the other hand, to
their fermion character. In supersymmetry theories,
the spin-vector current .Ιμ,α(χ), containing an odd num-
ber of fermion fields, is conserved:

= ο, (χ). (1.5)

The supersymmetry algebra contains (1.4), the alge-
bra of the Poincare1 group and the commutators be-
tween Q a , €}<* and the generators of the Lorentz group;
these commutators are determined by the fact that Qa

and Q<j, transform according to the representations
(l /2, 0) and (0, l/2) of the Lorentz group.

The irreducible representations of the supersym-
metries, i.e., the super multiplets, contain boson and
fermion fields as components. We have become ac-
customed to the fact that the components of a given
irreducible representation, i.e., of a multiplet, can be
labeled by a certain index. For example, in isotopic
symmetry, the "nucleon" Ν = (p/n) unifies the proton
and neutron, so that Nt describes the proton and N2 the
neutron, and so on. How can we provide the boson and
fermion fields from a given supermultiplet, which
possess different statistics, with some kind of indices
and treat them in a unified manner ? The answer to this
question is connected with the realization of the spinor
generators. Their anticommutator gives translations
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(cf. (2.3) in Sec. 2) and, therefore, supersymmetry
transformations act on the space-time coordinates.
However, it is impossible to construct a spinor genera-
tor from only the operations of differentiation with re-
spect to Χμ and the coordinates themselves. We intro-
duce additional anticommuting spinor "coordinates"
θ<* and θ'β:

Γ
Γ
Γ
τ

= 1/2, Υ
=0, y
= 1, Υ
= i/2,y

= 1
= 0
= 0
= -1

S=l/2. B=l

Α"
Λ
Σ
C

8=0, Β=0

η
π

Κ

8=1. Β=0

Χ·
ω (φ)

Ρ

Β=1/2, Β—-Ι

g
Λ
Σ

Λ'

{β", (1.6)

^consider the eight-dimensional "superspace" χ μ ,
θ, θ. In the superspace it is now possible to realize the
spinor generators in the form of translation operations
with respect to the usual coordinates and spinor co-
ordinates (cf. Sec. 3):

<?.--*•=,
№α (1.7)

and to consider superfields Φ μ > ι ν . . α(χ> θ»θ)· T n e

simplest superfield is Φ(χ, θ)-a chirai scalar super-
field (chiral because it depends on one chirai spinor Θ,
and scalar because it does not contain outer vector or
spinor indices). We shall expand Φ(χ, θ) in a series in
powers of Θ. By virtue of (1.6), (θ1)2 = (Θ2)2 = 0, and the
expansion is truncated at the second term (a product of
three θ always contains two identical θ and is equal to
zero):

Φ (χ, θ) = Λ , (χ) + θ«ι)>β (χ) + θ«θ ο ί · , (χ). (1.8)

The difference in the statistics of the fermion and boson
fields is compensated by the introduction of the anticom-
muting spinor quantities Θ.

Writing the rule for an infinitesimal supersymme-
try transformation in the form

θ), (1.9)

we obtain (1.1). Thus, it is possible to unite the boson
and fermion components of a supermultiplet in a single
object-a superfield. More complicated superfields de-
pend on both θ and Θ, have outer indices, and describe
higher representations of the supersymmetry group. A
transformation law of the type (1.9) is valid for all of
them, and they are always equivalent to a certain finite
set of fermion and boson fields in ordinary space, i.e.,
to a certain supermultiplet.

The introduction of superfields makes it possible to
construct, algorithmically, economically and conveni-
ently, a Lagrangian theory of superfields, which turns
out in the end to be equivalent to an ordinary local
theory of boson and fermion fields, with specific re-
lationships between the interaction constants. A char-
acteristic feature is the presence of auxiliary fields
(of the type Fx(x) in (1.8)), which appear without de-
rivatives in the Lagrangian and can be eliminated.
After their elimination the supersymmetry remains in
implicit form, and is manifested in the conservation of
the spin-vector current.

The idea of a possible unification of fermions and
bosons into one family was discussed by Lipkin[5611)

in 1964 on a level of semi-fantasy (the "barbaryon
classification"). He noted that the SU(3) classification
of the baryon, pseudoscalar, vector and antibaryon
octets is "invariant" under simultaneous interchange
of the isotopic spin with the ordinary spin and of the

«It is not without interest that Lipkin's article develops his humorous re-
mark from "Jocular Physics for Pedestrians" (1962) (unpublished).

hyper charge with the baryon number (see the table).

In the usual SU(3) classification, particles with
the same spin S and baryon number Β are combined in
octets whose components are characterized by the val-
ues of the isospin Τ and hypercharge Υ (the columns of
the table).

In the barbaryon classification, particles with the
same isospin and hypercharge are combined in one
family, and the components of each family have differ-
ent ordinary spin and baryon number. It is suggested
that we consider the direct product of the usual SU(3)
symmetry and the barbaryon symmetry. We note also
that, in connection with generalized current algebras,
in the sixties attempts were undertaken to introduce
fermion currents that change baryon number138'62'1103,
and certain field-theory models with fermion genera-
tors were also studied"1'921.

Supersymmetries acquired a firm basis after the
pioneering papers'26'27'571 of Gol'fand and Likhtman,
who proposed and investigated spinor extensions of the
Poincare group, supersymmetry algebras, and their
representations. In connection with the possible in-
terpretation of the neutrino as a Goldstone particle11041,
a significant contribution to the development and under-
standing of supersymmetries was made by Volkov and
Akulov'16'18'201, who considered their nonlinear realiza-
tions. Interest in supersymmetries increased sharply
as a result of the appearance of the constructive arti-
cles of Wess and Zumino"2'131, which displayed an ex-
ceptional property- the renormalizability of the model
they proposed. Wess and Zumino did not know about the
previous papers, and generalized the so-called super-
gauge symmetries that arise in dual models"'25'34'641. An
important step was made by Salam and Strathdee1771,
who introduced anticommuting spinor coordinates, a
superspace and the concept of a superfield. We remark
that the possible spinor structure of space-time was
discussed by Smrz1881 and Araki and OkuboC41 in connec-
tion with the desire to unify the internal and space-time
symmetries, and is being publicized by Penrose"01 in
connection with the prospects for quantizing the theory
of gravitation. A possible interrelation between the
supersymmetries and the theory of gravitation has
been stressed by D. Volkov and Soroka"91. The fact,
established by Ferrara and Zumino"021, that the con-
served spin-vector current and the energy-momentum
tensor appear in the same superfield-supercurrent im-
pels us to think seriously in this direction.

We shall summarize the content of the review. In
the second section the uniqueness of the minimal ex-
tension of the algebra of the Poincare group is demon-
strated and the irreducible representations are de-
scribed. For nonzero rest mass an irreducible repre-
sentation with given superspin Ϋ contains fields with
spin Υ + l/2, Υ, Υ and Υ - l/2, and for zero rest mass
contains only two fields, with neighboring superspin
values. From the algebra itself, it is already simple to
obtain the important consequence that in any supersym-
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metry theory the vacuum-average of the energy-mo-
mentum tensor vanishes. In Sec. 3 we discuss the
superspace and superfield concepts, and the proper-
ties of superfields under space reflection, time re-
versal, etc. We attempt to show that a superfield
theory is not much more complicated to handle than a
field theory, and we emphasize some far-reaching
analogies. The generalized mathematical analysis de-
veloped by BerezinC6] in a Grassmann algebra turns out
to be adequate for the problem and simplifies the situa-
tion. In Sec. 4 we discuss a simple form of the La-
grangian theory of superfields. As in the case of
ordinary fields (e.g., the vector field Αμ), general su-
perfields are burdened with spare components, which
are either made to vanish by additional conditions fol-
lowing from the equations of motion (for nonzero rest
mass) or are made harmless by the corresponding
gauge invariance. We then describe the construction
of the supercurrent-superfield containing the conserved
spin-vector current and energy-momentum tensor. Sec-
tion 5 is devoted to invariant perturbation theory for
superfields, based on the simple example of the model
of Wess and Zumino. The use of formal integration
over the anticommuting variables'63, the simple proper-
ties of the delta-function of the variables, and the Ward
identities (of.11073 and our article'613) make it possible to
trace, simply and in detail, the concellation of diver-
gences and other surprising features of this model. The
reader who is not interested in the technique of the
calculations can pass over subsections (c) and (d) of
this section. The 1974 investigations on the supersym-
metry generalization of the Yang-Mills theory and of
electrodynamics are described briefly in Sec. 6
ci4,8o,a?,loo]_ T n e p0 S SiDiiity of even more profound gauge

theories of super symmetries, in which the gauge fields
have spin 1 and 3/2, is contemplated. In Sec. 7, the non-
trivial unification of the internal symmetries and super-
symmetries is briefly described"0'3 3 '7 8 '8 2 '8 3 '1 0 9 3. In its
time, the unitary SU(6) symmetry was proved, in the
framework of ordinary Lie groups, to be incapable of
being "relativized" without violation of the locality of
the theory. Super symmetries make it possible to ap-
proach this problem anew: it is possible to combine in-
ternal symmetries and supersymmetries in a local
theory, but the supermultiplets obtained should be ex-
cessively large and the masses of all the particles
belonging to them should coincide'5ia>1093. The key
problem of the breaking of the supersymmetries, with-
out whose solution it is impossible to construct a physi-
cal supersymmetry model, is discussed very briefly
in the last section. The brevity is due to the fact that
there have been only a few attempts as yet, and the
search for a suitable realistic supersymmetry-break-
ing is a matter for the future.

In the article we use two-component spinors with
indices with and without a dot (cf., below, the subsection
"Notation" in this section): this is technically con-
venient for discussing the model of Wess and Zumino.
The reader can dig useful information about the equiva-
lent formalism with Majorana spinors out of the very
full article by Salam and Strathdee[82 ] .

Notation. The signature of the metric tensor x\^v is
(+ ). Two-component spinors with dotted and un-
dotted indices are used'9'11' 3:

ε ' 2 = — 8 , 2 = 6 ' - = — ε . . =

δ < ? =

=(l, -of

(where the σ are the Pauli matrices), σμν = (σμ,σ —

spinor Φ = ( '• j? ) and the Majorana bispinor * = ( ,
A parametriiation of the γ matrices and charge-
conjugation matrices is assumed in which

I 0
ο ι

ε ο 1 2 3 = 1 .

2. SUPERSYMMETRY ALGEBRA

a) Minimal Spinor Extension of the Poincare1 Group

The simplest and most popular group of supersym-
metries corresponds to the minimal spinor extension
of the Poincare group. Besides the generators of 4-
rotations (L^j,) and translations (Ρμ), with the com-
mutation relations

Ιΐμρ ν,. Ιΐνλ μρ ^ ^

only one spinor generator Qa and its conjugate Q& are
included in its algebra. By definition of a spinor,

£ μ , , <?«] = -i-(σμ ν)« "<?,, [£μ ν, Qh\ = 4 (2.2)

In order to close the algebra, as was discussed in the
Introduction we must specify the anticommutators be-
tween the spinor generators and the commutators be-
tween these and the translations. The only possible
algebra that does not require extra generators is found
to be the algebra2'

{Qa. <λ} = 2(σ μ ) α J"\ (2.3a)

W a · <?u} = {Q·, <?•} = 0, (2.3b)

№.. Ρ μ ] - [ ? ; , Ρμΐ = 0 (2.3c)

(the definition of the matrices σμ, σ^ν and a^v was
given in the subsection "Notation" in Sec. 1).

We shall outline the proof. The generators are de-
scribed by the following representations of the Lorentz
group: Ρ « - (1/2, l/2), ϊ,βν - (1, 0) + (0.1), Qa -
(1/2, 0), Q d — (0, l/2). It follows from this that the
most general form of the relations (2.3b) and (2.3c) con-
sistent with relativistic invariance is

{Qa, Qe} = cl{wUI-11*, (2.3b')

1<?α· <Ρμ1 = <·»(σμ<?)α (2.3c')

and the conjugate relations (ci and c2 are constants).
Commuting (2.3c') with Ρμ and applying the Jacobi
identities, we find that c2 = 0. By next commuting
(2.3b') with Ρ μ , we see that Ci = 0 too. The most
general form of the relation (2.3a) reduces to the re-
placement of the coefficient 2 in the right-hand side by
a positive real constant A, whose value is determined
by the normalization of Q. The positive sign of this con-

2'The supersymmetry algebra (2.1)—(2.3), like the algebra of the Poin-
care group, is not a simple superalgebra. We note that Kats [5Oa]
has given a classification of all the simple superalgebras.
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stant is connected with the remarkable fact that the
Hamiltonian 3C = P° can be expressed in terms of the
spinor generators1371. From (2.3a) it follows that

G (ζ, c) = exp [-£ (ζ<? + Qi + cuP»)].

Under spatial reflection,

( 2 · 4 )

(2.5)

and this operation is an automorphism of the algebra.

In the literature, the superalgebra (2.1)-(2.3) is
often used in the bispinor formalism rather than in the
spinor formalism of van der Waerden. In view of this
we shall give the formulas for comparison. For the
Major ana bispinor generator

(2.6)

the superalgebra relations (2.2), (2.3) take the form

{Sp
(2.3')

This form is used in the papers of Salam and Strath-
dee t 7 7"8 4 ] and of certain other authors.

We emphasize that the superalgebra (2.1)-(2.3) was
first proposed and investigated by Gol'fand and Likht-
man126'271 in a bispinor formalism with the generators

(2.7)

(2.8)

for which it follows from (2.1)-(2.3) that

{W, if} = 1 (1 + γ5) γ^*, [£μν. «'] = i

{W, W}={W, W} =[Ρμ, W\ = [PV, ΪΤ'] =

Gol'fand and Likhtmant26'271 also discussed other alge-
bras in the bispinor formalism. There are also wider
algebras-in particular, the spinor extension of the con-
formal group'97 >331, first realized by Wess and ZuminoU2\
and also super symmetry algebras with internal sym-
metries included. We shall direct our attention mainly
to the simplest supersymmetry, based on the algebra
(2.1M2.3).

The superalgebra (2.1)-(2.3) is a particular case of
a graded algebra'7>46]. (The generators Q, Q are as-
signed the grade 1, and 1>μν and Ρ μ the grade 0. The
commutation relations for operators X and Υ with
grades kx and ky are given in the form XY - (- l)k*ky
x YX.) Generalized Lie groups (we shall call them
supergroups) correspond to graded algebras. The
transformation parameters associated with grade-1
generators anticommute, i.e., are elements of a Grass-
mann algebra"'71. Thus, in our case we must introduce
the spinor parameters ζ, ζ**:

{ζα, ? } =

and also

(2.9)

(2.10)

By invoking the spinor parameters we can represent
the anticommutators (2.3a), (2.3b) in the form of com-
mutators of spinor transformations"71:

\WMt\ = 2ζ,σμζ2Ρ
μ, lW,%Q) = 0, [£,<?, ζ»(?] = 0. (2.11)

A finite transformation of the supergroup is written as
(θμ are the parameters of translations)

(2.12)

The law of combination and the group properties can be
seen from the multiplication formula3'

G«,, c,)G(k, ο) = 6(ζ,-ζ,, α,^^-ίζ^ζ,-τίζ^ζ,). (2.13)

The reader can find a rigorous mathematical definition
of the operation of supergroups in the articlesL 7'9 a i. A
specific feature of a supergroup is the fact that the
group law

= f 1 — til

(2.14)

is a mapping on to a superalgebra with parameters Ομ,
£, £ of a superalgebra with^twice the number of parame-
ters (ciM, 02μ, £ι, Si, £2, £2).

b) Energy-Momentum Tensor and Spin-Vector Current

In a supersymmetry field theory there arises a con-
served spin-vector current j£J(x) (8^J^(x) = 0), in terms
of which the spinor generators-the "supercharges"-
are written in the form

<?«= f cPzJlp), Q- = f d3x7° (x).. (2.15)
J a J α

ZuminoC36] noticed that the basic commutation relation
(2.3a) can be regarded as the result of integrating the
local relation

(·0. Qj) - 2 (σ
1"(χ) - o.S.t.j) ^ ( 2 . 1 6 )

where o.S.t. denote the operator Schwinger terms4',
and Τμν is the energy-momentum tensor (we recall
that Pf = /d3xTOi;(x)). It follows from (3.21) that in
the limit of exact supersymmetry, when the super-
charges are well-defined and give zero when they act
on the vaccum, the vacuum-average of the energy-
momentum tensor should vanish:

^ (x) > = 0. (2.17)

Here we encounter a very unusual situation: up to the
present, no field models have been known in which the
vacuum average of the energy-momentum tensor, as-
sociated with the induced cosmological term in the Ein-
stein equations, vanishes identically. We. note that the
identity (2.17) loses its validity on spontaneous sym-
metry breaking'361. Goldstone spinors[16'223 with zero
mass appear, and the supercharges no longer annihilate
the vacuum in the relation (2.16). These considerations
suggest that supersymmetries may turn out to be impor-
tant in the theory of gravitation112'19'1021.

c) Irreducible Representations of Supersymmetries

One of the Casimir operators of the superalgebra is
the operator of the 4-momentum squared: Ci = ΡμΡ^.
The second Casimir operator, which generalizes the
operator of the spin squared in the Poincare group, is
constructed on the basis of a generalization of the
Pauli-Lyubansku vector1·57'781. Namely, we consider

μ =-εμ νχοί, Ρ 5·( .;[<?", 0*1 (2.18)

3>The Campbell-Hausdorff identity in its simplest form
expAexpB=exp(A+B)+V4[A, B]), applicable when
[A, [A, B]]=[B, [A, B] ] =0, has been used.

4)Their concrete form in the Lagrangian theory is given below, in Sec.
4(c) on the supercurrent.
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From (2.2) and (2.3) we find that the operator Κμ ι, =
ΡμΚ,,- Pj/Κμ commutes with all the spinor genera-
tors, and as the second Casimir operator we must take

Ct=KH,Ki». (2.19)

For states with Ci = P2 = m2 > 0 the eigenvalues of C2

are equal to -2m4Y(Y + 1), where Υ is an integer or a
half-integer number, which we shall call the super-
spin152'78 ] . In fact, in the rest-frame the normalized
space components (l/m2)KQj = Yj form the algebra
SU(2): [Yi,Yj] = ie i j k Y k .

We consider an irreducible representation with
mass m and superspin Υ (a supermultiplet). In the rest
frame (P1 = 0, P° = m) the algebra of (2.2) and (2.3) is
transformed into a Clifford algebra for the spinor crea-
tion and annihilation operators. Introducing the opera-
tors with well-defined parity (cf. (2.5)):

1 y,

Ρ: ?α -fq.
(2.20)

we find

(2.21)

Let the vectors of the states with spin J and parity
η ρ , IJ31 =£ J, form the "Clifford vacuum"

ρ- μ, η, μ, /3). (2.22)

We shall construct the Fock space. The state vectors
q a IJ, J3).will have spin-parity (J - l/2)i ? 7 P and
(J + l/2)"7P, while qaq/3l J, J3>o again has spin J, but
parity-η-ρ, since q a carries spin l/2 and q^q^ =
l/2eQl^(qq) carries only spin 0. This exhausts the
representation, since <ΐα(ΐβΊγ = 0 by virtue of the anti-
commutativity. Next we note that, as applied to IJ,J3)o,
the space components of the generalized ((2.18)) and
ordinary Pauli-Lyubanskii vectors coincide. From this
it follows that the superspin Υ is equal to J for the
representation under discussion. Thus, we have arrived
at the conclusion that, for a nonzero mass, an ir-
reducible supersymmetry representation with super-
spin Υ is 4(2Y + l)-dimensional and contains irreduci-
ble representations of the Poincar§ group with spin-
parity J p = (Y - l/2)i7?, YV,Y—n and (Y + l/2)i?? and a
single mass m, e.g., for Υ = 0, a scalar, pseudoscalar
and spinor, and for Υ = l/2, J p = 0±l, 1**, l/2±i, l/2T i

(the upper or lower sign is determined by the choice of
η = τι).

For zero rest mass, in the reference frame in which
Ρ μ = (p, 0, 0, p), the algebra (2.2), (2.3) takes the form

{Q«,Qt} = {Qi, Vh} = {Qi,Q-) = {Ql,Qi} = {Ql,Q-l} = 0, (2.23)

and the only nonzero anticommutator is

{<?, 0.} = 4p. (2.24)

Correspondingly, introducing the "Clifford vacuum"
with helicity λ,

<?;1λ)0= ρ.|λ>ο = ρ1|λ)ο=ο, (2.25)

we see that only two states arise, Ι λ}0 and Q21 λ)0, with
helicities differing by l/2. Thus, for zero rest-mass' 8 2 3 ,
any irreducible representation contains states with
helicities λ and λ + l/2 (λ is any integer or half-inte-
ger). When there is invariance under spatial reflec-

tion, to these are added the mirror states with helici-
ties - λ and-(λ + l/2).

To construct relativistically invariant theories the
concept of a field defined in space-time is introduced.
The fields have simple transformation properties and
describe particles from various irreducible represen-
tations of the Poincare group. Analogously, to con-
struct theories that are invariant with respect to the
supersymmetries, it is worthwhile introducing the
concept of a superfield[77] with simple transformation
properties, and we shall now study this. Superfields
describe particles from various irreducible represen-
tations of the supersymmetry group.

3. SUPERFIELDS

a) Superspace

The realization Ρ Μ = - i 3 ^ , L ^ = i(x^du- xvdH) of
the generators of the Poincare group in the space of
functions of the coordinates is well known. The anti-
commutator (2.3a) of the spinor generators gives the
translations. Consequently, the supersymmetry trans-
formations necessarily act on the coordinates of the
Minkowski space. At the same time, it is impossible to
construct the spinor generators in terms of the co-
ordinates Χμ and differentiation operations. The reali-
zation of the spinor generators requires a spinor ex-
tension of the space. We shall introduce a superspace
[ 7 7 ) 8 2 ] , whose elements are the coordinates χ μ and the
elements of a Grassmann algebra5'- the anticommuting
spinors θα and Θ&:

} - {θ*. Φ) = 0. (3.1)

The action of the Poincare group in the space χ, θ is
written as

χμ •->- Λμ;τν — α μ , θ" -• .1«(Λ)ΘΡ, θ" ->- Λ*(Λ) θ1', (3 2)

where Α(Λ) and Ά~(Λ) denote the spinor representations
(l/2,0) and (0, l/2) of the transformations of the Lorentz
group. Under spatial reflections

XD -+ x0, x ^ - x , θ α — η (σ0) . θ ρ . | η | = 1 . ( 3 . 3 )

We can now determine the action of the supergroup in
the superspace χ, θ by postulating that the coordinates χ
and θ transform as its parameters, i.e., according to
(2.13), G(£,O)G(0,x) = G(0',x') where

θσμζ — ίσμθ),

θ '=θ- | -ζ .
(3.4)

The variables θ and the parameters ζ have dimensions
[L]1/2. It is interesting to note that the differential form

ω μ = dzu — (i (<ίθσμθ — θσ μ (3.5)

is invariant under the transformations (6.4). The super-
space generalization of the Minkowski-space interval
ds2 = dXμdxtJ· is the interval

dsS-ovo", (3.6)

which is invariant under the entire supersymmetry
group. The "Cartan form" of ω μ arises in the invariant
expansion

e)^~i(a<
iPii^-d^Qa^Q.dQa). (3.7)

5)We note that Berezin and Marinov [9b ] have formulated a Hamiltonian
approach to the classical dynamics of particles with spin by invoking
the elements of a Grassmann algebra.
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The realization (3.4) is not unique 1 9 0 ' " 1 6 ' . Thus, with
the change of variables

^ ' ^ μ - ί α θ σ μ δ (3.8)

w e find

xf = XT τ Μ « + 1)9βμξ + i (α - 1) ζόμθ - ίαζσμζ. (3.9)

When a = 1 (-1), only θ (θ) appears in (3.9). In the super-
space we can define the y5 transformation

*μ

:=*μ, θ' = ΘΧΡ(ίλ)θ, θ' = ?χρ(-ίλ)θ, (3.10)

8'=V7e, 9' = y"/§, (3.11)

the dilations

the conformal transformation, etc.

In the transformations found, the coordinate Χμ must
be interpreted as a certain even-parity element of the
Grassmann algebra. The super space can be defined as
the Minkowski space on which J s specified a function al-
gebra with parameters χ μ , θ, θ. When considering the
functions Φ(χ, θ, θ) we can keep Χμ as an ordinary c-
number coordinate while representing the supersym-
metry transformations as transformations between the
coefficients of the expansion of Φ(χ, θ, θ) in a series in
powers of θ, Θ.

b) Concept of a Superf ield

A superfield Φ(χ, θ, θ) is a field in the superspace
χ, θ, Θ. The expansion of the superfield in a series in
powers of θ, θ terminates and a polynomial is obtained,
since θ, θ anticommute and the square of each of the
components is equal to zero (e.g., θιθι = 0):

Φ U, θ. θ) = Α (.!) -- θψ U) - (f U) Η - (.,-) - HBG U)

— daJ)B" (.r) — θθκ ι.ι) « — Οδθλ (.<) — Ο ϋ δ δ β U).
(3.12)

Correspondingly, we can treat tensor and spin-tensor
fields with outer vector- and spinor-indices, e.g., the^
tensor field Ψμι,(χ, θ, θ) or the spinor field Ψα(χ, θ, θ),
by supplying each of the components of the expansions
(3.12) with these indices (to give Αμ^, φ α μ,,, etc.).
Thus, a superfield describes a finite set of ordinary
fields^ namely, coefficients of its expansion in powers
of θ, Θ. These fields form specific representations of
the Lorentz group, inasmuch as it is assumed that
under the action of this group

Ψ Λ (*'. θ', b') - D A B (Λ) Ψ.,, •/<·. θ. Β), χ' = .U. θ' = .4 (Λ) θ. ( 3 . 1 3 )

Fermion fields anticommute and boson fields com-
mute with θ and Θ. The introduction of anticommuting
variables makes it possible to combine fields with dif-
ferent spins and statistics into one compact object-a
superfield.

The scalar superfield (3.12) contains fermions
(φ, ~φ, λ, κ) and bosons (A, F, G, B^, D). Under the
transformations (3.4),

Φ ' (χμ, θ. θ) = Φ (χΛ + ίθσ μ ζ - (·;σμ«, θ +"ζ). (3.14)

The superfield Φ is a representation of the full super-
symmetry group. In accordance with (3.9), it is also
convenient to introduce superfields in new realizations
Φι and Φ2·

6)The different realizations of the supergroup correspond to parametriza-
tions of its group element that differ from (2.12). From a general
point of view, they are all equivalent.

Φ, (χ, θ, Θ) =(exp — №β) Φ (χ, θ. θ), (3.15)

Φ2 (jr. θ. "θ) = (exp ίθόθ) Φ (χ. θ, θ), (3.16)

for which

Φ[(χ, θ, θ)=Φ,(ϊμ-2ίθσμ:-|-ί:σμζ. θ— ζ, δ —ζ), (3.17)

Φ:(r, θ, θ) = Φ.(ίμ-2/;σμθ-ι:σμξ, θ-ϊ , ri-τ-ζ). (3.18)

In the realization (3.14) we can consider real super-
fields

Φ (,r, θ 0)· =Φ (x. θ, θ). (3.19)

(The operation * indicates complex conjugation and in-
terchange of anticommuting factors[ 6 ] and is called in-
volution.)

On the other hand, it can be seen from (3.15), (3.16)
that superfields of the type Φι and Φ2 go over into each
other under complex conjugation. However^ the realiza-
tion (3.15) ((3.16)) is preferable in that θ (θ) does not
appear in the transformation of the coordinate Χμ and
so we can introduce "more-economical" superfields,
depending only on θ (θ), e.g., the scalar chiral super-
field

S (χ. Θ) = A (1) - θι|- (χ) + θθ/1 (χ) ' (3.20)

(θαθβθγ = 0). For a nonzero mass, such a super-
field describes an irreducible representation of the
supersymmetry group with superspin Υ Ξ 0 (the
Casimir operator C2 (2.19) gives zero) and describes
the spinless complex fields A(x) and F(x) and the spinor
field ψ(χ).

Representing the infinitesimal transformations in the
form

6Φ = i (IQ + Qi) Φ,

we find that for a superfield of the form Φ,
(3.21)

(3.22)

and correspondingly for superfields in the asymmetric
realizations Φ! and Φ2 (e.g., Q^' = -id/aea, ^ = id/
3Θ* + 2(θ3)ά). The supercharges7' Q andQ satisfy all
the relations of the superalgebra (2.1)-(2.3). Naturally,
in 1-ίβΐ/ there appears an extra term l/2(9^vd/d9 +
θ&μμθ/θθ), rotating the spinor coordinates. The dif-
ferentiation B/ΒΘ01 is definedC6] by the rules (a/ae a ) l =
0, {d/aea, θβ\ = δ .̂ For example, ΒΘΡ/ΒΘ01 = δ&,
d(ePey)/dea = δ^,ΘΎ- ζ^θΡ, etc.

Spatial reflection transforms the representation
(l/2, 0) into the representation (0, l/2) of the Lorentz
group:

3·μ=(·Γθ· — S). Θ'=/Ο0θ,

Ρ: Φ(χ, θ. θ) -»- Φρ(χ'. θ'. θ ' )=η Ρ [Ψ(τ, θ. θ)]*.
23)

where Ι η ρ 1 2 = 1, and the superfield Φ, generally speak-
ing, can differ from Φ.

The charge-conjugation operation can be defined by

C: Φ (χ. θ. θ) -» Φ'' (χ, θ. θ) = ηεΨ (Χ, θ, θ). (3.24)

Under Wigner time reversal

ϊ μ = (-*ο- x), θ;==εαΡθ(.,

Τ: Φ (χ, θ, θ) -* Φ τ (* ' . θ'. θ')=ητΦ(Γ, 8. θ).

If the superfield Φ(χ, θ, ~θ) is intended to describe
truly neutral particles, then Φ(χ, θ, θ) = Φ(χ, θ, θ).

Qa and Qa are Hermitian conjugates with respect to the specially-
defined scalar product on the Grassmann algebra [ 7 5 ] .
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Furthermore, under the y5 transformation (3.10),

Φ'(χ', θ', θ') = βχρ(ίαηι)Φ(ΐ, θ, θ), (3.26)

where m is an arbitrary number.

Under the dilations (3.11),

Φ' (χ'. 0'. in = /"Φ (r, Θ, ι». (3.27)

where η defines the weight of the superfield. It is also
possible to define a conformal and a superconformal
transformation"2-2 8-3 3'6 3 1.

c) Covariant Spinor Derivatives

It is obvious that ΘΜΦ is also a superfield, with
the same super spin values as Φ has. It is also possible
to define spinor "covariant" derivatives D a and D^
which incorporate differentiation with respect to the
spinor coordinates and anticommute with the super-
charges Q a andQ(5,[82'991:

[Da, < / „ } - {Da, Q}^ {5.. (Jt):-. {D.. Q.) 0. ( 3 . 2 8 )

Then, because of the anticommutation properties of the
parameters ζ, ζ,

[D«, W-.-ψλ- \\, № - « l - °- (3.29)

and if Φ is a superfield, then both ΌαΦ and ϋ^Φ will
also be superfields and the superspin values are un-
changed, since Da and D& commute with the Casimir
operator C2 (2.19). In explicit form,

•- — + 2i(oQ)r,.

D.^- —

/J'."- "—-'<

(3.30)

The covariant derivatives D form the same algebra as
the supercharges:

(Ζ).. £>„} = {Β., D.) = [/>", Οαΐ = [ Ρ μ . £>.] - 0,
(3.31)

In view of this algebraic structure, we can form only
16 independent operators from products of Όα and D^,.
Useful identities and the multiplication rules are given
in the Appendix.

When Όα acts on a product,

, ± (3.32)

The upper sign is taken if Φι is a tensor superfield and
the lower sign is taken if it is a spin-tensor super-
field (tensor superfields commute and spin-tensor
fields anticommute with the spinor coordinates). An
analogous situation holds for D &.

d) Superfields and Representations of the Supersymmetry
Group

A general superfield describes a reducible represen-
tation of the supersymmetry group. Suppose that the
rest- mass is nonzero and the superfield satisfies
additional conditions that distinguish the given spin j by
outer indices, e.g., θμΦμ = 0 for a superfield with
a vector index. Then such a superfield includes irredu-
cible representations of the supersymmetry group that
correspond to superspins Υ = j + 1/2, j , ] and j - l/2 [ 8 9 ] .

The average superspins are distinguished by the condi-
tions

/>.>(• =0 ando,i| = o (3.33)

respectively. These conditions have a simple meaning.
In the realization (3.15), a superfield satisfying (3.33)
does not depend on θ: Φα(χ, θ, θ) = Φ^χ, θ). For ex-
ample, the scalar superfield S^x, Θ) (3.20) will be ir-
reducible. Analogously, the superfields Φ2(χ, θ) will be
irreducible.

For the highest superspin Υ = j + l/2, it is neces-
sary that the conditions

(DD) Ψ = (DD) Ψ = 0, (3.34)

be fulfilled and also, when outer vector indices are
present, the conditions

(3.35)

while for a spinor superfield
index a (a) the conditions

.-••o 0

w i t n

>*Ψ^=0). (3.36)

must also be fulfilled. For a scalar superfield, which
has no outer indices, a projection operator that
separates out superspin l/2 and ensures that (3.34) is
fulfilled has been constructed by Salam and Strathdee1823:

Π,, = jL·- (D* (DD) Da--D. (DD) ΰ»).

DDilv = UVDD = DDfly = ilvDD --= 0.
(3.37)

The superfield V = ΠγΦ describes, for nonzero mass,
an irreducible supermultiplet of fields with Υ = l/2. The
superfield V(x, θ, Θ) is often called a vector field (with
respect to the largest spin).

The superfield (1 - Ily)* = Π0Φ describes two ir-
reducible chiral superfields with Υ = 0, which can be
separated out by the projection operators.

The projection properties of the operators n m can be
verified by means of the formulas for the covariant
derivatives D« (see Appendix 2). Projection operators
for the general case, ensuring fulfilment of all the con-
ditions (3.34)-(3.36), have been constructed by Soka-
chev[893.

To conclude the general discussion of superfields
we underline the following rules, which are useful in the
construction of invariant Lagrangians:

1) Spinor transformations on the superfields are
realized as "translations" with respect to the usual
(χμ) and spinor (0, Θ) coordinates (cf. (3.14), (3.17),
(3.18)).

2) Consequently, a product of superfields in a given
realization is again a superfield, in the same realiza-
tion:

ψ or, ο, Θ) ψ' (χ, Θ, β) = ψ" (χ, Θ, Θ), Ψ, (̂ , Θ,'Θ) Ψ; (χ, e, Θ") = Ψ; (χ, Θ, Β").

(3.39)

3) The superfield Φ* is again a superfield, of the
type ΦΤ The superfield (Φι)* is a superfield of the type
Φ2 · In order to obtain, again, a superfield of the type Φ!
from (Φι)* we must perform the translation

Ψ[(χ, θ, 9) = e.\p( — 2ίθδθ)(Ψ, (χ, θ, θ)*). (3.40)
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4) The ordinary (8M) and covariant (D a , D,y) deriva-
tives of a superfield are also superfields.

e) Transformations of Boson and Fermion Fields

In order to obtain the explicit form of the transfor-
mations of the fermion and boson fields in a given
superfield, we must take the expansion of the super-
field in powers of θ, Θ, use (3.14^ or (3.15), (3.16), and
again expand in powers of θ and θ. In doing this we use
the simple rule for interchange of two-component
spinors (see Appendix 1): θαθΡ = -1/2 €αβ(θθ). Thus,
for the chiral superfield

Φ, (Χ, Θ) = Ax (x) -f θ ^ (Χ) + (ΘΘ) f, (x)

under infinitesimal transformations (cf. (3.17)),

6^! (χ) = ζ«ι|-α (χ), δ/\ (χ) = -iot'tf (χ) σ^ζ.

6ifa (χ) = 2ϊ (ονΖ)αό»Λ1 (χ) + 21^ (χ).

(3.41)

(3.42)

If the superfield Φχίχ, θ) has dimensions L"1 (in units R =
c = 1), then the scalar field Ax(x) and spinor field ψα(χ)
have canonical dimensions L"1 and L~3/2 respectively,
while the field Fx(x) ~ L'2. Putting the phase factor
ijp in (3.23) equal to 1, we find that under spatial re-
flection (x' = (xo, - χ)),

P: A\(x') = A:(x). F;(a') = f i ( i ) . i)-i(a')=- /(oc)a^f>(x), (3.43)

and under charge-conjugation (according to (3.24)),

C: A1C (x)=A1 (x), F,c (x) = F, (x). (U (x))c = i\ U). (3.44)

Thus, if parity is conserved in the theory,

\ ± , (3.45)

where A(x) and F(x) are real scalar fields, and B(x) and
G(x) are real pseudo-scalar fields.

As was discussed above, in Sec. 2(c), an irreducible
representation with Υ = 0 contains one scalar, one
pseudo-scalar, and one field with spin l/2. The equa-
tions of motion enable us to express the extra fields F
and G in terms of the fields A and B. In terms of these
fields and the Majorana spinor ψ(χ), the transformations
(3.42) are written as

{χ) = i ψ*Α (χ) — i*;b ό
μΒ (χ)) γμ» - (F (.χ) - iVsG (*)) ζ

(3.46)

(here and below, 3 denotes γ^9μ). In the original
papers of Wess and Zumino[ 1 2 ] these transformations
were guessed as a four-dimensional generalization of
the supergauge transformations in dual models. The
use of the superalgebra and superfields"7 ] makes it
possible to obtain them consistently and algorathmically.
Even in the simplest case of an irreducible chiral su-
perfield Φι(χ, θ), the form of the transformations em-
braces much more, and is much more economical, in
terms of the superfield than in terms of the fields. We
also give the explicit form of the transformations for
a general real scalar superfield:

V (χ, θ, Θ) = C -J- ίθκ — i3κ - -i- ΘΘ (Λ/ + L\) — -i- ΘΘ (Af — L\)

6C = ίζγ5κ,

№ = ζλ + ίζβκ, δΛ' = ίζΤ5λ + ζ^&Λ,

6κ = y-nJ&C + ίγμζί7Μ· ^- (Μ + ί γ 5 .γ) ζ,

&>μ = ίί7μ>.-ζ3μχ,

δλ = ι ν ϋ ζθ -L-1 Υ μ ν ϊ ζ ( 5 V _ β V ) ,

( 3 · 4 8 )

These transformation laws are rather complicated. As
we have seen above, a general scalar superfield carries
two zero-superspins Υ = 0 and one super spin Υ = l/2.
The decomposition is achieved by applying the projec-
tion operators Π+, Π_ and Π ν (cf. (3.37) and (3.38)):

Φ = Φ+ + Φ. -ρ Φν. (3.49)

To this decomposition of the superfields correspond

vll=idv.Ct-idliC ~

Changing from νμ to v^v = μ
three lines of (3.50), we see that

(3.50)

in the last

Under infinitesimal transformations, applying (3.13) we
find, directly in terms of the Majorana spinors,

(3.51)

i.e., the fields ν μ ι , , λ and D transform via themselves
and constitute an irreducible multiplet with Υ = l/2.

The transformation properties of the boson and fer-
mion fields from other supermultiplets can be found
analogously. An important general rule holds:

5) In supersymmetry transformations the change in
the last term in the expansion of any superfield (e.g., 5F
in (3.46) and 5D in (3.48)) is a total derivative.

In fact, the last term undergoes a change only on ac-
count of the translation of the penultimate terms with
respect to the coordinate Χμ.

Corollary. The four-dimensional integral of the F-
and D-components of the superfields Φι(χ, θ) and V(x,
Θ, ~B) is invariant not only under the Poincare group but
also under the supersymmetry group.

4. LAGRANGIAN THEORY OF SUPERFIELDS

a) Manifestly Invariant Integrals of Superfields

The rule (5) is applied in a number of papers (e.g.,
[75,81,83,84]) to construct invariant Lagrangians. Bi-
linear, trilinear, etc., combinations are formed from
the given superfields, such that they form scalar su-
perfields. The four-dimensional integral of the cor-
responding F- and D-components is taken as the in-
variant Lagrangian. This separation of the F- and D-
components implies loss of the explicit invariance
under the supersymmetry group; the invariance is satis-
fied only implicitly. However, this procedure can be
given a manifestly supersymmetry-invariant form by
two equivalent methods. The first of these was pro-
posed by Salam and Strathdee"2 1 and consists in the
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following. For the F-component of the chiral super-
field (3.20),

since the derivative d/d9a differs from the covariant
derivative Όα by the total derivative (8θ)α. Analogously,

j d'xD (x) -= 1 j d>x (D*Da) (D&) V {χ, θ. Η). (4.2)

In formulas (4.1) and (4.2) the terms depending on θ and
θ are space-time derivatives and fall out on integra-
tion. The explicit supersymmetry is conserved, but
the coordinates χ and θ appear on an unequal footing
and high powers of the covariant derivatives appear in
the Lagrangians.

Another method, proposed independently by Fujikawa
and Lang'1071 and the authors:61], seems to us to be pre-
ferable. This method is equivalent to that described,
but preserves the similarity between χ and θ and does
not introduce extra derivatives. It is based on the con-
cept, introduced by Berezint6], of an integral on a
Grassmann algebra. The formal Grassmann integral
is defined by the following rules:

jde^-O. jdt,,e*-6Si, (4.3)

where άθα a r e anticornmuting "di f ferent ia l s" B ) (of di-
mensions L~1 / 2):

{do,, (ίθρ) = {de,. θ,,} --ο. Λ (4.4)

These rules suffice, since {θα, θβ} = 0 and therefore
none of the components θα can appear as the square . A
multiple integral is taken as a repeated integral. We
can define the generalized delta-functions

δ^(θ—θ') = (0;—Θ;> (β,—Θ;) (4.5)

and

δ"(θ — θ') = (θ5 — θ') (θ'ι — ί)|). (4.6)

While being polynomials, they possess , at the same
time, the propert ies of ordinary δ-functions. Thus, for
any function f(0),

δ°(θ-θ')/{θ)=- δ°(θ-

[ άθ, dti, δ (θ) - 1 = [ dS,d§j, 6 (θ).

However, unlike ordinary δ-functions,

6G(O) = o. (δ°(θ - θ'))2 = 0. (4.8)

It is precisely these properties that enable us to trace,
rapidly and effectively, the cancellation of divergences
in supersymmetry models, as we shall see below. The
delta-functions (4.5) and (4.6) can be represented in the
form

ί°(θ) = 1 δ°(θ) = - (4.9)

and are scalars under Lorentz transformations, just
like ά4θ = άθ1άθ2άθ1άθ2 = ΐ/4άθα άθα άθάάθά = d 2 6 d ^ . We

8)The differential άθα is written with a lower index in order that (4.3)
have an explicitly Lorentz-invariant form (the authors are grateful to
V. Akulov, who drew their attention to the desirability of this form).
Under linear changes of variables, άθα and θ·* are transformed by mut-
ually-inverse matrices [']. Formulas for a general change of varia-
bles in Grassmann-algebra integrals have been found by Berezin [8],
and in integrals over ordinary and over anticommuting variables-by
Pakhomov [6 9]. These formulas are useful in discussing supercon-
formal symmetry and for a possible spinor generalization of the group
of general coordinate transformations.

emphasize that Grassmann integration is equivalent to
Grassmann differentiation:

A Grassmann integral is invariant under translations:

fd29/(8 -f a) = \(FQf (Θ).

It is now easy to write integrals that are explicitly in-
with respect to the supersymmetries:

x d466 (θ) 5, (χ, θ) - 2 j d1* f » ,

ζ, §)= - 2 ( d4x F*

1
(4.11)

d 4 .rdW(r, Θ, S)= — 4

The invariance of these integrals is obvious, since, on
the superfields, the supersymmetry transformations
are realized as translations in the space-time and
spinor coordinates (cf. rule (1)). The two types of co-
ordinate appear in these definitions on an equal footing
and extra high powers of the covariant derivatives do
not appear. In the following we shall use this approach
and base the theory on the rule:

6) To construct invariant Lagrangians we must take
the integrals (4.9)-(4.11) of appropriately selected bi-
linear, trilinear, etc., combinations of superfields over
the superspace χ, Θ, ~B.

b) Lagrangians for Simple Superfields

In this subsection we shall discuss the Lagrangian
and equations of motion in the model of Wess and
Zumino, which describes the self-interaction of a
scalar chiral superfield with a dimensionless coupling
constant, and the free theory of a vector superfield.

We shall apply the rules (2)-(4) and (6). For a
scalar superfield Φι(χ, θ), the mass term has the form

*, θ)-δ°(θ)Φ|!(ΐ. θ)], (4.12)

or, in terms of the fields (3.41), (3.45), using the Ma-
jorana spinor we have

5m = m j d4* [AF-BG-^n) , (4.13)

and the kinetic term is written as

5 f t = — i - f fi4xdie6G(e) Φ, (y. β) BJ)11 e\p (— 2ιθ<5θ)Φ|(τ, θ)

1 f ) ex;> ( _ 2/9 56) Φ\ {χ, θ)= 9 ) (4.14)

Λ)- + (όμΒγ— ii Η-Γ— G"-].

= -1. f ah-ύ'ΟΦι (.r.

The form of S m and Sk is uniquely determined by the
condition that they not contain derivatives of boson and
fermion fields of higher order than is required. The
only self-interaction with a dimensionless coupling con-
stant is

Ι 3 (χ, θ)ΐ°(θ) Φ] (

Then the fields satisfy the equations of motion

F=—mA—g{A2 — B2

, G=—mB—2gAB,

1

M4.16)

"The equality is verified by integrating by parts taking into account the
identity DciD

0:fiG(5')=2.
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As was noted above, the auxiliary fields F and G occur
in these equations without derivatives, and can be
eliminated. Using the fact that

(4.17)

by varying the first lines of (4.12)-(4.14) we can find
the equations of motion directly in terms of the super-
fields:

and its Hermitian conjugate, or

DD

>*(χ, θ)=τηΦι(χ, θ) + 2?Φ[(ζ, θ) (4.18)

= mΦ + 2gΦ^!•, -|- ΌΏΦ = ηιΦ*-f-2#Φ+2 (4.19)

for the symmetric realization
Φ (ζ, θ, θ) = (exp ίθ δθ) Φ,

= Λ -J- θψ ->- 66F - ίθσμθ5μ.4 - -|- (θθ)θ 0ψ - -ί- ΘΘΘΘ0Μ ( 4 . 2 0 )

of a chiral superfield. The equations of motion (4.18) or
(4.19) for the superfields contain, in compact and mani-
festly invariant form, the equations of motion (4.16) for
the fields, By virtue of the equations of motion, the
spin-vector current10'

is conserved. The total action S is

S = Ssv+ St = Sh + Sm + Si. (4.22)

If we eliminate the auxiliary fields F and G, the total
action will have the standard form

-) -x {2 * · μ ' • m - m (4.23)

- mgA (.4'- - B") — £ - (A- ~ B-)*- - §ψ (.4 - iybB) ψ } .

The fields A, B and φ have a single mass m, and the re-
normalizability of the theory is obvious (Yukawa coup-
lings and trilinear and quadrilinear couplings, without
derivatives, appear). However, in this form the super-
symmetry is masked and is expressed in the conserva-
tion of the spin-vector current (4.21) in which F and G
are expressed in terms of the fields A and B.

An investigation of this simplest supersymmetry
model will be described in detail below.

We now discuss the theory of a free superfield with
superspin l/2. The real vector superfield V(x, θ, Θ)
(3.47) contains a superspin l/2 and two superspins 0
(analogy: the vector field contains spin 1 and spin 0).
We write the action in the form

Ssv= —-1 f d*a:d49 (Κ (ζ, θ, Θ) aUrV{x, 0. H)~m-V- (χ, Θ, §)), (4.24)

where Ily is the projection operator separating out
superspin l/2. (Analogy: for the vector field A, the
Lagrangian density can be written in the form 1/2
x Αμαπ μ ί ,Α 1 '- (πι2/2)(Αμ)

2, where Π μ Ι , = η μ ι > -
(9μ9^/π) is the projection operator separating out spin
l . )The equations of motion for the superfields are
obtained by varying (4.24) with respect to V:

(•Π,- -f m=) Τ (χ. θ, θ) == 0. (4.25)

It follows from them that DDV = DDV = 0 (analogously to
9μΑ^ = 0).

We give an expression for the action in terms of the
fields:

1 0 )In calculating the spin-vector current by Noether's theorem it must be
kept in mind that the Lagrangian density is invariant to within a 4-
divergence, the explicit form of which must be taken into account.

(4.26)

After the auxiliary fields Μ, Ν and D have been elimi-
nated, there arises the usual Lagrangian describing the
free fields ν μ , mC(l//2)(\ + m/c) and (1/Λ/2)(λ- τακ)
with the same mass m.

In the case of zero mass the spinor field κ and scalar
field C drop out, and the theory describes only the
"photon" ν μ and the Major ana spinor λ (as we should
expect, knowing the content of the irreducible repre-
sentation for zero mass (Sec. 2(c))). It can be seen from
the projection properties (3.37) - (3.38) of Ily that for
m = 0 the theory becomes gauge-invariant with respect
to the replacement

V(x, θ, ί. θ, 6)-i--l-( θ, B)- Θ,Ί))) (4.27)

(analogy: the gauge invariance of electrodynamics),
where S is an arbitrary chiral scalar superfield. The
specific form of the additive extra term is connected_
with the fact that the parity of the superfield V(x, θ,_θ)
is assumed to be negative: Vp(x', θ', Θ') = - V(x, θ, Θ).
Under (4.27) the vector field ν μ goes over into ν μ + 9μΑ.
With the help of the gauge transformations (4.27), all the
auxiliary fields, except for the field D which is not af-
fected by these transformations, can be eliminated
from V(x, θ, Θ).

It is known that the Lagrangian of a massless vector
field is singular, and therefore, on quantization, the
quantity (1/2α)(9μν^)2, which fixes the gauge in a rela-
tivistically invariant way, is added to it. In our case
the addition of such a quantity would violate the explicit
supersymmetry (just as the addition of (l/2a)(9v)2

would violate the explicit relativistic invariance). To
fix the gauge in a manifestly supersymmetric approach
we must introduce the term (l/2a)DDVDDV into the
Lagrangian density. Extra components of the fields
then "appear" (just as longitudinal and scalar photons
"appear" in electrodynamics), which have no observable
effects.

Thus, the concept of a superfield enables us to work
in a formalism that is manifestly invariant under the
supersymmetries at each stage.

c) Supercurrent

In discussing the algebra of supersymmetries in
Sec. 2(b) we have already noted the remarkable fact
that the conserved spin-vector current and energy-
momentum tensor are connected by a supersymmetry
transformation. Ferrara and Zumino a o 2 ] showed how
to define a supercurrent-a real superfield with one
space-time index and one non-space-time index- con-
taining both these important quantities. For the model
(4.12)-(4.14) of a chiral superfield the supercurrent
has the form

V . = ΪΦΟ .Φ*4- — Ζ)αΦΖ).Φ*. (4.28)
(χα αα 2 α

From the equations of motion (4.19) the relation1 1'

DaV . - ^ - D - (Φ*)2 (4.29)
αα 2 α

and its Hermitian conjugate follow. The right-hand side
of (4.29) depends on the model and on the choice of defi-

'"Relations from Appendix 2 have been used.
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nition12'. In all known models the supercurrent satis-
fies the equation

flaK^=fl.{·. Οα5·=0, (4.30)

where S is a certain left-handed chiral superfield. For
a free vector superfield,

Vai=(DDD J V-DaVD.V) (4.31)

and from the equations of motion (4.25) we find

D"Vm.= O. (±m-DDV*). (4.32)

A p p l y i n g t h e o p e r a t i o n 5 t o (4 .30) , w e o b t a i n a m o d e l -
i n d e p e n d e n t r e l a t i o n f o r t h e s u p e r c u r r e n t V^= ^ α α

D.jjDV^Md» (0>)m»X. (4.33)

The expansion in the components of the supercurrent
ν μ differs from the expansion (3.47) only by the addition
of the vector index μ. Correspondingly, to obtain the
form of the transformations of the fields appearing in
ν μ , we must supply all the fields in (3.48) with the
vector index μ.

The invariant condition (4.30) and its conjugate limit
the number of independent superfield components Va&·
Using the Majorana spinors, we obtain the relations

λμ-=δμΒ,

and the conservation laws

μ = - C 0μ-θμ (0C)

Ο μ (ί μ ν -η^) = Ο, ίμν=-|-(ι>μ,-ι·νμ), 5ι'(κμ-γ'γμκλ) = 0. (4.35)

The relations (4.34) imply that the fields λμ, Ό μ and the
antisymmetric part of \μι> are expressed in terms of
other fields, while the vector fields M« and Ν μ can be

X S
other fields, while the vector fields M«
replaced by the spinless fields X and S.

The independent quantities κμ,
F

A and Β are
^ μ μ

combined into one supermultiplet. From the law of
transformation of νμ(χ, θ, 1), when the conditions (4.34)
and (4.35) are taken into account, it follows that

The use of the "improved" quantities simplifies the
transition to zero mass, at which superconformal in-
variance and the corresponding new conservation laws
arise, and the supercurrent Vaa satisifes the condi-
tion DaVaQ, = 0, which is more restrictive than (4.29).

We note that the above derivation11021 of the expres-
sion for the supercurrent is based on felicitous guesses
and is too operational; it is worth trying to find a better
one. The existence of the supercurrent seems to be im-
portant from various points of view-in particular, in
the light of a possible supersymmetry generalization
of Einstein's theory of gravitation13'.

5. INVARIANT PERTURBATION THEORY

An invariant perturbation theory can be formulated
directly in terms of the superfields. As was noted
above, the superfields contain spare components (just
as the massive vector field Αμ contains the spare com-
ponent Ao). Some of the equations of motion turn out
to be coupling conditions which express the spare com-
ponents in terms of the other fields, after which the su-
persymmetry remains in implicit form, manifesting
itself in the conservation of the spin-vector current.
(Analogously, in the vector-field theory the Hamiltonian
and propagators lose their manifestly Lorentz-invari-
ant form after Ao is eliminated, but the angular-
momentum tensor is conserved as before.)

To construct the invariant perturbation theory we
shall base the derivation on a generating functional for
the Green functions that has the form of a continuous
integral with integration over all the fields. We could
integrate out the " spare" fields, but the manifest
invariance under the supersymmetry would then be
lost (integration over Ao in the theory of the vector
field also leaves the Lorentz invariance in implicit
form only).

The covariant quantization and the Feynman rules for
the superfields are defined in an analogous way to that
usually used in quantum field theory.

6.4 = !Ϊν 1 | κ μ. t>3 = ?,'5

; -f- ο., ( , Γ - i Y 3 S):, (4.36) a) Propagators

4- ν ν + (μ -

Inspection shows that the components of the supercur-
rent are connected in a simple way with the conserved
spin-vector current and the energy-momentum tensor.
Thus, in the model of Wess and Zumino,

ij.r 4 "V ' W P ' < 4 · 3 7 )

where θαν is the improved energy-momentum tensorp
^ = Τ μ ί , - ( ϊ / 6 ) ( β μ β ν - 7)μι£])(Α2 + Β2) (Τ μ Ι , is

the canonical energy-momentum tensor of the model),
and JJ^P1" is the improved conserved spin-vector cur-
rent

4 (4.38)

For a free chiral superfield in the presence of
sources

7. (χ, Θ) = JF (x) + θη + Θθ/Α, J+ (χ, θ) = /* {χ, δ),

the equations of motion (cf. (4.18))

•ΐ5θοχρ(-2;θόθ)ΦΪ(: ι · , θ)—πιΦ(3-, θ) = /_(*, θ)

and their Hermitian conjugate have the solution
r G- -

D^x, b)=-- —\ dixdie'[G__(x, 0, χ', Θ')/-(* ' . θ ' ) δ ( θ — θ ' ) (

-TG-+(x, θ, χ', b')/+(*', Θ')6Γ(Θ —θ')].

(5.1)

(5.2)

( 5 3)

The Green functions (propagators) of Eqs. (5.2) are writ-
ten as

The quantity ϋμ is related to the axial current:
— 2ίθ§θ')Δ(;(ζ — χ'),

G._(a, θ, χ', 6')= 2/η6(θ—θ')Δ«: ( * - * ' ) .

(5.4a)

(5.4b)

(4.39) where

l 2 )Thus, in the model under discussion it is possible to introduce the mod-
ified supercurrent Vgjf d =V c t t i -( i m /4g) δ ^ Φ - Φ · ) , for which
D ^ S d " - - ( m 2 / 4 g ^ * , by analogy with the condition for partial con-
servation of the axial current.

l3'Could the supercurrent take the place of the energy-momentum ten-
sor? In principle, the supercurrent could be the source for a super-
field of the type Konx, which, at zero mass, contains only two parti-
cles—one with helicity ±2 and another with helicity ±3/2.
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Δ IT-
l2:x)« m"—k>-U (5.5)

is the causal Green function for a scalar field with
mass m.

This can be verified by substituting (5.4) into (5.2)
and taking into account the identities

exp (—2t6dK) = 1 — 2ίθίκ + 4δ"(θ) δ (χ) α (5.6)

and

(5.7)

The Green functions G+_ and G__ contain the propagators
of the boson and_fermion fields us coefficients of the
expansion in Θ, 1. Thus, for the Fermi field, from (5.4a)
and (5.4b) we find

(.rlif. (a'ι 0 = -i-(<5) . _\c (x—x'),

(5.8)

we obtain the

-'·)• (5.9)

( i— x"l,

and for the Majorana spinor φ =
usual propagator

(7ΌΗΉ (*'))> = -< (-«-f

In switching on the interaction we need a manifestly in-
variant regularization, which is achieved by adding1·37 ]

to (4.2.2) (sic) the term

-|· Z"-<O{x, θ)θχρ(-2ίθίθ)Φ·(τ, §). (5.10)

The regularized Green functions are calculated
analogously to the unregularized ones (5.4), depend in
exactly the same way on the spinor coordinate, and
differ from (5.4) only by the replacement of the causal
function Δς. by D R in (5.4a) and by D R in (5.4b):

m ι
d'k « p ( i * ^ I l - i (
2KF ' k " :

f d'k «p(
J T2KF m'—k

_ d'k e.vp l
(5.H)

In momentum space, for large k, (G+_)R ~ k"4 and
(G__)R ~ k"10. The regularization temporarily removes
the divergences and makes the calculations meaningful,
but in the final results we must let the regularization
parameter ξ tend to zero. This invariant method is
analogous to that proposed by SlavnovC86] for Yang-Mills
theories.

The propagator of the vector superfield V(x, θ, Θ)
(3.7) can be defined as the Green function of the free
equations of motion in the presence of a source-the
neutral vector superfield J(x, θ, Θ):

-i-(nnv-m-)F(x, θ, θ) = /(χ, θ. δ). (5.12)

Using the projection property Ily = Πγ, it is easy to
solve this equation ( n c = 1 - Ily),

θ', Θ), (5.13)V(x, θ, θ)= f r, θ, θ, χ,

w h e r e
G(x, θ, Θ, x\ Θ', §"')•

= 2.(l - -fl-nc) (m2+ Q)-' 6 ( 1 - χ1) δ ° ( θ - θ') 6 (θ-θ ' )

c* c
_ = 2 [ l — ^ (DDDD~DDD5)J Ac (z~ ζ', ml)t> (θ-θ')6 (θ—θ')-

We emphasize the complete analogy with the vector
field Αμ, for which the equations of motion are written
in the form

(D (Πν)μν + πΑ)μν) ^ V = 7M W. (5-14)

where (ϋγ)μν = η μ ν + (8 μ 8 ι/α) is the projection
operator separating out the spin 1 in Α μ , and the causal
Green function is defined as

(GcV«=(vf-yV»)Ac(i,m'), (5.15)

where 8μ8μ = Π(Πς)μ^, and ( Π 0 ) μ ι , = Βμδν/α is the pro-
jection operator separating out the spin 0 in the field Α μ .

For zero mass this propagator loses its meaning,
since the gauge invariance (4.27) arises. The gauge can
be fixed in a manifestly^nvariant form by adding the
expression (l/2a)DDVDDV to the Lagrangian. Then the
propagator is written as

i(TV(x, Θ, e)V(x', Θ', θ'»

= 2 ( 1 — J ^ ^ i D i
(5.16)

Here, a = 1 corresponds to the Fermi gauge in electro-
dynamics.

b) Feynman Rules in the Model of Wess and Zumino

To calculate the matrix elements of the different
processes it is convenient, using Grassmann integra-
tion, to represent the S-matrix in the form

· [6 (5.17)

The Feynman diagrams are drawn in the usual way.
There are two types of vertex: (Φ+)3 and Φ3. We shall
call these left and right vertices and denote them in the
diagrams by the symbols ® and © respectively. At each
vertex the 4-momentum is conserved and a factor
(2π)4δ(Σρί) is associated with the vertex. With each in-
ternal line we associate a propagator: for a line join-
ing two right vertices,

r _ Ρ __ _ , _ ί/niV (θ,-β2)

for a line joining two left vertices,

f 1 ? ^

P 1 -» '•—'•«

(5.18)

(5.19)

and for a line joining a right and a left vertex,

, ( 5 > 20)
ft ρ s 2 p'—m'-ie.

With each external line we associate a wavefunction

*ext(P> θ> o r *ext(P- θ ) :

O e s t {p. Θ) = .4«t (P) - θΗον, (ρ) + (ΘΘ) Fcxi (ρ). (5.21)

Integration is performed over all the momenta of the
internal lines and Grassmann integration is performed
over all the spinor coordinates θ, θ of the internal ver-
tices (i.e., the vertices with no external lines). This
procedure gives the S-matrix element for the super-
fields.

In order to obtain the S-matrix element of a process
for boson and fermion fieldst s 3 ] we must also take the
Grassmann integral over the spinor coordinates θ, θ of
all the external vertices. In doing this we must replace
F(p) by -mA* (p) in ΦβΧ(; and Φβχΐ> in accordance with
the equations of motion for the free fields. The super-
symmetry connects the spin amplitudes of processes
with a fixed number of particles (e.g., the two-particle
amplitudes: 0± l/2 - 0* l/2, 0±0± - 0±0± and l/2 l/2 -
1/21/2).

The method of superfields makes it possible to per-
form calculations and exhibit the general properties of
supersymmetry theories in the clearest and most
economical way, since each diagram with superfields
incorporates in an invariant manner a whole set of dia-
grams with boson and fermion fields. We shall give a
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few examples and, in particular, show how easily, and
with practically no calculations, we can see the can-
cellation of divergences in the diagrams in the lowest
orders of perturbation theory.

We consider the diagram for the proper-mass
counterterm (Fig. la). This counterterm is equal to
zero, since the product of two G_. contains (5G(*?i — Θ2)Ϋ
= 0 (cf. (4.8)). By the same arguments, the diagram
of Fig. lb also gives no contribution. Also equal to zero
is the contribution from the diagrams for the counter-
term in the renormalization of the coupling constants
(Fig. 2), because

6 G ( e i _ θ ΐ ) δ α (θ 2 - Θ3) δ°(θ3 - ΘΟ = [6G(e, - Θ,)]» δ°(θ3 - ΘΟ = ο

and the same is true (with interchange of θ and Θ) for
the vertex (Φ+)3.

In the calculations the integrals over the momenta
of internal lines can be assumed to be regularized in
accordance with (5.11). In the lowest orders of pertur-
bation theory the vanishing of the counterterms in the
renormalization of the mass and coupling constant hap-
pens because of the remarkable properties of the
Grassmann delta-function and does not require any
calculations. To perceive this same fact in the formal-
ism with ordinary Fermi and Bose fields, using the La-
grangian (4.15), it is necessary to study a large number
of different diagrams and establish that the contribu-
tions from them mutually cancel.

We return to the examples. Also equal to zero are
the "tadpoles" (Fig. 3), since 5G(0) = 0, and the con-
tributions from vacuum loops consisting only of right
(or only of left) vertices (Fig. 4). It is easy to show that
any diagram which contains a closed circuit consisting
only of right (or only of left) vertices gives zero contri-
bution.

The contribution from a diagram with vacuum loops
containing right and left vertices (Fig. 5) also vanishes.
In this case, this happens because of the fact that the
integrand does not depend on θ and Θ, and in the Grass-
mann integration Jd9 = 0. Below we shall convince
ourselves that vacuum loops give zero in arbitrary
order of perturbation theory; here we have cited the

**(pj)

FIG. 7

simplest examples. Finally, the diagram of Fig. 6 gives
the contribution

ΖΦ (ρ, Θ) exp (-2Θ>Θ) Φ* (ρ, θ), (5.22)

where Z diverges logarithmically. Thus, in orders g2

and g of perturbation theory only one divergence ap-
pears-the logarithmic divergence in the manifestly
invariant counterterm in the wavefunction renormaliza-
tion.

We note also that the vertex diagram depicted in Fig.
7 gives a finite contribution. In higher orders all dia-
grams give a finite contribution except for diagrams
with two external lines of which one is joined to a (-)
vertex and the other to a (+) vertex. Such diagrams can
diverge only logarithmically and their aggregate deter-
mines the only necessary counterterm of a super-
symmetry-invariant form in the theory under dis-
cussion. We proceed now to the proof of this sur-
prising fact, and start from identities that follow from
the supersymmetry; in accordance with tradition, we
shall call them Ward identities.

c) Ward Identities

We consider a Feynman diagram of general form.
Suppose that it contains n̂  external right vertices θι and
m external left vertices &&, at which there are incoming
external lines with momenta pj and qk, respectively.
Then the corresponding amplitude is written as

Α ((ρθ), (q. θ))

= j Λ, . . . rfio<

(5.23)

e i t . . . <ί=θ,-,Α' ((ρθ), (7. θ), (θ ( ! θ,, Ζ)),

where the integral is taken over the momenta Za of the
internal loops and over the spinor variables of the in-
ternal left (Bj) and right (θ{) vertices, and we have used
the abbreviations

(ρθ) = (ρ,θ,, . . ., ρ,,θη). (70) - (?1Θ, . . . qm6m).

(θ;, Θ,, /) = (θ,-, "a, h ;„).
(5.24)

We shall show that the kernel Κ ^ ρ θ ) ^ ) ^ ^ ! ) ) of the
amplitude for any given Feynman diagram satisfy the
following important identities11071:

(5θ)(θ,θ;, I)).

= exp ( - 2 1 tqfij)Ki(p. θ - ξ ) , ; - ; , 0,·, /))

= exp(-2 f 9ftp,i)A'((p. Θ). (<-,. θ- : ) (θ, . 0,-ζ. I))

exp[2 Σ ,-- ζ (1 ρ,-Σ

xA'((p, θ - ί ) . (q. Ο - ζ ) ( θ , - : , * ) ) •

First we shall prove the identities (5.25). The kernel
Κ is a product of propagators. Under a general spinor
translation θ — θ + ζ the propagators G++ and G_. do not
change, while the propagators G+_ acquire factors that
depend on the variables Θ. Therefore, it is sufficient
to consider only the left vertices; each group of ex-
ternal left vertices joined by propagators &n. ~ 5G

x (θι - 9m) can be "contracted" into one effective left
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vertex (Fig. 8). When θ — θ + ζ each of the propagators
G+_ ~ exp(-20j2kj20j) acquires a factor exp(-2£kjr0j),

and, on account of all the external left vertices, the fac-
tor exp (-2Zkq"j0j) multiplying the kernel Κ in the
identity (5.25) appears (here we have taken into ac-
count the four-momentum conservation law (Σ/fe =

r r

-Z)qi7)). Internal left vertices joined by external pro-
l

pagators G+ + have already been considered. In the
others we again contract each group of left internal ver-
tices joined together by propagators G+t into one ef-
fective vertex from which only (+-)-lines emerge. The

. sum of the 4-momenta in the G+_ of these lines is equal
to zero, and, therefore, each such effective internal
vertex makes no contribution to the change of the ker-
nel (exp(2£Z/kjzep = 1), since Σ/kjj = 0).

This completes the proof of the first identity of
(5.25). The middle identity is proved analogously.
Finally, the third identity is obtained by combining the
first two. It is important to note that the identities
found are valid for each individual diagram. They are
stronger than the Ward identities for the Green func-
tions

Gnm((*6), <i8»=G n m ((*'№), iy'B·)). ( 5 . 2 6 )

which follow from the invariance of the vacuum under
the supersymmetry transformations (3.17) and (3.18),
where

ο ... Φt.rnen)Φ+ (̂ δ,) ... Φ+ (,jmam)le. (5.27)

For the Fourier transform G n m in momentum space
these identities are written as

cn m((p, β-ft). (?, β-ι-;»
η _

= exp[-2 2 Β,,ρ»;-

(5.28)
,~ V

They are contained in, and can be obtained from, the
third identity of (5.25).

Corollaries:

1) Any vacuum loop vanishes (e.g., Fig. 9). In fact,
in the absence of external vertices and lines, it follows
from (5.25) that the kernel Κ jlepends only on the dif-
ferences 0 i k ~ θ\ι and θ^ - θ^ . The amplitude of
vacuum-vacuum transitions vanishes, since the num-
ber of Grassmann integrations exceeds the number of
independent Grassmann variables and Jάθ = 0 (4.3). We
illustrated this fact above in very simple examples (cf.
Figs. 4 and 5). We note that Zumino1361 managed to ex-
hibit this striking property of the supersymmetry model
by summing the contributions of many diagrams with
Bose and Fermi fields.

2) For any diagram with no external left vertices the
kernel Κ depends on differences of the variables θ (the
upper identity of (5.25)), and the amplitude depends on
differences of the external variables Θ. The analogous

FIG. 10

statement (with θ replaced by Θ) is valid for diagrams
with no external right vertices.

3) For a diagram with no external left vertices the
amplitude vanishes when all p k = 0. In fact, in this
case (the middle identity of (5.25)), the kernel depends
on differences of the internal variables and the number
of Grassmann integrations over θ± exceeds the number
of independent variables By, A(0, Θ) = 0. Analogously,
A(0, Θ) = 0.

In particular, in the theory under discussion not
only do the vacuum loops vanish automatically, but so
too do "tadpoles" of arbitrary complexity. Indeed,
diagrams with one external Θ or Ο vertex and zero ex-
ternal momentum correspond to "tadpoles."

4) If all the external momenta tend to zero (pj = 0,
q k = 0), the kernel will depend only on differences of
the variables θ and differences of the variables Θ, i.e.,
the number of independent right and left vertices is re-
duced by one.

5) For any diagram with two right vertices, for all ζ,

Κ ((ρ, «Μ. (-/>. θ=). Φ fid)) (5.29)
= Εχρ(2{θ1-θ2)ρζ)Α:((ρ, θ,) {-ρ, θ,) (3,, θ,-τ ζ, Ι))·

Putting ζ + #ί = 0 for one of the intei*nal 0j and integrat-
ing over the internal variables ( / d 2 ^ εχρ[2(θι - Θ2)^θ{\
= - 4 δ°(θι - Θ2)ρ2), we find

Α (ρ, θι ; -ρ, θ.) = δ 0 ^ - θ2) ρ-ί (ρ*). (5.30)

and analogously, with the replacement 0 k — ? k , for any
(Φ+)2 diagram. As an example, the reader can calculate
the amplitude for the diagram of Fig. 10.

6) For any diagram with one right and one left vertex
the identity (5.25) gives, for any ζ, ζ,

Α (ρ, θ; -ρ, θ) =exp[2 (θρζ + ζρθ + ζρζ)\Α (ρ, θ + ζ; —ρ, θ + ζ).

Putting θ + ζ = θ+ζ = Ο, we establish the general
structure

Α (ρ, θ; -ρ, Θ) = exp (-2θρθ) u (p2), (5.31)

where u(p2) = A(p, 0; -p,0) .

d) Cancellation of Divergences in Higher Orders

We shall ascertain which of the diagrams diverge,
and give an estimate of their index of divergence'10"1.
In its form, the theory under discussion is a φ 3 theory,
but the exponential in the propagator G t . (5.20) gives
an extra momentum-squared. The index of a diagram
can be written in the form

ω (τ) = ω3 (τ) + ω+_ (τ), (5.32)

where Wa(T) is the index of divergence of the diagram τ
in the ψ3 theory and ω+_(τ) is the correction due to the
propagators G+-. If the diagram has Ν vertices (N+ right
and N_ left vertices) and n e external lines, then, as is
well-known"0 ],

ω3(τ) = . 3 Λ ' -" ' .-t.4-4(A--l)=4-A'- n i . (5.33)

We shall give now an estimate for ω+.(τ). We con-
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tract each group of left vertices joined by propagators
G t + ~ 5(9j - 0j-) into one effective left vertex θ=, and
each group of right vertices joined by propagators G._
~ δ(θϊ - θ^) into one effective vertex 0j. The number
of effective left and right vertices will be, respectively,
N+ = N+ - n+ + and N. = N. - n__, where n++ is the number
of propagators G++ and n__ is the number of propagators
G_-· Several propagators G+_ attached to the same ef-
fective vertex give the same additional second power of
the momentum as one propagator: e.g.,

G G- G__
δ θ ) [ 6 ( θ Λ ? ό U o i f f i P P )

Z-i Γ χ. θ).χρ( —2ιθέθ)φ-(_\ θ), (5.37)

G
ί) [6

Therefore,
ω+_ {τ) <C 2 min ' Λ _ , Λ _ ι = Λ _ - _Ϋ_ —| -V_

- Ι -V,
(5.34)

and, taking (5.33) into account, we find

ω (τ) · • - '.β - I -V_ - .V_ - „ . . - „ . _ (5.35)

where = n++ + η

For a diagram with five or more external lines,
ω(τ) < 0, and they certainly make a finite contribution.
For diagrams with four external lines, ω(τ) _= 0. For Φ3

and (Φ+)3 diagrams, again, ω (τ) _= 0, because either ng =
0 but IN+ - N_l = 1, or n 5 _- 1. In the case of ΦΦΦ+ (and
ΦΦ+Φ*) diagrams, combinatoric arguments show that
ng -- 1, and, consequently, for these ω(τ) _s 0 again. The
greatest degree of divergence is given by the highest
powers of momenta of internal loops. In order to con-
sider only these, we put the external momenta equal
to zero. But then (consequence (4) of the Ward iden-
tities), the number of independent right and left ver-
tices is decreased by unity, since the kernel of the
diagram depends on differences of the spinor variables
and this lowers the degree of the highest divergence
by at least 2. Thus, all diagrams with 4 and 3 external
lines contain no divergences.

It remains for us to consider diagrams with two ex-
ternal lines. For diagrams of the ΦΦ φρβ,^ωίΦΦ) _£ 0,
since for these either ng -- 2, or n+ + = 1, IN+ — N_l ζ 1
(the case ng = 0 is excluded: the nonsense 3N. - 2 = 3N+

would appear). However, according to consequence (5)
of the Ward identities, the corresponding amplitude
contains the square of the external momentum as a fac-
tor, and therefore such diagrams (and, analogously, all
Φ+Φ+ diagrams) are free from divergences.

In the case of ΦΦ+ diagrams, both ng and IN+ - N. I
can be equal to zero, and for these ω(τ) £ 2. But con-
sequence (6) of the Ward identities says that the cor-
responding counterterm has the form

Φ {ρ) exp (—2θρθ) Φ4" (ρ) _ (ρ"-). ( 5 . 3 6 )

The exponential behaves at large momenta like p2. There-
fore, u(p2) for any diagram diverges logarithmically, at
most.

In all the calculations it is assumed that the pro-
pagators have been previously regularized in accordance
with (5.11).

It has been proved, then, that in the model of Wess
and Zumino, only diagrams of the ΦΦ+ type lead to di-
vergences, the divergences being logarithmic irrespec-
tive of the complexity of the diagram, and the structure
of their contributions is the same and has the invariant
form (5.36). Going over to x-space, we write the con-
tribution from all ΦΦ+ diagrams in a form identical to
the kinetic part of the Lagrangian:

where Ζ - 1 is a logarithmically divergent constant.

The constant Ζ is included in the renormalization of
the wavefunction of a scalar superfield. We convince
ourselves that the renormalized quantities in the model
of Wess and Zumino are defined in accordance with

<t>r .... Θ) = Z-> 2 φ (.)·. θ), m. = Zm. gr = Z3 -g. (5.38)

Only one counterterm and, correspondingly, only one
renormalization constant appear. This striking fact
was first noticed and proved in t l 3 > 3 7 ] . it is this fact
that has stimulated interest in supersymmetries. The
model of Wess and Zumino is the simplest supersym-
metry theory; everything in it is clear and so the largest
number of papers have been devoted to it. The invari-
ant perturbation theory for this model has been devel-
oped at different levels in "ο,.ο,.ι,δΐ,βι^,.δ,ιοτ^ C o m .
paratively simple play with only the spinor variables
θ, θ makes it possible to exhibit the unusual properties
of supersymmetry theories-the clear-cut cancellation
of divergences, the vanishing of vacuum loops, e t c -
while avoiding summing the mutually cancelling con-
tributions of a large number of diagrams with Bose and
Fermi fields.

The renormalization-group equations are simple for
the model under discussion, since there is only one
renormalization constant (e.g., it follows from (5.38) that
3gr/am = (3/2)3 lnZ/am). They have been investigated
in articles by Ferrara, Iliopoulos and ZuminoW 8 ] and
ShafiCS5] (in the latter, in terms of superfields). The
model does not possess asymptotic freedom-the ef-
fective coupling constant grows without limit as the
energy increases.

We note that an analysis of the theory of a scalar
field with self-interaction (λ/4!)(Φ4(χ, θ)δ(θ) + h.c.) has
shownC5t>1 that it is not renormalizable even though it
contains fewer divergences than one might expect. The
theory of a chiral spinor superfield interacting with a
chiral scalar superfield (with a dimensional coupling
constant) was studied in the article12 ] . It is also not
renormalizable, but many of the divergences cancel. Re-
normalizable theories of a scalar superfield describing
a vector multiplet14', generalizing the gauge theories
of Yang and Mills, will be discussed briefly in the fol-
lowing section.

6. SUPERSYMMETRIC GENERALIZATION OF
YANG-MILLS THEORIES

In this section we discuss the inclusion of internal
symmetries and attempts to generalize the gauge
theories in a supersymmetry modelt l 4 > 8 0 ' 1 0 0 ] . It is
fairly simple to introduce a global internal symmetry,
e.g., the unitary symmetry SU(n). The scalar chiral
superfield S(x, Θ) describes neutral particles A, B and
φ with a definite parity. Therefore, to construct
complex representations of the internal-symmetry
group it is sufficient to introduce a set of complex
superfields (i = 1, 2, . . . , k)

Si u. «) -= S;1' (.r. Θ) -·- iS?' (χ. Θ) (6.1)

14)Likhtman [5S] has recentely studied a supersymmetric renormalizable
field-theory model in which a massive vector field interacts with a
nonconserved current.
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and postulate the transformation law

5; (χ, Θ) ,- exp ( - i a m t m ) u S,(χ, Θ), (6.2)

where a m are the parameters, and t m the matrices of a
given representation of the internal symmetry. We shall
attempt to progress further and generalize the local
transformations, the parameters of which depend on the
coordinates of the field. From the requirement that a
transformed superfield be again a superfield, we con-
clude that the parameters themselves should be chiral
superfields: am — am(x, Θ) = am(x) + 9aam Jx) +
e0/3m(x), i.e., that the symmetry should also he "local"
in the superspace. As compared with ordinary local
symmetries, a dependence on the spinor coordinates θ
is added. Then,

S' {χ, Θ) = exp (—i.V (χ. Θ)) 5 (χ. θ) (Α (χ. Θ) = am (χ, Θ) tm).
(6.3)

Under spatial reflection (cf. (3.23)),

S (χ, Θ) -» SP (x\ Θ') - Τ (χ. θ) = S·1'* (χ, θ) 4- iS'2 1* (χ, θ), (6.4)

Λρ (χ, θ) — ΛΡ {χ1, θ') = Λ* (.r, θ). (6.5)

Under local transformations,

Γ (χ. "§) — Γ (χ. θ) = exp (-i.V (χ, θ)) Τ (χ. θ). (6.6)

The kinetic and mass terms of the Lagrangian, in-
variant under global transformations, have the form15'

S* {x - ίθσ,,θ, θ) S (χ + ίθσμθ' θ) + Τ* (χ + ίθσμθ"' θ) Τ (χ - ίθσμθ, θ)

- m lS*nG(fi) - T*S&G{e)\. (6.7)

The mass term is also invariant under the local trans-
formations (3.5), while the kinetic term is not invariant.
We shall follow the philosophy of gauge fields"1. We in-
troduce the vector superfields ν'ϊίχμ, θ, θ), transform-
ing according to the adjoint representation of the in-
ternal-symmetry group (V = tiVj, a = ticej):

V'(x, Θ, H) = exp( — ia)V(x. Θ. S)exp(ia). (6.8)

Under infinitesimal local transformations we assume
that

&V= —i\*V + iV\--(\ — .V), (6.9)

as a generalization of ordinary local transformations:

6vu = — ίαΐ;μ -f- ίυμα — — 5 μ α .

Then under finite local transformations,

l-gV" = exp ( - ιΛ") (1 -gV) exp (i-V). (6.10)

We shall now reestablish the local invariance by in-
troducing a "compensating" superfield V and replacing
the kinetic term by

S* (l + gV) s + τ* (l + gV)-1 T. (6.11)

Under spatial reflection (1 + gV) — (1 + gV)~\ i.e., V
transforms essentially nonlinearly. It is convenient to
make the equivalence transformation

l+gV' = exp(gF). (6.12)
Under spatial reflection the vector superfield V(x, θ, Θ')
simply changes sign, like an ordinary vector field,
and, in turn, the gauge transformations (6.9) for V be-
come nonlinear. The kinetic term in (6.7) acquires the
form

5* exp (gV) S + T* exp (—gV) T. (6.13)

l s )If the superfield S is described by a real representation of SU(n), then
the matrix Λ is antisymmetric, we can proceed without S ( 2 t ) , and

In order to find the Lagrangian for the self-interaction
of the superfield V we form the spinor superfield

g V · I

which transforms according to the law (cf. (6.10) and
(6.12))

Ψ^=εχρ( —(Λ) Ψαεχρ(ίΛ) —-exr ( — iA) D a exp ((A), (6.15)

since DaA
+ = 0 by definition. Applying the covariant

derivative D a twice, we obtain a chiral spinor super-
field

(6.16)

(6.17)

with a uniform sign of the transformation:

W;=exp(-iA)W'aexp<iA).

The self-interaction of the vector superfield V(x, 0, β)
can now be represented in a manifestly invariant form

6G(6) Tr + h.c. (6.18)

Gauge invariance has been achieved, but the model con-
structed is extremely nonlinear and the kinetic
terms (6.13) for the scalar fields and the self-interac-
tion (6.18) are also nonlinear. In this form it is difficult
to assess the renormalizability. In order to represent
the model in a manifestly renormalizable form, Wess and
Zumino1141 fix the gauge such that, of the entire aggre-
gate of fields appearing in the vector superfield (cf.
(3.47) and (6.7)), only the fields ν μ , λ and V remain:

ν (χ, Θ, g) =_θσμβνμ + eeex + eee?. + ΘΘΘΘΟ. (6.19)

In this gauge the self-interaction of the vector super-
field is described by the Lagrangian density

(6.20)L = Tr{ - i (ί·μν)*—~ λν*νμλ+ j D- } ,

where

ig [Vu

= 0μχ + ig IV», λΐ.

(6.21)

(6.22)

Except for the term containing the auxiliary field
D, (6.20) coincides exactly with the Lagrangian for a
Yang-Mills field interacting with a Majorana spinor λ
belonging to the adjoint representation of the internal-
symmetry group. If the scalar superfield S is also
described by the adjoint representation, then its inter-
action with a vector superfield is described in terms
of the component fields:

L - Tr + (νμΒ)2 - ίψ
( 6 _2

where ν μ Α = 3μΑ + ig[VM, A], etc. Again, the familiar
Yang-Mills couplings have arisen. In addition, couplings
of the Yukawa type have appeared, and also, after the
auxiliary field D is eliminated from (6.20) and (6.23),
quadrilinear couplings of the fields A and Β. In all
these interactions there appears one universal coupling
constant g. The theory obtained is manifestly renormali-
zable, but the special choice of gauge (6.19) deprives it of
its manifestly invariant form under the supersymmetries.

Slavnovt87 ] has proved the renormalizability when
the gauge is fixed in a super symmetry-invariant form
(cf. also [54>1051). in supersymmetric electrodynamics
the anomalous magnetic moment of the electron
vanishes"011.

It is interesting1-80'1001 that in the single-loop approxi-
mation for a vector superfield interacting with k super-
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fields S belonging to adjoint representations, the
Callan-Symanzik function 0(g) is equal to - (g3/l67r2)
x (3 - k)G2, where G2 is the magnitude of the square of
the Casimir operator for the adjoint representation.
For k < 3-in particular, for the self-interaction of a
vector superfield-the theory is asymptotically free.
For k = 3 the renormalization of the coupling con-
stant is finite16'.

We noteC80'100] that if we put the mass in (6.23) equal
to zero (m = 0), eliminate the field D from the equations
of motion (D = -ig[A, B]) and combine the Major ana
spinors λ and ψ into the Dirac spinor φ = (ΐ/ν2)(λ + \φ),
then (6.20) and (6.23) are written as

Ti;{ - 1 (
(6.24)

}— g<p[A-

In formula (6.24) an additional invariance φ —· β*αφ has
appeared, which we can attempt to associate with the
conservation of baryon number. Analogously, in the
case of chiral internal symmetries, V-A gauge theories
t 2 9 ] arise in which attempts are made to introduce a
conserved fermion number, and the scalar superfields
must be as singed to the adjoint representation. The
masses of all the particles should then vanish, and
there is no invariant way of making the particles mas-
sive; this creates difficulties.

On the whole, despite the fact that, by the method de-
scribed above, Wess, Delburgo, Zumino, Ferrara, Salam
and Strathdee have succeeded in finding a super sym-
metric generalization of the Yang-Mills theory, there
remain certain unsatisfactory aspects. The theories
have turned out to be highly nonlinear in the manifestly
supersymmetric form, and the procedure is not with-
out artificiality. The most important point is the fol-
lowing. For Yang-Mills fields the conserved vector cur-
rents serve as the sources. For supersymmetric
models conserved spin-vector supercurrents are char-
acteristic. In the approach described, they remain out
of play and do not serve as sources of the correspond-
ing gauge spin-vector fields. It is not ruled out that this
is connected with the artificial choice of a vector super-
field as the gauge field. We shall give the arguments.

The law of transformation (6.15) of the spinor super-
field (6.14) is the exact analog of the Yang-Mills trans-
formation

1 μ -- exp (— ία) Υμ exp (ία) — - exp ( — ία) ύμ exp (ία), (6.25)

differing from it by the replacement of the ordinary
derivative d/dxV- by the spinor derivative D a . The ana-
log of the stress tensor F μ ί , (6.21) (ΐ'μν = exp (-ice)
x F μ ν exp(ia)) for the superfield is (with the natural re-
placement of commutators by anticommutators)

ΨΔ. (6.26)

Ψ α | ί = exp (-ίΛ) exp (iA). (6.27)

The analogy is complete. Of greatest interest is the
fact that the stress Φαο vanishes identically if we ex-
press Φα in terms of the vector superfield V by (6.14).
In the Yang-Mills case the situation is exactly the

16)Kalashnikov and Fradkin [47] have shown that with a special summa-
tion of the higher orders these results remain valid. They also calcul-
ated the asymptotic form of the Green functions (scaling arises for
k=3). In a model with spontaneous breaking of the internal sym-
metry [82] the asymptotic freedom disappears [4 7].

same168·1: F μ ν vanishes identically if we substitute the
"vector" field in the form (cf. (6.14))

i .

' v— e *P( — ig<t)ovexp(igif), (6.28)

where ψ(χ) is a gauge scalar field with the transforma-
tion law exp(ig<?)' = exp(ig(p) exp(iX), which ensures
the correct transformation properties (6.25) of the
field ν μ (6.28). It seems to us, therefore, that the
nonlinear generalization of Yang-Mills theories with a
vector superfield, discussed above, is in a certain sense
orthogonal to the philosophy of Yang and Mills, and
that it is very important to study other possibilities—es-
pecially the gauge spinor superfield Φ α . In this case
it is possible to hope for the appearance of well-
grounded theories of the spin-vector field φμν appear-
ing in the superfield Φα (renormalizable theories of the
vector field, other than the Yang-Mills theory, do not
exist).

We have not succeeded in constructing, using the
stress tensors (6.26) and the gauge group (6.15), a
Lagrangian theory for the superfield Φ α such that the
equations for the spinor fields would be first-order and
those for the boson fields second-order. Evidently, the
problem is that the gauge jroup (6.15) with a chiral
scalar superfield Λ (χ, 0, θ) in place of the parameters
is too limited. However, we can extend it and consider
formally the same transformation law

ψ ; = exp (— /Λ) Ψα exp (iA) — - exp ( — iA) Da exp (iA), (6.29)

but regard Φα as a Major ana spinor superfield and
Λ (χ, θ, θ) as the general scalar superfield (3.47). The
group properties are not lost when we do this.

Just as the gauge invariance in the Yang-Mills
theory corresponds to replacement of the parameters of
the transformation by general scalar fields (functions
of x), so (6.29) corresponds to their replacement by
general scalar superfields (scalar functions of χ, θ
and Θ). Naturally, the interaction with chiral super-
fields cannot be included here, but the interaction with
real scalar superfields can be included and is obtained
by the usual technique of extending the covariant Major-
ana spinor derivative Όα — T>a + igΦα. It is also
possible to write down a self-interaction Lagrangian
invariant under (6.29). All these questions, the renor-
malizability of the theory and the effect of the Higgs type
in which the field Φα acquires mass, etc., are now be-
ing investigated by Ε. Sokachev and the authors of this
review article.

7. UNIFICATION OF INTERNAL SYMMETRIES AND
SUPERSYMMETRIES

The direct product of the internal s y m m e t r i e s and
s u p e r s y m m e t r i e s is simply real ized and was discussed
at the beginning of the preceding section. Their non-
tr iv ia l unification is also, in principle, real izable
[2o,33,8i]^ Namely, t h e generators Qa of the supersym-
m e t r i e s can be supplied with internal-symmetry indices
i and the a lgebra (2.23) can be generalized in a consist-
ent manner as follows:

{C«i· QH.)=-{QL <&} -----0, (7.1a)

{Q... (?.Η2δ!(0μ)α;/Λ ( 7 . l b )

i(W Λ.] = ΐ ^ , / ' , ΐ - ο . ( 7 > l c )

Thus, the subscripts i, j can refer to the quark n-
dimensional representation of the SU(n) group, and the
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superscripts to the antiquark representation. The in-
ternal-symmetry generators are scalars and commute
with the generators of the Poincare group. In an article
entitled "All possible generators of the supersymmetry
of the S-matrix" 1 7 ) , Haag, Lopuszanski and Sohnius"0 9 3

state that the algebra (7.1), under rather general re-
quirements, turns out to be practically18' the only possi-
ble algebra in a theory with massive particles1 9 '.

_ We introduce anticommuting spinor coordinates θαί,
%«, in complete analogy with the simple supersym-
metry group discussed above; the spinor generators
can be realized in the form

" ^ (7.2)

and satisfy the algebra (7.1). In the superspace x, 0 a i ,
θ^ί the spinor transformations are analogous to (3.4):

2-μ=·Γμ-ί(<Λ>μϊ,--Γσμθ*>· θ?'=θ?-ΐ?. θ*' = θ * - ^ . (7.3)

The superfields are also defined analogously1333, but they
contain more terms in the expansion in the spinor co-
ordinates, since the number of these coordinates is in-
creased. We shall not dwell on these questions, but
turn to the discussion of the irreducible representations
in the rest-frame. We note first of all that the spinor
generators commute with the generators of transla-
tions (7.1c), and, therefore, in this amalgamation of the
internal symmetries with the supersymmetries, O'Rai-
feartaigh's theorem" 1 ' 7 1 3 remains valid: the masses of
all particles within a given representation should co-
incide. In the rest-frame the algebra (7.1) becomes a
Clifford algebra of 2n spinor creation and annihilation
operators. We introduce the notation (l/V2M)QiQ, = Q^,
(l/v^MjQip = Qg, where the indices A and Β take 2n
values. Then for Ρ μ = (Μ,Ο) the algebra (7.1) is writ-
ten as

{<?A, <Λ = δ5, «Ά, &.} = {<?•*· S V o . (7.4)

In terms of Q^ and QB we can form operators F^.
commuting with the Hamiltonian and forming the algebra
of the U(2n) group:

FA — QQA- {FA, (7.5)

Thus, in the rest-frame the group U(2n) arises. As in
Sec. 2c, we define the "Clifford vacuum" ΙΩ>0 by the
condition

Ι Ω ;•„ = ο. (7.6)

The space of an irreducible representation will be
formed by the states obtained by the action of the
operators QB, to first and higher (nonvanishing) powers,
on ΙΩ)0. For each ΙΩ)0 there will be 2 2 n states, since
only antisymmetrized products of k ^ 2n operators QB
are nonzero. For example, in the case of internal SU(3)
symmetry"1 1 2 0 ' , by choosing the one-particle state

"'This paper generalizes the results of Coleman and Mandula [43] to the
case of supersymmetries.

18)"Practically"—in the sense that the conceivable modifications of it re-
duce to substituting into the right-hand side of (7.1) certain operators
that commute with all the other generators and with each other.

" ' In the recently published article [ s l b ] by Konopel'chenko the structure
of spinor extensions of the Poincare algebra, with inclusion of high-
er spinor generators, is studied, and the above statement by the authors
of [109] is put in doubt.

20)We note that the simplest Lagrangian model with a nontrivial unifica-
tion of supersymmetry and SU(2) internal symmetry has been found
to be unrenormalizable [4 2].

with zero values of the spin, isospin and hypercharge as
ΙΩ)0, we find the fundamental representation, contain-
ing the 26 = 64 states

ΙΩ)ο, ...QB'\P:)0 (7.7)

These states are the antisymmetric D(6) tensors, and
we have the expansion 64 = 1 + 6 + 15 + 20 + 15 + 6 + 1.

The ground state Ι Ω ) ο can have nonzero quantum
numbers with respect to the internal symmetry SU(3)
and the group 0(3) (spin) of rotations in the rest-frame,
and we come to the conclusion that, in the rest-frame,
the vast group U(6) χ SU(3) χ O(3) arises. The appear-
ance of the SU(6) classification in the rest-frame is
very specific, and the connection with the Giirsey-Radi-
kati-Sakita SU(6) group (or the Wigner SU(4) group in
the case of internal SU(2) symmetry) is not entirely
clear: 1) the fundamental representation 64 contains
quarks (representation 6) and the higher antisymmetric
tensors 15, 20, . . . . (diquarks, triquarks); 2) on each
state with given SU(3) and 0(3) quantum numbers the
representation 64 is constructed anew. The group U(6)
x SU(3) x 0(3) appears. The last factor can be inter-
preted as corresponding to the Z-excitation. But the
generators of SU(3) as subgroups of SU(6) do not coin-
cide with the generators of the SU(3) internal-sym-
metry group. The symmetry that arises seems to be
too wide.

In conclusion we shall describe the intuitive con-
struction by Volkov and Akulov (cf. C26]) of spinor ex-
tensions of the Poincare group. As is well-known, the
group combination law for the parameters ((&Ί, ΛϊΧά ,̂Αζ
= (ai + Λιϋ2Λί,ΛιΛ2), where a = σμaίJ•) can be repre-
sented as the matrix multiplication of (4 x 4)-matrices:

The parameters a form a homogeneous space, and, as-
suming that the coordinate Χμ (in matrix form, χ = σμχί-
transforms like these parameters, we obtain the usual
law χ' = ΛχΛ+ + a. We move the blocks of this matrix
apart and place the (η χ η) matrix of the parameters of
the internal symmetry U at the center. This corres-
ponds to the direct product of the Poincare group and
the internal-symmetry group. We fill in the upper free
(2 x n) block and the free (n x 2) block to the right with
the spinor parameters £J, and £,ji> respectively, and
modify the upper right corner.

The matrix thus constructed

γ(ζξ-ία)(ΛΤ'Χ(Λ W -1(ζζ_ία)(ΛΤ'\

0 U ξ(ΛΤ' I

0 0 (ΛΤ' /
' (7.9)

( 1 ; γ ( - ώ - Κ ) \ .'Λ 0 0 \

0 1 ; Ι 0 Ο 0

0 0 1 / \0 0 W
corresponds to supersymmetries mixed nontrivially
with the internal symmetries. A product of such ma-
trices reproduces the group-combination law. The
parameters ζ, ζ and a form a homogeneous "super-
space." Identifying the coordinates of this superspace
with the coordinates of the superspace χ μ , θ*α and θ ^ i>
we arrive at the transformations (7.3).

8. ATTEMPTS TO BREAK THE SUPERSYMMETRIES

The masses of the fermions and bosons in one super-
field coincide, and therefore, to construct future
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realistic models, it is necessary to be able to break
the supersymmetry in a suitable way while preserving
the renormalizability properties. Adequate methods
have not yet been found. A particularly intensive
search is being made for a successful spontaneous
breaking of the supersymmetry. We shall discuss the

-^principal attempts.

It is interesting that spontaneous breaking, in its
most striking form in nonlinear realizations of the
supersymmetries, was investigated by Volkov and
AkulovU6>201 approximately a year and a half before the
appearance of the papers of Wess and Zumino[121 which
initiated the wide interest in supersymmetries. Accord-
ing to the general approach to nonlinear realizations of
spontaneously broken symmetries'·17'45-1, we introduce a
Goldstone field with the quantum numbers of those
charges whose conservation we wish to violate. In our
case it is necessary to introduce the spinor Goldstone
field θ(χ), which one should identify with the spinor co-
ordinates regarded as functions of Χμ. In other words,
we must consider a certain "surface" θ = θ (χ), θ =
θ(χ) in the superspace. The supersymmetry transfor-
mations (3.4) are then written as

θ'(χ') = θ(*)+ζ, Θ'(χ') = θ(*)-Γζ, χμ = ζμ + ϊ(θ(χ)σμζ-ζσμθ(χ))(8.1)

or, infinitesimally,

6Θ (χ) = ζ + i (ζσμθ (χ) - θ (χ) σ~ζ) 0«θ (χ) (8.2)

and analogously for θ(χ). It is convenient to assign di-
mensions [L]~3/2 to the spinor fields and parameters.
After the corresponding redefinition, we rewrite (8.2)
in the form

δ θ ( χ ) = • = ; - - )-θ(χ)σμζ)ί/Μθ(χ). (8.3)

where the constant a has the dimensions of the fourth
power of a length. The nonlinear transformations ob-
tained possess the necessary group s t ructure; their
commutator gives t rans lat ions. The presence of the
spinor constant in the right-hand sides of (8.1)-(8.3)
emphasizes the Goldstone nature of the " n e u t r i n o "
field θ(χ). For a = 0, the free equation for the neutrino,
σμ9^θ(χ) = 0, is invariant under (8.3). The phenomeno-
logical Lagrangian for a ^ 0 is constructed with the aid
of the differential forms α>μ (3.5) which a r e invariant
under (8.3):

αν - άχμ -t- -£• (θσμ d5 — <ίθσμθ> = </xv. [θμ - -£ (θσμ <?»« - ίνθσμθ) J =

The invariant action is given in the form

J || (8.4)
and corresponds to an invariant four-dimensional volume
in the superspace. As in al l Goldstone theor ies , Adler ' s
principle is satisfied (cf. C 2 0 ] ) . Interactions with other
fields can also be included. Unfortunately, the theory
i s highly nonlinear, and derivatives of the Goldstone
" n e u t r i n o " appear to high powers 2 1 ' . It is very impor-
tant to find spontaneous breaking in field theories that
a r e of the usual form and renormalizable (the analog
of the σ-model in chiral symmetry, which, when the σ-
particle mass tends to infinity, corresponds to non-
linear real izat ions and becomes unrenormalizable).

Iliopoulos and ZuminoC 3 7 1 have studied soft induced

21)In the gauge version of this model ["] the gauge fields have spin 3/2,
the Higgs effect is possible and a coupling with gravitation appears.

breaking in the model of Wess and Zumino22', adding the
linear breaking term — cA(x) to the Lagrangian of (4.22).
The renormalization properties are not changed by this,
and, as before, only one counterterm is needed. However,
the masses of the field A, 6 and φ cease to be equal and
in the "tree approximation" there arises the mass form-
ula (higher corrections to which are finite and calcul-
able)

m*A + m%=2m%. (8.5)

This mass formula is valid for any value of the parame-
ter c, and, in particular, for c = 0. In the limit of exact
symmetry, m^ = mg = m^. On spontaneous breaking,
ηΐψ = 0, φ becomes a Goldstone fermion, and a spinor-
constant correction appears in the transformation of φ.
However, the Goldstone regime is not stable"91: m\ =
-mfg, i.e., the square of the mass of one of the parti-
cles, A or B, is negative. Taking the higher approxi-
mations into account"41 (the effective potential in the
single-loop approximation11081) does not reestablish the
stability of the Goldstone regime. A model with spon-
taneous breaking of the supersymmetry should differ
from the model of Wess and Zumino23'. Thus, Fayet and
IliopoulosC9aai have shown that a stable Goldstone re-
gime and spontaneous breaking arise in supersym-
metric electrodynamics when the linear term ij/gD(x),
violating parity but invariant under transformations of
the supersymmetry and gauge types, is added to the
Lagrangian. In this case (D) = - ξ/g and δλ = - (i/g)y5£
+ . . . . The masses of the scalar fields become un-
equal and, under certain conditions, spontaneous break-
ing of the gauge invariance also arises, in which the
vector field acquires mass by way of the Higgs mecha-
nism and the Goldstone fermion becomes a linear com-
bination of the Majorana spinors participating in the
model. A V-A variant does not arise. The model is not
generalized to the gauge theories associated with non-
Abelian semi-simple algebras. To reproduce the
calculations would take up too much space, and we refer
the reader to the primary source1961.

We note also that the characteristics of spontaneous
breaking of internal symmetries in supersymmetry
models have been investigated by Salam and Strath-
dee1821 and O'RaifeartaighC73ai24). The problem of a
realistic spontaneous breaking of the supersymmetries
remains unsolved at present.

9. CONCLUSION

How, then, have supersymmetries enriched ele-
mentary-particle physics? The simplest supersym-

22'The algebra of supercharges in the presence of breaking is discussed in
the article!3 2] by de Wit.

23)The heuristic argument, given in the paper [3 7], that supersymmetry can
never be spontaneously broken turned out to be unjustified and was
refuted by the authors themselves in [3 6 > 9 6].

24) After this review had gone to press, the paper [96b ] by Fayet appeared,
in which was proposed a semi-realistic model for the unified theory of
the electromagnetic and weak interactions of the electron, electron
neutrino and heavy leptons, with spontaneous breaking of the super-
symmetries and of the gauge symmetry SU(2)XU(1). The electron
neutrino serves as the Goldstone fermion and is combined with the
photon in one supermultiplet. Unfortunately, there is no place for the
muon neutrino with zero rest-mass in the framework of this model.
We note also that in a new article by O'Raifeartaigh [7 3 b] a generalized
Wess-Zumino model, describing the interaction of Ν chiral scalar super-
fields, is considered. Spontaneous breaking of the supersymmetries
can arise only for N>3.
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metry models, which appeared in 1971 and were studied
intensively in 1974, possess many unexpected and at-
tractive properties, arising from the connections be-
tween the Green functions of the fermions and bosons:

a) A sharp reduction in the number of divergences is
observed.

b) All diagrams with vacuum loops, and the vacuum
average of the energy-momentum tensor, vanish.

c) The conserved vector currents play a large role
in elementary-particle physics. In the supersymmetry
models an entirely new object appears-the conserved
spin-vector currents.

d) The conserved spin-vector current of the super-
symmetries appears with the energy-momentum tensor
in the same superfield.

e) A nontrivial unification of the internal symmetries
with the space-time symmetries is theoretically pos-
sible.

The problem lies in the construction of realistic
physical theories. Hopes of a unified renormalizable
asymptotically-free theory of the weak and electro-
magnetic (and, perhaps, the strong and gravitational) in-
teractions, in which the neutrino would be the Gold-
stone particle, are emerging. Of the more technical
problems, we note the search for well-grounded theories
of the spin-3/2 particles associated with the conserved
spin-vector currents2 5 \ the development of the differ-
ential geometry of superspace'51, etc. The incorporation
of these supersymmetries into physics requires the as-
similation of the new concept that has arisen, and a
search for a suitable spontaneous supersymmetry-
breaking and an adequate mechanism for conserving the
number of baryons and fermions.

The authors are sincerely grateful to M. S. Marinov
and E. Sokachev for useful discussions.

APPENDIX

1. Useful Relations of the Spinor Formalism

The matrices Όμ (see "Notation" at the end of the In-
troduction) are expressed in terms of σ μ :

( 3 μ ) ^ = β ^ 8 < Ν σ μ ) ., (σμ> -εβΡε .(5μ) ά > .
(Χ ρ dp pet

The completeness relation is written as

(<V> . (σ»)»-2«αβ?, (σμ) . ( σ μ ) ; . = 2εαίε..,
αχ α act ββ αβ

σ μ σ ν -j- σ,,σ,, = 2η μ ν , Sp (σμσν) = 2%,,

The product of two different spinors can be reduced:

of Majorana bispinors φ = (ψα/ψά). We give the corres-
ponding connections:

, 0))

For the interchange of identical anticommuting spinors,
the following simple rules hold:

In the review article we often have to go over from bi-
linear combinations of spinors to bilinear combinations

Ψϊιι* = — κγμψ = ψσμκ—κσμψ,

ϊ γ sViiX = χ?5ϊμψ = ψσμ* + χσμψ,

φγμΥνΧ=*γ»γμΊ>—*"VTVX -f φσμσνκ.

2. Products of Covariant Derivatives

The covariant derivatives DQ,, D^ obey the commuta-
tion gelations (3.31). Because of this, any product of D a

and Ό& reduces to a linear combination of the 16 inde-
pendent elements

1. D», £>., DD, DD, DauD, (DD)D., (DD) Da, (DD) (B5)
α α

with coefficients that include ordinary derivatives a u .
Thus,

\DU. Ϊ7.] = ( σ μ

\D.. DD\=iid
f

D.b. = --Le..7)D,
= β ecu

D.D.D. =0,
α » ·,·

\Da, CZJ|=—4ίσ .DP.

D,, (ΒσμΖ7)= — ψ \ α ν ) . \DD) D*,

D. {D
a

ICC,

~ \ov) . iDD) Da-iwJ). ,
ii a

Products of five and more D are reduced with the help
of these formulas and the relations

For example,

(DD) (DD) (DD)= — 161 (DDi. |DD) (DD) ( D D ) = — 162UD,

(»DD| (TJD)]2 = — 16 3 i D

etc.
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