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A review is given of the experimental and theoretical data on ferromagnetic and antiferromagnetic
semiconductors. Information on the magnetic, electrical, and optical properties is analyzed systematically.
The main theoretical ideas on the physics of magnetic semiconductors are given without detailed proof and
are used in the interpretation of the experimental results relating to the influence of the magnetic order on
the electrical and optical properties of magnetic semiconductors and to the influence of conduction
electrons on the magnetic order.
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1. INTRODUCTION

Magnetic semiconductors are attracting increasing
attention. They are very interesting from the point of
view of the physics of the processes occurring in them
and because of practical applications. Antiferromagnetic
semiconductors have been known for some time, but the
first ferromagnetic semiconductor was synthesized only
in 1960. '-10-1 This event was of basic importance: it upset
a widely held view that ferromagnetism could occur only
in metals. This was followed by the synthesis of many
other ferromagnetic semiconductors so that by 1970
their total number reached 50.

A special feature of magnetic semiconductors is that
carriers (s electrons) interact strongly with the mo-
ments of partly filled d or f shells of magnetic ions.
Therefore, magnetic order affects strongly the carrier
motion and the carriers themselves may exert a strong
influence on the magnetic order. It has been usual to as-
sume that magnetic semiconductors are characterized by
very narrow carrier energy bands. Then, because of the
interaction between electrons and optical phonons, car-
riers should be small-radius polarons with a very low
mobility. However, it is now found that, in typical cases,
the band width in an antiferromagnetic or ferromagnetic
semiconductor is of the same order as in a nonmagnetic
semiconductor. Small-radius polarons may exist in
magnetic semiconductors but they are more likely to be
an exception rather than the rule.

Very many properties of magnetic semiconductors
can be explained by the fact that the electron energy is
minimal in the case of complete ferromagnetic order and
that it increases on deviation from this order. The mag-
nitude of this effect can be estimated from the observa-
tion that the absorption edge of ferromagnetic semicon-
ductors shifts by 0.2—0.5 eV when the temperature rises
to the Curie point T c (see Figs. 2 and 3 in the next
chapter). Therefore, conduction electrons tend to estab-
lish and maintain the ferromagnetic order. At low densi-
ties, electrons cannot influence the state of a crystal as
a whole. However, electrons may be localized in some
part of a crystal and they can then establish there a
sufficiently high degree of ferromagnetic order to

achieve a strong reduction in their energy. The energy
advantages resulting from self-localization in a ferro-
magnetic region are demonstrated in^ 1 9 4 · 1 9 5 3 on the ex-
ample of a conduction electron in an antiferromagnetic
semiconductor. A ferromagnetic microregion created by
an electron may include ~100 (in EuTe) or even ~1000
(in EuSe) magnetic atoms. In fact, a complex formed by
an electron and a second-phase microregion created by
it represents a new type of quasiparticle. We shall call
it a ferron.1' Experimental evidence supports the exis-
tence of ferrons in antiferromagnetic semiconductors
EuSe and EuTe.C 6 ]

Collective ferron states are possible in heavily doped
magnetic semiconductors. Ι-4β'19β'197-1 For example, an
antiferromagnetic crystal splits into ferromagnetically
and antiferromagnetically ordered regions, the former
with an excess and the latter with a deficiency of conduc-
tion electrons. At relatively low carrier densities in
antiferromagnetic semiconductors, the ferromagnetic
part of a crystal is in the form of separate droplets of
~ 10—100 A radius, forming a periodic structure inside
the antiferromagnetic matrix. When the carrier density
is higher, antiferromagnetic droplets form a periodic
structure in a ferromagnetic matrix. In the former case,
the conductivity of a crystal is low because almost all
the conduction electrons are locked in ferromagnetic
droplets. Thus, at a critical carrier density at which the
ferromagnetic part of a crystal transforms from multi-
ply connected to singly connected, the conductivity of a
crystal should rise strongly. In the case of ferromagnetic
droplets in an antiferromagnetic matrix, the conductivity
should increase greatly in an external magnetic field
establishing a ferromagnetic order in a crystal and thus
delocalizing electrons previously locked in ferromag-
netic droplets. C 4 6'2 1 3 : l

''in earlier papers of the present author, [194>19S] this quasiparticle was
given an infelicitous name of a "magnetic polaron." M. A. Krivoglaz,
who later considered the corresponding problem at Τ Φ 0, used the
term "fluctuon" for states of this kind. [202J The term "ferron" re-
flects more accurately the physical nature of such quasiparticles, as
formulated by the title of [195] "Ferromagnetic Microregions in Anti-
ferromagnetic Semiconductors."
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This splitting of degenerate antiferromagnetic semi-
conductors into ferromagnetic and antiferromagnetic

regions was observed experimentally in EuTe
Cioe]

and
EuSe.t M f l Crystals of EuSe with carrier densities dif-
fering by a factor of five have resistivities differing by
10 orders of magnitude at 1.6°K but the application of a
field of 10 kOe, which establishes a ferromagnetic order,
reduces the resistance of high-resistivity samples by
10 orders of magnitude so that it becomes of the same
order as that of low-resistivity samples. Magnetic
measurements confirm that, in the former samples, the
ferromagnetic region in the absence of the field is mul-
tiply connected, whereas in the latter it is singly con-
nected. ίΆ21

Similar inhomogeneous states may exist also at ele-
vated temperatures in heavily doped ferromagnetic semi-
conductors and the phase transition from the homogene-
ous to inhomogeneous state is usually of first order so
that below the transition point the inhomogeneous state
may exist in metastable form.[82-1 This is qualitatively
in agreement with the observations reported for
EuS. Cw*1913 At lower impurity concentrations, a rise of
temperature may cause a transition of a degenerate
ferromagnetic semiconductor from a conducting to an
insulating state due to the collective localization of elec-
trons at donors and an increase in the degree of ferro-
magnetic order in their vicinity. Clearly, this explains
the semimetal-insulator transition which occurs in EuO
and is accompanied by a jump of the resistance by 13
orders of magnitude, '-109-' which is 5—6 orders of magni-
tude greater than the jump of the resistance in all other
known transitions of similar kind (V2O3, etc.). More-
over, this is the only case when an insulating phase is
obtained at higher temperatures as a result of the metal-
insulator transition.

Even when conduction electrons do not form inhomo-
geneous states in a degenerate magnetic semiconductor,
they still influence strongly its magnetic properties.
Thus, by varying the degree of doping of a semiconduc-
tor, we can control not only its electrical but also mag-
netic properties: for example, doping can double the
Curie temperature of ferromagnetic semiconductors
EuS and EuO (in the latter case, the Curie point may
reach 140° Κ).[ β ] Heavy doping may change an original
antiferromagnetic order in a semiconductor to a ferro-
magnetic order. This is observed even in materials
with a relatively high Neel point of ~100°K (for example,

ίιη1

In contrast to magnetic metals, we cannot use the
Heisenberg Hamiltonian to describe the influence of
electrons on the magnetic order in a degenerate mag-
netic semiconductor because the Fermi energy of con-
duction electrons is too low. This means that magnetic
structures forbidden in the Heisenberg model may, in
principle, be realized in degenerate magnetic semicon-
ductors.

Magnetic semiconductors also exhibit other unique
properties. For example, a record value of the Faraday
rotation of the plane of polarization of light
(~3 χ 10" deg/cm) is a property of a ferromagnetic
semiconductor and the Faraday figure of merit is then
five orders of magnitude higher than for ferromagnetic
metals, t101·102]

We shall make a systematic analysis of the main ex-
perimental data on ferromagnetic and antiferromagnetic
semiconductors and we shall present the main ideas and

results of the theory of such semiconductors. This
theory is formulated in terms of the s-d model of S. V.
Vonsovsku, in which all electrons in a crystal are
separated into mobile s electrons and localized d elec-
trons. In rare-earth compounds, the d electrons are
understood to be the electrons in the partly filled f
shells. We shall use a system of units in which tem-
perature and magnetic field have the dimensions of
energy (kT — Τ, 2μΒΗ — Η, Κ = 1).

2. GENERAL INFORMATION ON
MAGNETIC SEMICONDUCTORS

a) Magnetic Properties (Experimental Results)

1. Ferromagnetic semiconductors fTable I). The most
interesting among europium compounds are the cubic
EuO and EuS crystals with NaCl-type structure. The
Eu2* ions are in the ^S7/2 state and the orbital electron
momentum is zero (L = 0, S = J = 7/2). For this reason
and because of their weak anisotropy, these crystals are
almost ideal Heisenberg ferromagnets. (According
to [214>21S3( the anisotropy field in EuO is 190 Oe and that
in EuS is less than 30 Oe.) The exchange is important
only within the first two coordination spheres (number
of neighbors zi = 12, z2 = 6, respectively). The exchange
integrals Ij. and I2 of EuO are 0.63°K and -0.07°K and
those of EuS are 0.20°K and -0.08°K, respectively, t 8 ' 9 ^ 2 '
The anisotropy constants of EuO are given in^37·1. Very
valuable information on phase transitions in Heisenberg
ferromagnets is obtained from measurements of the
critical indices of these materials. According t o t 3 4 ] ,
the spontaneous moment of EuO near the Curie point T c

is proportional to (Tc - T)0"33. The magnetic suscepti-
bility of EuO above Tc is L35>363 proportional to
(T - Tc)'1·3 0, whereas, according to c ' i e : i , it is propor-
tional to Τ (Τ -Tc)"1·4.

TABLE I. Ferromagnetic semiconductors (T c is the Curie point, (
is the paramagnetic Curie point, Mo is the moment of a unit cell)

Material

CrBr,

EuO
EuS
EuB,

Eu,P,

EujAs·
Eu,SiO4

EuSiO4

EusSiO5

GdN

CdCr,34

CdCr,Se4

HgCr,Se4

CuCrTiS4

CuCr,Se3Br
CuCraTejI
Dy (OH),

Ho (OH),

(CHaNHs),CuCl,

Crystal structure

Trigonal symmetry with
vacancies

NaCl, 0 = 5.141 A
NaCl, o = 5.968 A

—

Ba,Pa structure,

a-!».026A
Ditto, a = 9.225 A
MonocHnic
(fenoelaitic)

Monoclink orthorhombic,
Τ < 165°K

NaCl

Spinel, α =10.244 A

» , » = 10.755 A
» , α = 10.753 A
,
> ', «=10.416 A
» , a=H.125 A

Symmetry group C311 with
c= 3.56 A and a = 6.26 A
axes

Csk, c = 3,53 A,
0 = 6,24 A

Ferovskite

37

66.8
16.3
8

25
18

5.4

7
9

72

84.5—97
-130—142

106—120
4.4

274
294

3.5

2.5
8.9

θ, ·κ

- 3 7

76
19
4

33
23

7
9

69

135—156
190—210
192—200

0—25
345

4.4

4.2

Μ0,μΒ

3.85

6.8
6.87

—

6.8 1
7.03/

7
7

6,6

5.15—5.55
5.4—6
5.4—5.64

5.25
4.10

1

9

Ref-
erence

10

β. 11

e
18, 1»,
S3, 24

36-BS

27
27, 30

6

9

25

25

31-33

2)These values are taken from I6·3*·9*] and are defined so that they rep-
resent half the exchange integral in JCM of Eq. (2.1).
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Another important group of ferromagnetic semicon-
ductors are chalcogenide chromium spinels. They have
more complex structures than EuO or EuS and, there-
fore, they are less suitable for checking physical theor-
ies. However, they have much higher values of T c (in
the case of CuG^TeJ, the Curie point lies in the room
temperature range), which is very valuable from the
point of view of practical applications.

There are also strongly anisotropic ferromagnetic
semiconductors in which the ferromagnetic order is
completely or partly due to the spin dipole-dipole inter-
action and the examples are Dy(OH)3 and Ho(OH)3.
According t o [ 3 3 : l , in the direct vicinity of T c the aniso-
tropic compound (CH3HN3)2CuCl2 behaves as a three-
dimensional strongly magnetic material but if the tem-
perature is raised by 1°K its behavior changes to that
of a two-dimensional system.

Table I includes also information on GdN and EuBe
crystals. These materials can be synthesized only in
nonstoichiometric form. Therefore, it is not clear
whether their ferromagnetism is due to indirect ex-
change via free electrons or defect electrons.

2. Antiferromagnetic semiconductors (Table II). The
number of these materials is much greater than that of
ferromagnetic semiconductors and Table II gives only
the properties of those materials which are most inter-

TABLE II. Antiferromagnetic semiconductors

Material

BuTe
EuSe

EU3O4

EuLu s 0 4

EuGd,O4

Gd,Se3

MnO

MnSb
NiO
CoO

MnTe
MnTej

LaMnOs

CuFeSa

CoCla

NiCl,

ZnCrjSt

HgCraSt

ZnCr,Se4

Crystal structure

NaCl, α = 6.598 Λ
NaCl, n = 6.195 A

Orthorhombic
Structure, a==

— 10.10. 6 -
= 12.15, c =

= 3.51 A
Ditto a = 9.49,

6=11.69. c =
= 3.65

Ditto o=10.09.
6=12.11. c =
= 3.53

Th,P4with
vacancies

NaCl

NaCl
VaCl
NaCl

Hexagonal

Face-centered
cubic

Orthorhombic
Symmetry

Tetragonal

Tpj'iOHaJlMjS-fl

Spinel

„

Type of order

MnO

Spins form ferromag-
netic chains along c
axis and moments of
neighboring chains
are antjparallel

1 to (111) ferromag-
netic plane

MnO
MnO
«[001]

J. [0001]
1 to (001) ferromag-
netic plane

Type A order with al-
ternating ferromag-
netic planes

II [001]

Ferromagnetic layers
with antiparallel
coupling

Weak ferromagnet

Helicoidal with turn
angle<>=22°at4.2°K
and»>=10°at30°K

With ψ = 42° at
4.2° Κ

9.58
4.6

5.3

7.5

4.5

β

122

173
520
291

323
80

100

825

25
50

18

60

20

Θ Ρ

—6
9

7

4

I

—10

—610

- 3 B 0
—2601

—320

—715
- 5 2 0

—500

—37
—75

18

+137
—14?

+HE

Mo,

fB

6.7

7.8

7

13.3

7.75

5.0

5.0
2.0
3.8

5.0
5.0

3.9

3.1

5.35-
5.46

Refer-
ence

1

2 - 7

1J.-H

15

IS

8, >

Μ

11

10

1·

16

16

16

16

16

9

9, 191

9 . ><*

esting in respect of their electrical and magnetic prop-
erties. Information on other antiferromagnetic semi-
conductors can be found in'-16-1.

Critical properties of antiferromagnetic semiconduc-
tors are reported in^114^1, where it is shown that the sub-
lattice magnetizations in NiO are proportional to
( T N - T)0 with β = 0.33. Crystals of EuTe and EuSe are
isoelectronic with ferromagnetic semiconductors EuO
and EuS. The former behaves as a Heisenberg antiferro-
magnet with Ix = 0.10°K and I2 = -0.21°κ,[ 3 β : ι whereas
the behavior of the latter is much more complex and it
can hardly be described in terms of the Heisenberg
model (Fig. 1).

The phase transition of EuSe from the ordered to the
disordered state at 4.6°K is of first order. Below the
Neel point T N = 4.6°K, its antiferromagnetic structure
is as follows: the spins belonging to the same plane
(ΠΙ) are parallel to one another and the sequence of the
planes is of the tH» type . i z l Below 2.8°K, EuSe changes
suddenly to the ferrimagnetic state, '-3'4-1 which is re-
garded in'-3'4-' as consisting of two phases, one of which
is antiferromagnetic of the MnO type and the other is
magnetic of the tt»ttt type. Therefore, the resultant mo-
ment of the Eu* ion is not 7 μο but 1.68 μ Β ( μ Β is the
Bohr magneton). In the range 2.8°K < Τ < 4.6°K, a weak
magnetic field transforms the antiferromagnetic order
to the ferrimagnetic arrangement. In fields of about
2000 Oe, the ferrimagnetic state changes suddenly to the
ferromagnetic.'-5'6-' Below 1.8°K, a second antiferro-
magnetic phase is observed.[7^

Neutron-diffraction data, '-3> ^ which are used as the
basis for regarding the ferrimagnetic state of EuSe as
consisting of two phases, may also correspond to a canted
antiferromagnetic order. In an isotropic crystal of EuSe,
this order cannot be due to the relativistic effect (the
weak DzyaloshinskiF-Moriya ferromagnetism is impossi-
ble). However, if the structure of the magnetic Hamil-
tonian is such that the terms of higher orders in spin
(biquadratic, etc.) are comparable with the Heisenberg
component, a canted antiferromagnetic order is possible
even in isotropic crystals. [ 3 9 > 4 ο : ! This situation is possi-
ble, for example, if superexchange is comparable with
direct exchange between magnetic atoms. The magnetic
anisotropy of EuSe is very weak (~ 100 Oe)[ 9 : I and can
hardly influence significantly the magnetic order.

Crystalline EU3O4 is also metamagnetic. C12"l*3 β is
strongly anisotropic and, in some respects, may be r e -
garded as quasi-one-dimensional. The Eu2+ ions in a
unit cell are located along the c axis, forming spin chains
oriented in the same direction. Neighboring spin chains
are antiparallel. A field of « 2 kOe applied along the c
axis orients all the chains parallel to one another.
Similar behavior is exhibited by crystals of EULU2O4 and
EuGdzO*.111511

Change in
\S anisotropy constant

Ferromagnet
2.0

1.0

/ 3 5 T,°K

FIG. I. Phase diagram of EuSe.
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Layered magnetic materials CoCl2 and NiCl2 are also
of interest. Introduction of graphite between the layers
of magnetic atoms makes them two-dimensional
Heisenberg ferromagnets. i a l Chromium spinel HgCruS*
is metamagnetic at Τ < 25°K.IX1 Spinels H g C r ^ a n d
Z n C r ^ a r e helicoidally ordered.

b) Model of a Magnetic Semiconductor

In the ground state of a magnetic semiconductor, all
the outer shells of the anions are filled, outer shells of
the cations are empty, and inner d and f shells of cations
are only partly filled but their electrons cannot partici-
pate in charge transport processes because a strong
correlation between them localized each d or f electron
at its own ion. (Localization of the donor electrons is
quite different: they move from atom to atom in the
vicinity of a defect.) The conduction band is due to the
hybridization of partly filled and completely empty states
in the cation shells. Similarly, the valence band results
from the hybridization of the d and f shells of the cations
and the outer shells of the anions.

The Vonsovskif s-d model '-42·1 is very useful in a
description of magnetic semiconductors. In this model,
all the electrons are divided into mobile f's electrons"),
which include also the donor electrons, and localized
("d electrons" whose role in rare-earth compounds is
played by the f electrons):

where a ^ and ag c r are the operators of the creation and

annihilation, at a cation g, of an s electron with a spin
projection σ; S g and β are the spin operators of d elec-
trons of an atom g and of an s electron, respectively;
Δ is a vector joining the nearest neighbors. The spins
of all the cations are equal to S.

This model can be generalized to include the orbital
degeneracy of collective-state (often called itinerant)
electrons, "nonfrozen" momentum of d electrons,c"^
presence of carriers of two signs, etc. However (and
this point is very important), it remains valid even when
the wave function of a carrier is constructed from states
of the same type as localized electrons (an electron
moves between d levels). In principle, in this case it is
more consistent to use the Hubbard model, [ e : i in which
there is no separation into localized and collective-state
electrons but allowance is made for the Coulomb repul-
sion between electrons attached to the same atom. How-
ever, we can rigorously demonstrate that, in the limit of
very strong repulsion, the Hubbard model is equivalent
to the special case of the s-d model (A < 0, S = 1/2). r t s l

Unless stated otherwise, the cation lattice is assumed
to be simple cubic with a constant period a (g = anx, any,
anz, where n̂  = 0, ± 1, . ..). We shall now consider the
orders of magnitude of the quantities in the Hamiltonian
(2.1). In the nearest-neighbor approximation (the number
of such neighbors is z), the magnetic ordering energy is
zIS2. It is of the order of ΙΟ^-ΙΟ"1 eV, i.e., it is small
compared with the energy of the s-d exchange AS and
with the width of the conduction band W = 2z |B |. The
latter two quantities may have a great variety of relative
values. If the conduction band consists of the d states
(for example, in the case of chromium spinels, this is
supported by the low mobility of electrons ^ l c 7 ^), we
usually have AS ~ 1-10 eV, W ~ 0.1-1 eV, t 5 4 ; \ i.e.,

AS > W , However, in some materials such as Eu chal-
cogenides, in which the effective mass of a carrier m*
is of the order of the free-electron mass, we have
W ~ z/m*a2 ~ 5-10 eV, AS ~ 0.5 eV, i.e., W » AS.

Calculations aimed to determine the parameters of
the Hamiltonian (2.1) are reported in several papers.
An attempt is made i h C e * ' e e ' m : i to develop a theory of
superexchange in Eu chalcogenides which would explain
why some of these isoelectronic compounds are ferro-
magnets and others antiferromagnets. A theoretical
study of the magnetic anisotropy is made in l-s e·' and a
calculation of the energy band structure of these mater-
ials is given in1"1.

In addition to the interaction with localized moments,
carriers may interact strongly with optical phonons in a
magnetic semiconductor. Under normal conditions, the
latter is much weaker than the former. Moreover,
polaron effects can occur in magnetic and nonmagnetic
semiconductors and, therefore, it is not possible to ex-
plain the special properties of magnetic semiconductors
by the polaron theory (with the exception of small-
radius polarons discussed in Chap. 3).

c) Effective Hamiltonian of a System with
Narrow Conduction Bands

Zener'•e8-1 shows that in crystals in which magnetic
atoms Μ are in various spin states Mn+ and M ( n - 1 ) + ,
a specific exchange interaction may occur between them
due to the transfer of an electron from M ( n ~ * ' + to M n +

and back again (double exchange). Such transitions are
performed by electrons in localized states, i.e., when a
crystal as a whole behaves as an insulator. The energy
spectrum of a system composed of two identical mag-
netic atoms and an electron, which can be transferred
between the atoms, is found in1-69-1. It is assumed there
that |B| «C |A|S and I = 0 in the Hamiltonian of Eq. (2.1).

In the present section, we shall give the solution of
the problem of the motion of conduction electrons in a
crystal with a narrow (W <SC |A|S) band.C7C~73'7e:i This
problem differs from that considered inc because an
electron now undergoes transitions between any number
(which can be large) of atoms, which interact with each
other also by exchange forces of different origin (1^0).
Its solution cannot be obtained by direct generalization
of the results in^69·1 because, in the latter case, heavy
use is made of the conservation of the total spin of a
system composed of two atoms and an electron, whereas
the spin for any pair of atoms in a system composed of
many atoms is not conserved because of the interaction
with other atoms.

The physical situation is as follows. In the zeroth ap-
proximation with respect to W/AS, we can simplify
Hamiltonian jf of Eq. (2.1) by dropping the term jfB,
which describes electron transitions from atom to atom.
This means that each s electron is attached to a specific
atom g and because of the s-d exchange its spin is com-
bined with the spin of this atom Sg into a spin S^, which
is S + 1/2 for A > 0 and S - 1/2 for A < 0. This gives
the full energy gain of the s-d exchange, which is denoted
by E A and which is -AS/2 for A > 0 and A(S + l)/2 for
A < 0 (s-d shift).

If the term jfg is included, transitions of electrons
from atom to atom are possible. Loss of the energy of
the s-d exchange as a result of electron transitions is
avoided if the electron spin rotates during the transition
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so that for A > 0 it becomes parallel (and for A < 0 anti-
parallel) to the spin of the atom which accepts it. Thus,
the motion of an electron in a crystal is equivalent to the
motion of an "improper" spin Sj- = S ± 1/2. A quasipar-
ticle with this spin is, in a sense, similar to a small-
radius polaron and, therefore, it has been suggested'-70-'
that it be called a spin polaron (see Sec. b in Chap. 3).3 )

A general approach to the problem, valid for any value
of S, is developed in'-70"72-1. It is easiest to describe the
motion of a spin polaron when the spins of magnetic
atoms can be regarded as classical vectors (2S ^S> 1)
whose direction does not change as a result of electron
transitions. Each atom g is given a local coordinate sys-
tem with the axis z g directed along the spin of this atom
S g . Then, in the first approximation with respect to
W/AS, the Hamiltonian (2.1) can be expressed in the
nearest-neighbor approximation p2-1

= -AS 2

Λ = arete {co

lapgc, + Β 2exp (2σ,ίγ«+Λ) cos ( ^ψ

) Ι β ( * = ^ ) [c '} ; (2.2)

here, the polar angle 0 g and the "longitude" φ~ define the

direction of the z g axis in the general coordinate system;
Θσσ + Α i s t h e a n S l e o f rotation of the spin on transition
between atoms, which, in this case, is equal to the angle
between the spins Sg and S g + Δ , but the structure of the

second term in Eq. (2.2) remains unchanged if these
angles are not equal. If σ/ = 1/2, the electron spin is
parallel and, if σ; = —1/2, it is antiparallel to the spin of
each magnetic atom encountered by an electron in its
transitions.

The structure of the Hamiltonian (2.2) has a simple
physical meaning. The first term represents the s-d
shift which is always maximal, irrespective of the orien-
tation of the atomic spins. It governs the effective integ-
ral of the transfer between two atoms (the coefficient in
front of agCT,ag + A C r,. It is maximal for parallel spins of

the atoms and vanishes for antiparallel spins. This fol-
lows because, in accordance with the structure of jfg in
Eq. (2.1), the transfer of an electron from atom to atom
occurs subject to conservation of the spin projection σ
(in the general coordinate system). Thus, if A > 0, the
electron spin is parallel to the spin of the atom at which
it is located. Ii the spin of the neighboring atom is direc-
ted in the same way, the electron reaching this atom still
has the previous energetically favorable orientation rela-
tive to the spin of this atom. However, if the spin of the
neighboring atom is opposite, the electron spin after
transfer would be antiparallel to the atomic spin, which
is forbidden in the approximation adopted here.

In the quantum treatment of spins, the structure of the
Hamiltonian becomes much more complex. We shall
reproduce the results from1-70"72-1 only in the two limits
when the order in a crystal is close to ferromagnetic or
antiferromagnetic.

A correct description of the interaction of carriers
with the magnetic subsystem in such a case can be ob-

3)One example is CdCr2Se4, in which the appearance of an electron in
the conduction band corresponds to the replacement of one of the
regular Cr** ions with Cr2+. In view of the translational invariance of
the crystal, an electron migrates from one Cr ion to another in such
a way that Cr2*" seems to move along the crystal. An erroneous view
is sometimes held that transition of a Cr3* ion to the Cr2+ state rep-
resents the capture of an electron by a local level.

tained only if allowance is made for the participation of
the carrier spins in this subsystem. As mentioned
earlier, a charge carrier is equivalent to an "improper"
spin S ± 1/2 moving across a crystal. Therefore, the
magnetic order is specific in the sense that it is real-
ized in a system of atoms with variable magnitudes of
spins.

The ideal ferromagnetic order is the one for which
the total moment of the system has its maximum value.
Qualitatively, this means that the spins of all the atoms
are directed in the same way irrespective of whether
they carry conduction electrons or not. The transfer of
electrons from atom to atom simply changes the length
of the spin vectors but not their direction.

The presence of a magnon in such a system means
that a wave of spin deviations moves across a crystal
and this happens against a background of the motion of
"improper" spins S ± 1/2. We shall introduce an opera-
tor b* describing the creation of a magnon in an atom g
and we shall define it as the operator which changes the
spin projection of an atom from its maximum possible
value to one which is smaller by unity; we shall also
introduce an operator b g describing the annihilation of a
magnon and we shall define it as the conjugate of the
creation operator; we shall assume that both operators
obey the Bose relationships. This definition is invariant
relative to the spin of an atom and it can be used also for
variable spins. Since the Hamiltonian (2.1) conserves
the projection sip of the total moment of the system Sip
(including the moment of the spins of conduction elec-
trons), the same properties should be exhibited also by
the total number of magnons because it is equal to
S'p — S^. Therefore, the magnon operators may occur in
the Hamiltonian of the system only as even-power terms.
Moreover, it is clear that since the total energy gain in
the s-d exchange is obtained for any orientation of the
spins Sj.g, the magnon operators cannot occur in the term
proportional to the s-d exchange integral. This is suffi-
cient to establish the general structure of the effective
Hamiltonian of the system in the spin-wave region em-
ploying the approximation which is of the first order in
W/AS:

= SSM~~- 2 «|as + B 2 a>e+»

+ B Σ [ i f f r - (* - VTSTT) (b*b*+«£+

~MM+^-{ψ^ 2 *·.=*+-zrfi Σ «$«*+*
+ -2ΪΤΓ Σ [b'e^be-

) ] «|«S+A

μ > 0 ) , (2.3)

(2.4)

Here, a* and a^ are the operators describing the crea-
tion and annihilation of spin polarons in an atom g, and
these operators obey approximately the Fermi commu-
tation relationships. The spin-dependent coefficients are
found as described in C 7 0 " 7 2 \ The change in the Hamil-
tonian jfM due to "improper" spins is ignored in Eqs.
(2.3) and (2.4) because of the inequality z B ! < W. The
results represented by Eqs. (2.3) and (2.4) were con-
firmed i n ' 8 0 ' " 3 .

In the antiferromagnetic case, the creation of a mag-
non represents the deviation of a spin from the direction
of the sublattice moment. Since the sublattice moments
are antiparallel, the projection of the total moment of
the system cannot be expressed in terms of the total
number of magnons and, therefore, it is not an integral
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of motion. The term free of the magnon operators drops
out in this case because, in accordance with Eq. (2.2),
electron transitions without a change in the spin direc-
tion are forbidden for 0 g g + Δ = π and the expansion of the
effective Hamiltonian in terms of magnons begins directly
from linear terms 1-T6-!

(2.5)

(2.6)

where, for a simple cubic lattice, the relevant vector is
ν = (ττ/a, jr/a, ττ/a). The presence of terms linear in
respect of magnons in Eqs. (2.5) and (2.6) is explained
qualitatively in See. b of Chap. 4.

De Gennes[74-1 suggested earlier a Hamiltonian for a
magnetic semiconductor which agrees with Eq. (2.2) if
we assume y = 0 for all such terms. It follows that
the de Gennes Hamiltonian is valid only at Τ = 0. It is
clear from Eqs. (2.5) and (2.6) that the error in the
Hamiltonian (2.2) for 0 g g + A = π is, if the spin rotation
is allowed for, 1//2S + 1 and not the error in the classical
approximation 1/2S. It follows that the presence of a
magnon itiJin atom represents rotation of the atomic spin
by an angle ~ 1/2S. The terms in the Hamiltonian pro-
portional to the number of magnons in an atom, i.e.,
b*b, are consequently of the order of 1/2S [see, for ex-
ample, Eqs. (2.3) and (2.4)]. However, the Hamiltonians
(2.5) and (2.6) are not quadratic but linear in terms of
the magnon operators and, therefore, the coefficients in
front of these linear terms are ~l/V2~S in the limit
S — °°. If for real values of the spins the inequality
1/2S <C 1 is still satisfied, we in practice have
1/V2S + 1 ~ 1. Therefore, the application of Eq. (2.2) to
antiferromagnets may result in serious errors.

3. NONDEGENERATE FERROMAGNETIC
SEMICONDUCTORS

a) Optical, Electrical, and Photoelectric Properties

Ferromagnetic semiconductors have very special
electrical and optical properties due to the presence of
spontaneous magnetization. These properties include
particularly the giant shift of the fundamental absorption
edge E g , which occurs when the temperature is lowered
and which begins before the appearance of the spontan-
eous polarization. All ferromagnetic semiconductors,
with the exception of CdCr^t, exhibit a shift in the red
direction amounting to several tenths of an electron volt
when the temperature is altered by Iff—100°K, i.e., the
rate of this shift is one or two orders of magnitude
faster than in ordinary semiconductors (see, for ex-
ample/ 6 ' 9 ' 1 2 5 3 ) .

The application of a magnetic field Η reduces the shift
near T c but this has little influence on the position of the
edge in the limit Τ — 0. Figure 2 shows the dependence
of the absorption edge of EuS on Τ and H.1-6-1 The shift
for EuO reaches 0.25 eV, reducing the gap by 25%. t 8 5 3

The effect is strongest in HgCrzSe* (Fig. 3) whose gap
decreases by a factor of three.C 8 6 : l

The red shift is proportional to the change in the mag-
netization only at temperatures Τ much lower than T c .
It occurs also at Τ > T c and the total shift in the para-
magnetic region is of the same order as in the ferro-

FIG. 2. Temperature dependences
of the position of the'absorption
edge Eg of EuS and EuSe.
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magnetic state. The energies of the absorption edge at
Τ » T c of some ferromagnetic semiconductors are as
follows: 1.1 eV for EuO, 1.65 eV for EuS;C 6 ] 1.57 eV for
CdCr2S4, 1.32 eV for CdCr2Se4, and 0.84 eV for
HgCr2Se4.C l 2 6 : i

The Faraday rotation of the plane of polarization in a
ferromagnetic semiconductor reaches higher values than
in ferromagnetic metals and the Faraday figure of merit
(rotation per unit attenuation of the light intensity) of
ferromagnetic semiconductors is five orders of magni-
tude greater than the corresponding figure of metals.
The Faraday rotation in EuO near 0.61 μ is 8.5
χ 105 deg/cm.t i o o : !. The rotation in EuS reaches a record
value (Fig. 4): at 8°K in a field 11.5 kOe it is 1.1
χ 10e deg/cm and 1.5 χ 106 deg/cm for peaks near 2.1 eV
and 4.3 eV, respectively. Extrapolation of these values
to the total saturation of the magnetic moment gives
2 χ 106 deg/cm and 2.7 χ 106 deg/cm. t 1 0 l ' 1 0 O

Electrical properties of pure crystals have not been
investigated thoroughly and the results obtained are
sometimes contradictory. Thus, according to1-103'104-1,
the conductivity of pure EuO crystals at 300°K is

10~8 Ω " 1 · cm"1 and its activation energy is 0.60 eV.
^1 0 5 3However, according to^ 1 0 5 3 , the activation energy varies

from 0.55 to 1.1 eV, depending on the purity of the sam-

15
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ε?
<S-5

3 5 h

FIG. 4. Faraday rotation in EuS.
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pie. Shallow donor levels are characteristic of EuO: the
Gd impurity gives rise to levels of 0.017 eV depth
(at Τ > T c ) . " l l 2 : l The levels of anion vacancies in EuO
are considerably lower. Shallow levels are due to the
high permittivity e0 of EuO (23.9 eV). ί 1 Ώ ΐ The levels in
EuS are deeper because e0 is 13.2 eV·1-124·1

Moderately doped paramagnetic semiconductors are
characterized by a nonmonotonic dependence of the elec-
trical resistivity ρ on the temperature T, shown in Fig.
5a for η-type Cdo.99lno.oiCr2Se4.'

:i07-1 Similar results are
reported also for EuO and EuS with moderately high
donor concentrations'1109"112^ (see Fig. 18 in Chap. 6).

It is clear from Fig. 5a that the normal Hall coeffi-
cient Ro can behave in the same way as the resistivity ρ
but the thermoelectric power exhibits anomalies in the
vicinity of T c . The Hall mobility of electrons μ Η = RoP"1

is low, between 0.1 and 10 cm 2 · V"1· sec"1, which shows
that the electron band is narrow.

It is established in C l l 3 : l that the behavior of holes in
p-type CdCr2Se4 differs very greatly from the behavior
of electrons in η-type CdCr2Se4. The hole mobility is
much higher than the electron mobility: in the region of
160°K, the hole mobility reaches 200 cm 2 · V"1· sec"1. In
contrast to η-type crystals, the resistivity of p-type
crystals does not pass through a maximum near T c but
falls monotonically with rising temperature (similarly,
no peak is exhibited near T c by p-type EuO crystals
annealed in an oxygen atmosphere). [ 1 0 9 ] Moreover,
η-type crystals exhibit a very high negative transverse
magnetoresistance (near T c a field of 10 kG changes the
resistance by an order of magnitude), whereas the trans-
verse magnetoresistance of p-type crystals is 2—3
orders of magnitude lower and it is negative below T c

but positive above this temperature. According
to t118^1, the longitudinal magnetoresistance of p-type
crystals behaves quite differently at Τ < T c than the
transverse effect: in very weak electric fields, it is
negative but it rises with the electric field in the range
from 30 to 300 v/cm and becomes positive (Fig. 5b). It
depends on the orientation of the fields relative to the
crystallographic axes of a sample. Above T c = 130° K,
the effect disappears (it vanishes actually at 135°K), i.e.,
it is clearly due to the long-range magnetic order. The
positive magnetoresistance may possibly be accounted
by an enhancement of spin waves by the holes heated in
the electric field.[ 1 1 8 ]

All these data indicate that the interaction of holes
with the spins of magnetic atoms is much weaker than

10 r

«,-ZOO
3.-400
% -№
if-βΟΟ

x-aoon
r=too °κ,βο-δ

H'5 kOe

/tHEzOBi1]

HlEz

t, V/cm

the interaction of electrons and it is clearly not the
dominant mechanism of the hole scattering at Τ ^ T c .
Holes in CdCr2Se4move mainly between nonmagnetic
atoms, whereas electrons move between magnetic atoms.
As pointed out in^113^, the negative magnetoresistance of
η-type CdCr2Se4 is not only due to an increase in the
order as a result of application of this field but also due
to a downward shift of the bottom of the conduction band.

It should be pointed out that it is difficult to interpret
the Hall effect data for ferromagnetic semiconductors
because of the need to separate the normal and anomal-
ous Hall effects. This is done in^1 1 3'1 2 0^ on the assump-
tion that the relevant constants are independent of the
magnetic field. However, it is shown in[ 1 1 33 that, in the
case of η-type CdCr2Se4, this procedure is invalid due
to the strong nonlinear field dependence of the effect. It
is assumed ίη[119-121-122] that the anomalous Hall effect
in EuO and EuS is negligible. This assumption seems to
be justified because it is confirmed by direct experi-
mental measurements at Τ <S T o , when the anomalous
Hall effect should be highest. C"^

Many ferromagnetic semiconductors are also photo-
conducting and this can be used in obtaining the informa-
tion on the conductivity of pure crystals at low tempera-
tures when direct measurements cannot be made. The
photosensitivity curve is generally different from the
absorption curve. The absorption edge of EuS corre-
sponds to the frequency at which the photosensitivity
falls to half its maximum value. The shape of the photo-
sensitivity curve depends weakly on temperature but its
maximum shifts with temperature in accordance with
the same law as the absorption edge. [ 6 ] The maximum
sensitivity rises with the field Η and the effect increases
in strength on approach to T c . Different types of tem-
perature dependence of the maximum sensitivity have
been reported by various authors probably because of the
different amounts of imperfections in the crystals em-
ployed. For the sake of comparison, the temperature
dependences of the photosensitivity of EuO and EuS taken
from Μ are plotted in Fig. 6 and the dependences taken
from C131"1313 a r e plotted in Fig. 7.

There are no noticeable minima in the photoconduc-
tivity near T c in Fig. 7, whereas the minimum for EuS
in Fig. 6 is deep. This is due to the use of higher quality
EuS crystals in^ 1 3 1 ^ An investigation of the Hall effect
of photoconducting EuO1-134-1 has shown that the carriers
are electrons. Figure 8 shows the magnetic-field de-
pendences of the photoelectron mobility UJJ in EuO.'-134-'

The photoconductivity is also exhibited by
CdCr2Se4

c l 3 5" 1 4 0 : l and, in contrast to EuO and EuS, an
additional maximum is observed in the photosensitivity

F 103 -

FIG. 6. Temperature de-
pendences of the photocon-
ductivity of EuO, EuS, EuSe,
and EuTe. [6]

FIG. 5. Temperature dependences of the resistivity, thermoelectric
power, and Hall coefficient of η-type CdCr2Se4 (a) and field dependence
of the magneto-resistance of p-type CdCr2Se4 (b).

100 ZOO 300
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FIG. 7. Temperature dependences of the photoconductivity of EuO
andEuS. [131Μ34]
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curve below Tc (Fig. 9a).4> According to[ 1 3 8 : i , the photo-
conductivity of pure crystals is weak and it rises strongly
on introduction of 1% Ga. Near Tc, the photoconductivity
passes through a deep minimum (Fig. 9b). The phot ο-
magnetoresistance of CdCr2Se4 is positivet232] with a
maximum at Tc.

b) Spectrum of Carriers in Ferromagnetic
Semiconductors with Narrow Bands

In this and the next section, we shall consider the en-
ergy spectrum of free carriers in a ferromagnetic
semiconductor with the aim of explaining the principal
relationships governing the red shift. It is convenient to
begin this discussion from the case of narrow bands
W Ĉ AS, which is known to apply to chromium spinels.
It is clear from Eqs. (2.3) and (2.4) that, if A < 0, the
interaction with spins of magnetic atoms appears even at
Τ = 0, when there are as yet no magnons: it reduces by
a factor of 1 + 1/2S the effective Bloch integral and,
consequently, the width of the energy band of carriers,
which is inversely proportional to the effective mass.
This result is obtained in'-70-1 and its confirmation can
be found in'-77'78-'; it resembles the increase in the mass
of carriers in polar crystals due to the electron—elec-
tron interaction. Physically, it is due to the fact that the
state with the maximum projection of the total spin of an
atom g and an electron carried by this atom, St = S - 1/2,
is the superposition of two states: S| = S, σ = —1/2 and
S~ = S — 1, σ = 1/2. However, if σ = l/2, an electron

cannot be transferred to a neighboring atom with a spin
projection S| + Δ = S because the spins of the atom g + Δ
and of the electron carried by it would be parallel to one
another and their total spin would be S + l/2. Therefore,
electron transitions occur only when the projection of
the electron spin assumes the value σ = —1/2. Conse-

4)The author is grateful to V. G. Veselago for supplying this figure.

FIG. 9. Spectral dependences of the photoconductivity and photo-
ferromagnetic effect (PFME) in CdCr2Se4 (a) and photoresponse of
CdCr2Se4 plotted as a function of the incident light power Ρ and tem-
perature (b).

quently, the lifetime τ of an electron in an atom increases
and the band width decreases proportionally to τ"1. If
A > 0, an electron has a fixed spin projection σ = 1/2
and transitions are always possible, i.e., there is no re-
normalization of the spectrum at Τ = 0.

This problem was considered earlier in[79-1 for A < 0;
however, because of incorrect allowance for the s-d ex-
change, the results reported there are incorrect: it is
predicted that the s-d shift does not reach A(S + l)/2
and the width of the carrier band is exponentially small.
Thus, the energy of the ground state obtained in'-79-' is
considerably higher than that given by Eq. (2.4) and this
shows that the results in t T 9 ] are inaccurate.

The influence of temperature on the carrier spectrum
can readily be found from Eqs. (2.3) and (2.4) in the first
order of the perturbation theory in respect of the param-
eter 1/2S, which is assumed to be small. The tempera-
ture-dependent electron energy Ek (k is the crystal mo-
mentum) is given by the expression (s-d shift is omitted):

Ek---zByk, B = B[l+25F2(V9-l)m,(a°)],

where mq is the magnon distribution function. It is clear
from the system (3.1) that, when Τ increases, the effec-
tive Bloch integral decreases, i.e., the bottom of the
spin-polaron band shifts upward. At Τ = J, this shift is
proportional to T5/2, i.e., it is weaker than the change in
the magnetization.

At higher temperatures in the range J <ίΙ Τ <C JS, the
shift is proportional to T, i.e., to the change in the mag-
netization in this temperature range. At temperatures
T c and higher, only approximate characteristics of the
electron spectrum such as the electron density moments
can be found.'-72-1 It follows from the analysis of these
characteristics that the shape of the electron band does
not change greatly even for 2S 3> 1. The second moment
near T c is 1.22 times smaller and in the limit Τ — « it
is 1.42 times smaller than at Τ = 0. If we assume that
the shift of the fundamental absorption edge depends
similarly on temperature, it then follows that this shift
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should be governed by the correlation of the nearest
neighbors and its total value in the range Τ 3> T c should
be ~ 60% of the shift between 0 and T c (the experimental
value is even greater—Fig. 3).

The coherent-potential method is used inC 7 8 : l to show
that, if A < 0, the width of the carrier band in the limit
Τ — °° is VS + 1/V2S + 1 times smaller than 2z|B| so that
for S 3> 1 the result reduces to the second moment

c) Spectrum of Carriers in Ferromagnetic
Semiconductors with Wide Bands

In the W > AS case (for example, EuO or EuS), it
must be noted that the electron energy is not an analytic
function of AS/w. [ 8 9 ' 9 0 ] We can readily show that the
expression Ε^σ = E^ — AScr (S is the average magnetiza-
tion per atom), obtained from Eq. (2.1) in the first ap-
proximation with respect to AS/W, is invalid if the
direction of the local moment varies slowly in space.
For example, in a helicoid with a vector q, the energy of
an electron of momentum k found by a classical analysis
of spins (2S 3> 1) is given by the exact expression: '-92-1

polarized at Τ = 0, the transformed Hamiltonian corre-
sponding to A > 0 becomes

<^= 2 {E"~ΤΓ") 0*VM + 2 # , + 2 CA,raUta*_r,hJVr. .3 3

(this expression was obtained even earlier for q = JJ
in t 2 1 8 ] ) . We shall consider this energy in the limit
W » AS. Clearly, for k — 0 and q < q0

= V2m*AS~(l/m* = 2|B|a2), the s-d exchange energy gain
is — |A|S/2, i.e., it is equal to the gain obtained in a
ferromagnet although we now have 13 = 0. The physical
reason for this is that, if q <iC q0, the electron spin fol-
lows adiabatically the direction of the local magnetic
moment and becomes aligned with this moment so that
the full gain in the energy of the s-d exchange is achieved
at all points in a crystal. If the projection of the electron
spin were to remain constant, a helicoidal structure
would have been "seen" by an electron as a periodic
alternation of potential humps and wells and, in the case
of sufficiently large values of AS and small values of q,
an electron might be captured in one of the wells. How-
ever, if the spin is aligned with the local magnetic mo-
ment, an electron moves freely in a crystal: at each
point, the s-d interaction potential corresponds to the
bottom of the potential well. Thus, if q <S q0, an elec-
tron is indeed in a spin-polaron state. If q ^>qo, its
spin is no longer able to follow the magnetic moment
and the s-d shift vanishes in the first order with respect
to AS/W. Clearly, Eq. (3.2) cannot be applied to a ferro-
magnetic semiconductor but it helps us to understand
better the results obtained below.

In the spin-wave region, we find that, as in the case
of spin polarons, a correct description of the electron-
magnon interaction is obtained by introducing "proper"
magnons allowing for the participation of the spin of a
conduction electron in fluctuations of the total moment
of the system. As in Eqs. (2.3) and (2.4), the electron-
magnon Hamiltonian may be quadratic in respect of the
operators of the "proper" magnons because of conser-
vation of their number. Such a Hamiltonian can be ob-
tained for 2S > l a s follows: the Holstein-Primakoff
transformation of the spin operators to the magnon form
is followed by the canonical transformation in the
Hamiltonian (2.1), which removes, in the first order
with respect to 1/2S, the terms which are linear for
magnons.[ 8 9 > 9 2^ ΐ η the most interesting case of a ferro-
magnetic semiconductor, when all electrons are spin-

[at Τ φ 0, the transformed operators a£ t and a^, in Eq.
(3.3) correspond to a state in which the spin is parallel
to the moment of a crystal only in zeroth order with
respect to 1/2S].

In the first order with respect to CJ^-J, ~ 1/2S, we find
that Eq. (3.3) yields an expression for E^, which is
identical with Eq. (3.1) if Τ <SC-To = Jqoa2, i.e., the energy
shift is proportional to T5 / 2. This means that up to To,
when only magnons with q Ĉ q0 are important and the
moment varies slowly in space, an electron is in a spin-
polaron state. In the range Τ 2> To, the expression for
the electron energy obtained from Eq. (3.3) in the first
order with respect to C^qr can be conveniently repre-
sented in the form

Ek\ = Eh s ; (3.4)

The last term in Eq. (3.4) allows for the "cutoff" of the
interaction between electrons and long-wavelength mag-
nons. At temperatures Τ <ί Tc/S, this term is of the
order of ASVAS7WT/TC, i.e., in the main order with
respect to VAS/W it_can be ignored; then, the s-d shift
in this range is —AS/2 and this result can be obtained
formally from Eq. (2,1) using the perturbation theory in
the first order in H^. It corresponds to an electron state
in which the spin is directed along the average moment
of the crystal. This means that, at temperatures Τ 3> To,
spin polarons dissociate in a wide-band ferromagnetic
semiconductor. However, under real conditions, the
inequality VAS/W <S 1 is poorly satisfied and the contri-
bution of the last term in Eq. (3.4) is important.

These results are in qualitative agreement with the
experiments: it is clear from Fig. 2 that, at low tem-
peratures, the absorption edge of EuS is practically
unaffected by temperature variation whereas, at_higher
temperatures, it varies, like the magnetization S,
linearly with T.

On approach to Tc, when the magnetization S de-
creases, the relative importance of the last term in Eq.
(3.4) rises, i.e., once again the long-wavelength fluctua-
tions begin to play the dominant role. The s-d shift can
be estimated by a classical analysis of the spins. '-93-1

An electron migrating from atom to atom generally
changes the direction of its spin. The angle θ by which
the spin is rotated should minimize the energy, which
consists of the translational term Ε β ~ W and of the s-d
shift E^. According to Eq. (2.2), the maximum gain in
E B , equal to -z |B | , corresponds to θ = 0. However, then
the s-d shift vanishes. On the other hand, the maximum
s-d shift is obtained if the spin of an electron at each
atom is parallel to the atomic spin. However, since the
angles between the spins of neighboring atoms are fairly
large at Τ ~ T c , this would have resulted in a consider-
able loss in Eg. Therefore, it follows from the condition
W 2&> AS that the angle θ should be sufficiently small.

This condition can be satisfied by assuming that the
spin of an electron at each atom g is directed along the
moment Μ. = Σ S.,. of a region Ω σ of radius R 2> a
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centered on the atom in question. Since regions Ω~ and

Ω . , associated with two neighboring atoms, overlap

strongly, the angle between their moments is small and
tends to zero in the limit R — °°.

On the other hand, since the correlation length κ'1

near T c is large, the average projection (Sg) of the spin

S onto the direction Μ is positive and, consequently,

the s-d shift is E A = -(A/2)(S|>. This shift decreases

with rising R because of the increase of the contribution
to Μ of those atoms which are located far from the
atom g and whose spins are correlated less strongly
with Sg. Therefore, R can be regarded as a variational
parameter.

The average energy of the s-d exchange of an elec-
tron with an atom at which it is located is given by

(Af=|Mg|), (3.5)

since the electron spin s is directed along the moment
Mg (the bar represents thermodynamic averaging).
According to Eq. (2.2), the bottom of the conduction band
is separated from its center by

Ύ ' (3.6)
(MgMg+ύ

where θ + Δ is the angle between the directions of the

neighboring moments; the phases γασ4.Α are unimpor-

tant for low values of < [93]

Spin correlation functions are described by
Ornstein-Zernicke expressions which, subject to a suit-
able selection of κ(Τ), are valid up to T c r 9 e : i

rt~a. (3.7)

We can easily see that, in the limit κ -— 0, we have

so that E A of Eq. (3.5) is proportional to lVR. The quan-
tity E~B in Eq. (3.6) is proportional to R~2 because F can
be expanded in terms of Δ/R and the results should be
even in Δ and should vanish in the limit R — «>. Mini-
mizing the energy E A ± FJ B with respect to R, we obtain
the following estimate for the energy gain due to the s-d
exchange:

&Esd ν -0.8 (AWbVm*)*'3 ~ - AS (ASlW)1!3. (3.8)

The numerical factor in Eq. (3.8) can be found by a
more rigorous method. ^ In this method, the Hamil-
tonian (2.1) is used and a term is separated whose
eigenfunctions are plane waves with fluctuating spin
which is aligned to the direction of the local moment.
This moment is defined as the moment of regions Ω

whose radii are selected so as to ensure minimum en-
ergy for the states under consideration. An estimate
obtained inC93-' for the damping and corrections to the
spectrum due to the rest of the Hamiltonian justifies the
use of plane waves with fluctuating spin as the zeroth-
approximation states.

An estimate of the energy gain of Eq. (3.8) for the s-d
shift can be obtained also by summing graphs of the one-
electron Green function, corresponding to k = 0 in all
orders of the perturbation theory with respect to AS/W,

which can be done in the Ornstein-Zernicke approxima-
tion in the limit κ — 0 to within a constant ~ 1. '-94-1

If AS/W is small for AS = 0.5 eV and W = 5 eV
(EuO, EuS), then (AS/W)l/3 is of the order 1. Therefore,
the s-d shift near T c is, in spite of the absence of spon-
taneous magnetization, still fairly large although the
random fluctuations reduce it by a factor ~ (AS/W)l/3

compared with a helicoidal structure in the limit q — 0
given by Eq. (3.2). In contrast to the W < AS case, the
shift is governed by the correlation of the more distant
rather than the nearest neighbors. The s-d shift de-
creases with rising temperature and in the range Τ ^> T c

it becomes ~ (AS)Vw, in agreement with the perturbation
theory developed in terms of AS/W in C 8 7 ' 9 5 ] .

According to Eq. (3.8), the shifts of the absorption
edge are of the same order of magnitude in the range
Τ < T c and Τ > T c provided (AS/w)1/3 ~ 1, which is in
agreement with the experimental results (Figs. 2 and 3).
According to the theory, C87.953 the former shift should be
W/AS times as high as the latter. It is interesting to
note that, if W <C AS, the shift of the energy may be of
the same order as for W » AS since it is governed by
the larger of the two quantities W or AS (see Sec. b).

In the case under discussion, the shift of the absorp-
tion edge is in the direction of the red wavelengths, be-
cause at temperatures Τ < Τ an electron is transferred
optically to a lower spin-split conduction subband. How-
ever, in some cases, for example, in CdCraS4, the shift
is in the blue direction. For example, if at Τ = 0 all the
d spins are directed in the same way and the absorption
is due to the transfer of a d electron to the s band, it
enters the subband with the same spin direction. How-
ever, depending on the sign of the s-d exchange integral,
this subband may be lower or higher.

d) Local Electron and Magnon Levels, and
Carrier Density

In discussing localized states of carriers, we shall
confine ourselves to the case in which the radius of an
impurity state is equal to the lattice constant. The in-
fluence of a localized electron on the magnetic order
near a donor is considered in1-115-1 using the following
model: an electron joins a central atom to ζ of its neigh-
bors forming a magnetic molecule, which can be consid-
ered separately from other atoms in a crystal and which
is described by the Hamiltonian

(3.9)

where So, SA, and s are the operators of the spin of a
defect, its neighbors, and an electron; Ao and Ai are ex-
change integrals multiplied by the probability that an
electron is residing at a given atom.

We can easily see that, if we ignore the direct ex-
change between magnetic atoms, the Hamiltonian (3.9) is
obtained from the Hamiltonian of the s-d model (2.1) in
the first order in jfj^ if the zeroth-approximation is taken
to be the Hamiltonian jf^ with an additional term des-
cribing the interaction between an electron and a defect.
Thus, the condition of the validity of the model described
by Eq. (3.9) is the smallness of the sum AoSo + zAiS
compared with the lowest excitation energy of a donor

It is shown m£116'89'9°3 t h ^ m the spin-wave range the
thermal shift of a local level is considerably less than
that of the bottom of the conduction band since a local
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ferromagnetic order in the vicinity of a donor is consid-
erably higher than the average order in a crystal. Thus,
the depth of a local level increases with rising tempera-
ture. At high temperatures, Τ 3> T c , the depth begins
to decrease again because the magnetic order in the
crystal as a whole is already destroyed and the energy
of a free carrier is independent of temperature. How-
ever, the magnetic order in the vicinity of a defect is not
yet fully destroyed.

However, in the limit τ — °° the effective depth of a
donor level Ε^(Τ) is greater than at Τ = 0. '-90-1 For ex-
ample, in the case of a defect such that an electron is
most likely to be localized on atoms in the first coordin-
ation sphere, its energy is governed by the average
moment L of the ζ nearest neighbors of the defect. This
moment is not zero although it is directed completely at
random (the quantity L/zS governs the relative fluctua-
tions of the moment, which, in accordance with the prin-
ciples of statistical physics, should be ~1/Vz). The
electron spin becomes aligned parallel to this moment
and, therefore, for any direction we achieve a gain in the
s-d exchange energy. The application of the results
ofC l l 5 ] to ζ = 12 and S = 7/2 gives, in the limit Τ — <»,
the value L = 12, i.e., the high-temperature s-d shift
considered in the model of Eq. (3.9) is -AL/2z, ί9<ί}

which represents 30% of its value at Τ = 0. If AS = 0.5
eV, the depth of a level of this kind is ~ 0.1 eV greater
at Τ S> T c than at Τ = 0. At lower temperatures, when
the depth of the level passes through a maximum, this
difference is even greater: it may be close to AS/2. The
general expression for the carrier density and, there-
fore, for the depth of a level at Τ !3> Τ is obtained

[8990] C

e) Transport Phenomena in Nondegenerate
Ferromagnetic Semiconductors

It is natural to expect the transport phenomena in
nondegenerate ferromagnetic semiconductors to be gov-
erned primarily by the interaction of carriers with the
d spins. The standard transport theory and Eqs. (2.3),
(2.4), and (3.3) yield the following expression for the re-
laxation time (the scattering of carriers by magnons can
be regarded as elastic because of the large difference
between their effective masses): 0 7 0 ' 4 5 ' 1 4 2 3

A'q*

for

for AS < w.

(3.10)

It is clear from Eq. (3.10) that spin polarons in a
narrow-band semiconductor interact very weakly with
magnons (τ. <χ Τ"4) in the range Τ < Tc/S; at tempera-
tures Τ > Tc/S, the interaction is much stronger
(Tk ^ Τ 2). Similarly, the scattering of carriers in
wide-band semiconductors changes, when the tempera-
ture is raised, from the T"4 to the T~2 law.

The results represented by Eq. (3.10) in the W !» AS
case differ from those obtained jnC125-141»163'164^ where
the same problem is tackled by the "cutoff" of the inter-
action between electrons and long-wavelength magnons.
At temperatures Τ 3> T c subject to the inequality

AS

ensuring that the electronic damping is weak,C93-1 we can
use the results obtained in [ 1 2 5 ' 1 4 1 3 :

Since the activation energy of extrinsic conduction
passes through a maximum, this should give rise to
singularities in its temperature dependence not exhibited
in the intrinsic conduction case, when the activation en-
ergy varies monotonically with temperature. In fact, at
low temperatures the rise of the depth of a level with
temperature, E^T), may give rise to a resistivity mini-
mum in the low-temperature region corresponding to
(d/dT)(Ed/T) = o.C117>ul'112>903 Above this temperature
range, the carrier density decreases with temperature.
The existence of this minimum automatically implies the
existence of a resistivity maximum in the region of T c

because, at Τ » T c , the density is known to rise with
temperature (the activation energy decreases with in-
creasing T). This can explain the anomalous tempera-
ture dependences of the resistivity exhibited by ferro-
magnetic semiconductors and shown in Figs. 5 and 18.

An increase in the coupling between magnetic atoms
in the vicinity of a defect, due to the indirect exchange
via a localized electron, may give rise to local or quasi-
local magnons in the magnon spectrum. The influence of
such defects on the magnon spectrum is considered
j n [ii6,89,go] , ρ ^ m o i e c u i a r field approximation and the
Hamiltonian (3.9) are used in1-1153 to calculate the high-
temperature magnetic susceptibility of an extrinsic
ferromagnetic semiconductor. The increase in this
susceptibility because of the presence of magnetic quasi-
molecules is interpreted in terms of the paramagnetic
Curie point Θ, which is temperature-dependent. Thus,
quasimolecules not only increase θ but also cause a
deviation from the Curie-Weiss law (see also0116-1). The
Curie point shifts by a much smaller amount. Such
effects have been observed experimentally. £128~130]

where g(Ek) is the density of electron levels. In the
narrow-band case, the mobility u can be calculated in
the range Τ S> T c only if a much stronger inequality
Τ > W is obeyed. It follows from the Kubo formula that
although in this case the concept of crystal momentum
of a carrier is meaningless, the mobility is still given
formally by the same expression as in the band theory
(u = er/m*) if we substitute τ"1 = 2T. θ 4 5 ' 7 3 > 1 4 3 3

The behavior of the resistivity ρ near T c presents the
most difficult problem. At first sight, it would seem that,
like the neutron scattering, the carrier scattering should
be strongest near the Curie point. In fact, the cases of
neutron and electron scattering are physically very dif-
ferent: neutrons pass through a crystal experiencing
only isolated collisions, whereas collisions of electrons
with spins are so frequent that the state of an electron
changes radically. An example of this behavior is demon-
strated in Sec. c: the electron spin becomes aligned with
the direction of the local moment.

Numerous experiments carried out on pure ferro-
magnetic metals have shown that there is no maximum
of the resistivity ρ at the Curie point T c but the deriva-
tive dp/dT has a singularity of the same type as the
specific heat. In contrast to metals, ferromagnetic
semiconductors usually exhibit a resistivity peak near
T c . However, in analyzing the resistivity results, we
must bear in mind that the direct measurement is possi-
ble only in the case of fairly heavily doped samples,
whose behavior may differ very considerably from the
behavior of perfect crystals (see Sec. a in Chap. 4). The
critical scattering in perfect crystals, whose resistivity
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is very high, is best deduced from the photoconductivity.
In particular, it is evident from Figs. 6 and 7 that there
is no photoresistivity peak near T c of EuO. In the case
of those EuO crystals which do exhibit a peak of p, it is
found that this peak lies at a temperature Τ which is
slightly higher than T c and, moreover, its relative
amplitude depends very strongly on the defect concen-
tration (see Fig. 18). This shows that the peak of ρ is
due to defects. Further experimental studies of the re-
sistivity of pure samples are needed to obtain clearer
information on this point.

A calculation of the scattering of electrons by critical
fluctuations near T c carried out in the Born approxima-
tion shows that the scattering should be strongest at
Τ . . '-1*-' However, in the same approximation, the elec-
tron damping has a logarithmic divergence at T c , which
shows that this approximation is inapplicable in the
range Τ ~ T c . [ 9 i : i

It is pointed out i n ί ί № 1 that the contribution of the
long-wavelength correlations of the d spins to the elec-
tron scattering should have a cutoff because only the
spins separated by distances not exceeding the mean
free path can scatter coherently. Therefore, it is sug-
gested int 1 4 6^ that the spin correlation function should be
cut off at the mean free path but the Born approximation
be retained formally. In this approach, the scattering by
spins should give rise to a resistivity maximum at
Τ > T c and the amplitude of this maximum should rise
with decreasing electron momentum k. The scattering is
analyzed in the Born approximation in £147^ using a spin
correlation function with a weaker singularity in the
range of short wave vectors than that represented by Eq.
(3.7). It is concluded that, if the electron momentum k
is low, the resistivity has a maximum at T c . The elec-
tronic damping is not considered in1-146'147-'.

Going outside the Born approximation is a difficult
process in itself and it raises an additional problem:
information is needed on the higher spin correlation
functions and this is not yet available. Calculations of
these functions are reported in '-93-1. In contrast to the
approach adopted in1-145"147-1, the zeroth-approximation
states are not plane waves with a fixed direction of spin
but plane waves with a fluctuating spin which becomes
aligned to the local moment (Sec. c). This circumstance
reduces considerably the scattering of electrons by
long-wavelength fluctuations so that the transport re-
laxation time T£ and the carrier lifetime both remain
finite at T c . The lower limit of the relaxation time is
estimated using Eqs. (3.5)-(3.7) in the limit κ — 0 and
splitting four-spin correlation functions into two-spin
forms:

(3.11)

However, such splitting is insufficient to establish
whether the scattering process is strongest at T c .

If AS = 0.5 eV, W = 12|B| = 5 eV, rx ~ a, the mobility
at T c due to the scattering by critical fluctuations should,
according to Eq. (3.11), be at least several tens of the
conventional units (cm2· V"1 · sec"1), which is in agree-
ment with the experimental data for EuO, plotted in
Fig. 8.

Defects may give rise to a peak of the resistivity ρ
not only due to a change in the carrier density (Sec. e in
Chap. 3), but also due to the scattering by magnetic mo-
ments in the vicinity of nonionized donors, which are

largest in the region of T c (see Sec. e in Chap. 3). This
scattering mechanism was first pointed out in^120-1 and
the calculations were carried out in'-144-' on the assump-
tion that the radius R of a ferromagnetic microregion
around a defect is shorter than the electron wavelength
(R > a). Even in the Born approximation the probability
of scattering by such a magnetic cluster as a whole is
47rR3/i5a3 times greater than by individual atoms in the
cluster (for R ~ 2a—3a, the increase is a factor of
50—100). The intensity of scattering rises particularly
strongly in that range of Τ where a cluster gives rise to
a virtual level near the bottom of the conduction band.
Under certain conditions, electrons may even be cap-
tured by a cluster of this kind.

The Hamiltonians (2.3), (2.4), and (3.3) have been
used to calculate the spontaneous Hall and Nernst coeffi-
cients^*8"149^1 and the thermoelectric power a allowing
for the drag of electrons by magnons.*150^ In the range
Τ -C Tc/S, the latter effect is weak because of the cutoff
of the interaction between electrons and long-wavelength
magnons, but at temperatures T c > Τ > Tc/S (2S ~S> 1)
it may be considerable (the drag thermoelectric power
is a cc τ"2 for a nondegenerate ferromagnetic semi-
conductor and α <χ τ"1 for a degenerate one). Thus, the
value of α should have a maximum at Τ ~ Tc/S. If
Τ <SC Tc/S, we may observe an additional maximum of «:
this range is dominated by the drag of electrons by
phonons and it passes through a maximum because of
the scattering of phonons by the boundaries of a sample.

4. NONDEGENERATE ΑΝΤΙ FERROMAGNETIC
SEMICONDUCTORS

a) Electrical and Optical Properties

The properties of antiferromagnetic semiconductors
are in many respects different from those of ferromag-
netic semiconductors. Above all, typical antiferromag-
netic semiconductors do not exhibit the giant red shift of
the absorption edge E~. For example, the blue shift ex-
hibited by EuTe (E = 2.0 eV) is only 0.03 eV and the
magnetic field reduces it. In fields Η > 60 kOe, the sign
of this shift is reversed. The influence of a field Η on
the edge shift is strongest at T j * . m The blue shift of
CoO and MnS reaches 0.15 eV.i236^1

According to Eqs. (3.2) and (4.2) and estimates of the
position of the bottom of the conduction band in the limit
Τ — °° (Sees, b and c in Chap. 3), a small blue shift
corresponds to wide bands and a large one to narrow
bands (W < AS), where W ~ 0.5 eV for CoO and MnS.
However, a giant red shift is exhibited by metamagnets
(for example, EuSe, see Fig. 2). For HgCr2S4with a
helicoidal order, this shift amounts to 0.4 eV, '-161-' i.e.,
it is greater than for many ferromagnetic semiconduc-
tors. This observation confirms that the electron energy
is governed not by the average but by the local magnetic
moment of a crystal (Sec. c in Chap. 3). According to
Eq. (3.2), the shift in a helicoidal material should be ob-
served for W S> AS if q < qo since then the bottom of
the conduction band descends when the temperature is
lowered. If W < AS, bearing in mind that in the limit
Τ — °° the band width is 7?times less than in the ferro-
magnetic case (Sec. b in Chap. 3), we find from Eq. (3.2)
that the inequality qa < 1 (q is the helicoid vector) is
sufficient for the observation of the red shift. The edge
of MnO shifts monotonically when the temperature is
lowered.C2363
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A resistivity peak at the critical point, typical of
ferromagnetic semiconductors, is not usually observed
for antiferromagnetic semiconductors. The curve p(T)
frequently has a kink and this applies, for example, to
EuFe. [ 1 5 ι : ι The activation energy of conduction of some
nondegenerate antiferromagnetic semiconductors changes
at the Neel point in such a way that at Τ < T N it is lower
than at Τ > τ Ν

[ 1 5 4 ' 1 5 5 ] (for example, for MnTe2 this en-
ergy is 0.011 eV at Τ < T N and 0.039 eV at Τ > Τ Ν

 ilsil).
A similar temperature dependence is exhibited also by
the photoconductivity of EuTe (Fig. 6): it rises with
temperature both below and above T^, whereas at Tj^
its activation energy rises suddenly from 2.9 χ 10"4 to
3.7 χ 10~3 eV.[ 6 ] However, it is not clear whether this
sudden increase in the activation energy at T^ is a gen-
eral rule.

In some cases, a resistivity maximum is observed at
Tj^. Evidently, as in the case of ferromagnetic semi-
conductors, it is due to lattice defects.

This explanation is confirmed by the results of direct
experiments carried out on the degenerate antiferromag-
netic semiconductor MnTe2,

 [ 1 5 3 ] according to which
relatively lightly doped crystals exhibit a singularity of
dp/dT at the Neel point and this singularity is similar to
that of the specific heat. In the case of very heavily
doped crystals, this singularity changes to a resistivity
maximum in the vicinity of Tjq· (Fig. 10). However, the
photosensitivity minimum of EuSe near T^ (compare
Figs. 6 and 13) cannot be explained by the behavior of
the resistivity (Sec. a in Chap. 6).

Some antiferromagnetic semiconductors (for example,
NiO) are highly conducting only if they are heavily doped.
It is usual to attribute this to the small width W of the
carrier energy bands. In principle, W can be small com-
pared with the energy of polarization Ep of the lattice by
an electron. Then, a carrier is a small-radius polaron
whose mobility rises exponentially with tempera-
ture. C55"58^ An attempt has been made to use this cir-
cumstance in explaining the experimental results '-59-1

showing that the mobility of holes in NiO is activated.

However, simple considerations show that the condi-
tions for the appearance of small-radius polarons in
magnetic semiconductors are fairly stringent and they
certainly cannot appear in perfect NiO crystals with T ĵ
= 520°K. In fact, even in crystals with the maximum
degree of ionicity (KC1, NaCl), the value of Ε does not
exceed 0.2 eV, '-60-1 whereas in crystals with lower de-
grees of ionicity (particularly in magnetic semiconduc-
tors) this energy is even less. Since T-̂ r is a quadratic
function and W is a linear function of the small overlap
of the d orbits, we have the inequality T ĵ <?C W. The
chain of inequalities T-^ <iC W <ίί Ε then shows that

lsmall-radius polarons may exist only at T
N

ti

100°K
N

and the inequality W C O.leV should be satisfied. In
defect crystals, polarons can appear more easily because

FIG. 10. Dependences of
dp/dT on Τ exhibited by
"pure" and doped MnTe2

crystals.

of fluctuations of the potential which tend to localize a
carrier. Nevertheless, the latest experimental evidence
shows that small-radius polarons are not formed in

NiO.
[61, 63, 1563

There has been as yet no explanation of the change of
the sign of the Hall effect in NiO after passing through
T r̂, as a result of which the sign in the paramagnetic
region is opposite to the sign of the thermoelectric
power.[ 6 i 0

b) Carriers in Antiferromagnetic Semiconductors
with Narrow Bands

According to Eq. (3.2), the carriers in antiferromag-
netic semiconductors with wide bands W >̂ AS can be
assumed quite accurately to be ordinary band electrons.
However, the situation is quite different in the case of
narrow bands. Then, the state of a carrier at low tem-
peratures can be described using the Hamiltonians (2.5)
and (2.6).

We shall first consider the case A < o.[ 7 3'1 5 7~1 S 9 ]

Applying the equivalence of the s-d model with S = 1/2
and the Hubbard model, [43-' we shall give a qualitative
explanation on the basis of this model (this model was
used initially in[ 1 5 7 : ]) (Fig. 11).

We shall assume that initially a carrier (an excess
electron) is located at an atom (0, 0) and the antiferro-
magnetic order in a crystal is retained (Fig. lla). The
excess electron may be transferred to a neighboring
atom but only with a spin antiparallel to the spin of that
atom. Consequently, the atom (0, 0) just left by the elec-
tron has a spin opposite to that which will be observed in
the antiferromagnetic order (this atom is encircled in
Fig. lib). In terms of the s-d model, we can say that a
magnon is created at (0, 0). Similarly, when an excess
electron is transferred from (1, 0) to (2, 0), the spin of
the (1, 0) atom becomes reversed (Fig. lie). Each such
spin reversal increases the energy of the system: the
increase due to the first reversal is (z — 1)|I|S, whereas
the second and subsequent reversals increase the energy
by (z -2)|I|S).

Thus, the spins of all the atoms traversed by an ex-
cess electron are reversed and the number of reverted
spins increases with the number of steps in the trajec-
tory of this electron. Moreover, the magnetic energy of
the system increases proportionally. These effects are
destroyed by the return motion of the excess electron.
The situation is equivalent to the existence of a quasi-
elastic force tending to return the electron to the (0, 0)
atom. Consequently, an excess electron should oscillate
around the central atom (0, 0). The existence of closed
trajectories makes possible a translational motion of the
excess electron since it may store the original spins
without following exactly the original trajectory in the
return journey. The same result is obtained by allow-

t I t I t t I t I t t I t I t
I tl I t I
t I t I t

JCDtJ t Ι ΙΦΦίΙ I
t I t I t f I t I t

1 2

Doped FIG. 11. Quasioscillator in the A < 0 case.
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ance for zero-point spin oscillations. C158>159J This means electron returns to the sublattice I. The energy used to
that the equilibrium position of an electron also moves
along a crystal so that the motion of an electron is sim-
ilar to the motion of a pendulum with a moving point of
suspension.

This state of a carrier is known as a quasioscilla-
tor. [ 1 5 7 ] This is a new state of a carrier, which differs
from the polaron state because the degree of deforma-
tion of the periodic structure oscillates with the electron
around an equilibrium position.

The determination of the ground state of a system
described by the Hamiltonian (2.6) is a very difficult
mathematical problem even if this Hamiltonian is simpli-
fied by assuming approximately that Jt^ is equal to
11 |S(z — 2)Sbib . An upper limit of this energy can be

obtained by considering only the trajectory of an electron
with a finite number of steps away from the central atom.
Trajectories with not more than three steps are consid-
ered in[ 1 5 7 ; i and it is found that

(4.1)

A lower limit of the energy is also obtained i n [ 1 5 7 ] . A
more general solution is given in^158' 159>733. The energy
band of a quasioscillator is very narrow (the width is of
the same order as that of the magnon band).

create a magnon can be ignored because |I|S <iC B.
Therefore, the energy spectrum of a carrier subject to
Eq. (2.5) is given by a dispersion law of the (3.1) type but
with the band width reduced by a factor V2S + 1:

Bk--Mr. (4.2)

The analogous problem is considered ΐη^
using the Hubbard model. However, only the moments of
the electron density of states are calculated and the
quasielastic forces resulting from the spin reversal are
ignored.

The situation is quite different if A > 0. In this case,
it follows from Eq. (2.5) that the transfer of an electron
to a neighboring atom produces a spin deviation not at
the atom left by the electron but at the atom where it has
arrived. Let us assume that the projection of the spin of
an atom I is S and that of a neighboring atom Π is —S and
that initially an electron with σ = l/2 is located at the
atom I (Fig. 12a). Then the total spin of this atom Ŝ ,
which is S + 1/2, is directed exactly upward. After the
transfer of that electron to the atom I (Fig. 12b), the
atom I is still directed exactly upward whereas the spin
of the atom Π deviates from the downward direction: the
total spin of the atom II is S + 1/2 and its projection,
because of the conservation of the spin projections of the
whole system after the electron transition, is —S + 1/2.

The return transition of the electron restores the spin
of the atom II. However, this happens also if the electron
is transferred from the atom II not to the atom I but to
another nearby neighbor whose spin is parallel to the
spin of I. Thus, a simplified mechanism of the motion of
a carrier in a crystal is as follows. The electron spin in
atoms of the sublattice I is parallel to the sublattice mo-
ment. The transfer of an electron to an atom in the sub-
lattice II is accompanied by the creation of a magnon in
this sublattice and annihilation of a magnon when the

s t- I \h
FIG. 12. Quasiscillator in the A > 0 case.

A more rigorous analysis should allow for the fact
that, in addition to the transitions from the atom Π to the
atom I accompanied by the recovery of the spin, we can
also have transitions which leave a net spin deviation at
the atom Π and induce a deviation at the atom I. Such
transitions result in the superposition on the motion of
carriers of oscillations of the same type as in the A < 0
case. However, their role is now much less important:
they increase the effective mass of a carrier by not
more than 25%.C 7 3'1 5 8 > 1 5 9 : 1 The carrier spectrum is
doubly degenerate because the electron spin can be
parallel not to the sublattice I but to the sublattice II.

Thus, the participation of magnons in the motion of a
carrier across a crystal makes the carrier spectrum of
an antiferromagnetic semiconductor quite different from
that obtained on the assumption that the spins of mag-
netic atoms are immobile, i.e., from that obtained from
Eq. (2.2). In particular, if A > 0 and realistic values of
the spin are assumed, the effective mass of a quasipar-
ticle (quasioscillator) is only V2S + 1 times greater than
that of a band electron. An antiferromagnetic semicon-
ductor can also have carrier states of quite different
type, discussed in Sec. a, Chap. 6.

5. INFLUENCE OF INDIRECT EXCHANGE ON
MAGNETIC ORDER IN MAGNETIC
SEMICONDUCTORS

a) Indirect Exchange in Ferromagnetic Semiconductors
and Photoferromagnetic Effect

Indirect exchange between magnetic atoms via con-
duction electrons is important in heavily doped magnetic
semiconductors. For example, it has been found experi-
mentally that an increase in the number of carriers in
EuO and EuS can double the value of T c . [ 9 > 112> 1 2 5 ' 1 6 5 ] The
special feature of the indirect exchange in magnetic
semiconductors is that it cannot be described by the
effective Heisenberg Hamiltonian. This is a direct
consequence of the low carrier density n, as a result of
which the Fermi energy of carriers is μ "ζ, As even in
wide-band semiconductors (for example, if m* = 10~27 g,
AS = 0.5 eV, this energy μ reaches AS only for
η = 1021 cm"3). In fact, the Hamiltonian jfA + jfB of Eq.
(2.1), which is linear in the d spins, can be used to find
the effective Heisenberg Hamiltonian, which is a quad-
ratic function of the spins, only in the second order of
the perturbation theory in jf^. The small parameter is
AS/μ. This is the method used to derive the effective
Heisenberg Hamiltonian in the indirect exchange energy
theory developed by Ruderman, Kittel, Kasuya, and
Yosida, which we shall abbreviate to RKKY theory (see,
for example, l s €).

In some investigations (see, for example, ι-167>1β8· !), the
RKKY theory is applied not only to degenerate but also
nondegenerate magnetic semiconductors. It would seem
that this may be justified by the smaliness of the ratio
ASn/μΝ for degenerate magnetic semiconductors and of
ASn/TN for nondegenerate materials (N = a3). However,
this is incorrect, as demonstrated by an analysis of the
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terms which are of higher orders in jfp^. The magnetic
Hamiltonian in the RKKY theory is the correction to the
electron energy due to the s-d exchange. Since each s
electron interacts with d spins independently of other
electrons, terms proportional to the number of nonde-
generate electrons occur in the corrections of any order
in jf^ to the energy of such electrons. Therefore, η does
not occur in the ratio of the correction of the next order
to the correction of the lower order in the limit η — 0
and, consequently, this quantity cannot ensure that the
ratio is small.

We can show that the parameter of the expansion ap-
plicable to a degenerate gas is AS/μ on the basis of the
following considerations. If the average magnetization of
a crystal So does not vanish, the Hamiltonian jf^ contains
terms diagonal in respect of electrons and these may be
included formally in the zeroth-approximation Hamilton-
ian. The energy corresponding to this Hamiltonian is

he

The energy Ε ο reduces to an expression which is quad-
ratic in respect of the spins (i.e., in respect of So) only
if the distribution function η(μ — Ε^σ) can be expanded in
terms_of ASo/μ for any magnetization subject to the con-
dition So s S. Similar considerations demonstrate that
the RKKY theory applies to nondegenerate magnetic
semiconductors only if AS/τ <C 1. It should be noted that
at 100°K the parameter in this inequality is ~ 100.

The inapplicability of the RKKY theory to the μ < AS
case can be demonstrated also qualitatively by consider-
ing the ferromagnetic order at Τ = 0. Electrons are then
fully spin-polarized and this state differs radically from
the ground state of free electrons described by the
Hamiltonian jfg of Eq. (2.1) because the electrons are not
spin-polarized. This means that the former state cannot
be obtained from the latter in any order of the perturba-
tion theory which is finite in respect to jf^.

The approach developed below differs from the RKKY
theory because a considerable proportion of the s-d ex-
change is included in the zeroth-approximation Hamil-
tonian and this part of the exchange is not expanded.

The magnon spectrum of a strongly degenerate ferro-
magnetic semiconductor is readily established in the
main approximation with respect to 1/2S using Eqs. (2.3),
(2.4), and (3.3)C70>iee>8e:i averaged over electrons allowing
for the smallness of k F = \/2ΐη*μ:

change cannot, by itself, give rise to the indirect ex-
change if an electron is permanently located at some
atom and cannot travel to neighboring atoms. Therefore,
if Β = 0, the contribution of electrons to the magnon fre-
quency should vanish, which is reflected in Eq. (5.2b).
The s-d exchange integral drops out of this equation be-
cause of the spin-polaron state of an electron: its spin
is rigidly linked to the local moment no matter how far
the latter deviates from the total moment of the crystal.
For this reason, the integral drops out also from Eq.
(5.2a) if q2 < q2 and then Eq. (5.2a) reduces to (5.2b).

It follows from Eqs. (5.2a) and 5.2b) that the.effective
exchange integral Je £ f(g) = ~(l/N)2} w q e - i ( q · ^ for

Ε ^ AS does not vanish only for the nearest neighbors,
whereas for W 3> AS it decreases exponentially at a
distance qo1. This integral does not exhibit any
Ruderman-Kittel oscillations.

The magnon frequency increases with increasing ν in
the ν <C 1 range, i.e., conduction electrons tend (as ex-
pected) to maintain a ferromagnetic order. Since T c is
comparable with the magnetic ordering energy (per
atom), conduction electrons shift the Curie point of a
doped crystal by an amount ATC ~ ASv/2 if μ <C AS < W
and by ~z|B|f if W 3> AS. The correctness of these
orders of magnitude is confirmed by the data on EuO[112-1

if we assume that AS/2 is 0.25 eV, deduced from the red
shift. M For example, if η ~ 5 χ 1019 cm"3, the shift of
the Curie point ATC is 10°K (~10~3 eV) [ 1 1 2 ] and the value
of ASv/2 is 1.6 χ 10"3 eV.

As in the case of extrinsic nondegenerate ferromag-
netic semiconductors, the paramagnetic Curie tempera-
ture β of degenerate ferromagnetic semiconductors
should exceed T c . However, the cause is now different:
it is the non-Heisenberg nature of the direct exchange via
conduction electrons. If the inequality VW/I > AS is
satisfied, which ensures that the electron damping is
small in the range Τ 2> T c , [ 9 3 ] we can calculate Θ using
the expression (5.1). Since θ is defined for weak mag-
netizations So, it can be expanded in terms of ASo/μ.
Formally, this gives the RKKY results in the W ίϊ> μ
limit: the shift of θ is A2S(S + 1)^"V8, i.e., it is
~Α£>/μ times greater than ATC. In contrast to the shift
of Θ due to magnetic quasimolecules in nondegenerate
ferromagnetic semiconductors (Sec. d in Chap. 3), this
shift is now independent of T, i.e., the Curie-Weiss law
should be satisfied. When η is increased, the difference
between the shifts of θ and T n should decrease, i.e., the

for wyAS>VL, (5.2a) value of Θ - T c should pass through a maximum.

-y,) for W4.AS, (5.2b)

where ω° is the magnon frequency in the absence of in-
direct exchange in Eq. (2.1), ν = n/N is the number of s
electrons per magnetic atom, and q2 = 2m*AS.

It is clear from Eq. (5.2a) that the nonanalyticity of
this result in respect of AS/W (q2 occurs in the denom-
inator) is of basic importance. Both Eqs. (5.2a) and (5.2b)
satisfy the requirement associated with the isotropy of
the system: in the limit q —- 0, the magnon frequency is
proportional to q2, i.e., the T 3 / 2 law describes the tem-
perature dependence of the magnetization.

At first sight, it might appear strange that the magnon
frequency of Eq. (5.2b) is independent of the s-d ex-
change constant A although the indirect exchange is a
consequence of the s-d exchange. However, the s-d ex-

This effect is exhibited by Eu 1 _ x Gd x S, for which the
difference between Θ and T- is practically zero for χ = 0
but reaches 20°K for χ ~ 0.01; however, when χ is in-
creased still further, the difference decreases. ^
According to [ 1 3 o : l , the value of Θ of E u 1 _ x G d x 0 exceeds
T c both for 0 < χ < 0.015, when the conductivity is very
low, and for χ ^ 0.015 when this crystal behaves as a
semimetal. In the former case, there are deviations
from the Curie-Weiss law but not in the latter case,
which is in agreement with the above theory. The value
of Θ is close to T c when χ is large.

The indirect exchange on the surface of a ferromag-
netic semiconductor is different from the bulk effect
because the surface is charged relative to the bulk. The
surface charge may be due to the presence of surface
electron levels, adsorption, etc., and due to the applica-
tion of an external electric field. Consequently, the sur-
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face magnetization is different from the bulk value. The
magnon spectrum has a branch of quasisurface magnons,
which oscillate within the surface-charge layer and are
damped outside it; moreover, in contrast to true surface
magnons, the surface itself may be classically unattain-
able for quasisurface magnons.'-166'170·1

The influence of the indirect exchange on the surface
magnetization of a ferromagnetic semiconductor is sup-
ported by the experimental results available on
EuO. C152'171^ The neutron and photoelectron polarization
indicates that the surface magnetization is much lower
than the bulk value and this is true even at temperatures
much lower than the Curie point. It is clearly due to a
weakening of the direct exchange.

Crystals containing a few percent of Gd or La exhibit
a surface magnetization much higher than pure crystals,
which is evidence of the enhancement of the ferromag-
netic coupling on the surface via conduction electrons
resulting from doping. The surface paramagnetism is
destroyed also by the chemisorption of Cs on EuO.^233^1

This can be explained by assuming that adsorbed Cs
atoms behave as surface donors. Their valence elec-
trons are drawn into the crystal and they join the collec-
tive state, being still concentrated near the surface.
Therefore, they participate in the indirect ferromagnetic
exchange between surface ions of Eu.

It is suggested in1 1 1 6 7 ' 1 6 8 3 that illumination of a mag-
netic semiconductor should, because of the indirect ex-
change via photoelectrons, increase T c of ferromagnetic
semiconductors and convert antiferromagnetic semi-
conductors to the ferromagnetic state. However, the ap-
plication of the RKKY theory results in an underestimate
of the necessary photoelectron densities by 2—3 orders
of magnitude (according to1-167-1, the value of T 6 should
increase by 100°K for η ~ 1017 cm"3, whereas, according
to the data given in the present section, such a rise of
T c requires η ~ 102 0-102 1 cm"3). In practice, it is hardly
possible to generate a photoelectron density exceeding
101 7-101 8 cm"3 and this is why the effect has not been
observed experimentally. (It is reported in^234-1 that
CdCr2Se4 exhibits the reverse effect.)

It is reported inr 1 6 9^ that illumination reduces the
high-frequency magnetic susceptibility of CdCr2Se4
(frequency ~2 MHz) below T c and the reduction dis-
appears at Τ > T C . This photoferromagnetic effect is
not due to heating because heating increases the suscep-
tibility. The maximum of the spectral characteristic of
the effect (Fig. 9) coincides with the photoconductivity
maximum observed at Τ < T c and the relaxation times
(~ ΙΟ"2—10"3 sec) of the two phenomena are the same.
Doping of this material with Ga does not alter the spec-
tral characteristic. In the presence of 0.1% Ga, the
effect reaches its maximum value exceeding by an order
of magnitude the value for a pure crystal. ^110^ Clearly,
the photoferromagnetic effect has a specific dynamic
nature and this explains its high value in the presence of
relatively few photoelectrons (~1015 cm"3). It resembles
the strong influence of photoelectrons on the dynamic
plasticity of crystals and the negligible influence on the
static plasticity. '-49-1

b) Heavily Doped Antiferromagnetic Semiconductors
and Canted Antiferromagnetism

A particularly interesting situation arises when an
antiferromagnetic semiconductor is heavily doped: the
indirect exchange via conduction electrons, which tends

to establish a ferromagnetic order, competes with the
direct exchange via magnetic atoms, tending to establish
an antiferromagnetic order. Naturally, at sufficiently
high conduction electron densities which ensure the pre-
dominance of the indirect exchange, a ferromagnetic
order should be established. This is observed, for ex-
ample, in MnTe when the hole density reaches
1021 cm"3. E172-1 In metamagnets, a ferromagnetic order
is established at anomalously low carrier densities.
This makes it possible to induce the ferromagnetic state
in these materials by illumination. This question is
considered in11235·1 applying a variational principle
(formulated in that paper) to phase transitions under
nonequilibrium conditions.

Even if the carrier density is insufficient for the es-
tablishment of a ferromagnetic order, the properties of
heavily doped antiferromagnetic semiconductors differ
considerably from those of Heisenberg antiferromagnets.
This is manifested particularly by the anomalous de-
pendence of the moment of a crystal on an external mag-
netic field at Τ = 0. In the wide-band case, this depend-
ence is found by minimizing the energy with respect to
the moment Μ = S cos Θ, where θ is the angle between
field and the subJattice moment, 2S > l : ^

7 3 -"«

AS A'S
(5.3)

where va is the number of electrons with a spin projec-
tion a per atom. Clearly, in the limit μ S> AS, the value
of Je££ reduces to the usual Heisenberg effective ex-
change integral, which is independent of M, and Eq. (5.3)
represents the usual condition for the equilibrium of a
Heisenberg antiferromagnet in a magnetic field. How-
ever, if μ ^ AS, the dependence of J e f f on Μ is strong.

It is thus found that the initial magnetic susceptibility
χο of a doped antiferromagnet is
ΑΦΒ [1 - (βΑ^ιΆδμ | J I)]"1 times higher than of an
undoped antiferromagnet (u = i>, + ui = n/N). The total
polarization of electrons is achieved in relatively weak
external fields because the electron spins experience the
induced (by the same electrons) molecular field AM/2
which exceeds the external field by a factor A^/2
~ AS/TN, i.e., by several orders of magnitude (the giant
Zeeman effect in antiferromagnetic semiconductors is
described i n C l 7 3 ] ) . As the field Η increases, the suscep-
tibility χ decreases, and when all the electrons become
spin-polarized, the susceptibility assumes the same
value as that of an undoped antiferromagnet. The sub-
lattice collapse field H F i s 1 - (ASi>/4|J|) times lower
than the corresponding field for a pure antiferromagnet.
(The behavior of χ is shown qualitatively in Fig. 15b.)

If the Fermi surface is sharply defined, the magnetic
susceptibility of a crystal should oscillate with the field.
These oscillations are quite different from the
de Haas—van Alphen oscillations and the former are
associated with the redistribution of electrons between
the Zeeman subbands and not between the Landau sub-
bands. These oscillations disappear when the electrons
become totally spin-polarized. ^173^

Equation (5.3) has nontrivial solutions 0 < Mo < S in
a certain range of electron densities < ν < ι/γ even
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in the absence of an external field. The left-hand limit
v^ is found from the condition Jeff (0) = 0, i.e., from the
condition that XO{"A) becomes infinite. The right-hand
limit v-p, found from J e f f (S) = 0, corresponds to vanish-
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FIG. 13. Luminescence of EuSe (inset shows the photosensitivity
of EuSe).

FIG. 14. Collective ferron
state in a degenerate antiferro-
magnetic semiconductor. Here,
F denotes ferromagnet or fer-
romagnetic and AF denotes
antiferromagnet or antiferro-
magnetic.
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FIG. 15. Faraday rotation in degenerate (upper curve) and nonde-
generate (lower curve) EuTe (a) and dependence of the magnetization
on the field in degenerate and pure EuTe (b).

ing of the collapse field (soft antiferromagnetic and
ferromagnetic magnon modes appear at u^ and ν γ,
respectively). If AS/μ < 1, the width of this interval
increases with the parameter AS/μ in accordance with
the law

3 . AS

μ ( ν Α

(5.4)
2m·

In the limit μ/AS — °° (Heisenberg exchange), we find
that vj± — u-p, i.e., as ν increases, an antiferromagnetic
order suddenly changes to a ferromagnetic one.

Thus, in the range ν ̂  < ν < ν-ρ, energy considerations
show that a canted antiferromagnetic order with the
angle between the sublattice moments not exceeding π
is preferred both for ferromagnets and antiferromagnets.
Near uA the moment of a crystal increases with ν as
vV — f^and then linearly. In contrast to the weak
Dzyaloshinskif-Moriya weak ferromagnetism, which is
due to the relativistic interactions, the possibility of a
canted antiferromagnetic order is not restricted by the

symmetry properties of the system under consideration.

If the value of Mo is low, the initial susceptibility of a
canted magnetic material is proportional to Mo2, i.e., it
increases on approach of ν to v^. When the moment is
sufficiently large (i.e., when ν or Η is sufficiently high),
the susceptibility tends, as in the ν < ν^ case, to the
value for a pure crystal.

Similar properties are exhibited also by heavily doped
narrow-band antiferromagnetic semiconductors and the
possibility of a canted antiferromagnetic order in these
materials was pointed out a long time ago by
de Gennes. [ 1 7 4 ] However, the analysis of this topic given
by de Gennes'-174-1 is not quite correct because it is
based on the use of the Hamiltonian (2.2) with Ύσσ+^
= 0. It is incorrect to conclude that a canted antiferro-
magnetic order appears for any value of ν no matter how
small [this conclusion is a consequence of the use of
Eq. (2.2) in the θ + Δ = π case]. In plotting the phase

diagram for Τ ^ 0, we cannot assume that, in all cases,
we have 7 Κ Κ + Δ = 0. A more correct analysis of this
topic is made ίη^73»175*174] fOr the case when the spin of
an atom is antiparallel to the spins of its nearest neigh-
bors, moreover, the values of ν ̂  and ν ρ are found in
these papers.

A canted antiferromagnetic order is preferred, for
energy reasons, to ferromagnetic and collinear anti-
ferromagnetic orders but this does not guarantee the
stability of the canted configuration. Doubts about its
stability appear if we investigate the magnon spectrum
of a canted antiferromagnet in the W > AS case.Z z 2 0 1 It
is found that, if ν > 4ν^, the frequencies of short-wave-
length magnons become imaginary, i.e., we know that if
vp > 4f^ there is a range of carrier densities in which
a canted order is unstable. It is possible also that in the
range ν < 4t^, where the magnon frequencies are real
and positive, a canted antiferromagnetic order does not
correspond to the absolute but to a relative energy mini-
mum. Nevertheless, even then we may expect a different
two-lattice substructure in the range [υ^, ν γ]. This
follows from the general theory of phase transitions '-221-'
since the approach to νγ from the high-density side re-
sults first in vanishing of the frequency of magnons with
q = v. This follows from Eqs. (5.2a) and (5.2b) if the
negative value of ω° is allowed for. This structure may
be the one described i n [ 1 7 6 ] : the moment in one of the
sublattices is less than in the other so that the antiferro-
magnetic vector is collinear to the magnetic moment
("ferromagnetic" structure).

The question of whether a single-sublattice unsatura-
ted ferromagnetic order (with longitudinal components of
the spins parallel in one direction and arbitrary trans-
verse components) can be established in the range
[i>p^, ι>γ\ instead of a canted antiferromagnetic structure
is considered in [ 1 7 6 ; l . If W <C AS, a test wave function
can be obtained to describe such a state. States of this
kind are possible only in antiferromagnetic semiconduc-
tors with large numbers of defects in which the damping
of short-wavelength magnons is sufficiently strong.
They are also possible in Pauli paramagnets which ex-
hibit only a short-range antiferromagnetic order.Cl74-'

We must also point out that, on the surface of a
heavily doped antiferromagnetic semiconductor with
ν < Vfo we can produce a layer with nonzero magnetiza-
tion by increasing the carrier density to the value ex-
ceeding vp^. '-166-'
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In analyzing the experimental results, we must bear
in mind that the above anomalies of magnetic properties
of heavily doped antiferromagnetic semiconductors may
not be due to a canted structure but to other factors
(Sec. b in Chap. 6). Clearly, this is true of η-type EuTe
(Fig. 15) investigated in1-38-1. A canted structure may be
formed in La^ _xCaxMnC>3 crystals in which an increase
in χ causes an antiferromagnetic order to transform to a
ferromagnetic one and reduces strongly the value of ρ.
Neutron-diffraction spectra of these crystals show that,
in a certain range of x, they are superpositions of spec-
t ra corresponding to ferromagnetic and antiferromagnetic
configurations, '-177-' which may be true of a canted struc-
ture1-74-1 or another type of two-sublattice structure with
a nonzero moment.

An unsaturated ferromagnet is obtained when FeS2

and NiS2 crystals (Pauli paramagnets) are doped with
cobalt. As the cobalt concentration is increased, the
spontaneous moment of a crystal rises and the moment
per atom, deduced from the paramagnetic susceptibility,
is equal to the spin of isolated magnetic ions. Doping
also increases considerably the conductivity.[178^ These
results are in qualitative agreement with the theory
in™.

6. FERRON STATES IN NONDEGENERATE AND
DEGENERATE SEMICONDUCTORS.
RESISTANCE OF DEGENERATE SEMICONDUCTORS

a) Individual Ferron States

As pointed out in Chap. 5, conduction electrons tend
to establish and maintain a ferromagnetic order in a
crystal because this order ensures minimum electron
energy [see, for example, Eq. (3.2)]. For example, a
ferromagnetic order should be established in an anti-
ferromagnet at Τ = 0 if ν > i>F (Sec. b in Chap. 5). How-
ever, if ν is insufficiently high to establish ferromag-
netism throughout the crystal, an energy gain can still be
obtained if electrons are concentrated in some part of a
crystal and ferromagnetism is established in that part.
Thus, a single electron may establish a ferromagnetic
microregion and may be self-localized in this
region.'-194'195^ The energy lost due to the reversal of
the d spins is compensated by the gain in the electron
energy because a ferromagnetic microregion is a poten-
tial well for electrons in an antiferromagnetic crystal.
In principle, an electron together with its ferromagnetic
region can move along a crystal, but under real condi-
tions the mobility of such a system is very low and the
system can be regarded as localized.

A complex formed from an electron and a microreg-
ion of the second phase, which is established by this
electron, is a quasiparticle of a new type C194>ie53 With
properties quite different from those of a polaron. Such
quasiparticles are destroyed at sufficiently high tem-
peratures Τ but if the depth of the potential well is suffi-
cient, they may exist even in the paramagnetic region.

At high temperatures, a ferromagnetic microregion
may appear because of thermal fluctuations even in the
absence of conduction electrons. It may happen that the
number of fluctuations capable of capturing a conduction
electron is large compared with the number of such
electrons. Therefore, an electron does not have to gen-
erate a ferromagnetic microregion, i.e., localization of
electrons in fluctuations of this type resembles the
Anderson localization in nonperiodic structures (glasses,

etc.). The capture of an electron by thermal fluctuations
is possible only in antiferromagnets but also in ferro-
magnets, as pointed out first i n [ a o i ] . Clearly, the condi-
tions for self-localization are easier to satisfy in such
fluctuations than the Anderson localization conditions.
Further studies of the self-localization of electrons in
ferromagnetic regions are reported i n 0̂2-209] S u c n

states will be called individual ferrons.

Collective ferron states are possible in degenerate
magnetic semiconductors when the appearance or an in-
crease in the degree of a ferromagnetic order in some
part of a crystal occurs as a result of an increase of the
electron gas density as a whole. C*'196'197^ A reduction
in the electron energy as a result of a simultaneous es-
tablishment of a ferromagnetic order by these electrons
is equivalent to the existence of a specific mechanism of
attraction between electrons.

Calculations of individual ferron states in an anti-
ferromagnet at Τ = 0 are carried out in^194'195^ by a
variational method. It is assumed that the full ferro-
magnetic order is established in a microregion of radius
R and that, outside this region, the ideal antiferromag-
netic order is retained. The depth of a ferromagnetic
potential well in the A > 0 case is

ί/ = 4-> for

(6.1)

and, in the latter case, the effective mass of a carrier
inside a ferromagnetic region is V2S + 1 times smaller
than outside this region [Eq. (4.2)]. The radius R is
found from the minimum of the total energy of the sys-
tem. It should exceed the minimum value R m beginning
from which an electron level appears in a well. If R > a
and AS <S W, B^ is given by the usual expression i7S^
but, if AS 3> W, it is given by a slightly modified formula
because of the difference between the effective masses in
the ferromagnetic and antiferromagnetic regions:

Rm=— for AS < w,

for
(6.2)

and the energy is found from the equations (see '-75-')

(6.3)

The solution of Eq. (6.3) can be obtained explicitly only
for R > Rrv m·

B l\1 / 5
(6.4)

The system (6.1)—(6.3) can be used to obtain the con-
dition under which a ferron state is preferred for reasons
of energy:

) 3 . (6.5)

It is worth noting that, according to Eq. (6.4), a full gain
in the s-d exchange energy is obtained for ferrons of
very large radius, irrespective of the value of AS/W. In
this respect, the ferron states corresponding to AS ^C W
resemble spin-polaron states in which also a full s-d
energy gain is obtained for large characteristic lengths
of magnetic inhomogeneities (Sec. c in Chap. 3).
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Self-localized electron states of a different kind are
proposed in^74-1: in these states, the spin of one atom
deviates from the direction of the moment in its sub-
lattice and the angle generally does not reach π. For
parameters typical of semiconductors, ferron states are
much more preferable from the point of view of energy.
Nevertheless, there is a definite interest in the case
when the spin of one magnetic atom is directed opposite
to the moment of its sublattice. An analysis'-70'73^ shows
that the bound states of an electron with such a spin are
possible only if W <C AS provided S > 1 and the result
in C 7 4 ] , based on Eq. (2.2), is valid only for V2S~ » 1 (this
applies also to other investigations of ferrons in anti-
ferromagnetic semiconductors with W <C AS, such as
those reported in [ 2 0 5 : i ) .

For typical values of AS/2W « 0.1 and W » 3 eV, it
follows from Eq. (6.5) that ferrons can exist in an anti-
ferromagnetic semiconductor with TJJ "ζ, 15°Κ, for ex-
ample, in EuTe. The radius of a ferromagnetic micro-
region amounts to 2—3 lattice constants, so that the
ferron moment may reach hundreds of atomic moments.

In metamagnets, the magnetic energy needed to form
a ferromagnetic microregion is very small and ferron
states of much larger radius are possible. The situation
is particularly interesting in EuSe, where—in addition to
a ferromagnetic order—we can also have a ferrimagnetic
order and the energy needed to produce the latter is
even less (Fig. 1). In this case, ferrons are more com-
plex: a ferromagnetic sphere of radius R ss 10 a is sur-
rounded by a ferrimagnetic shell of thickness ~(2—3)a.
The moment of such a quasiparticle may reach several
thousands of atomic moments. Photoexcitation of ferrons
may affect considerably the susceptibility χ of a crystal.
In the 1.8°K < Τ < 2.8°K range, electrons may become
self-localized in a ferromagnetic region inside a ferri-
magnetic phase. E198-1

Ferron states in an antiferromagnet with W -C AS
have the special property that, as S increases, the en-
ergy gain becomes greater. In a material with a band
width W ~ 0.5 eV, ferrons may appear if T N ~ 40°K for
S = 7/2 and T N < 8°K for S = 1. If A < 0, self-localized
states are more complex t159-1 because outside a ferro-
magnetic microregion a carrier behaves as a quasi-
oscillator (Sec. b in Chap. 4) (the situation corresponding
to W > AS, A < 0 is the same as for A > 0).

Ferrons are destroyed by strong magnetic fields and
these fields are weaker than those needed for the col-
lapse of the sublattice moments.t 2 0 0^

When the temperature is increased sufficiently, fer-
rons dissociate and, in principle, the dissociation tem-
perature may exceed T N . Conditions for the stability of
ferrons at finite temperatures Τ are naturally governed
not by the requirements that the total energy of the sys-
tem should be minimal but the free energy should be
minimal. If AS -C W, the results represented by Eqs.
(6.4) and (6.5) can be generalized in a trivial manner to
the Τ 3> T»j case. It is sufficient to replace the gain in
the magnetic energy per atom |J|S due to the creation of
a ferromagnetic microregion with the gain in the free
energy Τ In (2S + 1). We can see from Eq. (6.5) that, for
parameters typical of rare-earth compounds (S = 7/2,
AS/2W = 0.1, W = 3 eV), ferrons may exist at Τ > T N

provided T N <C 10°K.

The problem of ferron states in narrow-band mater-
ials at finite temperatures is much more complex be-

cause the state of a carrier moving freely across a
crystal is not known. A convincing solution of this prob-
lem has yet to be obtained. In very rough estimates, we
may assume that, if Τ 3> TN, free carriers move in a
band of width 2z|B|V(S + 1)(2S + 1)c ? 8 : i (Sec. b in Chap. 4).
Then, Eq. (6.1) should be modified by replacing V2S + 1
with V(2S + 1)/(S + 1) and |J|S in Eq. (6.3) should be re-
placed with Τ In (2S + 1).

Naturally, these estimates apply also to ferromagnetic
semiconductors at temperatures Τ ^>T C . In contrast to
an antiferromagnetic semiconductor, ferron states in a
ferromagnetic material may appear only at sufficiently
high temperatures when a ferromagnetic order in a crys-
tal is largely destroyed. However, we must bear in mind
that, if W >· AS, the s-d energy shift of a free electron
is governed by the short-range rather than by the long-
range order. The short-range order is destroyed at
much higher temperatures than the long-range order
and, therefore, even close to T c the s-d shift is still
fairly large. If W <§: AS, at temperatures close to Τ the
bottom of the band again lies much lower than at
Τ > T c (Sees, b and c in Chap. 3 and Figs. 2 and 3).
This is a further difficulty impeding the formation of
ferrons in a ferromagnetic semiconductor and it should
be allowed for in the calculations (this has not yet been
done). We may expect that, for the parameters given
above, ferron states may appear in a wide-band ferro-
magnetic semiconductor at temperatures T c <C 10°K,
which is in agreement with^206-1. Thus, ferrons are much
less likely to appear in ferromagnetic semiconductors
than in antiferromagnetic materials. In particular, they
cannot appear in EuS and EuO.

An analysis of the luminescence and photoconductivity
of EuSe and EuTe led Wachter m to the conslusion that
ferron states should appear in these materials. Usually,
a strong luminescence is attributed to the presence of
defects which give rise to local levels in the electron
spectrum. However, the luminescence of EuSe increases
in strength with the purity of the crystal. In the tem-
perature range Τ S> T N the application of a magnetic
field has little influence on the luminescence but at 4.2°K
a field of 11 kOe, which produces a magnetization
amounting to 80% of its maximum value, reduces the
luminescence by a factor of 5 but enhances strongly the
photoconductivity (Fig. 13). This shows that the magnetic
field destroys the local levels involved in electron tran-
sitions in its absence. The levels which exist only at
Τ Is Tj^, are not associated with defects, and which are
destroyed by a magnetic field are the ferron levels.

It is suggested inC 2 0 1 3 that the sharp resistivity peak
of EuO near T c , which is typical of ferromagnetic semi-
conductors, is due to the capture of conduction electrons
by magnetization fluctuations. This interpretation is not
supported by the theoretical estimates given above or
by the experimental observations showing that the ampli-
tude of this peak depends strongly on the concentration of
defects in a crystal and by the observation that the photo-
conductivity of very pure crystals shows no minimum
near T c (sec. e in Chap. 3). However, this effect can be
explained by the combined influence on electrons of
magnetization fluctuations and defects, as a result of
which ferrons localized near these defects are formed
on approach to T c . Essentially, this is the situation con-
sidered earlier in Sec. d of Chap. 3, where a localized
electron is assumed to increase the degree of ferromag-
netic order in the vicinity of a defect.
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b) Collective Ferron States and Localized Ferrons in
Antiferromagnetic Semiconductors

In degenerate antiferromagnetic semiconductors, we
may have not individual but collective ferron states so
that a crystal splits into ferromagnetic and antiferro-
magnetic domains. In the former, the carrier density is
higher and, in the latter, it is lower. Characteristic
dimensions of ferromagnetic domains are considerably
larger than the average distance between electrons. c*>1 9 7^
Consequently, the energy required to form such domains
(calculated per one electron) is considerably less than in
the case of individual ferrons. On the other hand, in
contrast to individual ferrons, formation of collective
ferrons is accompanied by an increase in the Coulomb
energy and in the kinetic energy of electrons. There-
fore, the conditions for the appearance of collective
ferrons are different than those for individual ferrons.
In particular, such appearance depends strongly on the
electron density.

Generally, the instability range of homogeneous states
of a system does not agree with the interval [nA, n F ] of
the canted order (Sec. b in Chap. 5). Moreover, an
inhomogeneous state is possible even for η > n F when
in a homogeneous state the whole crystal would have
been ferromagnetic. The origin of this situation is as
follows: electrons concentrated in ferromagnetic regions
realize the full gain in the s-d exchange energy, in the
same way as in a homogeneous state. However, the re-
covery of an antiferromagnetic order in the rest of the
crystal results in a gain in the energy of direct exchange
between magnetic atoms (it would be more correct to
call these antiferron states).

Direct variational calculations are reported
« 8 7 2 3 ]i n

c v
C«, 187,2i3] heavily doped antiferromagnetic semi-

V /
y p

conductors with μ 3> e V /ε4 W » AS. It is assumed
that the carrier density in ferromagnetic regions is inde-
pendent of the coordinate and equal to zero in antiferro-
magnetic regions (this can be justified for typical param-
eters '-46-1). Three types of geometry are considered:
1) alternating ferromagnetic and antiferromagnetic
planar layers; 2) ferromagnetic spheres forming a
periodic structure inside an antiferromagnetic matrix;
3) antiferromagnetic spheres forming a periodic struc-
ture inside a ferromagnetic matrix.

The effective surface energy of the phase boundaries
is the increase in the electron energy which occurs be-
cause only the part of space occupied by ferromagnetic
regions is accessible to electrons. This can be found by
expanding the density of electron states in terms of the
reciprocal of the product of the Fermi momentum and the
characteristic dimensions of the system (see, for exam-
ple, [ 4 1 ] ) . It should be stressed that it would be a serious
error to introduce a surface energy of the boundaries
separating antiferromagnetic and ferromagnetic phases
which would be independent of n: this would have no
meaning because these phases cannot exist for η = 0.
The total energy of a system of this kind can be repre-
sented by a sum of the bulk energy, given by the Thomas-
Fermi approximation, and of the surface energy found as
above.

An inhomogeneous state is preferred from the energy
point of view if ag -C η <§C n^ and

doping is heavy so that a™ -C η Λ < np, the second term
in Eq. (6.6) is less than the first and the condition (6.6)
differs only by a factor of the order of unity from the
condition of existence of individual ferrons given by Eq.
(6.5). At low carrier densities, ferromagnetic spheres
inside an antiferromagnetic matrix provide the most
favorable configuration from the energy point of view;
the radius of these spheres increases with η but the
charge density decreases. Near np, the most favorable
configuration from the energy point of view is represen-
ted by antiferromagnetic spheres in a ferromagnetic
matrix. The radius of these spheres is greater than the
average distance between electrons by a factor
~2(np 3 a B ) 1 3 .

At carrier densities n<p corresponding to the equaliza-
tion of these two geometries, the ferromagnetic com-
ponent of a crystal transforms from multiply connected
to singly connected. Therefore, a sharp rise of the con-
ductivity should occur when η is increased near nrp
(in terms of the adopted approximation, this rise repre-
sents to an insulator-metal transition). The density Op
decreases with rising field H, so that if η < nT(0), we
may observe a giant negative magnetoresistance when
nip(H) reaches n.

On the high-density side, the range of inhomogeneous
states is restricted by a limiting value n ^ which can be
found from the condition

\ 1/3 ASn

(6.7)

2m·
(6.6)

where ag is the Bohr orbit radius in a crystal. If the

If η > nL, a full ferromagnetic order is established.

The field dependence of the moment of the system is
as follows: in a weak field, it should rise strongly with
the field until moments of all ferromagnetic domains
become identically oriented. Then, the rise slows down
strongly. In these fields, the increase of the moment
with the field is mainly due to the increase in the mag-
netization of the antiferromagnetic part of the crystal.
It is clear from Eq. (6.7) that an inhomogeneous state
disappears if the field is sufficiently strong.

The results of numerical calculations carried out for
T N = 10°K, AS = 0.5 eV, m* = 10"27 g, e0 = 20, a3 = 2.5
χ 10~23 cm3 are plotted in Fig. 14, where ΔΕ is the en-
ergy gain due to transition to an inhomogeneous state
(calculated per one conduction electron), R is the radius
of a ferromagnetic sphere, and χ is the relative increase
in the electron density in the ferromagnetic part of the
crystal (in the range [n^> np], the energy is measured
from the energy of a canted configuration). It is clear
from Fig. 14 that each ferromagnetic sphere contains
about 50 electrons.

In nondegenerate antiferromagnetic semiconductors,
each electron is localized at its own donor. In this case,
an electron can produce a ferromagnetic order in the
vicinity of such a donor and the radius of the ordered
region is R^. This state can be regarded as a localized
ferron. Each defect has a giant moment Μ ~ RJj but, in
the case of substitutional impurities, this moment is
linked to a given sub lattice. If the field is perpendicular
to the antiferromagnetic vector, the moment of a defect
is deviated by the field more than the sublattice moment
to which it belongs. A detailed calculation[195-1 shows
that the relative contribution of defects to the initial
magnetic susceptibility of a crystal is (R d /a) 5 ^. If
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Rjj = 2.5 a and the relative concentration of defects is
vA = 3 χ 10'3, their contribution is ~30%. Even in rela-
tively weak fields, a complete magnetization is achieved
and then the susceptibility approaches the value expected
for a defect-free crystal.

However, we can have cases in which the moment of a
localized ferron is not linked to the moment of a definite
sublattice (this applies, for example, to an electron cap-
tured by an anion vacancy). Then, the interaction between
defects may give rise to a ferromagnetic ordering of
their moments.[ 4 8 : 1 In anisotropic crystals, this may be
due to the dipole-dipole interaction even when the dis-
tances between defects are relatively large. In those
cases when the orbits of neighboring donors overlap
significantly, we find that the electron spins become
oriented parallel to one another because this reduces the
loss of energy in the establishment of the defect mo-
ments. Clearly, this mechanism is not related to any
specific crystal symmetry. Thus, when the distance be-
tween defects is reduced, the whole crystal may assume
a ferromagnetic state, but still remain an insulator be-
cause of the weak overlap of the neighboring orbits. A
collective state of impurity electrons and a transition to
the conducting state occur at still higher carrier densi-
ties.

The existence of collective ferron states in degenerate
EuTe and EuSe was demonstrated experimentally
in1-106'212-1. Measurements of the magnetic susceptibility
carried out i n [ 1 0 6 ] established that iodine-doped EuTe
exhibited a spontaneous moment. This moment (per
atom) was 1.2 μ-g for the most heavily doped sample,
which corresponded to the ratio of the volumes of the
ferromagnetic and antiferromagnetic phases χ = 5. The
spontaneous moment disappeared at Τ ~ 20° C. The exis-
tence of the ferromagnetic phase in these samples was
confirmed also by a very strong Faraday rotation of the
plane of polarization of light, which was independent of
the wavelength and due to ferromagnetic resonance. Like
the spontaneous moment, this effect disappeared at
~20°K (Fig. 15a).

A large part of an EuTe crystal was antiferromag-
netic for χ = 5 and the ferromagnetic part should be
multiply connected. This was confirmed also by the lack
of dependence of T N on n. It could be argued on this
basis that practically all electrons were concentrated in
the ferromagnetic part of a crystal, which was confirmed
by the rapid rise of the conductivity as a result of heat-
ing.

The existence of ferron states in degenerate EuTe
was demonstrated also in1-38-1 although the results in that
paper were actually interpreted using the canted anti-
ferromagnetic ordering process. Figure 15b shows
magnetic-field dependences of heavily doped and pure
EuTe crystals at 42°K.t38-1 These dependences are of
the same type as those reported in C l 0 6 ] : the initial fast
rise of the magnetization of a conducting sample, due to
the orientation along the field of the moment of ferro-
magnetic regions, is followed by further rise of the mag-
netization at the same rate as for a pure antiferromagnet.
This shows that the rise is due to the appearance of
magnetization in the antiferromagnetic part of the crys-
tal. As in1-106-1, the value of Tjg is independent of n.
According to Fig. 15b, we have χ = 20, i.e., the ferro-
magnetic part of the crystal is multiply connected.
Consequently, when the temperature is raised, the
destruction of inhomogeneous states and conduction elec-

tron delocalization, initially forbidden in ferromagnetic
drops, should result in a strong rise of the conductivity.
This was indeed observed for the sample in question:
at 4.2°K, its resistivity was two orders of magnitude
higher than at 77°K but, in the range from 77 to 300°K,
it did not vary greatly. The carrier density was
~ 1019 cm~3 at 77°K, which was in order-of-magnitude
agreement with the results of calculations for χ = 20
(Fig. 14). The assumption of a canted antiferromagnetic
order failed to explain for the temperature dependence
of the conductivity.

Very full information, demonstrating convincingly the
existence of ferromagnetic regions in the degenerate
metamagnetic semiconductor EuSe, is reported and ade-
quately interpreted in'-212-1. The initial magnetic suscep-
tibility of sample No. 1 with n(300°K) ~ 6 χ 1018 cm"3

exhibited a sharp peak at the Neel point, whereas a dif-
ferent sample with n(300°K) = 3.5 χ 1019 cm"3 had a very
weak peak (Fig. 16a). The field dependence of the mo-
ment indicated that sample No. 4 had a spontaneous mag-
netization representing ~60% of the maximum possible
value. The magnetic data taken as a whole demonstrated
that the ferromagnetic region of sample No. 1 was mul-
tiply connected, whereas, in sample No. 4, it was singly
connected.

This was supported by the low resistivity and its weak
dependence of the magnetic field in the limit Τ — 0
(Fig. 16b). The temperature dependence of the resistiv-
ity of sample No. 4, characterized by a maximum in the
vicinity of the Curie point (~20%), was typical of heavily
doped semiconductors. On the other hand, the resistance

to V

50 70
T.'H

FIG. 16. Magnetic susceptibility of EuSe sample No. 1 with n(297°K
~ 6 Χ 101 8 cm"3 (a), resistivity of EuSe sample No. 4 (b), and resistivity
of EuSe sample No. 1A (c).
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of sample No. 1A at Τ = 1.6°Κ was very high but it fell
by 10 orders of magnitude and approached the resistivity
of sample No. 4 even in a field of ~10 kOe, which trans-
formed the metamagnet EuSe to a ferromagnetic state
(Fig. 16c). When the temperature was raised to 20°K, it
also fell strongly but beyond this it depended very weakly
on T. This confirmed the prediction that, in the limit
Τ — 0 and Η —- 0, all electrons should be trapped in iso-
lated ferromagnetic drops. It is interesting to note that
the carrier densities in these two samples, whose resis-
tivities differed by ten orders of magnitude at 1.6°K,
disagreed by a factor of just 5.

c) Screening and Scattering of Electrons in
Degenerate Ferromagnetic Semiconductors

The application of an external electric field *jjxt to a

ferromagnetic semiconductor produces not only an in-
ternal electric field Φ- but also components Mq of a
magnetic moment with the same wave vector q. This is
due to the fact that a field-induced change in the electron
density alters also the indirect exchange intensity. The
field Φ acting on an electron in a crystal is not limited
to Φη because the appearance of Mq alters the exchange

between electrons and the d spins. For this reason, we
have to introduce, in addition to the conventional permit-
tivity e(q) = Φ§χνΦ«, describing the action of an external
field on a test spinless particle inside a crystal, an
additional effective permittivity ?(q) = Φ ^ / φ » which
depends on the electron spin. We shall consider the case
of total spin polarization of electrons and find l(q) only
for the relevant spin direction.

The special nature of the cooperative phenomena in
ferromagnetic semiconductors is due to a positive feed-
back between the electron density and magnetization:
the higher the density in a given region, the higher is the
degree of ferromagnetic order in this region at Τ φ- Ο
and, consequently, the lower is the position of the bottom
of the conduction band. Therefore, there is a tendency
for a further rise of η in this region (in the spin-wave
approximation we can speak of the attraction between
electrons via real magnons1-52-1). Consequently, the
charge is screened more strongly by electrons than at
Τ = 0.

The situation in a ferromagnetic semiconductor can
be illustrated by calculating in a clear but not com-
pletely consistent manner the permittivities e(q) and 7(q)
in the long-wavelength limit for W 3> AS and 1 = 0 .
According to Eq. (3.3), the average energy of the inter-
action between an electron and magnons, obtained for the
range Τ > Tc/S bearing in mind the smallness of the
electron momentum, is

because ω_ « Ο^ο^ [Eq. (5.2a)]. In the quasiclassical
approximation, we have

μ-ίΦ(Γ)-Γ[ν-ΐ(Γ)-ν-'|, (6.9)

where μ is the electrochemical potential of the system
and ν = 17(r) is the average density. Linearization of Eq.
(6.9) gives the relationship between the Fourier compon-
ent of the density η and Φ ·

(6.10)

The application of the Poisson equation

nq= ~^-\t(q)-^Q>v (6.11)

and of Eq. (6.9) gives the following expression for e(q):

where eo is the permittivity of a pure crystal.

Since Φ_ = Φ_ + Vq /e, we find that the expression for

<r(q) obtained using Eqs. (6.8) and (6.10) is

£(?) = e(?)(l— Γο). (6.13)

In general, calculations of response functions are
much more complex operations. They are carried out
in ' for W 3* AS and in *- J for W <§C AS. In the case
of a wide-band heavily doped ferromagnetic semiconduc-
tor with μ > e2nl / 3e0, we obtain the following expres-
sions for low values of q:

(6.14)

i=?-n,, n,=ns(i-r,)-, n}».£.(i—

Γ . ( Ι - £ ) . Γ Ο = ^ ^ ^

!_
12*J.

If allowance is made for the field-induced s-d exchange,
it is found that a conduction electron with an "up" spin
(A > 0) experiences an effective field

Applying the expressions in Eq. (6.14), we can readily
establish that, if Τ < T e , where Γο(Τ±) = [1 ± (2λ/κ)],
the screened potential of a point charge falls in the usual
exponential manner. The screening radius decreases
with increasing T: re(T) = X"Vl - Γ0(Τ), where λ2

= δττηβΥεομ. In the interval [Τ-, Τ+], the screened poten-
tial becomes oscillatory:

^nT L (6.16)

(subject to the heavy doping conditions λ <C k F and
λ <C κ).

According to Eq. (6.16), the screening radius passes
through a minimum at T-, rises again when Τ is in-
creased still further, and becomes infinite at T+. The
amplitude of the oscillations of the potential also rises
with Τ and becomes infinite at T t . The effective potential
of Eq. (6.15) acting on electrons behaves in a similar
manner. According to Eq. (6.14), the temperature de-
pendence of this potential at Τ < Τ- is the same as that
of a pure crystal with a temperature-dependent permit-
tivity eO = eo(l - r 0 ) . In the interval [Τ-, Τ+], the ex-
pression for this potential differs from Eq. (6.16) only by
the oscillation amplitude.

The reduction in re(T) with rising Τ is due to an en-
hancement of the attraction of electrons to one another
via magnons. At temperatures Τ > Τ-, the screened
charge is even overcompensated by the screening elec-
trons so that oscillations of the screened potential are
induced. At Τ > Τ,, a homogeneous state becomes un-
stable in the presence of even negligible fluctuations
(Sec. d in Chap. 6).

Electrical properties of heavily doped semiconductors
are strongly influenced by the random distribution of
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impurities. A special feature of ferromagnetic semi-
conductors is the strong dependence of ^(q) on Τ which
results in a corresponding strong dependence on Τ of the
interaction between electrons and defects. This is fre-
quently responsible for the rise of the resistivity of a
ferromagnetic semiconductor with temperature in the
range Τ < T c , although it is usually attributed to the
scattering of electrons by magnons. In fact, the relaxa-
tion time Tk of electrons with a momentum k, scattered
by ionized impurities, can be obtained for Τ < T- from
the usual Conwell-Weisskopf formula by replacing eo
with e0 = eo(l - Γο), where Γ ο is given by Eq. (6.14):[ 2 2 i 0

(6.17)

10 s \!

The above formula is valid for η S> 1 and, in this form-
ula, In η amounts to just a few units and it depends
weakly on T. Bearing this in mind, we find that a com-
parison of Eqs. (6.17) and (3.10) shows that the rise of
the resistivity ρ due to the scattering by defects is
e 4 (eoa^T)"1 times greater than theo magnon contribution
to the resistivity. If e0 = 20, a = 5 A, and W = 5 eV, this
ratio is 1 at Τ = 50°Κ. Consequently, T c should be sev-
eral times higher. Thus, the dependence of ρ on Τ of a
ferromagnetic semiconductor with a fairly low T c should
be governed by the scattering on defects. In the range
Tc/S < Τ < T c , the difference p(T) -p(0) should be, like
Γο of Eq. (6.14), proportional to T, whereas, in the mag-
non scattering mechanism, described by Eq. (3.10), it
should be proportional to T2.

The physical cause of the increase in the scattering
by defects with Τ is as follows: at Τ £ 0, the random)
distribution of impurities gives rise to fluctuations not
only in the electrostatic potential and electron density
but also (because of the latter) in the local magnetic
order, which become stronger with rising temperature.
Clearly, fluctuations in the local magnetic order become
strongest in the vicinity of T c and they disappear when
Τ is increased still further. Therefore, the scattering
by these fluctuations should pass through a maximum
near T c . Qualitatively, it is clear that the peak of ρ
should increase with Γ ο (Tc). At sufficiently high values
of n, when the indirect exchange via conduction electrons
is important, the latter quantity decreases with increas-
ing η and the amplitude of the peak should fall, in agree-
ment with the experimental results (see, for example,
Fig. 18). A comparison of the theoretical and experimen-
tal results obtained for samples with relatively low
values of η is difficult because the condition of heavy
doping may not be satisfied.

Another reason why a peak of ρ appears near T c is
the transfer of electrons to zero-current states in the
tail extending into the forbidden band. This tail is due to
the random distribution of impurities. In the quasi-
classical approximation, the density of electron levels
in the tail is given by the same expressions as jn^183'184^1

but only the mean-square fluctuation potential <J>a ~ 'el2

increases with Τ as (1 — Γο)~2. Thus, the number of
electron states within the forbidden band in the energy

FIG. 17. Energy scheme of the
metal-insulator transition in a ferro-
magnetic semiconductor.

/
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FIG. 18. Resistivity of degenerate

EuO and the metal-insulator transition.
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range where it is proportional to exp[-E2(e<i>a)~2] rises
exponentially with temperature in the range Τ < T c .

The scattering of electrons by magnetic order fluc-
tuations is very sensitive to a magnetic field. This field
may reduce or enhance these fluctuations. A reduction
is observed when the magnetization in regions with a
higher electron density is practically equal to the limit-
ing value and the field can raise the magnetization in
regions with lower density. In the opposite limit, when
there is no magnetization in Η = 0, the application of a
magnetic field produces a magnetization whose value
fluctuates with the electron density.

Moreover, the application of a field increases the de-
gree of spin polarization of electrons if this degree is
not yet maximal in Η = 0. This increases the kinetic
energy of electrons which, in accordance with Eq. (6.17),
weakens their scattering by defects. If the field reduces
fluctuations, these two factors act in the same way and
produce a negative magnetoresistance which is exhibited
by practically all ferromagnetic semiconductors (see,
for example, Figs. 20 and 23). However, if the field en-
hances fluctuations, the competition between these two
factors can make the magnetoresistance positive or
negative, depending on T, n, and H.

A simple calculation^223^ demonstrates the possibility
of a positive magnetoresistance in a ferromagnetic
semiconductor at Τ S> T c and in an antiferromagnetic
semiconductor at Τ > Τ Ν . If the field is sufficiently
strong for all the electrons to be spin-polarized
(AM > μ), we find that the energy V of Eq. (6.8) can be
expressed in terms of the magnetization M:

(0<M<S).

(6.18)

Using Eqs. (6.8)—(6.18), we obtain a formula for e(q)
which differs from Eq. (6.12) only by the form of Γ ο :

r o = -Μ
^ 3 V/T

(6.19)

The use of Eqs. (6.17) and (6.19) gives, with logarithmic
precision, the following expression for the conductivity
(it is assumed that the scattering by impurities predom-
inates):

α(Η)-σφ) _
o(0)

_ g Γ. /_M •1. (6.20)

If at Τ 2> Ύ there is a temperature range in which
η > 0.03η,,, it follows from Eq. (6.20) that the magneto-
resistance in this range is positive. However, when Τ
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rises and nc of Eq. (6.19) increases proportionally, this
inequality is reversed and the magnetoresistance is
negative, as at Τ < Τβ. This result is in agreement with
the experimental data (Sec. e in Chap. 6). A positive
magnetoresistance due to the scattering by magnetiza-
tion fluctuations is possible also in an antiferromagnetic
semiconductor at Τ = 0 if it is still in a homogeneous
s t a t e . №

Shapira and Kautz1-224-1 explain their observations of a
positive magnetoresistance by reduction in the screening
radius in a magnetic field, which enhances the scattering
by defects. The contribution of magnetic-order fluctua-
tions to the scattering is ignored. This interpretation
meets with difficulties: according to Shapira and
Kautz,[ 2 2 4 ] this effect is obtained from Eq. (6.17) with
eo = e0 only for η < 3. However, Eq. (6.17) is valid only
for η » 1. [ 2 2 5 ]

A semiphenomenological calculation of e(q) of a ferro-
magnetic semiconductor is made in[ 1 7 9 : i . The s-d ex-
change is taken in the form AS/2 and the electron spins
are assumed to be directed along the moment of a crys-
tal, which is true if the temperature is not too close to
Tc- The free energy of the magnetic subsystem is des-
cribed by an expansion in terms of the magnetization,
which is valid only in the vicinity of T c . Nevertheless,
the qualitative features of e(q) are predicted correctly
in^179^1. The permittivity e(q) of a ferromagnetic semi-
conductor is calculated in^180^ subject to the condition
μ 3> AS. In this calculation the attention is concentrated
on magnetoelastic waves and ferron effects are not in-
vestigated.

d) Collective Ferron States and Phase Transitions with
Conductivity Jump in Degenerate Ferromagnetic
Semiconductors

It follows from the results obtained in Sec. c in the
present chapter that, at Τ > Τ*, a homogeneous state is
absolutely unstable, i.e., the effective attraction between
electrons produces regions with an enhanced degree of
ferromagnetic order and a higher electron density
(a somewhat different condition of absolute instability is
obtained in [ 2 i o : l ) . The question of the nature of the phase

2 /transition to an inhomogeneous state for μ
p

2n / e 0

can be analyzed using the expression for the free energy
F of a system allowing for the slowly varying (in space)
small fluctuations of the density η . The correction to F,
which is due to fluctuations of the momentum q, is given
by the expressionC52^ [the quadratic term can be obtained
in terms of e(q), as described inC22<0] :

(6.21)

where fm is the free energy of magnons found allowing
for the indirect exchange [Eq. (5.2a)]. The contribution
of thermal excitations of electrons can be ignored in
Eq. (6.21) because these excitations are proportional to

(Τ/μ)2.

It follows from Eq. (6.14) that the ratio e q / n q is
smallest when the wave vector is ρ = VXK. This ratio
ep/llp vanishes at Τ = Τ*. Thus, the divergence of the
screened potential at Τ = T+ means that the free energy
decreases with rising amplitude of the fluctuations at

Τ > Τ+. Within the framework of the approach adopted
here, it is meaningful to consider only the temperatures
T+ below T c . If Τ is much higher than T c , the transition
to an inhomogeneous state is impossible for the same
reasons which forbid individual ferrons. Since
T+ « (dro/dT)'1, it follows from Eq. (6.14) that a homo-
geneous state is stable not only at very low but also at
very high values of n. This can be explained by the very
high Fermi energy so that the loss of this energy due to
a transition to an inhomogeneous state cannot be com-
pensated by the gain in the s-d exchange energy.

The nature of the phase transition can sometimes be
deduced from the sign of the coefficient C(T+) in Eq.
(6.21). This coefficient is negative for ν < 10IS/W. Then
the transition is necessarily of first order and it should
occur at some temperature Ti below T+. In fact, at
Τ = T+ + δ (where * — 0), a homogeneous state does not
correspond even to a relative minimum of F. Conse-
quently, the absolute minimum of F should be reached
for sufficiently large fluctuations. At Τ = T+ — δ, a
homogeneous state corresponds to a very shallow mini-
mum of F but clearly this minimum lies much higher
than the principal minimum whose position is practically
unaffected by small temperature variations. On the other
hand, at Τ = 0 a homogeneous state corresponds to the
absolute minimum of F and, therefore, sufficiently far
from T+ the minima corresponding to homogeneous and
inhomogeneous states lie at the same level. For C > 0,
a phase transition occurring at T+ should be of second
order. However, such a transition need not occur dis-
continuously at Ti < T+.

A phase transition of first order produces a state
analogous to that discussed in Sec. b in the present chap-
ter, i.e., a crystal splits into alternate regions with high
and low values of the electron density and momentum.
At Τ < Τι, an inhomogeneous state may be metastable
and the resistivity in this state can, for obvious reasons,
be higher than the resistivity in a stable homogeneous
state. An estimate of T+ obtained from Eq. (6.14) for e0

= 20, AS = 0.5 eV, m* = 10"27 g, Τ_ = 20°K, η = 1020cnT3,
and Ν = 1022 cm"3 gives T* « 10°K and C < 0. This is in
qualitative agreement with the experimental data on EuS
(Fig. 22)C 8 2 ]-see Sec. e in Chap. 6.

It is quite difficult to calculate the structure of an
inhomogeneous state of a ferromagnetic semiconductor.
Such a calculation is reported in'·227-', where it is shown
that the formation of low-conductivity drops inside a
highly conducting matrix may be thermodynamically
favorable. Therefore, the transition to an inhomogeneous
state need not be accompanied by a large change in the
conductivity. An inhomogeneous state of a pure ferro-
magnetic semiconductor in which carriers are generated
optically is investigated in'-228-1. Regions of radius of the
order of the diffusion length with a high degree of ferro-
magnetic order and high electron and hole densities may
appear in such a crystal.

In a certain range of impurity concentrations, a tran-
sition from a conducting to an insulating state may take
place in a ferromagnetic semiconductor.'-90'196-1 At Τ = 0,
the behavior of a doped ferromagnetic semiconductor
depends on η in the same way as that of nonmagnetic
semiconductors: there is a critical donor density nc

below which the crystal is an insulator and above which
it is a semimetal. The phase transition to a collective
ferron state occurs at a value of η slightly higher than nc

because the potential of an impurity atom at Τ = 0 is
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"almost sufficient" for the capture of an electron. It
becomes sufficient at finite values of Τ since then the
electrostatic potential is supplemented by the potential
of the exchange forces resulting from the presence of an
excess magnetization at a donor. This distinguishes the
transition at η ~ r^ from the transition which occurs at
η > nc when electrons are not captured by localized
states because fluctuations of the impurity potential are
too small (μ » e2n /e0). As in the η > nc case, we
can show that the phase transition is of first order. This
is confirmed by the experimental results obtained for
EuO (Fig. 18): the conductivity jump at the transition is
sharp but there is some smearing due to the random
distribution of impurities. Therefore, the transition is
investigated by comparing the free energies
the insulating and conducting states. As pointed out
earlier, the temperature-dependent part of F consists of
just the free energy of magnons F m . The electron den-
sity is distributed inhomogeneously in space because of
the fluctuations of the impurity potential. If the Bohr
radius of an electron at a donor is sufficiently large, the
electron density varies slowly in space even in the in-
sulating state. This applies even more strongly to the
conducting state. Therefore, in the temperature range
Tc/S < Τ < T c , we can apply the quasiclassical approxi-
mation to magnons, i.e., we can assume that ω depends
on r and the free energy of magnons E m , subjefct to Eq.
(6.21), can be represented in the form

and F c in

( 6 · 2 2 )

where u>k is the frequency corresponding to the average
electron density v. The system (6.22) is derived on the
assumption that the spatial dispersion of the magnon
frequencies is slight.

Since the dispersion of the density D2 in the insulating
state is higher than in the conducting state, whereas all
the other terms in Eq. (6.22) are the same for both
states, it follows that the free energy of the insulating
state decreases more rapidly with rising Τ than the free
energy of the conducting state (Fig. 17). This is due to
the fact that, in the insulating state, the magnetic order
in the regions with a higher electron density is destroyed
more slowly than in the conducting state. The difference
AF between the free energies of spins in the conducting
and insulating states passes through a maximum in the
region of T c , where the magnetic order is completely
destroyed in the conducting state but is still retained in
the vicinity of donors in the insulating state. A further
rise of Τ begins to destroy the magnetic order also in
the insulating state and, therefore, AF decreases. How-
ever, even in the limit Τ — «, the difference AF(°°) re-
mains finite for the same reason that the depth of local
levels remains larger than at Τ = 0 (see Sec. d in Chap.
3). These conclusions remain in force if the Bohr orbit
radius is small. [ 9 o : !

If the electron states in the conducting and insulating
phases are very different, then AF depends weakly on ν
for ν — uc vc. Unfortunately, little is known at present

c c

about the difference δΕ between the energies of insulating
and conducting states. Clearly, this difference should
increase with v— vc. Therefore, depending on the value
of this difference, we can have three types of situation
(Fig. IV): 1) in the range of very low values of the differ-
ence υ — i>c, the straight line representing δΕ intersects
the curve ΔΓ (i.e., the free energies of the conducting

and insulating states become equal) at just one point Tj^;
this means that, after transition to the insulating state,
a crystal remains in that state right up to the highest
temperatures; 2) in the range of larger values of ν — vc,
there are two points of intersection, T^j and TJ^J , i.e.,

the transition to the insulating state is followed by the
reverse transition to the conducting state, which is mani-
fested as a sharp resistivity peak between T j ^ and Τ ^ 2 ;
3) at still higher values of v, there are no intersections,
i.e., the transition to the insulating state does not occur
at all. The shallower the local level, the smaller is the
difference AF(°°) and the more difficult it is to observe
the metal-insulator transition. If a donor can capture
two electrons (this applies to, for example, an oxygen
vacancy in EuO), the total spin of these electrons may be
zero in the insulating state. The phase transition to this
state is still possible but it is no longer due to the ferron
effect but due to a strong reduction in the influence of
the electrons on the magnetic order when spins are
paired and due to a corresponding reduction in the mag-
non frequencies [wq(r) approaches ω°]. However, ac-
cording to Eqs. (6.21) and (6.22), the free energy of mag-
nons decreases with increasing "softness" of their fre-
quencies.

An attempt to develop a theory of the metal-insulator
transition in EuO as a cooperative phenomenon is made
jn[i'9] by generalization of the theory of collectivization
of the Mott-donor electronsC 2 3 i : i to a medium with a
temperature-dependent permittivity e(q). The physics of
the phenomenon considered i n f l 7 9 ] is essentially the
same as that described above but the calculations are
based on an idealized model.

The metal-insulator transition in EuO :Eu is explained
in[109-1 assuming that, at high temperatures, electrons
are in local levels whose depth depends weakly on T. At
the same time, the bottom of the conduction band drops
with decreasing Τ and, when it falls below these local
levels, the crystal becomes conducting. It is suggested
jn[229] that these levels are due to oxygen vacancies,
each of which can capture two electrons with antiparallel
spins, whereas, in1-188-1, it is postulated that the spins
are parallel and the weak dependence of the level posi-
tions on Τ is attributed to a high degree of magnetic
order in the vicinity of a vacancy that has captured elec-
trons ("localized ferron"). According to the picture de-
veloped inCi0 8 ' 2 2*! 8 8^ the delocalization of each electron
occurs independently of the other electrons, i.e., the
effect should be independent of n.

This approach fails to explain why a positively charged
defect (oxygen vacancy) cannot capture an electron at
Τ = 0. It follows from the theory of heavily doped semi-
conductors '-231-' that the delocalization of the donor elec-
trons is possible only if the donor concentration is suffi-
ciently high and it is essentially a cooperative phenom-
enon. Therefore, the metal-insulator transition in a
heavily doped ferromagnetic semiconductor should be
cooperative, i.e., it should be a phase transition which
depends strongly on n. This is confirmed by the experi-
mental results (Sec. e below); it occurs only in a very
narrow range of electron densities.

e) Experimental Results on Resistance of Heavily
Doped Ferromagnetic Semiconductors

Typical curves showing the resistivity of EuO axe
plotted in Fig. 18 on the basis of C l 0 9 3 . Similar results
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were reported later inC121-!06»185 i 8 8 ] . The most remark-
able feature of these results is the metal-insulator tran-
sition at 50°K exhibited by samples with oxygen vacan-
cies, whose resistivity changes by 13 orders of magnitude.
This transition differs greatly from the metal-insulator
transitions in VxOy-type crystals because of the giant
jump (in the latter case, it does not exceed eight orders
of magnitude) and because of the inversion of the conduct-
ing and insulating phases relative to the transition point.
In the insulating phase, the resistivity falls exponentially
with Τ and the activation energy ΔΕ at Τ 2> T c is
0.3 eV. The transition point is shifted by external mag-
netic fields toward higher values of Τ and the plot of
p(T) becomes less steep (Fig. 19). However, even in
fields of 140 kOe, the resistivity rises by six orders of
magnitude between 70 and 120°K.[12i:i The information
on the nature of the dependences of ΔΕ on Τ and Η pub-
lished sofar C l 0 e > 1 8 5 ' l 8 9 i is contradictory.

It is clear from Fig. 18 that the metal-insulator tran-
sition does not occur in samples with a high low-tem-
perature conductivity. According to1-121-1, it is observed
in the range η ~ (1—2) χ 1019 cm"3 but disappears already
for η ~ 3 χ 1019 cm"3. The sensitivity of the transition to
the electron density confirms its cooperative nature
(Sec. d in Chap. 6). The Curie point of the samples ex-
hibiting the transition is practically undisplaced, com-
pared with pure crystals. However, it is strongly dis-
placed for samples with high values of n.

If the transition does not occur, a typical resistivity
peak is observed slightly above T c of a ferromagnetic
semiconductor and this peak has a definite structure;
the relative amplitude of the peak decreases with rising
electron density. The giant magnetoresistance of EuO
near T c is demonstrated in Fig. 20. Accordingar T c

to'-121·', the metal-insulator transition is practically en-
tirely due to the change in the carrier density, whereas
the resistivity peak at high values of η is due to the
simultaneous occurrence of a density minimum and a
carrier scattering maximum. The former is suppressed

10'

10:

m'

7ff

EuO

<«7kOe

FIG. 19. Metal-insulator transition

in EuO in a magnetic field.
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FIG. 20. Magnetoresistance of
degenerate EuO.
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by fields of a few kilo-oersted, whereas the latter can be
destroyed only by very high fields.

The question whether the metal-insulator transition
is possible in Gd-doped EuO, for which AF(°°) is very
small, cannot be resolved on the basis of the experimen-
tal data'-112'230-1 because they are contradictory. Crystals
of p-type EuO grown in an oxygen atmosphere do not ex-
hibit even a resistivity peak near T c . [ 1 0 9 : l Several
attempts were made 1 1 1 0 3 · 1 0 9 ' 1 1 0 to find the relaxation
time τ and the effective mass of carriers in EuO by com-
bining the results of electrical and optical measure-
ments. However, the values obtained, τ ~ 10"14—10~15 sec,
were far too small so that the condition τ"1 <S μ of
validity of the transport equation used in the calcula-
tions t 1 0 3 ' 1 0 9 ' 1 1 2 ] W as not satisfied.

In contrast to EuO, crystals of EuS with excess Eu do
not exhibit a transition to the insulating state but a sharp
resistivity peak is observed in the region of T c . Accord-
ing t o C l 9 0 ' 1 9 i : l , these crystals have an additional resistiv-
ity singularity of the type that may be expected in the
transition of a ferromagnetic semiconductor to an in-
homogeneous state (Sec. d in Chap. 6). It is shown in
Fig. 21 that, when temperature rises near 8°K, the re-
sistivity increases steeply by about an order of magni-
tude but cooling does not reduce the resistivity (dashed
line in Fig. 21). The high-resistivity state is metastable
and it disappears after several minutes; the rate of its
decay decreases with time. The metastable state is
destroyed also by a magnetic field of a few kilo-oersted
and the fall of the resistivity is accompanied by a de-
crease of the Hall coefficient, which is proportional to
l/n (Fig. 22). The effect is mainly due to a change in the
carrier density but its value has not yet been determined.
Further studies are needed in order to find whether this
effect is indeed due to a transition to an inhomogeneous
state (Sec. d in Chap. 6).

On approach to T c , both EuS and EuO exhibit a sharp
resistivity peak, which can be destroyed by a magnetic
field (Fig. 23). The quantitative results obtained in Sec.
c, where the peak is attributed to the interaction of elec-
trons with magnetic moments formed at Τ ^ 0 around
defects, apply only to very heavily doped semiconduc-
tors. They cannot be used in those cases when the re-
sistivity rises by 5—6 orders of magnitude near T c and
then one has to use the qualitative analysis given in Sec.
d in the present chapter.

The interaction of electrons with such magnetic mo-
ments is clearly responsible also for the positive mag-

0.012

to',-3
S 8 10

Temperature, °K

FIG. 21

12 -0Λ

EuS

T-WK

FIG. 22

FIG. 21. Thermal hysteresis of the resistivity of degenerate EuS.
FIG. 22. Hysteresis of the resistivity and Hall coefficient of EuS in

magnetic fields.
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FIG. 23. Magnetoresistance of degenerate EuS at Τ < Tc.
FIG. 24. Positive magnetoresistance of degenerate EuS and EuTe at

T » T C .

netoresistance exhibited by heavily doped ferromagnetic
semiconductors (EuS1-83-1) and antiferromagnetic semi-
conductors (EuTeC83:i and EuSe1-212-1) in a certain range of
temperatures in the paramagnetic region (Fig. 24). Out-
side this range, the magnetoresistance is negative, which
is in agreement with the theory given in Sec. c. The field
dependence of the magnetoresistance passes through a
maximum, whose position shifts with Τ in the direction
of higher fields. The effect reported inC 8 3 ' 2 1 2 : l is 3-4
orders of magnitude greater than the corresponding
effect in nonmagnetic semiconductors and is independent
of the field orientation.

At 300cK, single crystals of EuO:Gd exhibit, like
amorphous semiconductors, switching effects which are
not observed in pure EuO crystals.[-192-1 According
to1-193-1, a ferromagnetic semiconductor exhibiting the
metal-insulator transition should have an N-type cur-
rent-voltage characteristic near the transition point and
this characteristic is due to thermal effects.
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