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Percolation theory is the name given a new mathematical discipline, initiated in 1957 and found to be

unusually productive in the physics of inhomogeneous systems. The main purpose of the review is to

describe the recently rapidly developing theory of the electric conductivity of strongly inhomogeneous

media, which leads to questions of percolation theory. This gives rise to new problems in percolation

theory, namely continual problems and problems dealing with random sites. The methods of solving these

problems and the main results are described in detail. Particular attention is paid to the behavior of various

quantities near the percolation threshold, and the theory of critical exponents and the similarity hypothesis

in percolation theory are treated in detail for the first time. The main objects to which the theory is applied

are amorphous and weakly-doped crystalline semiconductors. The main results of the theory of hopping

conductivity of such semiconductors are reported, namely, the exponential temperature and concentration

dependences, the theory of magnetoresistance, and the theory of the conductivity of films. The structure of

the pre-exponential terms is also discussed.
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1. INTRODUCTION

In 1957, Broadbent and Hammersley[1' formu-
lated new mathematical problems connected with pro-
cesses which the authors called percolation processes.
On the basis of these problems, a mathematical disci-
pline was created, called percolation theory, and found
extensive use in various branches of physics of the con-
densed state. We start with naming a few typical prob-
lems of percolation theory and with an explanation of
the processes that are described by these problems.

The classical problems of percolation theory are
lattice bond and site problems. We consider a three-
dimensional lattice and assume that a certain liquid can
flow from one site to another along tubes, which we
shall call bonds. We shall say that, with the aid of these
bonds, each wetted site wets its nearest neighbors. It is
obvious that one wetted atom must cause the wetting of
the entire lattice. By introducing into this system
stochastic elements in various ways, we obtain the bond
and site problems. We discuss first the bond problem.
We assume that each bond in the lattice can be broken
with a probability lx. that does not depend on the state
of the other bonds. We assume that one lattice site with
partially broken bonds is wetted and we discuss the
question of how many other sites of the lattice it can
wet. As already mentioned, at χ = 1 the entire lattice
is wetted with a probability equal to unity. It is clear
that in the case of small χ only a finite number of sites
is wetted, since the broken bonds do not permit the
liquid to move far from the initial site. One of the as-
pects of the bond problem is to find the value xc(b),
the minimum value of χ at which the probability that
the initial site wets an infinite number of other sites
differs from zero. We shall call the point Xc(b) the
percolation threshold. The bond problem describes, for

example, the process of percolation of current through
a lattice in which instead of unbroken bonds there are
equal resistances that join the neighboring sites, and the
broken bonds correspond to infinite resistance. The ef-
fective electric conductivity σ of such a medium differs
from zero only if χ > xc(b). The determination of the
value of σ(χ) is a different aspect of the bond problem.

We now discuss the site problem. In this problem,
all the bonds are assumed unbroken, but the sites are
spoiled. Sites can be closed or open, closed sites do not
let the liquid flow in any direction. They cannot be
wetted and do not wet other sites. It is possible to in-
troduce a critical fraction of open sites Xc(s), at which
the probability that a given site will wet an infinite
number of other sites vanishes. The most important
example of the site problem is that of a dilute ferro-
magnet. Imagine a solid solution of ferromagnetic
material in nonmagnetic material, the fraction of the
ferromagnetic atoms being equal to x. We assume that
the exchange in direction between the ferromagnetic
atoms, which leads to parallel orientation of their mag-
netic moments, decreases so strongly with distance that
it can be regarded as different from zero only when
these atoms are in neighboring lattice sites. We shall
call sites in which the nonmagnetic atoms are situated
closed. At zero temperature, all the open sites that wet
each other have the same orientation of the magnetic
moments. At small values of x, isolated groups
(clusters) of sites that wet each other are produced.
Inside each group the moments are identically oriented,
but the mutual orientation of the moments of these
groups is arbitrary, so that the macroscopic moment
is equal to zero. The quantity x c (s) determined from
the solution of the site problem formulated above is in-
deed the fraction of ferromagnetic atoms in which an
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infinite cluster (IC) of atoms that wet each other is
first produced, i.e., a macroscopic magnetic moment
arises at sufficiently low temperature. Thus, a ferro-
magnetic transition is possible in the considered sys-
tem only at χ > x c (s) . In addition to finding the perco-
lation threshold x c , percolation theory deals with the
fraction of sites belonging to IC at χ > x c . For a solid
solution, this quantity has the meaning of the saturation
magnetization. Increasing attention is being paid of late
to the topology of IC. In the simplest problems formu-
lated above, the topology of the IC determines the value
of σ(χ) and the transition temperature T c (x).

It should be clear from the foregoing examples that
an important role in percolation-theory problems is
played by random properties of the medium that are
fixed in space, and by the connectivity of region with
identical properties.

Applications of percolation theory are quite valid and
unexpected. For example, in[ 1 1 is given the following
problem: An orchard is planned in the form of a square
lattice with trees in its sites. It is known that a sick
tree infects another tree located at a distance r away
from it with a probability f(r), where f(r) is a rapidly
decreasing function. It is required to find the minimum
distance between trees, at which one sick tree is capa-
ble of infecting only a finite number of trees. Obviously,
this problem reduces to the bond problem described
above, and the sought distance is determined by the
condition f(r) =x c (b), where xc(b) is the critical value
of the fraction of the unbroken bonds.

At the present time, the most important field where
percolation theory is used is undoubtedly the theory of
disordered systems. The main concepts of the electron
theory of amorphous semiconductors, such as the
mobility threshold or the percolation level, owe their
existence to this new mathematical discipline. As early
as in 1958, one year after the publication of the trail-
blazing paper[ 1 ], Anderson[2] used the ideas of percola-
tion theory to prove the fundamental statement concern-
ing localization of electrons in a random potential field
in the case of a sufficiently large degree of disorder.
This phenomenon is called the Anderson transition, and
its study is the subject of a large number of papers (see,
e.g.,[3]). The ideas of percolation theory were used to
calculate the mobility of electrons in helium vapor[4],
to describe metal-dielectric transitions in strongly
doped semiconductors^1, in tungsten bronzesC 6'7 ], in
liquid mercury with decreasing density,[8] and in many
other objects.· As already mentioned, percolation
theory was used to calculate the saturation magnetiza-
tion and the Curie temperature of ferromagnetic solid
solutions as functions of the concentration of the ferro-
magnetic atoms[ 9' and to study other magnetic proper-
ties of these systems.1101

In 1971, the authors of the present review[ I 1 ] and
Ambegaokar, Halperin, and Langer[12) have shown
that the transport of current in a disordered system
with localized states, which is realized by hopping of
electrons from one state to another, should be regarded
as a percolation process. Both papers contained a
criticism of the results of Miller and Abrahams113',
which at that time were universally accepted, and also
the idea which permitted the problem of calculating the
exponent of the electric conductivity to be reduced to
the problem of percolation theory. (A year later the
same ideas were independently advanced by Pollak[ 1 4 !.)

During the last three years, much progress was made
in the theory of hopping conductivity, both in the ex-
planation of extensive experimental data, and in the
clarification of its logical construction. The mathemati-
cal formalism of the theory is completely based on the
ideas of percolation theory. In addition to the previously
well known lattice problems of percolation, it was neces-
sary to use here also continual problems and random-
site problems.

The exposition of percolation theory is the subject
of the good reviews of Shante and Kirkpatrick1"1, of
Domb, Frisch and Hammersley, and Essam [ l e i . The
purpose of the present review is not merely to report
the latest results in this field. We wish to show how the
methods of percolation theory make it possible to con-
struct a physical theory of transport phenomena in
strongly inhomogeneous media. By way of application
we use mainly hopping conductivity of weakly doped
semiconductors. However, we do not attempt to de-
scribe the results in detail and to compare them with
the experimental data, since this would call for a de-
tailed exposition of the theory of impurity electronic
states, generalized to include the case of a nonstandard
spectrum, and would lead us away from the main prob-
lem. (These results are treated in sufficient detail in
a review by one of us[ 1 7 ] .) In view of the novelty of the
methods, we undertake in this review to describe most
clearly the main ideas, since we hope that they turn out
to be useful also in other physical problems.

In the second chapter of the review we discuss
threshold points and the methods of their determination.
In the third chapter we establish the connection between
the exponent of the electric conductivity of an inhomo-
geneous medium and the threshold values of the perco-
lation-theory problems. In the fourth chapter, on the
basis of this connection, we construct the theory of the
exponential dependences of the hopping conductivity on
the impurity concentration, on the temperature, and on
the magnetic field. Finally, the fifth chapter is devoted
to an explanation of the character of the singularities of
the various quantities at the threshold point. This makes
it possible to find the pre-exponential factor of the hop-
ping conductivity and to investigate size effects.

2. LATTICE AND CONTINUAL PROBLEMS OF
PERCOLATION THEORY

Lattice problems are historically the first and the
most thoroughly investigated problems of percolation
theory. Many important physical problems can be re-
duced to them (for example, the theory of ferromag-
netic solid solutions), and with them as examples it is
possible to become acquainted with the methods of per-
colation theory; in addition, results obtained with their
aid are frequently universal.

In the analysis of lattice problems one introduces the
quantity P N ( X ) J which is the probability that a given
site wets at least Ν - 1 other sites, i.e., belongs to a
cluster of at least Ν sites that are bound to one another.
One of the problems of the theory is to find the function

/>(*)= limPw(z), (2.1)

which is the probability that a given site wets an infinite
number of sites. In other words, P(x) is the fraction of
the lattice sites belonging to the IC. Of course, the func-
tion P(x) is not the same for the site problem as for
the bond problem, and we shall designate them by the
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FIG. 1. The function PN(X) for
the bond problem on a two-
dimensional square lattice. From
the data of ["] for Ν = 667 (1),
1000(2), 2000(3), 6000(4),
and°°(5).

0.1 -

superscripts " s " and " b " , respectively. As shown by
Hammersley[18J,

(2.2)

(2.3)

From (2.1) and (2.2) it follows also that

P'(x) < P"(x) .

Figure 1 shows the functions PN(X) obtained for the
bond problem with the aid of a computer in [ 1 9 ] . It is
seen that at finite values of Ν these functions never
vanish; the probability of finding a large but finite clus-
ter of bound sites is always finite. We see also that as
Ν —- °° the function PN(X) tends to zero at χ — x c (s) .
The function P(x) = 0 at χ < x c and increases mono-
tonically at χ > x c . This situation is analogous to a
second-order phase transition, which, like all phase
transitions, takes place only in an infinite system. The
role of the order parameters is played in this case by
the concentration of the sites belonging to the infinite
cluster1 2 0'. (We shall discuss the analogy with phase
transitions in detail in Chap. 5.)

Several methods are used to determine x c . In a
large number of papers1 1 9 ' 2 1 ' 2 2 ' x c is determined with
a computer by the Monte Carlo method. The PN(X) are
extrapolated in this case to Ν = ^ . In addition, the
series method of Domb and Sykes is used.t 2 3 ] The
average of sites that wet one another is represented by
a series in powers of x. It is easy to show that this
series converges at small x. This proves that at small
χ we have P(x) = 0. The quantity x c is the radius of
the convergence of this series. Sykes and Essam[ 2 4 1

have proposed a rather exact method of calculating x c ,
based on the analysis of the coefficients of this series
for different lattices. The results xc(b) and x c (s) for
the bond and site problems are listed in the table,
which is taken from the review[15). They differ little
from the results obtained by the Monte Carlo method.
For some planar lattices, the same authors[ 2 5 ) suc-
ceeded in obtaining exact results. These results are
underlined in the table.

An analysis of the values of XQ allows us to draw a
number of interesting conclusions. From the fact that
P(x) is monotonic and from inequality (2.3) it follows
that

xc (s) > xc (b), (2.4)

as is confirmed by the data in the table. We note fur-
thermore that the values of x c differ quite strongly
from one another even for lattice with equal numbers
of dimensions. This circumstance is connected prin-

Lattice

Two-dimensional:
Hexagonal
Quadratic

Triangular

Three-dimensional:
Diamond
Primitive cubic

Body-centered cubic

Face-centered cubic

2

3

4

6

4
6

8

12

0.6527

0.500

0.3473

0.388
0.247

0.178

0.119

1.96

2.00

2.08

1.55
1.48

1.42

1.43

/

0.61

0.79

0.91

0.34
0.52

0.68

0.74

·.«
0.700

0,590

0,500

0,425
0,307

0,243

0.195

txc <s>

0 427

0.466

0.455

0.145
0.160

0.165

0.144

cipally with the number of nearest neighbors z. For
the bond problem it is convenient to introduce the aver-
age number of bonds per site. If all the bonds are un-
broken, then this number is equal to z; in the presence
of broken bonds it is equal to zx. It turns out that for
the bond problem the critical value of xc(b) can be ob-
tained approximately from the condition that the average
number of bonds per site be equal to a definite number
that does not depend on the concrete lattice, but depends
only on the number of dimensions. For two-dimensional
lattices zxc(b) = 2,[ 2 3 ] and for the three-dimensional
case we have zxc(b) = 1.5.[26] The accuracy with which
this rule is satisfied can be seen from the table.

An analogous quantity can be introduced also for the
site problem.[2?I We draw around each lattice site a
sphere with radius equal to half the distance to the
nearest neighbor, and let f be the ratio of the volume
occupied by these spheres to the total volume. If these
spheres are assigned only to open sites, then the frac-
tion of the volume occupied by these spheres will be
equal to xf. As seen from the table, the critical value
x c (s) is determined with good accuracy from the condi-
tion that this fraction of the volume be equal to 0.45
± 0.02 for two-dimensional lattices and 0.15 ± 0.01 for
three-dimensional lattices.

We now consider the so-called continual problems of
percolation theory. We specify in an all of space a ran-
dom continuous function V(r) defined by correlation
relations. Without loss of generality we assume that
(V(r )) = 0 (the angle brackets denote averaging). We
specify a real number V and imagine that the regions
of space where V(r) < V are colored black and the re-
maining regions white. As V varies from - °° to °°,
the volume of the black regions changes from zero to
the volume of the entire space. It is required to find
the minimum value V = Vc at which there is a possibil-
ity, by starting from a certain black point, to go an in-
finite distance away from it by moving only through
black regions. Such a problem arises, for example, if
it is necessary to find the minimum energy that an
electron must have to go off to a macroscopic distance
in a potential V(r) without leaving the classically al-
lowed regions14·11»26»2"1. The quantity Vc is called in
this case the percolation energy (the percolation level).

It is easily understood that the continual problem is
close to the previously formulated lattice problems.
We imagine a lattice with so small a period that the
function V(r) remains practically unchanged in the
period. We fix V and assume that the bonds between
the neighboring lattice sites located in the black regions
are not broken, and the remaining bonds are broken.
With increasing V, the fraction χ of unbroken bonds
increases, and the critical value Vc corresponds to the
value of xc which represents a solution of the bond
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problem, which differs from that formulated earlier in
that the distribution of the broken bonds over the differ-
ent sites is correlated in accordance with the form of
the function V(r).

In the continual problem it is convenient to speak of
the critical fraction of space which is colored black,
corresponding to the onset of percolation over the black
regions

F(V)dV, (2.5)

where F( V) is the distribution function of the quantity
V. The fraction of space vc is less sensitive to the
form of the random function V(r) than the percolation
level Vc.

If the statistical properties V(r) at positive and
negative values are perfectly symmetrical (in particu-
lar, if F( V) = F( -V)), then in the two-dimensional case
we have vc = 0.5[28>30], i.e., Vc = 0. This is easily un-
derstood by proving that in the two-dimensional case
there can be no simultaneous percolation over the white
region and black regions and it is impossible to have no
percolation over both the white region and the black
region i

In the three-dimensional case the situation is much
more complicated. There exists a number of patterns
in accordance with which percolation exists both over
the white regions and the black regions. (It is easily
understood that in the three-dimensional space the
channels of the percolation over both the white and
black regions takes place need not necessarily inter-
sect.) Therefore there exist two percolation levels,
upper and lower. As V increases, at V = Vc, we have
first percolation over the black, and at V = Vc the per-
colation over the white is stopped. If the statistical
properties of V(r) are symmetrical about zero, then
Vc = -Vc, with Vc < 0. Naturally, in the three-dimen-
sional case vc < 0.5. We note that these considerations
lead to significant conclusions concerning the optical
and electrical gaps in an amorphous semiconductor.[31]

Zallen and Scher[27»2e] have proposed to use for an
approximate estimate of vc the invariant fxc(s) of the
lattice site problem. This invariant has the meaning of
the fraction of the volume filled with spheres centered
in the open sites of the lattice, in which percolation
takes place over the touching spheres. According
tot2 7'2 9 ', vc = fxc(s). In the two-dimensional case this
yields 0.45, which is close to the exact value of vc for
a symmetrical potential, and in the three-dimensional
case we obtain vc = 0.15.

A method for solving continual problems by the
Monte Carlo method with a computer was developed
in[ 3 2 ' 3 3 ' . They considered mainly Gaussian potentials,
for which (V(r)V(r')) = K(r - r'), the even correlators
are equal to zero, and the odd correlators break up into
products of pair correlators. It was shown that for such
potentials, in the three-dimensional case, vc = 0.17
± 0.01 and within the limits of the calculation accuracy
it does not depend on the form of the kernel K(r - r ').
This is possibly an exact property of Gaussian poten-
tials, but the authors were unable to prove it. We note
that for non-Gaussian potential, values of vc that vary
in a considerable range, were obtained in[ 3 3 1.

We have discussed the question of the percolation
threshold in two classes of problems. The same prob-

lem for a third class of problems, that of random
sites, will be discussed in Chap. 4. As we shall show
in the next chapter, the problem of calculating the con-
ductivity exponent reduces to finding the percolation
threshold. To prove this statement we need some in-
formation concerning the structure of the IC. It is
customarily assumed1151, although this has not been
rigorously proved, that there can not exist several IC
which are not bound to one another. The topological
properties of the IC are the same for all classes of
problems at a given number of dimensions of space.
The IC can be represented in the form of a random net
that fills all of space. As the threshold is approached,
this net becomes increasingly loose, but at any finite
value χ - x c > 0 the fraction of sites belonging to this
net remains finite. To calculate the pre-exponential
factor of the conductivity and for a number of other
problems it is necessary to have more detailed infor-
mation on the topology of the IC. This information is
contained in Chap. 5.

3. CALCULATION OF THE ARGUMENT OF THE
CONDUCTIVITY EXPONENT OF STRONGLY
INHOMOGENEOUS MEDIA

In this chapter we shall show that a percolation
problem arises when it comes to determining the ef-
fective electric conductivity of a disordered system.
For simplicity we consider first the case of a medium
that can be characterized by a local specific electric
conductivity a(r) with a specified distribution law. If
the inhomogeneity of σ(τ) is relatively small, i.e.,
| σ(τ) - <σ))/(σ) | « 1, then the effective electric con-
ductivity is obtained by perturbation theory . [ 3 4 ) In the
intermediate case | ( a ( r ) - (σ»/(σ> | » 1, as shown by
numerical calculation, the long known[35' "effective
medium" approximation, the description of which is
beyond the scope of this review, works well (see, for
example, the splendid review by Kirkpatrick[36]. We
are interested here in the case when the inhomogeneity
of the electric conductivity is exponentially large, i.e.,

ff(r) = ffoe-£<«, (3.1)

with ((ξ(τ) - ( ξ»2) » 1. This form is assumed, for
example, by the electric conductivity of a semiconduc-
tor with large-scale fluctuations of the potential, which
bend the bottom of the conduction band.[11] In this case
£(r) = e(r)/T, where e(r) is the local value of the dis-
tance from the Fermi level to the bottom of the conduc-
tion band and Τ is the temperature in the energy scale.

We now present arguments that show that the deter-
mination of the exponent of the effective electric con-
ductivity reduces to a solution of a percolation-theory
problem.[11'121 We specify a certain value ξ, separate
the regions of space in which £(r) < ξ, calling them
(mentally) black, and call the remaining region white.
We introduce a quantity at defined as the effective con-
ductivity of a medium in which the white regions are
replaced by a dielectric. It is obvious that the effective
conductivity σ of interest to us is equal to lim at- At

small values of ξ, the black regions form isolated
islands and σξ = 0. Starting with a certain critical value
ξ = £ c , these regions form branched chains of intercon-
nected lakes. At the least excess of ξ over £ c the
density of such chains becomes finite and increases
with ξ - ic m power-law fashion. The resistance of
this critical network is determined by the resistance of
the sections with the highest resistivity. (By definition,
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these sections cannot be shunted by low-resistivity sec-
tions, for otherwise percolation would set it at ξ < £c.)
Therefore, at ξ - ξ 0 on the order of unity we have
at » exp (- ic)· (We neglect terms of order of unity in
the argument of the exponential.) Further increase of
ξ does not change the exponential dependence of at , for
in this case regions with conductivity exponentially
smaller than e x p ( - £ c ) are included and are shunted
by the aforementioned critical net, it follows therefore
that the principal term of the logarithm of the effective
conductivity is determined by the formula

In £ = 5.. (3.2)

Thus, the problem of determining the principal term in
the exponent of the effective conductivity has been re-
duced to the continual problem of percolation theory
which was formulated at the end of the preceding sec-
tion. If the properties of the medium are such that the
electric conductivity is not a continuous function of the
coordinates, then other problems of percolation theory
arise. Kirkpatrick[3?1 undertook to check the ideas on
which the foregoing derivation of (3.2) are based with
the aid of the following model: We consider a simple
cubic lattice, between the nearest sites of which are
connected random resistors the values of which have a
large scatter. We represent these resistors in the form
R = Roe* and assume that Ro is the same for all the
resistors, while the random quantity ξ is uniformly
distributed in the interval from In A to In A. If A = 1,
then all the resistors are equal, and the effective elec-
tric conductivity σ (per resistor) is equal to σ0 = l/Ro·
At A » 1 we can find In (σ/σ0) by percolation theory.
To this end we should mentally include all the resistors
with ξ < ξς and choose £ c from the condition that per-
colation over the connected resistors set in. Then the
result is expressed by formula (3.2). It is easy to see
that in this case £c is determined from the solution of
the lattice bond problem. According to the results given
in the table, the critical fraction of the connected re-
sistors xc(b) is in this case equal to 0.25. It is now
easy to find £ c . From the conditions of the problem,
the distribution function ξ is of the form

0, 111 > In A.
If all the resistors with In A < ξ < £ c are connected,
then the fraction of the connected resistors is

( 3 i 3 )

p (!)<*?• (3.4)

The quantity £ c is determined by the condition
χ(ξβ) = 0.25. Calculating the integral (3.4), we obtain

ξο=-τ1ηΛ (3.5)

and according to (3.2) we have
ι σ 1 , . /ο Ω \

In — ~-j-lnA. \i·'0)

The verification undertaken by Kirkpatrick consisted of
numerically calculating the effective electric conductiv-
ity as a function of A. The calculation was carried out
for a cube having 15s sites and simulating an infinite
lattice. A computer was used to solve the system of
Kirchoff's equations that express the laws of current
conservation in each site. It turns out that the results
obtained in Kirkpatrick's first paper[ 3 7 ] do not agree
with (3.6), this being the reason for lack of faith in the
method described in this chapter. It must be borne in
mind, however, that formulas (3.2) and (3.6) are valid

FIG. 2. Dependence of log a on log A
from the data of [ 3 9 ] . Straight line-
theoretical relation (3.6).

7
Ψ

only at large values of A, when In A » 1. In the first
calculations Kirkpatrick succeeded in advancing only to
A « 103. This turned out to be not enough. Subsequent
calculations carried out both by Kirkpatrick himself[38]

and by other workers[ 3 9 ] have shown that at sufficiently
large A (A a 104) formula (3.6) is valid with high ac-
curacy (Fig. 2). Thus, the numerical calculations have
made it possible not only to verify the percolation
method, but also to refine the limits of its applicability.

4. THEORY OF HOPPING CONDUCTIVITY

We now apply the ideas developed in the preceding
section to construct a theory of hopping conductivity
(HC). Hopping conductivity is customarily called the
transport of current due to hopping of the carriers be-
tween different localized states. This type of conductiv-
ity was predicted by Gudden and Schottky[40] and ob-
served first in silicon carbide and in germanium. Sub-
sequently HC was observed and investigated in prac-
tically all crystalline semiconductors. In recent years
HC was observed also in a large number of amorphous
semiconductors, where it spans a much larger tempera-
ture interval and plays accordingly a much more im-
portant role. We shall first describe briefly the experi-
mental facts. A more detailed exposition can be found
in the reviews[I7>411 and in the book[42].

a) Fundamental Experimental Data

We start with crystalline semiconductors. At room
temperatures and lower, the conductivity of most semi-
conductors is due to the presence of impurities that
produce local levels in the forbidden band. An individual
impurity atom can be characterized by an ionization
energy Ao and by the distance a over which the wave
function of the localized impurity state falls off. If the
impurity concentration Ν is not very large, so that
Na3 « 1, then the impurity states overlap little and re-
tain their individuality. Conduction in such weakly doped
semiconductors at relatively high temperatures is ef-
fected by carriers that are thermally thrown from the
impurity levels to the allowed bands. With decreasing
temperature, the concentration of the electrons in the
conduction band becomes so low (for the sake of argu-
ment, we speak of an η-type semiconductor) that the
hopping of the electrons directly between the donors,
which is due to the small but finite overlap of the wave
functions of neighboring impurities, begins to make a
large contribution to the current. The transition from
allowed-band conductivity to the HC with decreasing
temperature can be clearly seen in Fig. 3, which shows
the temperature dependence of the resistivity of ger-
manium[431; such a dependence is typical of all weakly-
doped semiconductors. In the HC region, the electric
conductance takes the form

a = <r3eXp(--^-). (4.1)
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Temperature, ° Κ
W S 1 J "

agrees with good accuracy with the relation

(4.2)

FIG. 3. Dependence of the
resistivity on the temperature
for p-type Ge with degree of
compensation Κ = 0.4. [43]
The concentration of the ac-
ceptors in samples 1 to 11 is
equal to (in cnT2): 1-7.5-1014,
2-1.4-10l s, 3-1.5-1Ο15, 4 -
2.66-1015, 5-3.6-1015, 6 -
4.8-10l s, 7-7.2-1Ο15, 8 -
9.0-10l s,9-1.4-101 6, 10-
2.4-1016, 11-3.5-101 6

The subscript " 3 " is customarily used to describe HC
of weakly-doped semiconductors^41'

The necessary condition for HC is the presence of
free places on the donors. At low temperatures, it can
be ensured only by compensation of the semiconductor,
i.e., by the presence of a certain concentration of
minority carriers. For example, acceptors in an n-type
semiconductor capture part of the electrons from the
donors and become negatively charged. The result is
the same number of empty (positively charged) donors.
The role of compensation is not limited to this, how-
ever. The charged donors and acceptors resulting from
the compensation produce by means of their random po-
tential a scatter of the donor levels, which greatly ex-
ceeds the exponentially small splitting of the levels of
the neighboring donors due to the overlap of the wave
functions. This prevents a quantum "smearing" of the
electron over the donors and leads to localization of the
states corresponding to individual donors . [ 2 ] Owing to
the scatter of the levels, the transition of the electron
from one donor to another is possible only with absorp-
tion and emission of phonons. Therefore HC, just like
the band conductivity of a weakly-doped semiconductor,
has an activation-type temperature dependence.

Figure 3 shows one more characteristic feature of
HC, namely the exceptionally strong dependence of σ3

on the impurity concentration. The physical cause of
this phenomenon is that with decreasing concentration
the distances between the donors increase, and the
probabilities of the hops between the neighboring donors
decrease exponentially.

A large body of experimental data has been accumu-
lated by now on the dependences of σ 3 and £3 on the
concentration, degree of compensation, the chemical
nature of the impurities, the deformation, and the mag-
netic field.[17·411

There is much less known concerning the electronic
states of amorphous semiconductors than of crystalline
semiconductors. These states are connected not with
the impurities but with the fluctuations of the structure
or of the stoichiometric composition. The state density
near the Fermi level, which is located in the center of
the forbidden band, is small enough for the states to be
localized.

The temperature dependence of the HC of amorphous
semiconductors1441 differs from (4.1) and apparently

proposed by Mott.[45] This difference, however, is con-
nected not with the qualitative singularities of the elec-
tron states, but with a pure quantative difference be-
tween the energy and spatial scales in both cases. A
confirmation of this point of view is the fact that in
weakly-doped semiconductors, too, at infralow tempera-
tures Τ < 1°K, the law (4.1) gives way to a relation of
the type (4.2).[4β~481 We shall show below that a single
method, based on percolation theory, makes it possible
to obtain in different temperature intervals both the
constant-activation-energy regime (4.1) and Mott's law
(4.2).

b) Random Network of Resistors

An important contribution to the theory of HC was
made by Miller and Abrahams.[13] They have shown that
the problem can be reduced to a calculation of the con-
ductivity of a random network of resistors, each con-
nected with the hopping between a definite pair of donors.
The simplest and most general proof of the analogy with
a network of resistors is contained in[ 1 2 ] . We trace be-
low only briefly the manner in which the problem is re-
duced to this equivalent circuit.

Consider two donors numbered i and j , located at
the points rj and rj and having energies ei and ej.
The energy difference | ej - ej | in typical semiconduc-
tors is much smaller than the Debye temperature. The
hopping processes proceed with absorption or emission
of one phonon. Let the electron spectrum be isotropic,
so that the wave function of the donor takes the form

(4.3)

Then calculation in first-order perturbation theory in
terms of the deformation interaction of the longitudinal
acoustic phonons with the electrons yields for the num-
ber of transitions between the donors i and j per unit
time

r""f, (!-/
(absorption)
(emission)

(4.4

where rij = | ri — rj |, the factor exp (-2rij /a) is con-
nected with the overlap of the wave functions of the
electrons at the impurities i and j , J/{(.) is the Planck
function, and fj is the occupation function of the state i.
The factor yjj depends in power-law fashion on r^ and
€i - ej. Its explicit form is given in[13). Under equili-
brium we have

/^/«(β,^Ι+Ιβχρ^)]-1, (4.5)

where μ is the chemical potential. The frequencies of
the transitions i — j and j — i are in this case equal
to each other and there is no current. The electric field
leads to two changes in Γ ^ . First, the field changes the
energies of the donor states and consequently the energy
of the phonon that takes part in the hopping. In a weak
electric field E, the phonon system remains in equili-
brium. Therefore, the first change reduces to addition
of a term eE -rij to the argument of the Planck func-
tion. The second change consists in the fact that the
field redistributes the electrons over the donors, i.e.,
it adds increments Sfj to the functions (4.5). We write
these increments in the form
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If we substitute (4.6) in (4.4) and take into account the
changes in the arguments of the Planck functions, then
the balance between the transitions i — j and j — i is
upset, and a current will flow between the donors i and
j . In the approximation linear in Ε and δμ, direct cal-
culation leads to the following expression for the excess
number of electrons that goes over per unit time from
donor i to donor j :

where Γ?: is the frequency of the transitions i : r j at
equilibrium. The factor in the parentheses in (4.7) can
be regarded as the difference between the electrochemi-
cal potentials between the donors i and j . Then the
quantity

*"=!% (4.8)

can be naturally interpreted as a resistance connected
between the donors i and j . Substituting the equilibrium
distribution function in (4.7) and (4.8) at Τ « | ei - μ|,
we write R;i in the form

where

(4.9)

(4.10)

(4.11)

-ε; I)· (4.12)

We have thus obtained a network of resistors Rij which
connect randomly disposed sites (impurities). The
quantities δμί must be obtained from the condition that
the incoming and outgoing currents be equal at each site
(Kirchoff's first law) and from the condition that the
sum of the electrochemical potentials in any closed
circuit be equal to the voltage applied to this circuit
(Kirchoff's second law).

An important feature of the considered network is
the unusually broad spectrum of the values of R^. In-
deed, in the situation typical of experiments with weakly-
doped semiconductors, the average distance between
impurities N~1/3 amounts to from 6 to 12 Bohr radii a.
The resistances of the pair with rij = N~1/3 and the pair
with rij = 2N~V3 differ by factor e1 2"2 4. A strong scatter
at sufficiently low temperatures results also from the
energy term (4.10). Thus, the considered network is an
ideal object for the application of the percolation method
described in Chap. 3. In accordance with this method,
to find the conductivity exponent we shall first imagine
that all the resistors are disconnected. We then connect
all the resistors with ^ij < ξ and increase ξ until per-
colation over the connected resistors sets in. If the
threshold value is ξ0, then

σ = σ 0 exp ( — | c ) . (4.13)

To find £ c it is obviously necessary to solve the follow-
ing percolation-theory problem. We are given random
points (sites) with concentration Ν and with given dis-
tribution of the energies ei. Two points are regarded
as bound if

lu =-¥-+-£-•* (4.14)

It is required to find the threshold value of ξ at which
the bound points first form an infinite cluster. This
problem is a particular case of the third class of per-
colation-theory problems—random-site problems. In

the general case, the left-hand side of the binding cri-
terion (4.14) can be an arbitrary function of rj, rj, e|,
and ej and can depend not only on these but also on
other characteristic sites. We shall see that problems
of this class play an exclusive role in the theory of HC.

c) Concentration Dependence of the Hopping
Conductivity

As mentioned in Sec. (a), the exponential dependence
of the HC on the concentration is contained in the quan-
tity (73. To calculate it we must consider temperatures
at which the characteristic values eij/T < 1. Then the
binding criterion takes the form

ra^^r, (4.15)

i.e., the given site is bound with all the sites lying in-
side a sphere of radius r around it. At a certain
threshold value r c of the parameter r, there arise for
the first time infinite sequences of sites in which each
succeeding site lies inside the sphere around the pre-
ceding one. According to (4.15),

L = - ^ (4.16)

and consequently

σ, = <ν-2Ό/.. (4.17)

As we have seen with p-Ge as an example (see Fig. 3),
the concentration dependence of σ3 is particularly
clearly pronounced, so that the question of the percola-
tion radius r c is pertinent. The quantity r c was cal-
culated many times and quite carefully[5»49'5ei. The re-
sults of different workers are compared in[ S 4 ' . Accord-
ing •

= (0,87 + 0.01) Ν'1' (4.18)

If the results153»551 are extrapolated to an infinite block
in accordance with the law obtained in[ 5 4 1, then they
turn out to be close to (4.18). Substitution of (4.18) and
(4.17) yields

a3=croexp ( — V (Δ 19)

where a - 1.74 ± 0.02. The result (4.19) was verified
directly by computer solution of the system of Kirch-
hoff's equations for a random network with resistances
Rij = Ro exp (2rij / a ) . [ M l The calculated dependence of
the resistivity of the network on the impurity concentra-
tion agrees well with formula (4.19).

A reduction of the experimental data given for p-Ge
in Fig. 4 shows that In σ3 is a linear function of N"^3.
The slope of the line makes it possible to determine a
from the known value of the Bohr radius of the acceptor.
According to [ 1 7 1 , α = 1.9 ± 0.1. The same value (but
with an uncertainty ~0.2) is obtained by a reduction of
the data of p-Si and n-GaAs.[ 1 7'5 7 ] The slight excess of

FIG. 4. Conductivity σ 3 of
p-germanium with gallium im-
purity as a function of the gal-
lium concentration in accord-
ance with the data of [ 4 3 ] . The
degree of compensation of all ίο3

the samples is Κ = 0.4.

0 δ
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the experimental value over the theoretical one can be
attributed in principle to the small correlation in the
impurity positions, due to their repulsion in the melt.

In the aforementioned experiments, the wave function
of the impurity far from the center agrees with good
accuracy with (4.3). In many semiconductors, however,
for example n-Ge and η-Si, the wave functions of the
impurities are strongly anisotropic. A strong aniso-
tropy can be intentionally produced by a strong magnetic
field or by uniaxial deformation in the investigation of
the effects of the magnetoresistance and piezoresistance
in semiconductors with initially isotropic wave functions.

In the case of anisotropic wave functions φχ(τ), the
term 2rij/a and £jj is replaced by the complicated
function φ(Τ{ί), which coincides with the argument of
the exponential of the quantity | j tpi4>jd3r | 2 . To find σ3

it is now necessary to solve the percolation-theory
problem with the binding criterion

φ(ϊΐί)<ξ, (4.20)
which is satisfied when rjj lies not inside a sphere but
inside a closed surface St of more complicated shape.
The volume Vt bounded by the surface Ŝ  increases
with increasing parameter ξ. It is necessary to find the
critical value ξ = £ c at which the IC of the bound sites
first occurs. The value of σ3 is determined as before
by formula (4.13).

The percolation threshold £ c is conveniently charac-
terized by the average number of bonds B c = NVt
emerging from one site. An analogous quantity B c

= (4ΙΓ/3)ΝΓ£ «s 2.8 can be introduced also for the sphere
problems (4.15). The quantity B c can in principle de-
pend on the shape of the surface St. Ιη [ 1 7 > 5 8 ] it was
proved that the values of B c are the same for all the
surfaces obtained from one another by a linear trans-
formation of the coordinates, for example, for a sphere
and any ellipsoid. In [ 5 S ] the values of B c were calcu-
lated by the Monte Carlo method for the surfaces that
are essential in the applications described below and
for a number of other surfaces. It turned out that for
convex surfaces (including a sphere) the values of B c

are the same within 3%, i.e., B c is approximately an
invariant analogous to zxc(b) in the bond problem. Cal-
culations for concave surfaces seem to indicate that B c

seems to decrease with the degree of concavity, but not
more than by 10—20%.

Let us consider the main applications of the per-
colation method for anisotropic impurity wave functions.
In [ 5 3 ] the method was used to describe the concentration
dependence of σ3 for n-Ge, where St is the surface
enveloping four intersecting oblate ellipsoids of revolu-
tion, the axes of which are directed along (111). B c was
calculated for this surface, and this made possible a
comparison with experiment. In [ 1 7 ) 5 3 1 the concentration
dependence of σ3 was calculated for uniaxially deformed
n-Ge and p-Ge. This dependence arises because of a
restructuring of the electron spectrum under the influ-
ence of the deformation and a change in the form and
volume of the wave function. For both deformed and un-
deformed germanium, the calculation method leads to
satisfactory agreement with the experimental data."

!)We take the opportunity to correct an error that has crept in the
plots of In σ3 against N" 1 ' 3 for germanium with antimony and phos-
phorus impurities. [17>S9] From the initial experimental data [59>60] it
follows that In a3= (-3 + 0.1)· 106 (cm"1) N" 1 ' 3 for antimony and
In σ3 = -(3.6 ± 0.2)· 106 (cm"1) N" 1 ' 3 for phosphorus, in place of the
relations given in [ 5 3 ] .

d) Theory of Hopping Magnetoresistance

The most interesting and productive is the applica-
tion of the percolation method for anisotropic wave
functions to the theory of giant magnetoresistance.[ 5 β»β 1 ]

It is well known that a strong magnetic field constricts
the wave functions of the impurity electrons in the
transverse direction, transforming them in the simplest
case from spherically-symmetrical into cigar-shaped.
The overlap of the " t a i l s " of the wave functions of the
neighboring impurities decreases sharply, on the aver-
age, and this leads to an exponential increase of the
hopping resistance. An exponentially large positive
magnetoresistance was observed in n-InSb[ a z i, n-Ge [ 6 3 ] ,
p-Ge [ M ' 6 5 ' , n-InPt e 6 l , n-GaAst6 7'6 8]. An increase of the
resistance by 105 times was reached ίη [ β 2 > β 7 ) in the
maximum magnetic fields 28 kOe and 140 kOe, respec-
tively. The theory starts from expressions for the
" t a i l s " of the wave functions of a hydrogenlike center
in a magnetic field. At relatively short distances from
the center r < \ 2 /a (λ = Vch/eH is the magnetic
length) the exponent of the wave function acquires a
term that is small in comparison with the main term

Φ (r) ~ exp I (4.21)

where ι? is the angle between the vector r and the ζ
axis, which coincides with the direction of the magnetic
field (the nucleus is at the origin). At large distances
r > X2/a, the magnetic field changes completely the ex-
ponent of the wave function

ll} ir\ ~ pTTi { 1 z\ χ 3 + ί / 2 \ ι Λ no \

ψ(Γ)~βχρ^— — 4J^-J, (4.^z;

where an = [2mE (H)]"V2K, m is the effective mass,
and E(H) is the binding energy of the hydrogenlike
center with the magnetic field H. Which of the formu-
las, (4.21) or (4.22), should be used for the calculation
of the overlap integral depends on the ratio of the aver-
age distance between impurities N~^' and the value of
X2/a. At a given impurity concentration, formulas (4.21)
are valid in relatively weak fields (H < Hc = NvacR/ea),
and formula (4.22) is valid in strong fields (H > Hc).
With the aid of (4.21) and (4.22) one calculates the func-
tion ^>(rij) (the exponent of the quantity | f>piipid3rf),
which enters in the binding criterion. At Η < Hc the
surface S^ is an ellipsoid of a revolution that is slightly
prolate along the ζ axis. In strong fields, St consti-
tutes two identical truncated paraboloids of revolution
with the bases flush in contact. As already mentioned
above, B c « 2.8 for these surfaces. Calculating in each
case the volume V(£, H) of the surface, we obtain £ c

from the condition N V ( i c , H) = B c and substituting ξ<,
in (4.13) we obtain[ 5 8 ' e i ]

σ3 (Η) = σ3 (0) exp ( - 0.04

σ3 (Η) ~ exp [-0.95 (ΝαΗλ-ιΙ*]

(H<HC),

(H>HC).

(4.23)

(4.24)

In the limit of very strong magnetic fields, when E(H)
= Eo ln2(a/\)2, formula (4.24) yields

a, ~ exp (—const n H) (4.25)

The degree of agreement of (4.23)—(4.25) with the ex-
perimental data can on the whole be regarded as satis-
factory .t 1 7 ' 5 8 !

A result similar to (4.23) was obtained by Miko-
shiba.[ e 9' However, owing to the rough calculations
made in the determination of the wave functions and
owing to the absence of an averaging procedure based
on percolation considerations, the numerical coefficient
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in the exponential obtained by Mikoshiba is twice that in
(4.23).

It is interesting to note that the results (4.23)-(4.25)
pertain equally well to transverse and longitudinal mag-
netoresistance. At first glance this may appear para-
doxical. After all, the wave functions of the impurities
in the magnetic field are strongly elongated along the
field and the probability of hopping through a specified
distance in longitudinal direction exceeds exponentially
the probability of hopping in the transverse direction.
If we use chains consisting of longitudinal hops for the
longitudinal conduction and consisting of transverse
hops for the transverse conduction, then the exponential
difference should remain also in the expression for the
conductivity. From the premises of the percolation
method, however, it follows that inasmuch as a cluster
that is infinite in all directions is produced beyond the
percolation threshold the electric conductivity of this
cluster in all directions is determined by the same re-
sistances with £ij = £ c . This conclusion is in good
agreement with the results of SladekC621, who observed
in n-InSb an increase in the resistance by 105 times at
a two- to threefold difference between the longitudinal
and transverse effects. The character of the longitud-
inal and transverse electric conductivity is considered
in greater detail in[ 1 7 ] .

e) Temperature Dependence of the Hopping
Conductivity

In this section we shall show how to determine, with
the aid of a specified distribution of the energy levels,
the exponential temperature dependence of the hopping
conductivity. In accordance with the general prescrip-
tion described in Sec. (b), it is necessary for this pur-
pose to find the value of | c , taking into account the
quantities ey/T in the binding condition (4.14). We
shall show below that if the temperature and the distri-
bution function of eij are such that for neighboring im-
purities we have

ψ<^- (4.26)

then the temperature dependence of the conductivity
takes the form (4.1). Following[701, we present a pre-
scription for finding the activation energy e3 in this
case. If the inequality (4.26) is not satisfied and the
density of states near the Fermi level can be regarded
as independent of the energy, then Mott's law (4.2)
holds. When the density of states near the Fermi level
has a power-law variation, the exponent (4.2) takes a
different form.!14'70-72]

We start with the case when the inequality (4.14) is
satisfied. Under these conditions, the term ejj/T in
(4.14) adds to £c an increment that is relatively small,
but is responsible for the entire exponential tempera-
ture dependence of the electric conductivity.

Before we proceed to determine this increment, let
us discuss the statistical properties of eij. The sim-
plest situation is one in which the energies ei for differ-
ent sites are independent and are distributed in like
fashion. In this case, although the distribution of £jj is
the same for all pairs, the values of ejj and ejk for
two pairs having a common site turn out to be corre-
lated in accordance with (4.12). More realistic is the
situation in which the energies ei and ej are corre-
lated, and the degree of correlation depends on the dis-
tance rjj. The characteristic distance up to which cor-

relation takes place will be called the correlation length
r0. Owing to the correlation of the energies, the distribu-
tion function of ejj turns out to be different for a pair
with different distances rjj, and the values of en turn
out to be correlated for pairs that are not far enough
from each other.

Having in mind to return to a real situation, we con-
sider first a hypothetical case, when the distributions of
ê j for all pairs are identical and independent. In this
case the quantity £ c is determined entirely by the dis-
tribution function of ey. The analysis that follows is
based on the assumption that | c can be expanded in the
moments of the distribution function

( 4 · 2 7 )

where the symbol ( . . . ) denotes averaging. To deter-
mine the coefficient A, we assume that all the eij are
identical and equal to e'. Then, neglecting the terms of
(4.27), that are quadratic in eij/T, we obtain £ c = ξ£
+ A (e '/T). On the other hand, from the definition of £ c

it is directly obvious that in this case £ c = ξ£ + (e'/T).
Consequently, A = 1 and for an arbitrary distribution
function formula (4.27) assumes, accurate to the linear
terms, the form £ c = ξ£ + « e y )/T). According to (4.13)
this means that

ε3=(ε(ί>. (4.28)

We shall show now that the perturbation-theory method
described above is applicable also to the more compli-
cated situation when (ey ) depends on rij and the values
of ey belonging to different sites are correlated. We
note first that introduction of the small term ey /T in
(4.14) violates the condition of the binding of the sites
only the quantity 2rjj/a is very close to ij£, i.e., ry
«a r c . Pairs with this value of r^j are rare and are
located at large distances from one another. In Sec. (f)
we shall present arguments to show that only a negligi-
ble fraction of these pairs plays an important role in
percolation.

This leads to two important conclusions. First, in
the perturbation theory proposed above the quantities
ey can be regarded as uncorrelated also at finite values
of the correlation length r 0 . All that matters is that r 0

must be smaller than the distance between the points
that are important in the percolation. Second, if the
quantity (ey ) depends on ry in this case then it is
possible, in analogy with (4.27), to expand ξ 0 in the
moments of the distribution function of the quantities
ey at rij = r c . As a result we obtain

«^(«ιΛ-,,-ν (4.29)

Formula (4.29) was verified with a computer by the
Monte Carlo method in [ 7 0 1 .

We consider now another case, when an inequality
inverse to (4.26) holds for neighboring sites. In this
case the resistors connecting the neighboring sites are
determined by the factor exp(eij/T). At the same time,
among the pairs of sites with sufficiently large distance
rij one can always find such pairs for which the ener-
gies ei and ej are close to the Fermi level and the
values of ey are small. For these pairs, the contribu-
tion of the term ejj/T to £y decreases, but the term
2rjj /a increases. Owing to the competition between
these terms, the optimal hops are those for which both
terms are of the same order of magnitude. These con-
siderations are due to Mott'4 5 1, who obtained the char-
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acteristic length of the optimal hops and obtained the
law (4.2), which bears his name.

A rigorous derivation of (4.2) on the basis of perco-
lation theory was obtained by Ambegaokar et al. [ 1 2 ] We
proceed to describe this derivation. We introduce the
maximum values of eij and of the distance r ĵ that are
permitted by the binding condition (4.14),

rm.x = -f-, iw-.T^. (4.30)

To satisfy (4.14) it is necessary (but not sufficient) that
neither | ei - μ | nor |€j - μ| exceed e m a x . The de-
rivation of Mott's law is based on the important assump-
tion that the density of states g( e) can be regarded as
a constant in an energy interval on the order of emax
on either side of the Fermi level. In this case the con-
centration of the sites that fall in the band | ei - μ |
— emax c a n be written in the form

n = 2g (μ) e m a l .

We introduce now the dimensionless variables

(4.31)

(4.32)

Then the binding condition (4.14) takes the form

»u + A«<l, (4.33)

where

(4.34)

The concentration of the sites in dimensionless s-space
in the energy strip | A-i | < 1 is equal to

jr=2gM<hnnr>mai=^gfa)tWT. (4.35)

To find ξ0 it is necessary to determine the dimension-
less threshold concentration JVC at which percolation
sets in for the first time in a system of randomly dis-
tributed sites having energies ê  that are randomly
distributed in the interval from -1 to +1 and with the
binding criterion (4.33). Inasmuch as conditions of the
problems do not contain any parameters, .\'c should be
of the order of unity. Expressing 5C in terms of */Kc

with the aid of (4,35), we obtain

(4.36)

Substitution of ( c in (4.13) leads to formula (4.2) with
the value

(4.37)

In[12l there is given only the estimate J/z = 4. Other
estimates11*·17*1 of J^c range from 2 to 7. To determine
^c, the percolation-theory problem formulated above
was solved by the Monte Carlo method in[ 7 4 ) . The aver-
age value of >c f°r 10 different realizations of random
quantities turn out to be 5.7 ± 0.3. No extrapolation to
an infinite bulk was made. If the extrapolation is car-
ried out with the aid of the law proposed in[ M ], then the
result is > c = 5.3 ± 0.3.

In addition to the assumption that the density of
states be constant, one uses also in the derivation of
Mott's law the assumption that there is no correlation
between the energies of sites located in the strip
| €i - μ 1 < emax· T n i s i s possible in the case when the
characteristic distance between these sites rjnax
= agc/2 = a ^ N c / g ^ T a 3 ) ^ 4 exceeds the correlation
length r 0 of the site energies e\. If r 0 » Ν"1/3, then a
temperature interval with a different temperature de-

pendence can exist between the regions of applicability
of (4.1)and(4.2)(see,e.g.,[75l).

f) Activation Energy of Weakly-Doped
Semiconductors

In this section we use the general prescription for
the calculation the activation energy (4.29) in a con-
crete physical system—a weakly-doped compensated
semiconductor. To this end it is necessary to study
first the distribution of the electronic states over the
energies and to find the position of the Fermi level at
low temperatures. For the sake of argument we con-
sider an η-type semiconductor. At low temperatures,
each acceptor receives an electron from a donor and is
charged negatively. The donor, giving up an electron,
is positively charged. In a weakly-doped semiconductor
it is these randomly disposed impurities which cause
the main energy scatter of the electronic states. It is
very important that the charged acceptors cannot change
location, while the charged donor can become neutral
(and vice-versa) as a result of electron hopping between
the donors. At Τ = 0 the configuration of the charged
donors corresponds to the ground state of the system,
calculated with allowance for the interaction of the
donor electrons with one another and with the acceptors.
Therefore the calculation of the density of states g( e)
and of the Fermi level μ is a very complicated many-
electron problem. At comparable donor (No) and ac-
ceptor ( NA) concentrations this problem has no small
parameter and cannot be solved analytically. However,
solutions do exist in the cases of weak (K = NA/NQ
« 1) and strong (1 - Κ « 1) compensation.111)7β1 At
Κ « 1 almost all the donor states are occupied, and at
1 - Κ « 1, to the contrary, all the states whose levels
are greatly lowered by the potential of the charged im-
purities are occupied. Therefore the Fermi level lies
above the level of the isolated impurity at Κ « 1 and
below this level at 1 - Κ « 1 (see Fig. 5). Taking the
level of the isolated impurity to be the zero of the en-
ergy, we can state that with increasing Κ the value of
μ decreases and reverses sign at a certain intermedi-
ate compensation. At weak compensation Κ « 1 the
number of acceptors and charged donors is small, and
the charged donors are located near the acceptors, so
that the acceptor potential repells the electrons. Most
acceptors have near them one ionized donor, since the
potential of this donor weakens the action of the accep-
tor and makes it difficult to ionize the second donor.
By virtue of the random character of the distribution of
the impurities, however the nearest donors of certain
acceptors are located so far that ionization of two
donors at other acceptors becomes energywise more

- _ - £ _ ·
Ι-Ιί-Ί

FIG. 5. Energy schemes of weakly and strongly compensated semi-
conductors, neglecting the large-scale potential relief. Solid line-conduc-
tion band, dash-dot-Fermi level. The short dashes show the donor levels, •
and dark circles show the electrons occupying them. On the right is
shown the density of states at the donor levels. The occupied states are
shaded. The valence band and the acceptor levels are not shown.

854 Sov. Phys.-Usp., Vol. 18, No. 11 B. I. Shklovskn and A. L. Efros 854



favored. The Fermi level is determined from the con-
dition that the total number of ionized donors is equal
to the number of acceptors, i.e., the number of accep-
tors ionizing two donors is equal to the number of ac-
ceptors that do not even ionize even one donor (it is
shown in[ 7 6 ] that ionization of three donors by one ac-
ceptor is impossible at Κ « 1). A rather complicated
calculation of the number of acceptors of both types
leads to the value

*»"·£· (-Τ*»)'"· (4.38)

In the case of strong compensation (1 - Κ « 1) the
electrons are at the deepest levels that are produced as
a result of the close (and consequently of low probabil-
ity) approach of two or several donors. For example, if
there is a pair of donors at a distance r (a « r « Np''3),
then the energy of the single electron in the pair is de-
creased by an amount e2/*r. If level shifts that are
small in comparison with the Bohr energy Eo are in-
vestigated, then the main contribution to the density of
states is made precisely by pairs[ 1 1 ] (and not by groups
of three or four). Simple calculation of the number of
pairs producing levels in a given interval makes it pos-
sible to determine the density of states at large nega-
tive energies and to find the Fermi level[ l i l

2πΛ|,ίβ en (A <>Q\
β \ & / e4v3 » r1 -I/a .. r«i/3 v '

An important feature of the cases of strong and weak
compensation is that the Fermi level is in the tail and
is far from the peak of the density of states, at a dis-
tance much larger than the half-width of the peak (see
Fig. 5). For this reason, for an overwhelming majority
of the resistors of the network, it is possible to neglect
the energies ej and ej in comparison with μ in ex-
pression (4.12) for ejj. Therefore the use of formula
(4.29) yields for the activation energy

Ιμ Ι (4.40)

or, according to (4.38) and (4.39)

E 3 = 0,61El) if Κ<ζΙ, (4.41)

es = 2-1"ED (1 - K)-ll* if 1-JC<1.. (4.42)

The result (4.40) can be illustratively interpreted. The
concentration of the electrons (at 1 - Κ « 1) or of the
vacancies (at Κ « 1) thrown from the Fermi level to
the peak of the density of states is proportional to

e" ' μ ' , and the mobility due to hopping between the
states belonging to the peak depends little on the tem-
perature. Therefore the conductivity activation energy
coincides with the value of | μ | .

So far we have spoken of shifts of the donor levels
due to their nearest environment. Owing to the long-
range character of the Coulomb interaction, the large-
scale fluctuations of the impurities (having a dimension
larger than the average distance) can lead to an appreci-
able scatter of the levels. At Κ « 1 this potential adds
to formula (4.41) a correction of the order ofC76] K v \
At 1 - Κ « 1 the contribution of the large-scale fluc-
tuations can change the numerical coefficient in (4.42)
if the impurities are randomly disposed. On the other
hand, if a correlation exists in the disposition of the
impurities, there may be no large-scale fluctuations
then at 1 - Κ « 1, and the activation energy is deter-
mined by formula (4.42). Such a correlation is the re-
sult of the interaction of the impurities in the melt and

is fixed because the diffusion of the impurities changes
abruptly during the crystallization process.[77] There
is no correlation, for example, when the impurity cen-
ters are produced by radiation at temperatures so low
that these centers are immobile, or in the case of a
narrow-band semiconductor, when the correlation is
weakened by the intrinsic carriers that are present dur-
ing the solidification of the sample.ί7β)

An investigation of the properties of the large-scale
potential is reported in*11»7*1. This question is outside
the scope of the present review. We have reported only
the results of the cited papers and focused attention
only on how to determine the activation energy from a
given distribution of the potential.

At Κ « 1, the large-scale potential V(r) is Gaus-
sian. Its distribution function F( V) and the characteris-
tic scale r 0 are determined by the relations

- ~ (4.43)

(4.44)

In the case of strong compensation, 1 - Κ « 1, the
potential is not Gaussian. It contains all the spatial
harmonics of scale smaller than r0. The maximum
scale r 0 is determined by the electron screening, which
turns out in this case to be nonlinear. The amplitude of
the potential increases with scale, so that the maximum
swing of the potential γ is possessed by the fluctuations
with dimension r0. According to [ 1 1 ] ,

(4.45)

Taking into account the large-scale potential, the
energy of the overwhelming majority of levels is equal
not to zero, as was assumed in the derivation of (4.40),
but to eV(r). This quantity changes little over distances
that are small in comparison with r0. Inasmuch as both
at Κ « 1 and at 1 - Κ « 1 we have r 0 » Nj^8 for
transitions between neighboring impurities, we can
neglect the difference
tity

in (4.12). Then the quan-

= Ι μ - eV (r) (4.46)

does not depend on rij.

Let us see now how the large-scale potential alters
the result (4.40) at Κ « 1 and 1 - Κ « 1. In accord-
ance with (4.29) we should average (4.46) with the dis-
tribution function of the large-scale potential F( V). If
Κ « 1 then, owing to the symmetry of F( V) with respect
to zero, the result agrees with (4.41) with exponential
accuracy. At 1 - Κ « 1 the explicit form of the distri-
bution function is not known. All we know is that F( V)
Ξ 0 at [ 1 1 ] eV(r) < μ. Therefore averaging of (4.46)
yields

( i -
(4.47)

where is an unknown constant on the order of unity.

As Κ — 0 and Κ — 1, the correlation length r0 of
the potential increases without limits in accordance
with (4.44) and (4.45). From the statements made in
Sec. (e) it follows that formula (4.29) no longer holds at
a certain critical value of r0. Without stopping now to
find this critical value, we proceed to describe the
macroscopic approach which makes it possible to cal-
culate the activation energy at still larger values of r0.
We consider a volume whose linear dimensions are

855 Sov. Phys.Usp., Vol. 18. No. 11 B. I. Shklovskn and A. L. Efros 855



small in comparison with r0, so that all the ey inside
the volume can be regarded as the same. On the other
hand, let this volume be sufficiently large in the sense
that the dispersion of the percolation threshold i;c, due
to the fact that the threshold is finite, is small in com-
parison with the characteristic values of y/T. It is
then possible to introduce the concept of local conduc-
tivity, which depends on the coordinates like
exp[- c 3 (r)/T], where in analogy with (4.40) we have
cs(r) = | μ - eV(r)|. To calculate the effective electric
conductivity of a semiconductor we can now use the
percolation method in its continual formulation (Chap.
3).

In the case of strong compensation we have eV (r)
« μ in practically all of space. Therefore the low-re-
sistance regions are those with small values of eV(r)
and the activation energy es = eVc - μ, where Vc, in
accordance with the terminology of Chap. 2, is the
percolation level of the potential V(r). Then

8 3 = C s — J o (4.48)

where C2 is a numerical coefficient, as yet unknown,
smaller than d .

For weak compensation, to the contrary, eV (r) « μ.
Therefore the activation energy is equal to the differ-
ence μ - eVC) where Vc is the upper percolation level
in the potential V(r). As already mentioned, at Κ « 1
the potential V(r) is Gaussian. In a Gaussian potential,
according tot 3 S 1, the critical fraction of the space which
corresponds to the onset of percolation is equal to 0.17.
Therefore the upper percolation level is equal to
0.67y/e, where γ is given by (4.43). Thus,

: 0.61eB(l — (4.49)

We now discuss the regions of applicability of the mac-
roscopic approach to perturbation theory.

According to the results of Chap. 5, the volume in
which the dispersion ξ0 is small should have in com-
parison with y/T parameters larger than the length

L = alu{^)'\ (4.50)

which is the correlation radius (5.25) of an infinite
cluster at ξ - £c = y/T. Thus, the macroscopic ap-
proach is applicable if L « r0. On the other hand, it
should be clear from Chap. 5 that L is indeed the char-
acteristic distance between the elements essential for
the percolation. Therefore the result of perturbation
theory (4.29) is valid at L » r0.

A comparison of the formulas for es with experiment
is discussed in the review[17]. The agreement of formu-
las (4.41) and (4.49) with numerous experimental data
for the case of a lower degree of compensation can be
regarded as good. The situation is more complicated in
the case of strong compensation when, on the one hand,
the theory does not make it possible to determine the
numerical factors Ci and C2, and on the other hand,
by virtue of the technological inhomogeneities in the
samples, the degree of compensation can vary strongly
from point to point. At the present time it can be re-
garded as established only that e3 increases rapidly as
Κ —· 1 in accordance with a law that is close to
(l - κ ) - ν ν τ ' ]

So far we have said nothing concerning the intermedi-
ate compensation Κ =* 0.5. The calculation of €3 en-

counters in this case difficulties of twofold character.
First, in the case of intermediate compensation, the
many-electron problem of the distribution of the elec-
trons over the impurities at Τ = 0 does not have small
parameters and has not been solved completely to this
day2' (although the density of states in the immediate
vicinity of the Fermi level has been obtained1721). This
difficulty can be overcome in principle by solving the
problem with a computer and then using the prescrip-
tion (4.29).

The second difficulty has a more fundamental char-
acter. It consists in the fact that in the derivation of the
statement concerning the equivalent resistance network
we neglect the correlations of the distribution functions
at the neighboring sites (see[12]), and take the electron
interaction into account only in the self-consistent-field
approximation. This description seems to us perfectly
correct in the limiting cases of small and large com-
pensation. The reason is that in both cases the number
of carriers (vacancies at Κ « 1 and electrons at 1 - Κ
« 1) in the region of the peak of the density of states is
small and the probability that they will turn out to be at
neighboring sites is negligible. As to the self-consist-
ent potential, it turns out to be large-scale in both cases,
i.e., it is produced by a large number of electrons and
fluctuates little.

These considerations, however, are no longer valid
in the case of intermediate compensation, when the
electron goes over frequently from levels lying above
the Fermi level to levels below it, and the potential at
the donor is produced by its nearest neighbors. In this
case it remains unclear whether it is possible to use a
random network of resistors as a model to describe the
temperature dependence of hopping conductivity. (The
results of Sec. (c$, naturally, are not sensitive to
neglect of the correlation effects and are valid for all
K.)

5. SINGULARITIES NEAR THE PERCOLATION
THRESHOLD AND ASSOCIATED PHYSICAL
PROBLEMS

a) Critical Exponents

In the preceding chapters we have discussed prin-
cipally one aspect of percolation theory, the determina-
tion of the threshold corresponding to the onset of an
infinite cluster. We have shown that the threshold
values suffice to solve a whole number of physical
problems. In this chapter we proceed to other problems,
which are also formulated in terms of percolation
theory, but call for the study of the critical behavior
near the percolation threshold.

In percolation theory it is possible to introduce cer-
tain quantities that have singularities near the thresh-
old. In analogy with the theory of second-order phase
transitions, it is customarily assumed that these singu-
larities have a power-law behavior. One such quantity
is the previously introduced density P(x) of the infinite
cluster, which is analogous to the ordering parameter

2)Exceptions are semiconducting solid solutions, where the principal
cause of the scatter of the impurity levels may be fluctuations of the
composition. In this case one can disregard the interaction of the
electrons with one another, and the distribution of the impurity levels
can be easily obtained. [80]
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of the theory of phase transitions. Its behavior near the
percolation threshold is investigated by computer cal-
culations. For the node problem on three different
three-dimensional lattices, the Monte Carlo method
yields at χ - xc « xc

F(x) = a r e connected with one another as thermo-

Ρ (ζ) ~ ( z - *c)f>, (5.1)

where 0.3 « β < 0.4.[3β] For the node problem on a
planar triangular lattice, a value β = 0.14 ± 0.03 was
obtained by using series . £ 8 1 ' The agreement between the
values of 0 for different lattices with the same number
of dimensions suggests that β, together with other ex-
ponents to be determined below, depends only on the
dimensionality of the space and does not depend on the
rules that determine the bonds at short distances.[15' It
is reasonable, in particular, to assume that the same
exponent β describes the increasing fraction of sites
belonging to an infinite cluster with increasing r - r c

or Β - Be in random-node problems, and the increase
in the volume of the connective black space with in-
creasing V - Vc in the continual problem. This as-
sumption is in the spirit of modern theory of phase
transitions, in which it is assumed that the character of
the interactions at short distances has little effect on
the critical exponents. To be sure, in the theory of
phase transitions, even for one dimension of space
there remains a weak dependence of the exponents on
a number of components of the order parameter, and
this dependence leads, for example, to the difference
between the Ising and the Heisenberg models. In all the
problem classes considered above, the local character-
istics are single-component (broken or unbroken bond,
black or white color, etc.). One could therefore assume
that in the percolation problems the exponents should
be universal. As will be shown below, none of the avail-
able data contradict this hypothesis.

We now introduce the quantity n s , which is the aver-
age number of clusters of s sites per lattice site. For
the sake of argument we consider the site problem, al-
though the statements made below can be easily ex-
tended to any other problem of percolation theory. It is
assumed that the given site belongs to a cluster of s
sites, that it wets s - I other sites. The quantity
m, = S s n s is the fraction of the sites belonging to the

finite clusters. Subtracting it from the fraction of all
the open sites x, we obtain the previously introduced
fraction of sites belonging to the infinite cluster

P(x)=x-ml (i). (5.2)

Another quantity having a singularity at the point xc is
the so-called ''average cluster dimension"t231

S(i)=2»/- (5.3)

We note that the cluster dimension is averaged in (5.3)
not over the clusters but over all the sites. It has been
established'241 that for all the investigated lattices we
have at χ — x c - 0

S(x)~(Xc-x)->, (5.4)

with

f 2
= i 1

2,38 ±0,03 if d = 2,
.69 ±0,05 if d=3, (5.5)

where d is the number of dimensions.

An important step in percolation theory was the work
of Kasteleyn and Fortuin[201, who showed that the func-
tions P(x) and S(x) introduced above and the function

dynamic functions that enter in the theory of critical
phenomena. If we use the terminology of a ferromag-
netic system, then the function F(x) is equivalent to the
free energy, P(x) is equivalent to the spontaneous
magnetization, and S(x) is equivalent to the magnetic
susceptibility. The quantity χ is equivalent to the tem-
perature T, the region χ < xc corresponding to the
paramagnetic region Τ > T c while χ > xc corresponds
to the ferromagnetic region. To prove this, we intro-
duce, following'20'821, a parameter h which plays the
role of the dimensionless magnetic field μΗ/Τ, where
μ is the spin magnetic moment. We imagine an addi-
tional site (the "demon" of Kasteleyn and Fortuin),
which does not belong to the considered lattice but is
bound by definition to each of its sites with a probabil-
ity 1 - e~n. It is clear that in the presence of this
demon an infinite cluster of open sites exists at arbi-
trarily small values of x. As χ —· 0 we have P(x, h)
— xh. At finite h the total number of finite clusters
per lattice site can be represented in the form

F (x, h) = 2 η,β"*'. (5.6)

The factor e s is the fraction of the clusters with
dimension s in which not a single site is bound to the
demon. This quantity is indeed analogous to the free
energy. We consider it derivatives with respect to h

The function mj is connected with P(x) by formula
(5.2), while m2 = S(x) and is analogous to the suscepti-
bility. Therefore the symbols used in (5.1) and (5.4)
are traditional for the exponents of critical phenomena.
Differentiating F(x, h) with respect to both arguments,
we can obtain a set of functions that are analogous to all
the remaining thermodynamic quantities investigated in
the theory of critical phenomena.

Continuing the analogy with the theory of phase
transitions, we introduce the concept of the correlation
radius[70'831 in percolation problems. To this end we
define for the lattice sites a quantity g(r, r') equal to
unity if the sites with the coordinates r and r' wet
each other and do not belong to an infinite cluster, and
equal to zero in all other cases. We then introduce the
correlation function G(r - r') by averaging g(r, r')
over all the lattice sites

G(|r — r'|, x) = {g(r, τ')). (5.8)

It is obvious that G(r, x) — 0 as r - ». We shall as-
sume that it contains a single characteristic length,
which we shall call the correlation radius L. Just as in
the theory of phase transitions, L — » as χ —• xc and
behaves in the following manner:

L~J^· (5.9)

In percolation theory this has a simple meaning, inas-
much as it characterizes the increase of the average
diameter of the clusters when the percolation threshold
is approached. At χ > xc the correlation radius de-
scribes also the characteristic dimension of the net-
work which is formed by the infinite cluster. From the
definitions (5.3) and (5.8) follows the important relation

S(*l=SG(r. χ), (5.10)

which is perfectly analogous to the well known relation
for the susceptibility.
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FIG. 6. Distribution functions of the quantities χς/· 1) / = 8, 2) / = 32,
3)/= 128.

A convenient method for finding the correlation
radius appears in the study of percolation in finite
volumes. We consider the problem of percolation from
phase to phase in a finite cube with side I. We increase
the fraction of open sites, gradually adding new ran-
domly-located open sites to those already existing. At
a certain value χ = XQL, percolation from phase to phase
occurs. In view of the finite volume, Xc/ is not dupli-
cated when the experiment is repeated. One can speak
only of a distribution function f(xcl) of the quantity
x c /. As I — » we have f(xc/) — δ (xeZ - Xc)· Figure 6
shows the functions f (xcl) calculated with a computer
for a quadratic latticed ] We see that the shift of the
average value (xc/> relative to x c is small in compari-
son with the width of the curve. A similar situation oc-
curs also in the three-dimensional case.t"1 We intro-
duce the quantity W/ = V((Xci - (Xc/))*) and assume
that it decreases with increasing / in power-law fashion

W'-TW- (5-1D

This quantity was investigated in[M'5S»e3»M>. Incs*3 there
was obtained for the random-site problem at d = 3

v = 0.83 ±0.13 (5.12a)

(the error is estimated by us in accordance with the
figure given in[5<1). IntB3], for the site problem on cubic
and quadratic lattices, we obtained

0.90 ±0.05 if d=3,
1.33 ±0.05 if d=2. (δ.1Λ>>

In[ a 4 ] the value obtained for a primitive cubic, body-
centered cubic, and planar triangular lattices were
ν = 0.97 ± 0.04, ν = 0.92 ± 0.04, and ν = 1.36 ± 0.04, re-
spectively. It can be shown that the exponent ν in (5.11)
coincides with the exponent of the correlation radius in
(5.9).[ 7 0 ) We introduce the probability Q/(x) that per-
colation over a cube of dimension { is possible:

Q,(x)=\f(x')dx'.

This quantity is a function of the argument

- * c ) ( i - ) - , where

(5.13)

ff·")
If χ - x c < 0, then at I < L the probability Q/(x) de-
pends little on I, and as / — « the probability Q/(x)
— 0. At χ > x c , the same properties are possessed by
the quantity 1 - Q/(x). Thus, the quantity L defined in
(5.14) characterizes the dimensions of the clusters and
is the correlation radius. The exponent of the correla-

tion radius is determined by (5.12) and is the third
known exponent of percolation theory.

The natural way to establish the connection between
the exponents introduced above is to formulate a sim-
ilarity hypothesis.t82»"] By analogy with the theory of
phase transitions[ 8 S 1, we assume that the singular parts
of the functions satisfy the relations

F (xV, hlz) = l"F (τ, h),

G(r, τ) =

(5.15)

Ι"1, τ I»), (5.16)

where τ = (x - xc)/xc» and y, z, and η are as-yet un-
known exponents. With the aid of (5.15) and (5.16), and
also (5.2), (5.7), and (5.10), all the percolation-theory
exponents introduced so far can be expressed in terms
of two of them, for example, in terms of y and z. We
shall not write out all the relations between these ex-
ponents, which are perfectly analogous to the relations
that follow from the statistical similarity hypothesis in
the theory of phase transitions .c"5] We shall dwell only
on the relation between the three exponents investigated
in percolation theory:

V = T ^ · (5.17)

According to (5.1) and (5.5) the right-hand side of (5.17)
is equal 1.33 ± 0.05 at d = 2 and 0.80 + 0.05 at d = 3;
the good agreement with the calculated values at d = 2
and the somewhat worse agreement at d = 3 is clearly
seen.

The exponent η can be calculated with aid of the re-
lation

1 = 2 - ^ . ( 5 . 1 8 )

η = 0.22 ± 0.05 at d = 2 and, η = -0.09 ± 0.012 at d = 3.

In addition to the three exponents β, γ, and ν con-
sidered above, one more exponent, which apparently has
no analog in the theory of phase transitions, was inves-
tigated. It is connected with the behavior at χ > x c of
the conductivity σ(χ) produced if identical finite resist-
ance values are assigned to all unbroken bonds and
zero values to all the broken bonds. Then

σ (*) ~(x- xc)'. (5.19)

The quantity σ(χ) is meaningful not only for the bond
problem, but also for the site problem. In this case,
when determining the lattice conductivity, it is neces-
sary to assume that all the bonds are made up of identi-
cal resistors, and in each closed site the connection be-
tween all the resistances that emerge from it is broken.
Moreover, a similar quantity can be easily introduced
also in continual problems. If it is assumed that the
regions where V(r) < V have identical electric conduc-
tivity σο, and the regions with V(r) > V are filled with
insulator, then at V — Vc + 0 we have

σ (V) ~ (V - Vc)'.

The first investigation of σ was made by Last and
Thouless[M1. They punched round holes with centers
located at the sites of a square lattice, in a square sheet
of conducting graphite paper and the resistance between
opposite sides of the square was measured as a function
of the number of holes (the holes corresponding to the
nearest sites were covered). Owing to the large statisti-
cal scatter of the data given in[ee], it was possible to
establish only the inequality 1 < t < 2. More detailed
investigations were carried out for lattice problems.
The site problem was investigated with the aid of a cube
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assembled of 16 x 16 χ 16 standard resistors [ e 7 ] or with
the aid of a piece of a standard metallic screen with
137 x 137 cells. [ 8 θ ] In both cases, the contacts at the
lattice sites were broken in accordance with data from
a random-number generator. Simultaneously with de-
creasing fraction of intact sites, measurements were
made of the resistance between the opposite faces of the
cube and opposite sides of the square. As a result, the
exponent values obtained for the site problem were
t 3 = 2 and t 2 = 1.38 for two and three dimensions, re-
spectively. In addition to direct simulation of lattice
problems, the electric conductivity was calculated by
computer solution of the system of Kirchhoff's equa-
tions. [ 3 6 ' 8 7 ' Calculation^71 has confirmed the result
t3 = 2 of the model experiment. On the other hand,
Kirkpatrick[36], in a calculation of the resistance of
cubes with as many as 25 χ 25 x 25 cells, obtained for
the bond problem t 3 = 1.6 ± 0.1 and for the site problem
t 3 = 1.5 i 0.2. The reason for the discrepancy between
these quantities and the result of[871 is still not clear.
For two dimensions, Kirkpatrick[36] obtained 1 < t2

< 1.3, which also differs somewhat from the experi-
mental value of[8e].

It is reasonable to assume that the exponent t can
yield important additional information on the topology
of the infinite cluster. However, the problem of extract-
ing this information by an analysis of the values of t, β,
γ, and ν has not yet been solved. We shall therefore
dwell only briefly on three steps in this direction.

Last and Thouless[ 8 6 ! reasoned in the following
manner: Assume that at any x, roughly speaking, 1/3
of the sites belonging to the IC makes up chains that
join any two opposite faces of the cube. Then the num-
ber of chains, and consequently also σ(χ), should be
proportional to P(x), i.e., the exponent t should coin-
cide with β. In fact, however, β < t, i.e., near the
threshold σ(χ) increases with increasing χ much more
slowly than P(x). This means that actually the over-
whelming part of the IC does not play any role in the
electric conductivity. According to Last and Thouless,
this part is concentrated in chains that are truncated
(have dead ends). This conclusion, however, cannot be
regarded as unambiguous. The ineffectiveness of the IC
from the point of view of the electric conductivity might
be connected with the large number of the long chains
which duplicate small sections of short chains.

The authors of[88' have proposed that if one discards
the dead ends, then the remaining part of the IC is a
random network with characteristic distance between
nodes equal to the correlation radius L, and the chains
joining the nodes of this network (the macrobonds) are
not duplicated (are single-path) at least over half of
their length. It follows from this assumption189' that the
length of the macrobond i^ is of the order of (x - Xc)~\
and that t = 1 + ν = 1.9 to 2 at d = 3 and t = 1 at d = 2.
These values of t, especially for d = 3, are not too far
from the results of the calculations and measurements.
This reasoning[89], however, is meaningful only when
the length of the macrobond if is not shorter than the
distance L between its ends, i.e., at ν s. 1. As we have
seen above, it was found recently that ν = 1.3 at d = 2.
Consequently, in the two-dimensional case the model of
a single-conductor network is not applicable. The prob-
lem of the adequacy of this model in the three-dimen-
sional case, where ν «* 0.9 to 1, remains open. A re-
finement of the experimental and calculated values of
the exponent t would make the situation clearer.

Finally, one more approach to this problem, pro-
posed in[ 9 0 ] , makes it possible to connect the exponent
t with the correlation-radius exponent ν without resort-
ing to concrete models. This approach is based on the
similarity hypothesis. The network of resistors is
strongly inhomogeneous in all scales that are smaller
than the correlation radius. In accordance with the
similarity hypothesis, we assume that the large-scale
structure of this network remains similar to itself with
changing τ = | χ - x c |, and increases with a scale fac-
tor τ'ν. Of course, this does not pertain to the small-
scale structure which contains a minimal length equal
to the lattice constant. Further, one more important
assumption is needed, namely that the resistance of the
network be determined by the large-scale structure.
Then the resistance R of a cube having a linear dimen-
sion on the order of the correlation radius L varies
with in accordance with R ~ L ~ τ'ν. On the other hand,
a cube with dimension L can be treated macroscopically,
and therefore the specific conductivity of the system is
connected with R by the usual relation

Thus,
f 2v, d =

Ί v, rf =
Ο

= 2. (5.20)

According to (5.12), (5.17), (5.1), and (5.5) the exponent
is u = 1.33 ± 0.05 at d = 2, in good agreement with the
results oft36'881. In the three-dimensional case the
agreement is also satisfactory.

We note, however, that the assumptions made in the
derivation of (5.20) reject the possibility of the macro-
bonds of the network being strongly twisted (having a
coiled structure). By examining the breaking of the IC
with decreasing χ,[ 8 9 ] one can present arguments favor-
ing the assumption that the absence of a coiled struc-
ture at an arbitrary duplication of the macrobonds is
equivalent to the condition ν a Ι. This condition is
satisfied at d = 2. In the three-dimensional case ν is
close to unity so that the situation is not clear enough.

We proceed now to discuss physical problems in
which the electric conductivity is expressed in terms of
the critical exponents of percolation theory. In those
cases when there are grounds for assuming that the
system is a mixture of elements of only two types—con-
ducting and nonconducting—the determination of elec-
tric conductivity reduces to a calculation of σ(χ). [ 3 β ]

It is assumed that these problems include the question
of the electric conductivity of tungsten bronzes MXWO3

with changing concentration χ of the alkali metal. Ac-
cording to [ 7 ' , experiments yield a relation of the type
(5.19) with t - 1.8 ± 0.2 and x c = 0.17. The dependence
of the electric conductivity of mercury on its density
near the critical point and the dependence of the elec-
tric conductivity of metal-ammonia solutions with
changing metal concentration have a similar form.1-81 It
is interesting to note that in all these cases the point
xc is singular also for the Hall constant: R H ( X )
~ (x - xc)~&, where 0 < g < 1. Kirkpatrick[8] advanced
arguments favoring the assumption that RJJ(X) - P'^x)
as χ — x c , i.e., g = β. These arguments are criticized
in[ 8 9 1, where it is stated on the basis of the model of a
single-path network that g = u at d = 3. Considerations
similar to those proposed in t 8 9 ] lead to the conclusion
that g = 0 in the two-dimensional case. By a more
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general method, using the arguments that have led to
(5.20), it is possible to obtain the same results. [ 9 0 ]

Ιη [ β 0 ] they measured the Hall constant of conducting
paper with randomly punched holes. It turned out that
as the percolation threshold is approached RH does
not depend on the number of holes. This agrees with
the results described above.

We now turn to applications connected with hopping
conductivity.

b) Electric Conductivity of Semiconducting Films

Amorphous semiconductors in which hopping conduc-
tivity is investigated are obtained as a rule in the form
of films. Even in sufficiently thick films there is ob-
served a very strong dependence of the resistivity on
the film thickness b .t81>82l To calculate the exponent of
the electric conductivity along the film af, we use the
general prescription (4.13), i.e.,

where 4cj, is the threshold value of ξ, at which there
appears for the first time an IC of sites situated inside
the film and bound to one another in accordance with the
criterion (4.14). If we imagine all of space to be filled
with sites having the same concentration as in the in-
terior of the film, then it is obvious that the film IC is
always part of a three-dimensional IC, and exists only
when the three-dimensional one exists. If, however, ξ
is very close to the three-dimensional £ c , then the
three-dimensional IC can become so rare that it breaks
up inside the film into individual unconnected pieces,
and there exists no film IC. It is therefore clear that
icb > i c · ^ * s obvious that £cb depends on the parame-
ter b/a£ c , where according to (4.14) a£ c is of the
order of the average distance between the nearest bound
site (the average length of the hop). According to (4.16)
and (4.36)

aic«iV-'/» (5.22)

is the regime of conductivity with constant activation
energy, and

in the regime of Mott conductivity.

At ba5c « 1 we have simply the two-dimensional
percolation problem (£ C D = £C2)· Under conditions of
Mott hopping conductivity, by analogy with the deriva-
tion of (4.36), we can obtain171'8*-<"S]

s=.=(W 3 · <5·24)
where T0 2 = " λ ^ ( μ Η ^ ) " 1 , and λ = 13.8 ± 0.8.[74J For-
mula (5.24) was experimentally confirmed in [ M I . The
determination of the parameters To and T02 which en-
ter in expressions (4.2) and (5.24), has made it possible
to obtain g ^ ) and a in amorphous Ge.[ 9 4 1

Inc e 6 ] they obtained the function £Cb at b/a£c » 1,
using heuristic considerations based on a representa-
tion of the three-dimensional IC as a certain network
with characteristic dimension equal to the correlation
radius L( ξ), which takes for the random-site problem
the form

that if L(£) » b then parts of the three-dimensional IC
are not joined into a film IC. At the same time, at
L( ξ) « b there are many layers of the network of the
three-dimensional IC, forming a film IC, in the interior
of the film. Thus, £ c b is determined by the condition

= b or

*-)"*], (5.26)

where D is an unknown number of the order of unity and
ν is the exponent of the correlation radius of the three-
dimensional problem.

The question of the dependence of the threshold of
percolation along a bulk bounded by two parallel planes
can be regarded also with the site problem as an exam-
ple. If the boundary planes are spaced η lattice periods
apart, then reasoning analogous to that given above
yields

ic(n) = «c(oo)(l+-^r). (5.27)

], an attempt was made to verify formula (5.27) by
direct calculation of x c of the site problem on a simple
cubic lattice by the Monte Carlo method, with η running
through the values from 1 to 10. It turned out that the
function xc(n) agrees well with the (5.27) with ν = 1
± 0.08, which agrees with in the limits of errors with
the results given above for the exponent of the correla-
tion radius at d = 3.

Formula (5.27) is analogous to the expression for
the transition temperature of a ferromagnetic film
consisting of η atomic layers

where ν is the three-dimensional correlation-radius
exponent of the magnetic moment. This formula was
quite convincingly confirmed by numerical calcula-
tions. t"7'8"!

It is seen from (5.26) and (5.21) that the resistance
begins to increase exponentially with decreasing b at
b « (a{c)4g, i.e., still at b/a£c » 1. Under conditions
of hopping conductivity it follows from (526) and (5.21)
that

σ (ο
(5.28)

where according to (5.12), ν ~ 0.9.

and l-U (5.25)

Within the framework of this representation it is obvious

c) Pre-exponential Factor of the Hopping Conductity

We have discussed so far only the structure of the
exponential factor of the hopping conductivity. It should
be clear from Chap. 3, to obtain the pre-exponential
factor σο in formula (4.13) we need information on the
topology of the IC near the percolation threshold. This
question was discussed in[ 3 8 'S 8l on the basis of concrete
assumptions concerning the structure of IC. In15*'8"1

a general derivation was given of a formula for hopping
conductivity, which made it possible to determine the
pre-exponential factor and which was based only the
concept of percolation in a finite volume. We shall pre-
sent this derivation below.

Let us find the electric conductivity of a random net-
work with resistors (4.9). To this end we consider a
cube with a side I so small that at a given scatter of the
resistances Rjj it is possible to assume, with good ac-
curacy, that all the resistances of the cube are deter-
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mined by the resistance of one element. This element
has the largest resistance of all the other elements that
must be included (starting with the smallest) in order
for percolation from face to face to occur. Let the cor-
responding £jj be equal to ξ0^. Then the specific
electric conductivity σ/ of the considered cube is equal
to

a, = (Rol)-le-l°i. (5.29)

In accordance with the statements made in Sec. (a),
4C/ fluctuates from realization to realization, and its
mean-square fluctuation is described by the formula

\l/v
(5.30)

where a.£c is of the order of the average distance be-
tween the nearest bound sites, determined by (5.22) and
(5.23). With increasing I, the maximum resistance
ceases to play a special role and σ, no longer depends
on I, since the number of the essential resistors be-
comes proportional to the volume of the cube. Then σ/
coincides with the sought specific conductivity of the
macroscopic system. Another criterion of the transition
from the condition (5.29) to the macroscopic electric
conductivity with increasing I is the vanishing of the
large relative fluctuations of σ^. This occurs at Wj
* 1, i.e.,

Substituting (5.31) in (5.29) we obtain ultimately

(5.31)

L· e c . (5.32)

According to (5.31) and (5.25) the characteristic dimen-
sion of the network which determines the electric con-
ductivity of the system is of the order of the correlation
radius at ξ - ξ£. a 1. This seems natural in view of the
exponential dependence of σι on £ c . According to (4.16)
and (4.36) we have

σ«(Λ0α)-'(Λ'Ι/3β)1+νν[(2νο>-|-(β3/ϊ-)] (5.33)

in the regime of constant activation energy and

σ» (/?0o)-'(^?-)"(<+v)/<exp[-(-i?-)1/4J (5.34)

in the regime of Mott conductivity. We note that the
presented derivation does not make it possible to deter-
mine the numerical coefficient of the pre-exponential
factor in formulas (5.32)-(5.34). In addition, it must be
kept in mind that we have considered a model in which
the resistance of the elements is defined by (4.9), with
Ro independent of the indices i and j of the sites. If
Ro depends on £y, then the generalization of the result
consists of substituting in (5.32) the quantity
Ro lijji=i > which can introduce an additional power-law
dependence on Ν and x.t38»88!
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