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A review is made of the experimental and theoretical investigations of the helical instability in semiconductors, beginning from the discovery of this effect by
Ivanov and Ryvkin in 1958 and ending with papers published in 1973. A detailed analysis is made of the excitation of helical waves under oscillation and spatial
amplification conditions, nonlinear effects in the excitation of the helical instability, possibility of using semiconductors for modeling processes occurring in gas
plasmas, and influence of the band structure of semiconductors on the development of the helical instability. Special attention is paid to possible applications of
the helical instability in semoconductors and to unsolved problems. Attentions is drawn to the need for further studies of the nonlinear effects which accompany
the development of the helical instability and the effects due to the complex band structure of semiconductors.
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1. INTRODUCTION
The physics of plasma phenomena in solids is cur-

rently one of the leading subjects in solid-state physics.
The subject has been reviewed on several occasions,111

prominent investigators meet regularly at conferences,
and one might have the impression that solid-state
plasma is a new subject. However, the most interesting
discoveries leading to this type of plasma were made in
the late fifties and the early sixties. They were the
foundation of this subject. This was clearly due to the
rapid development of the physics of plasma of gaseous
discharges which provided a conceptual base for the
understanding of the properties of plasma-like media.
Moreover, it was not accidental that the investigations
in the physics of plasma in gas discharges and of solid-
state plasma subsequently remained closely related.

Among the most important events in the history of
the physics of solid-state plasma was the discovery of
the helical instability, C2~41 which began intensive and
systematic studies of instabilities in solid-state plasma.
Over one hundred experimental and theoretical investi-
gations of various aspects of the helical instability in
semiconductors have been published so far and it seems
to us that the moment is ripe to summarize the results
of the most important investigations and outline the di-
rections of future studies. This is the purpose of the
present review. However, we must begin by considering
briefly the main properties of an electron-hole plasma
which will be used later in the review.

An electron-hole plasma is formed by electrons in
the conduction band and holes in the valence band. Such
a semiconductor plasma may be neutral or charged. An
equilibrium neutral plasma exists only in very pure
semiconductors at sufficiently low temperatures. In this
case, the plasma density is governed entirely by the lat-
tice temperature and band-structure parameters (intrin-
sic conduction), and semiconductors of this type are
called intrinsic.

A nonequilibrium neutral plasma can be generated by
carrier injection, impact ionization, or illumination. In
this case, the plasma density is governed by the applied
electric field or the intensity of the incident light.

An example of a charged plasma is an electron or

hole plasma in a semiconductor that contains suitable
impurities. In this case, one speaks of extrinsic n- and
p-type conduction, respectively. Naturally, a crystal as
a whole is electrically neutral because the ion matrix of
impurity centers in a semiconductor compensates the
plasma charge. When the impurity concentration is low,
one can go over from extrinsic to intrinsic conduction
by raising the temperature, i.e., by altering the ratio
of the electron and hole densities.

A unipolar plasma composed of carriers of one sign
may consist of several groups of carriers differing in
respect of the mobility along a given direction. This
feature is due to the many-valley structure of the con-
duction (or valence) band in semiconductors such as
germanium, silicon, etc. For example, in silicon (Si),
the constant-energy surfaces near the bottom of the
conduction band are six ellipsoids of revolution oriented
in pairs along three mutually perpendicular axes ((100),
(010), (001)). The anisotropy is then quite strong: the
ratio of the mobilities corresponding to the major and
minor ellipsoid axes is b x / b | = 5. Under normal con-
ditions, when there are no external perturbations or
when they are weak, all the valleys are equivalent
(they are uniformly populated with electrons). At high
temperatures (T = 77-300°K), the high rate of inter-
valley transitions (TJ « 10~10-10~12 sec, where TJ is the
intervalley transition time) makes it possible to intro-
duce a scalar mobility for all electrons and ignore the
band structure. Rapid intervalley transitions destroy
the differences between electrons belonging to different
valleys. When the valley populations are nonuniform
(for example, under uniaxial compression or in strong
electric fields) and also at very low temperatures, when
Ti is high, the mobility anisotropy influences strongly
the nature of plasma phenomena in semiconductors and
the many-valley nature of the real band structure has
to be allowed for in calculations.

The state of a sample's surface, usually represented
by a phenomenological parameter which is the surface
recombination velocity s, has a strong influence on the
nature of plasma phenomena occurring in semiconduc-
tors. When the surface recombination velocity is high
("dirty" surface) so that Gs = D a /as — 0 (Da is the
ambipolar diffusion coefficient and a is the transverse
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size of a sample), the spatial distribution of a strongly
nonequilibrium plasma drops steeply near the surface.
The profile of the nonequilibrium carrier density be-
comes smoother, when the parameter Gs increases be-
cause the surface becomes "cleaner." Therefore, the
state of the surface may have a strong influence on the
development of drift instabilities, whose growth incre-
ments depend strongly on the initial plasma density gra-
dient. One of the phenomena affected in this way is the
helical instability.

We shall now consider this instability.

2. IVANOV AND RYVKIN'S DISCOVERY

In 1958, Ivanov and Ryvkin"·2·1 reported oscillations
of the current in long thin samples ( 1 x 1 x 8 mm) of n-
type germanium (Ge) subjected to a fairly strong mag-
netic field (~ 10 kOe) and a parallel electric field. These
oscillations were nearly sinusoidal (f = 10-15 kHz) only
when the magnetic field and the current were parallel to
within =5 10°. The current-voltage characteristics of these
samples were nonlinear, which indicated that an electron-
hole plasma was injected into the sample. Etching in hy-
drogen peroxide, which reduced the surface recombina-
tion velocity, favored the appearance of these oscilla-
tions. A similar instability of the current was observed
later" 1 in samples of η-type indium antimonide (InSb)
under impact ionization conditions. An important study
of this unusual effect in samples of Ge, InSb, and Si was
carried out by Larrabee and Steele,ce: who showed that
the instability was not due to contact phenomena but was
the result of the presence of an electron-hole plasma in
the bulk of a sample and that this plasma could be gener-
ated by illumination, injection, or heating. The frequency
of the oscillations observed in η-type InSb reached ~ 107

Hz. The critical magnetic field in which the instability
was observed increased with decreasing electric field
H c r a: E~\ Etching in hydrogen peroxide (and other so-
lutions) reduced the instability (oscillation) threshold
governed by the value of EH. In some cases, the ampli-
tude of the alternating component of the current was
about 70% of the static current and the oscillations were
nearly sinusoidal. This was why Larrabee and Steele
suggested the name oscillistors for the samples in which
the Ivanov-Ryvkin instability was observed. This name
became generally accepted and the effect discovered by
Ivanov and Ryvkin became known as the oscillistor ef-
fect. The experiments mentioned above were carried
out in weak magnetic fields corresponding to y = WCT
« 1, where a>c is the cyclotron frequency and τ is the
carrier momentum relaxation time.

3. KADOMTSEV-NEDOSPASOV HELICAL
INSTABILITY. PRINCIPAL RESULTS OF
GLICKSMAN'S THEORY

The experimental material accumulated up to 1960
on the oscillistor effect was sufficient for a theoretical
analysis. A theoretician well acquainted with the phys-
ics of semiconductors and gas-discharge plasmas found
that the situation cleared up considerably when Kadom-
tsev and Nedospasov[3] showed convincingly in 1960 that
the instability of a weakly ionized gas-discharge plasma,
observed in a longitudinal magnetic field by LehnertCT1

in 1958, was due to what was later called the helical in-
stability. It was sufficient to examine carefully the ini-
tial equations of the Kadomtsev-Nedospasov theory to
see the great similarity between the transport equations
for an electron-hole plasma and the corresponding equa-

FIG. 1. Mechanism of excitation of Ε
the helical instability. [8]

tions for a weakly ionized gas-discharge plasma. In
1961, an American researcher, Glicksman,C4] explained
the oscillistor effect using the Kadomtsev-Nedospasov
helical instability theory. The mechanism of the appear-
ance of this instability can be explainedm with the aid of
Fig. 1. Let us assume that quasineutral helical pertur-
bations of density n' = ni(x) exp (iwt - ikzz - ikyy) ap-
pear in an electron-hole plasma subjected to longitudinal
electric and magnetic fields. The static electric field E z

shifts the electron perturbation of the density relative to
the hole perturbation at a velocity v z = - (be + bn) E z ,
where be >h are the electron and hole mobilities. When
the electron and hole perturbations are coincident in
space, this shift is equivalent to the rotation of the elec-
tron distribution n' relative to the hole distribution at an
angular velocity of k z v z . This results in a charge sepa-
ration and produces fields E'̂  which oppose this separa-
tion. In a longitudinal magnetic field and in fields E'i(

the perturbations n' may drift to a sample's surface.
The question arises as to under what conditions does
this drift result in the growth of the initial perturbation,
i.e., when it produces an instability. We shall assume
that, under steady-state conditions, the plasma density
decreases near the surface. If a plasma layer ABCD
(skew wave) inclined with respect to the Oz axis is dis-
placed toward the surface (Fig. 1), the conductivity and
current density in the relevant part of the crystal in-
crease compared with the surrounding region. As a re-
sult, charges appear on the boundary surfaces of the
ABCD layer and these charges oppose the increase in
current. Such a charges produce a field Ε'[. When the
polarization of helical perturbations, governed by the
signs of k y and kz and depending on the relative orien-
tation of longitudinal electric and magnetic fields, is
appropriate, the plasma drift in this field (Εχ) and in
a longitudinal magnetic field is directed along the initial
displacement in the field E'x. If the intensities of the
electric and magnetic fields are sufficiently high, the
drift flux may exceed the diffusion flux and an instabil-
ity may appear. A similar instability mechanism of he-
lical waves also applies in a homogeneous plasma.cel In
the latter case, the instability is due to a helical surface
wave excited by the steep fall of the plasma density near
the surface of a sample. Such a wave is naturally ex-
cited if the surface recombination velocity is low. The
amplitude of this wave grows exponentially toward the
surface. For convenience in later considerations, we
shall now introduce fairly arbitrary concepts of bulk
and surface oscillistors (bulk and surface helical waves).
In the case of a bulk oscillistor, the excitation of a he-
lical instability is due to a steady-state plasma density
gradient. A strong bulk oscillistor effect corresponds
to a helical wave in a sample with a "dirty" surface
and a high nonequilibrium plasma density. The limiting
case of a surface oscillistor corresponds to a helical
wave in an intrinsic semiconductor when the plasma
distribution is uniform across the sample. Essentially,
these concepts reflect the limiting approximations used
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in the helical instability theory. Naturally, when the
problem is solved exactly and the dispersion equation
is derived allowing correctly for the boundary condi-
tions and plasma inhomogeneity, concepts of this kind
do not arise. However, in view of the great mathemati-
cal difficulties encountered in the rigorous solution of
the problem, it is usual to consider these limiting vari-
ants which are frequently close to experimental situa-
tions. In particular, the Kadomtsev-Nedospasov theory
corresponds to a bulk helical wave (in the plasma of a
positive column in a gas discharge, the density drops
quite strongly near the surface of the discharge tube).
GlicksmanC41 derived the dispersion equation describ-
ing the excitation of an oscillistor. He applied the
Kadomtsev-Nedospasov calculation method to a strongly
nonequilibrium quasineutral (n = p) plasma in a semi-
conductor. In this case, one uses linearized (with re-
spect to small perturbations) equations of motion and
continuity for electron and holes

1

(D*

where γ is the nonequilibrium-carrier generation coef-
ficient. The potential(E' = -νφ'), quasineutral (n1 = p1)
perturbations of the type A' = Ax (r) exp (- ίωί + ikz
+ να\φ), are considered and for | m | = 1 these perturba-
tions correspond to helical perturbations in cylindrical
geometry. The inertial terms in the equations of mo-
tion are ignored since ωτ « 1. It is assumed that η « η 0

and η «p 0 , where n0 and p0 are the equilibrium electron
and hole densities, and the equilibrium plasma back-
ground is ignored in the calculations. It is also assumed
that the diffusion length LQ = VDaTp , where τρ is the
carrier lifetime, exceeds the transverse size of the
sample (Lp > a) so that the bulk recombination can be
ignored. Under steady-state conditions, the density dis-
tribution is described by a zeroth-order Bessel function:
n= N0J0(/30r), where

bDh+D,
[1 i t

The constant β0 is found from the condition

•Ό <βο«) = δ, (2)

where the parameter δ = n(a)/n(0) governs the degree of
" c l e a n n e s s " of a sample surface. The parameter δ can
be expressed directly in t e r m s of the surface recombi-
nation v e l o c i t y , i m if use is made of the boundary condi-
tion corresponding to the equality of the ambipolar dif- ,
fusion flux and the surface recombination flux on the
surface of a sample:

(3)" s " ~ Ji <*) '

where χ = /30a and Gs = D a /as .

In the case of a "dirty" surface (Gs — 0), we have
J0(x) — 0 and δ —• 0, whereas, in the case of a "clean"
surface (Gs — <=°), we have χ — 0 and δ — 1.

In a positive column in a gas discharge, we have
δ — 0 and (/30a) is governed by the first root of the
function J o .

The initial equations for small perturbations can be
reduced to a system of two linear second-order differ-
ential equations with coefficients variable because of the
spatial inhomogeneity of the initial disbstfoution; anijjttpse
equations describe the amplitudes of the perturbatiowof
the density n^r) and potential ψι(τ). It is not possible to

solve these equations because the density and ambipolar
potential profiles are quite complex. Therefore, in de-
riving the dispersion equations, Glicksman used the ap-
proximate Kadomtsev-Nedospasov method, which was
one of the modifications of the Galerkin method."11 In
this case, the amplitudes of the perturbations n t (r) and
φι(τ) are specified by a known function which should sat-
isfy certain requirements that follow from the symmetry
of the problem, the boundary conditions, the nature of
the steady-state solutions, and the type of instability. In
the Glicksman and Kadomtsev-Nedospasov theories, the
steady-state density profile is governed by the function
J o . In the case of a positive column in a gas discharge,
this function always vanishes on the surface of the dis-
charge tube, whereas, in the case of a semiconductor,
the density on the surface may vary within wide limits
which are governed by the surface recombination veloc-
ity. Allowance for possible density distributions and for
n^r) and φ1(τ) is the only additional complication in the
Glicksman theory compared with the Kadomtsev-Nedo-
spasov theory. However, the theoretical analysis of a
helical instability in a semiconductor is simplified con-
siderably in the Glicksman theory because the electric
and magnetic field in a semiconductor are independent
parameters. In a positive column in a gas discharge,
the longitudinal electric field in the plasma is a function
of the magnetic field and the final stability criteria must
be obtained using the energy balance equation, which
complicates the problem considerably.

The profiles n^r) and φι(τ) used in C3'41 are chosen
in the form (nu <pj) 3ι{βτ), where ntand φ ι are con-
stants. The parameter β is selected in such a way that
the steady-state density profile and the functions n1 and
φ 1 vanish at the same point. This selection of the radial
profile of the perturbed quantities has some justification.
The Kadomtsev-Nedospasov instability is of the drift
type so that the amplitudes are nx <χ φ 1 oc vn cc j 1 # On
the other hand, the perturbations should be small in the
region of vanishingly small densities. A rigorous math-
ematical justification of the Kadomtsev-Nedospasov
method was given by Johnson and Jerde.1 1 2 1

Multiplying the initial equations by the function
31(βτ) and integrating over the whole section of a
sample, we obtain a system of two algebraic equations
(for the constants n1 and φ^) and then we find the dis-
persion equation by equating the determinant of the sys-
tem to zero. This equation is easily solved for ω (the
initial equations are of the first order in respect of
time!) and the conditions Im ω = 0, d(Im w)/dk = 0 al-
low us to find the minimum excitation threshold of he-

5 ID

FIG. 2. Electric-field dependences of the lowest magnetic field in
which the helical instability is excited, plotted for different values
δ = n(a)/n(0); [4] vo = b e E; y e = (be/c)H; b = be/bh-
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FIG. 3. Magnetic-field dependences of the wave vector corresponding
to the minimum excitation threshold of the helical instability, plotted for
different values of δ. [4]

lical waves (Im ω » 0) and their wave vector k. The
value of Re ω governs the oscillation frequency. Figure
2 shows the electric-field dependences of the lowest
(threshold) value of the magnetic field in which the os-
cillistor effect is still excited, plotted for different val-
ues of the parameter δ. It is clear from Fig. 2 that the
excitation threshold Hy, rises with decreasing electric
field. This dependence can easily be explained by the
following simple considerations. If the magnetic field
is weak (ye h « 1)» ^ e main role in the suppression
of the instability is played by the transverse diffusion
flux which is then independent of the magnetic field. The
instability-causing drift flux is proportional to kEH and
at the excitation threshold we have Η °c E"1. In strong
magnetic fields (yi » 1), the dispersal of helical pertur-
bations occurs not only due to the transverse diffusion
(proportional to H"2) but also to the longitudinal diffu-
sion which depends strongly on the perturbation wave-
length (wave vector k). Since the drift flux is propor-
tional to kE/H (in the y^» 1 case), the softest excitation
conditions correspond to the longest perturbation wave-
lengths and at the excitation threshold we again have
Η <χ Ε"1. Naturally, in the case of a "clean" surface
(δ — 1), the role of the transverse diffusion becomes
weaker and the excitation threshold decreases (Fig. 2).

The magnetic-field dependences of the wave vector
for which the excitation threshold of the helical insta-
bility is lowest are plotted in Fig. 3 for different values
of δ.

The existence of an optimal perturbation wavelength
along the applied field is due to the fact that, at high val-
ues of λ, the instability-causing drift flux is small,
whereas, at low values of the λ (high values of k), the
longitudinal diffusion flux predominates. In the case of
a "clean" surface, the role of the longitudinal diffusion
becomes stronger and, therefore, the wavelength in-
creases with increasing δ. It should be pointed out that
all these results are only valid for very long samples.
It is shown in [ 3 ' 4 3 that, in the case of short discharge
tubes or short semiconductors, when the wavelength λ
becomes comparable with the length of the tube or sam-
ple, the criteria for the excitation of the helical insta-
bility may become more stringent. The spatial structure
of the wave changes correspondingly. Similar depen-
dences on the length of the sample appear in the case
of semiconductors subjected to strong magnetic fields
(yi >> 1)· We shall return to this problem later.

It must be stressed that the excitation criterion of
an oscillistor (criterion of the absolute instability of
helical waves) corresponds to the condition Im ω > 0
only if there is no ambipolar drift of quasineutral per-
turbations along the electric field. This drift appears
for unequal background electron and hole densities

FIG. 4. Magnetic-
field dependences of the
oscillation frequency
(Re co) at the excitation
threshold of the helical
instability.

aotom ao5 o.i 0.2 0.5 1 ζ s

(n0 Φ po). t 1 3 3 Naturally, in the presence of this drift,
the absolute instability criterion becomes more strin-
gent and we can no longer find this criterion using the
condition Im ω > 0 but we must investigate the evolution
in time of a small perturbation limited in space.1141 The
instability is absolute if a perturbation appearing at any
point in space grows in the limit t — °° to an unbounded
value at the same point (naturally, this is true within
the linear approximation) so long as the nonlinear ef-
fects do not limit the rise of the perturbation amplitude.
In this case, the probes located along the axis of a sam-
ple can detect excitation of spontaneous oscillations at
each point. In the presence of the drift described above,
the absolute instability criterion can be found[14] using
the change in a wave packet U(t) = J e ^ W t (jk w j t n time.
If U(t) — 00 for t — 00, the true absolute instability oc-
curs. As stressed earlier, in the case of samples with
unequal background electron and hole densities, there
is a drift of perturbations along the electric field at an
ambipolar velocity va = b a E z , where

is the ambipolar mobility.

When the velocity of the drift is sufficiently high, a
perturbation at each point in space remains finite in
amplitude and the instability is convective. Spontaneous
oscillations do not then appear and perturbations with a
helical structure can only be amplified from point to
point along the axis of the sample. The convective in-
stability of helical waves appears in range of param-
eters corresponding to the criterion Im ω > 0 when the
true absolute instability criterion is not satisfied.

Figure 4 shows the magnetic-field dependence of the
oscillation frequency (Re ω) near the oscillistor excita-
tion threshold. In the case of a completely neutral plas-
ma, the oscillation frequency is governed by the fre-
quency of rotation of helical perturbations in a longi-
tudinal magnetic field and in transverse electric fields
of ambipolar origin (for equal electron and hole mobil-
ities, the oscillation frequency is zero). Therefore, in
weak fields (yj « 1), we have Re οι cc H, whereas, in
strong fields we have Re ω <χ Η"1. In the case of a
charged plasma, when n0 Φ f0, there is an additional ro-
tation mechanism due to the ambipolar drift of quasi-
neutral perturbations in an electric field, which is
equivalent to the azimuthal rotation. The correction to
the oscillation frequency due to such drift is ω' = kva.
If n0 > p0, the sign of this correction is opposite to the
sign of the frequency in a quasineutral plasma. If the
background is far from compensation, this correction
may govern the sign of the frequency (direction of ro-
tation of the perturbations).
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4. GROWTH OF INVESTIGATIONS OF HELICAL
INSTABILITY. SURFACE WAVES

The Glicksman theory results were in qualitative and
even quantitative agreement with the experimental re-
sults available at the time. The results we have in mind
are the threshold dependence Ε oc H"1 for very long sam-
ples and the dependence of the oscillistor excitation cri-
terion on the degree of "cleanness" of the surface of a
sample. The occasionally observed disagreement (par-
ticularly, in respect of the dependence of the oscillation
frequency on the magnetic field) between the theory and
experiment was more likely to be due to the uncontrolled
nature of some of the experimental parameters such as the
injection rate, uncompensated background (n0 Φ ρ0), and
surface recombination velocity. Some of the difficul-
ties encountered in comparison of the theory and ex-
periment were resolved by Holter,1153 who considered
a bulk helical wave for unequal background electron and
hole densities and a variable injection rate η (η = Δη/ρ0

+ bno),[ 1 5 ] where Δη is the excess density on the axis of
a sample.

Nevertheless, the success of the Glicksman theory
which explained the principal dependences found by
Ivanov and Ryvkin:2: was quite clear. Glicksman's
paper was follwed immediately by new experiments.
The interesting question was whether helical waves
were also excited in oscillistors. This question was
also underlying the gas-discharge investigations after
the appearance of the paper by Kadomtsev and Nedo-
spasov. In 1962, the American investigators, Paulikas
and Pyle, t l 6 ] recorded the time dependences of the ra-
diation emitted by a positive column in a helium plasma
under instability conditions and showed convincingly
that the structure of perturbations which occurred in
this column was indeed helical. A suitable selection
of the discharge parameters made it possible to stop
the motion of the helix (Re ω = 0) and examine it vis-
ually.1 In 1962, two groups of Japanese research-
ers [ 1 7 ' 1 8 ] showed independently and by different meth-
ods that the structure of the density and potential per-
turbations in oscillistor experiments was helical. The
experiments were carried out on η-type Ge under in-
jection conditions. Misawa and Yamada:i71 made phase
measurements using the reflected microwave signal
method, whereas Okamoto, Koike, and Tosimacl81 mea-
sured the phase shifts between two pairs of probes lo-
cated in the same azimuthal positions and shifted in
phase by π/2. The frequency of a signal picked up
from either probe pair was equal to the oscillation
frequency of the current in the external circuit. Oscil-
lation of the transverse voltage in the sample also ap-
peared for an exactly parallel orientation of the elec-
tric and magnetic fields, whereas oscillations of the
current in the external circuit appeared only when
there was a slight deviation (~0.5°) from the parallel
orientation, similar to that found in the experiments
of Larrabee and Steele.161 The direction of rotation of
a helical wave was found to be opposite to that pre-
dicted theoretically,141 but this "contradiction" could
be easily removed—as pointed out by Okamoto et al.c

—by allowing for the correction to the frequency due to
the ambipolar drift.

Thus, in four years since the discovery of the os-
cillistor effect by Ivanov and Ryvkinc21 it finally be-
came clear that the effect was due to the excitation of
the helical instability. The oscillistor oscillations in
the external circuit could not be explained by the linear

us:

theory13'41 utilizing the azimuthal symmetric form of
perturbations because the alternating component of the
total current should be zero. The appearance of oscilla-
tions in the external circuit was evidently due to non-
linear effectsC9: or various deviations from the azi-
muthal symmetry[ 1 8 '1 9 : appearing, for example, for a
small angle between the directions of the electric and
magnetic fields. There is as yet no generally accepted
view on this subject.

The convincing establishment of the cause of the os-
cillistor oscillations engendered additional interest in
this effect. Gurevich and Ioffet201 developed a theory of
the helical instability for an inhomogeneous distribution
of the density established by a transverse magnetoden-
sity effect1-2 appearing because of a deviation of the
electric from the magnetic field, inhomogeneous distri-
bution of impurities, and similar causes.

One of the most interesting theoretical and experi-
mental investigations of the helical instability in semi-
conductors was carried out by Hurwitz and McWhorter,
who investigated the excitation of a helical surface wave
when the plasma was homogeneous under steady-state
conditions (the case of an equilibrium plasma or a very
clean surface of a sample). In contrast to the bulk case,
the problem of the surface oscillistor effect can be
solved quite rigorously. The initial equations for the
potential perturbations A' = At(r) exp (-itut + ϊταφ
+ ikz) in weak magnetic fields (yj « 1) are of the form

Da&r^ + i (ω — kbaE) re, = 0, Δφ! + AAnt = 0, (4)

and the solutions of these equations are

[ 9 ]

= cjm (βΓ), Φ ι (r) = AcJm (pr) + cjm (kr); (5)

here,

is the ambipolar diffusion coefficient; b a is the ambi-
polar mobility; A and /3 are constants which depend on
the plasma and wave parameters, and on the electric
field intensity; I m is a Bessel function with an imaginary
argument.

In the absence of a steady-state density gradient, a
longitudinal magnetic field occurs only in the boundary
conditions which express the equality of the perturbed
radial electron and hole fluxes on the surface of a sam-
ple to the surface recombination flux. If the surface re-
combination velocity is low (Gs — °°), these conditions
are

[dF——y·^) -D* \-dl·-— y-">) L =
(6)

Substituting the solutions (5) into the boundary condi-
tions (6) and eliminating the integration constants (c^ c2),
we obtain the dispersion relationship.

We shall only give the final results. The criterion of
the excitation of the helical instability (| m| = 1, Im ω
> 0) is of the form

nbh (7)

where

The oscillation frequency (Re ω) near the excitation
threshold of an almost intrinsic sample (I n0 - p o | /
(n0 + p0) « y | n ) *s given by the expression
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(8)
&Da

7r^7 77)
If we arbitrarily select the magnetic field direction as
the positive axis (H > 0), we find that for b e > bh the
frequency is positive definite for m > 0 (or for m < 0
if Η < 0).

Therefore, as is clear from the criterion (7), for
Ε > 0 (or Ε < 0, if Η < 0), if the fields Ε and Η are par-
allel, right-handed helical waves are excited (kc and m
have different signs), but, if Ε < 0 (fields Ε and Η anti-
parallel), left-handed waves are excited (kc and m have
the same sign). The corresponding constant-phase lines
represent either right-handed rotation (changes in φ and
ζ positive) or left-handed rotation (changes in φ and ζ
of different sign).

It is clear from the condition (7) that, if n o /p o — 0
or °°, the excitation threshold is EH — °°, i.e., the os-
cillistor effect cannot be excited in a strongly charged
plasma. This is a natural result because a charged
plasma is at rest in a coordinate system moving with
the drift velocity of the unipolar component. In the case
of extrinsic samples, (| n0 - p o | /(n0 + p0) » y | n )

i.e., the phase velocity of helical waves is equal to the
velocity of ambipolar drift. The polarization of helical
waves is then governed only by the relative orientations
of the electric and magnetic fields and it is independent
of the sign of the ambipolar mobility.

As pointed out earlier, in the presence of a drift of
perturbations in a longitudinal electric field (ba * 0),
the absolute instability criterion governing the oscil-
listor excitation threshold does not agree with the con-
dition Im ω > 0 [criterion (7)] and becomes more strin-
gent, irrespective of the ambipolar drift direction. If we
use the Landau and Lifshitz approach1-141 mentioned ear-
lier, we find that the true absolute instability criterion
of helical waves is given by the simple relationship

^ r . do)
i.e., the square of the velocity of the instability-causing
drift flux should be greater than the sum of the squares
of the ambipolar velocity and ambipolar diffusion veloc-
ity. This form of the absolute instability criterion is
quite natural in the presence of the ambipolar drift be-
cause this criterion should be independent of the sign of
the ambipolar mobility.

If b a = 0,the criterion (10) becomes identical with the
criterion (7). We can easily show that the condition (10)
is satisfied beginning only from a certain value of the
magnetic field

# m l n > U ^ i l (11)

The oscillistor oscillations are not excited in weaker
magnetic fields.

In the range

(12)

the convective instability of helical waves is observed,
i.e., in this range of values of EH and of plasma param-
eters, it should be possible to obtain spatial amplifica-
tion of waves of suitable polarization. If the frequency
ω in the initial dispersion relationship is regarded as
a real quantity, the wave vector is given by the follow-
ing expression

This expression is obtained subject to the following re-
strictions:

The real part of Eq. (13) gives the phase velocity of a
wave and the imaginary part of this equation gives the
spatial gain (attenuation coefficient). The spatial ampli-
fication appears when

2^>X+-T· (15)

The gain maximum corresponds to the frequency fm

= (H/Hc)fc, which increases linearly with the magnetic
field. It is clear from Eq. (13) that the gain has a bell-
shaped frequency dependence.

Hurwitz and McWhorter191 investigated experimen-
tally the surface oscillistor effect in cylindrical sam-
ples of η-type Ge and in samples of square cross sec-
tion. The ratio of the electron and hole densities (nro p0)
could be varied by altering the temperature. The main
results were obtained under spatial amplification condi-
tions. The excitation of the initial signal with an angular
dependence sin φ was achieved with four probes located
at the same distances along the azimuth. The gain was
measured using point probes soldered along a sample.
Figure 5 shows the calculated and experimental depen-
dences of the gain on the frequency (Fig. 5a) and mag-
netic field (Fig. 5b). The highest measured value of the
gain was « 4 cm"1, which corresponded to 35 dB/cm.
Figure 6 shows the dependence of the critical frequency
(9) on the electric field. An increase in the slope of the
lines in Fig. 6 with decrease in temperature was due to
an increase in the ambipolar drift mobility. Measure-
ments of this kind could be used to determine the ambi-
polar drift mobility in semiconductors.

It is clear from Figs. 5 and 6 that the calculations'-91

agreed excellently with the experimental results. The
paper of Hurwitz and McWhorter had a strong influence
on the subsequent investigations of the helical instabil-
ity in semiconductors.

An interesting feature of the surface oscillistor ef-
fect in weak magnetic fields (yj « 1) was observed by
Balakirev1·221 in η-type Ge. He found that, when the am-
bipolar mobility was sufficiently low, the threshold ex-
citation frequency in the oscillistor effect tended to zero
for some particular value of the magnetic field. This
was explained by assuming that the ambipolar drift and
rotation in a magnetic field corresponded to frequencies
of different signs in η-type samples, so that a helix at
rest was observed. This feature was found in nearly
intrinsic η-type Ge (Fig. 7).

Ί S Sj.kHz
b)

FIG. 5. a) Dependences of the spatial gain (attenuation coefficient)
on the frequency of a helical wave obtained in different magnetic
fields [continuous curves represent the exact calculations and dashed
curves are the approximate results obtained using Eq. (13)]; [9] b) de-
pendences of the gain on the magnetic field at different temperatures. [']
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FIG. 6. Dependences of the critical frequency fc, corresponding to
the onset of amplification of a helical wave, on the electric field Eo at
different temperature. [']

FIG. 7. Magnetic-field dependences of the oscillistor frequency at
the excitation threshold of η-type Ge with a nearly intrinsic conduc-
tivity. The symbols are the experimental results and the continuous
curve is calculated. ["]

Vladimirov and Shanskiit101 carried out a theoretical
and experimental study the influence of the surface re-
combination velocity on the oscillistor excitation cri-
terion of a strongly nonequilibrium plasma in Ge. They
found that the bulk oscillistor effect changed to the sur-
face form and the excitation threshold fell strongly
when the surface recombination velocity decreased.
The calculated dependence of the excitation criterion
on the surface recombination velocity was in good
agreement with the experimental results. These results
were used to suggest a new method for the determina-
tion of the surface recombination velocity in semicon-
ductors. Pataki1231 studied the influence of the field ef-
fect on the excitation criterion and the oscillistor fre-
quency of Ge. These oscillistor properties depended
strongly on the direction and intensity of the electric
field applied between the surface of the sample and an
external electrode. Thus, a study of the influence of
the field effect on the oscillistor oscillations gave in-
formation on the kinetics of surface recombination cen-
ters. Kuniyat24] studied the possibility of using the he-
lical instability in semiconductors under convective in-
stability conditions for delaying hf signals. The mea-
surements were carried out on η-type Ge under injec-
tion conditions at room temperature. The input signal
band was 30-200 kHz. The delay time was independent
of the magnetic field and frequency and was given by
t = L/va, where L is the sample length and v a is the am-
bipolar drift velocity. Lautz and Schulz[25] investigated
the helical instability in η-type Ge under convective and
absolute instability conditions. Special attention was
paid to the transition between these two types of insta-
bility. Schulz1361 developed a theory of a surface helical
wave in an injected plasma for the case when a density
inhomogeneity appeared along the electric field. Vikulin
et al.1 2 7 ' 2 8 1 studied the influence of the injection rate on
the excitation threshold of the oscillistor effect and ob-
tained the dependence of the oscillistor frequency (at the
excitation threshold) on the magnetic field. The results
of these experiments were in agreement with the theo-
retical calculations.14'151

Several investigations were made of the dependences
of the oscillistor characteristics on the angle between
the electric and magnetic fields.119'291 The excitation of
the surface oscillistor effect in planar samples was con-
sidered theoretically by Volkov"01 and Gilinsktf.[311 The
interesting problem of the resonance interaction between
an acoustic wave and an oscillistor was discussed by
Gilinskii and Sultanov.t321 The helical instability in semi-
conductors was also studied by Gurevich and Ioffe.[201 A

FIG. 8. Dependence of the electric field E 0 =b e Ea/D e on the mag-
netic field [COCT = (be/c)H] at the excitation threshold of the helical
instability: [33] 1) L/a->· °°; [4] 2) L/a = 30; 3) L/a = 6.

series of papers published in 1969 and 1970C33"381 re-
ported theoretical and experimental studies of the helical
instability in semiconductors subjected to strong mag-
netic fields (yi » 1). Dubovoi and ShanskiiC33] carried
out experiments on a plasma in Ge in magnetic fields up
to 150 kOe. In contrast to weak magnetic fields (yj « 1),
when the threshold electric field decreased with increas-
ing intensity of the magnetic field, the opposite tendency
for the threshold electric field to increase was noted in
strong magnetic fields (Fig. 8). This tendency appeared
at higher magnetic fields in long samples. An absolute
minimum of Eth (T) in strong magnetic fields was found
experimentally by Tsipivka at al. [ 3 4 ] and by Meilikhov."51

This behavior of the threshold dependences was due to
the finite longitudinal dimensions of the samples, which
caused a spatial change in the wave structure in strong
fields.141 The wavelength increased141 and became com-
parable with the length of the sample when the magnetic
field intensity was increased. In this case, the spatial
structure of the wave was governed entirely by the ge-
ometry of the sample and the longitudinal diffusion flux,
which played the main role in the suppression of the he-
lical instability in strong magnetic fields, ceased to de-
pend on the magnetic field. Since the drift flux causing
the instability was proportional to E/H, it was found
that, in strong fields, Eth ^ H, i.e., the threshold elec-
tric field increased with increasing magnetic field in-
tensity. Direct measurements of the dependence of the
wavelength on the magnetic field in samples of finite
dimensions were carried out by Dubovoi and Shanskii1·331

and confirmed these conclusions. A rigorous mathemat-
ical description of these effects, subject to the boundary
conditions on the ends, was given by Vladimirov.t381 The
problem was also discussed in t 3 9>4 0 ]. One should also
mention the work of Balakirev and Bogdanov1361 and of
Uspenskn"7 1 on the surface oscillistor effect in strong
magnetic fields.

One of the most interesting phenomena associated
with the helical instability in semiconductors was dis-
covered by Glicksman and SteeleC411 in 1959 in a study
of the pinch effect in an impact-ionized electron-hole
plasma in InSb. The pinch effect was the compression
of the plasma by the intrinsic magnetic field of the cur-
rent flowing through a sample.1421 The plasma was com-
pressed toward the axis of the sample when the radial
drift velocity of carriers in the azimuthal magnetic field
of the current and in a longitudinal electric field ex-
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ceeded the ambipolar diffusion velocity. The pinch effect
in the electron-hole plasma in InSb was always accom-
paniedM1'431 by an anomalous resistance due to enhance-
ment of the electron-hole scattering and to the quadratic
bulk recombination under strong compression."·441 The
effect found by Glicksman and Steele was the disappear-
ance of the pinch effect (disappearance of the anomalous
resistance accompanying the pinch effect) in a longitudi-
nal magnetic field comparable in intensity with the in-
trinsic magnetic field of the plasma filament current.
The destruction of the pinch in a longitudinal magnetic
field was later observed by other workers1431 and it was
suggested that the effect was due to the development of
a helical instability in the pinch channel. In 1967,
Glicksman and AndoC451 determined the spatial structure
of the perturbations appearing under these conditions
and demonstrated experimentally that the destruction
of the pinch effect in a longitudinal magnetic field was
due to the development of a helical instability. This in-
stability produced an anomalous diffusion flux toward
the surface of the sample and the radial compression
effect disappeared. It was interesting to note that such
apparently unlike effects as those discovered practically
simultaneously by Ivanov and Ryvkin[21 and Glicksman
and SteeleC41] were found to be closely related because
it was the helical instability in the experiments of
Glicksman and Steele that destroyed the pinch effect in
a longitudinal magnetic field but this instability was not
manifested explicitly. The theory of the helical insta-
bility under strong pinch effect conditions was devel-
oped by Vladimirov and ShchedrinC481 allowing for the
intrinsic magnetic field of the current and for the com-
plex spatial distribution of the plasma density in the
pinch effect. It was found that, to excite helical insta-
bility under these conditions, it was necessary to ensure
that the longitudinal magnetic field was twice as high as
the maximum intrinsic magnetic field of the current. The
longitudinal length of helical waves decreased with in-
creasing current and this was due to the enhancement of
the role of the transverse diffusion under strong com-
pression conditions.

Investigations were made relatively recently of the
influence of the energy band structure of semiconduc-
tors on the helical instability.M7'481 It was shown theo-
retically1·471 that the helical instability could appear in
unipolar semiconductors if electrons (or holes) were
not all characterized by the same parameters but con-
sisted of several groups with different mobilities in the
direction of the electric field. As pointed out earlier,
this situation appears in semiconductors with the many-
valley band structure (Si, Ge, etc.) if the intervalley
transition time is sufficiently long (if the diffusion length
of the intervalley scattering li = VDaTi is greater than
the transverse dimensions of the sample and the charac-
teristic oscillation frequency is higher than the frequency
of the intervalley transitions 1/TJ) SO that electrons of
different valleys participate independently in the trans-
port processes. In unipolar semiconductors, the helical
instability is always convective and, consequently, this
instability can be observed only under amplification con-
ditions. The numerical calculations reported in [471 were
carried out for silicon. Bondar et al.C481 investigated ex-
perimentally and theoretically the influence of the inter-
valley redistribution of electrons caused by uniaxial com-
pression (elongation) of a crystal on the criterion of the
excitation of the helical instability in electron-hole
plasma in silicon. It is worth recalling that the constant-
energy surfaces of silicon near the bottom of the conduc-

tion band are described by six ellipsoids arranged in
pairs along three mutually perpendicular axes ((100),
(010), (001)). The compression or elongation of a crys-
tal along one of these directions causes the greatest r e -
distribution of the electrons between the valleys (it en-
hances or reduces the populations of the valleys located
along the direction of deformation).1491 This redistribu-
tion is due to a relative change in the forbidden band
width along the compression (elongation) axis. No re -
distribution of electrons takes place when the stress is
applied along the (111) directions. In the case of a non-
uniform valley population, the mobility anisotropy af-
fects strongly the oscillistor characteristics even when
the intervalley transition time is short. The calculations
reported in C48] are carried out within the framework of
the two-valley model; it is assumed that the electron
gas consists of two ensembles. The electron mobilities
in the first ensemble are bM and b x along and at right-
angles to the direction of compression (this ensemble
is equivalent to two valleys oriented along the (100)
axis). In the second ensemble, corresponding to four
equivalent valleys oriented along the (010) and (001)
axes, the electron mobility is assumed to be isotropic.
The surface oscillistor effect is considered theoretic-
ally (the surface of the sample is assumed to be clean).
It is shown that the intervalley redistribution of elec-
trons increases the ambipolar mobility. Therefore, the
drift of perturbations along the electric field becomes
greater and the criterion of the absolute instability,
governing the appearance of the oscillistor oscillations
(during compression or elongation), becomes corre-
spondingly more stringent. The experiments reported
in C481 were carried out at liquid nitrogen temperature
in order, on the one hand, to raise the carrier mobility
and, on the other, to ensure a sufficient redistribution
of electrons under slight compression. A low surface
recombination velocity was ensured by etching the sam-
ples in a mixture of hydrofluoric and nitric acids. Fig-
ure 9 shows the dependences of the oscillistor excita-
tion criterion of p-type silicon on the pressure applied
at different rates of injection of nonequilibrium carriers
(curves 1 and 2 are experimental and curves 3-5 are
theoretical). Even a slight redistribution of « 10% (P
= 100 kgf/cm2) caused a strong rise in the threshold
value of EH. When the injection rate (n/p) was in-
creased, the pressure dependence of the excitation
threshold became less steep due to a reduction in the
ambipolar drift mobility. When silicon crystals were
compressed along the (111) directions, the threshold
fields were practically unaffected. The corresponding
experiments carried out on GeC501 under compression
and elongation confirmed the main predictions of the
theory (the oscillistor threshold increased). It is
worth recalling that the constant-energy surfaces of
Ge are four ellipsoids of revolution oriented along axes

FIG. 9. Pressure dependences <-ME)P/(HE)p,0
of the excitation criterion of
the oscillistor effect in p-type
silicon. The dashed curves are
the experimental results
(no/po = 0.7 and 0.8 cor-
respond to curves 1 and 2);
[48] the continuous curves
are the results of calcula-
tions (no/po= 11/15, 12/15,
13/15 correspond to curves
306, respectively).

1,0

kgf/cm*
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FIG. 10. Magnetic-field dependences of: a) the electric field in
p-type InSb under injection conditions (for a fixed current); ["] b) the
resistance of Ge with nearly intrinsic conductivity during the excita-
tion of the helical instability. [9]

of the (111) type. In this case, calculations can also be
made within the two-valley framework but they are much
more complex than in the case of silicon.

These investigations of the oscillistor effect are still
in their early stages and further effort is justified.
New possible applications (for example, new types of
strain gauge) as well as new methods for investigating
the band structure of semiconductors merit attention.

5. NONLINEAR EFFECTS

We shall now recount the most interesting nonlinear
effects which accompany helical instability. Ancker -
Johnson,1511 Hurwitz and McWhorter/93 and several
other investigatorsC22'521 discovered a strong rise of the
resistance during the excitation of oscillistor oscilla-
tions. Figure 10 shows typical dependences for a plas-
ma injected into InSb[51] (Fig. 10a) and for an intrinsic
plasma in Ge[ 9 ] (Fig. 10b). When the helical instability
is pronounced, the great majority of carriers experi-
ences rotation in a helix of finite amplitude/91 There-
fore, the path traveled by carriers between the contacts
increases and the resistance becomes higher. When the
supercriticality parameter (H - Hth) becomes larger,
an increasing number of carriers joins the helical per-
turbation. In a nonequilibrium plasma (injection or im-
pact ionization), a strong rise in the resistance may be
also explained by the anomalous diffusion of the plasma
toward the surface of the sample and by the annihilation
of carriers as a result of surface recombination. There-
fore, a higher electric field is needed to maintain a
given current. It should be noted that the dependences
Eth(H) shown in Fig. 10a were observed in 1958 by
Lehnert[71 in an investigation of the instability of a pos-
itive column in a gas discharge subjected to a magnetic
field.

In 1963, Ancker-Johnsont53: discovered a strong
hysteresis of the oscillistor threshold of p-type InSb
under injection conditions. In a fixed magnetic field
(325 Oe), a sample was subjected to triangular voltage
pulses (Fig. l la). The oscillations were excited in a
field Ε « 74 V/cm and the instability disappeared in a
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FIG. 11. Hysteresis of the threshold electric field in the excitation
of the helical instability in InSb (a) and hysteresis of the threshold mag-
netic field (b). [53]

field E « 40 V/cm. Thus, the hysteresis was about
46%. Somewhat weaker hysteresis of the threshold mag-
netic field (Fig. lib) was observed when the electric
field was fixed. This hysteresis of the threshold indi-
cated that the excitation conditions were hard.C541 The
amplitude of helical waves jumped suddenly when the
threshold conditions were exceeded.

We shall now briefly consider a phenomenological
theory of the soft and hard excitation of waves of finite
amplitude."4'5 5 1 The amplitude of small perturbations
which develop in an unstable solid-state plasma grows
exponentially with time so that the square of the ampli-
tude 77 satisfies the differential equation

ΊϊΓ = 2 ΐΊ' (16)

where y is the increment in the linear theory. As the
perturbation grows, the rate of its growth varies and
Eq. (16) becomes invalid. If η is small and the resul-
tant pulsations are regular, i.e., if they have a definite
frequency and wavelength, the growth rate can be found
by expanding the above equation in terms of the pertur-
bation amplitude. In this way, we obtain

-57- (17)

which differs from Eq. (16) by the replacement of the
linear-theory increment γ with the nonlinear increment
yjj, which depends on the amplitude η. Equation (17)
describes several phenomena which occur in an un-
stable system when the supercriticality is small, i.e.,
when the increment γ is small. The soft excitation re-
gime corresponds to a < 0 in Eq. (17); in this case, the
square of the amplitude of the steady-state motion which
appears in an unstable solid-state plasma is η = — y/a
and it increases smoothly from zero on transition from
the stability (γ < 0) to instability (γ > 0) when the super-
criticality parameter (x - x c r ) is increased. Any quan-
tity y averaged over the pulsations then varies continu-
ously when (x - x c r ) is increased.

Under hard excitation conditions (a > 0), the turbu-
lence appears in the following way. In the limit, χ
— Xcr> w e have γ —- 0 and the system goes over to the
instability range. If γ = +0, the amplitude of the per-
turbations suddenly rises to a finite value η ν which is
determined by the vanishing of the nonlinear increment
yH (Fig. 12):

. . . . .0, η, = —i. . (18)

If the parameter χ now decreases below the critical value
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FIG. 12. Dependence of the oscillation

amplitude on the instability increment. [S 4]

(x < x c r ) , the motion in the plasma does not stop; the
amplitude -Γη suddenly falls to zero only when χ = x'cr

< Xcr is reached. The solution for the amplitude η = η0

is stable if 9>Ή/9ί7ΐ?ρ?70 < °> a n d unstable if
> 0, so that perturbations are suppressed when
= 0, i.e., when 77 = ηζ = - a/2b (Fig. 12).

Thus, under hard excitation conditions, a hysteresis
is observed, namely, the appearance and disappearance
of oscillations in a plasma occur for different values of
the external parameters. Any quantity y averaged over
the pulsations exhibits discontinuities and a hysteresis
loop appears in its dependence on the parameter χ when
the excitation conditions are hard.

A hysteresis of the threshold conditions was also ob-
served in an investigation of the helical instability in the
presence of a strong pinch effect in an impact-ionized
plasma in InSb.C453 The hysteresis was due to a strong
paramagnetism of the plasma in the presence of a pro-
nounced helical instability, where almost all the carri-
ers were gathered into a helix. The azimuthal part of
the helical current increased the internal magnetic field
by an amount exactly sufficient to ensure that a finite-
amplitude perturbation did not break up because of the
anomalous diffusion. Holter and JohnsonC561 developed
a nonlinear theory of the helical instability in an impact-
ionized plasma and estimated the paramagnetism (the
change in a longitudinal magnetic field) and anomalous
resistance of a sample. Unfortunately, the calculated
quantities were found to be an order of magnitude smaller
than those obtained experimentally. Therefore, the ques-
tion of the existence of such a strong plasma paramag-
netism in the oscillistor effect remains unresolved. A
strong hysteresis of the threshold conditions should nat-
urally be accompanied by the appearance of higher azi-
muthal harmonics with excitation thresholds higher than
that of the ]m| = 1 mode. Therefore, in the nonlinear
theory, one has to allow for the interaction between these
harmonics and the fundamental mode. A correct nonlin-
ear theory of the helical instability capable of giving a
quantitative explanation of the hard excitation condi-
tions must also allow for the intrinsic magnetic field
of the current of finite-amplitude helical perturbations.
These factors are not considered in C 5 6 :. Undoubtedly,
considerable difficulties may be expected when these
factors are taken into account but only then can a cor-
rect description be obtained of the hard excitation of
the oscillistor effect in a nonequilibrium plasma in InSb.
It should be pointed out that the paramagnetic properties
of a positive-column plasma in a gas discharge under
helical instability conditions are much weaker (by sev-
eral orders of magnitude) than the analogous properties
of an electron-hole plasma in InSb.C571

A hysteresis of the threshold conditions of the oscil-
listor effect in InSb may find application in computer
memory elements.1531 For example, if a sample sub-
jected to parallel electric and magnetic fields of inten-
sities somewhat lower than the critical values for the
excitation of the oscillistor effect is excited by a saw-
tooth voltage pulse, oscillistor oscillations should be
observed and these should not disappear even after the

end of the pulse because of the hysteresis effect. In this
way, the system can retain a memory of the initial sig-
nal which generated the oscillistor effect.

Hysteresis of the threshold conditions was not ob-
served for the helical instability in Ge. [ 2 2 ' 2 5 1 In this
case, the nonlinear conditions are soft'553 and the per-
turbation amplitude rises smoothly when the supercrit-
icality parameters (H - Hth, Ε - Eth) are increased.

The theory of the soft excitation of the helical insta-
bility, applicable to the experimental results obtained
for Ge, was developed by Uspenskn[5in for a helical sur-
face wave.

We shall summarize this section by stressing once
again the need for further theoretical and experimental
studies of the nonlinear effects associated with the he-
lical instability in semiconductors. It would be ex-
tremely desirable to develop a microscopic theory of
the hard excitation of the oscillistor effect in an InSb
plasma. The high reproducibility and simplicity of the
oscillistor experiment should help theoreticians in the
selection of correct models and solutions and in the de-
velopment of a consistent nonlinear theory of the oscil-
listor effect. Nature has provided an excellent plasma
effect in the form of the oscillistor and the development
of a general theory of turbulent plasmas may be helped
by reliable experimental and theoretical information on
the nonlinear properties of the oscillistor.

6. METHODS FOR SUPPRESSING HELICAL
INSTABILITY

One of the most interesting directions of research
into the oscillistor effect was founded by the pioneer
investigations of Ancker-Johnson.

[59,60]
She investigated

,[61]

the suppression of helical instability in semiconductors
by electric and magnetic stabilization systems of the
type used in research on controlled nuclear fusion. In
1964, Ancker-Johnson[591 suppressed the helical insta-
bility in an injected InSb plasma by a "minimum-B"
magnetic trap produced by currents in "Ioffe bars . " c

The apparatus and magnetic field configuration were as
shown in Fig. 13. A current produced a magnetic field
which increased in all directions away from the axis of
the system (min B); the instability was effectively sup-
pressed when the current in the " b a r s " was « 11A and
the maximum intensity of the additional magnetic field
was only a few tens of oersteds. When a high-frequency
current (f « 84 MHz) was used, stabilization occurred
when the amplitude of this current was « 0.8 A. It was

I S ] 1ST L~-Wmm-J[

FIG. 13. Semiconductor model of the Ioffe magnetic trap. [60]
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FIG. 14. High-frequency stabilization of the helical instability. The
upper trace represents the external electric field and the lower trace
the instability current. The experiments were carried out on Ge. [64]

interesting to note that the carrier lifetime and plasma
density in a trap rose strongly when the helical insta-
bility was suppressed.[6ο: This confirmed very con-
vincingly the stabilizing influence of the Ioffe magnetic
trap. The experiments of Ancker-Johnson were carried
out under conditions satisfying the inequality a>ceTe s 3
(H ss 400 Oe), whereas in Ioffe's experiments the in-
equality ω ο β τ θ » 1 was obeyed. Unfortunately, a theory
of the stabilization of the oscillistor effect in this type
magnetic trap has not yet been developed.

A simpler oscillistor stabilization system, utilizing
a high-frequency longitudinal electric field, was de-
scribed in 1965 by Dubovoi and Shanskri,[62] who car-
ried out experiments on plasma injected into Ge. The
stabilization occurred in samples of reasonable length
for a relatively weak modulation of the electric field
(Tfc = E/E a* 1-2), which was proportional to L/a, where
L is the length of the sample. Typical oscillograms
demonstrating this high-frequency stabilization effect
are shown in Fig. 14. The effect observed by Dubovoi
and ShansknC621 could not be explained by the theory of
dynamic stabilizationC631 because the inertia of the par-
ticles involved had no influence on the helical instabil-
ity mechanism (the equations describing the helical in-
stability are of the first order in time[ 3'4 :). This is why
the initial equations of the oscillistor effect in the pres-
ence of a high-frequency electric field cannot be re-
duced directly to the Mathieu-Hill equations describing
dynamic stabilization. The starting point of a theory of
the high-frequency stabilization effect in semiconduc-
tors is the experimentally established dependence of
the efficiency of the stabilization effect on the length
of a sample. It is shown in C64>65:l that the main role in
the high-frequency stabilization effect is played by the
helical waves reflected from the ends of a sample,
which are present in addition to the main wave and are
manifested by a multimode excitation regime. The tem-
poral correlation between these phase-shifted modes
in the presence of a high-frequency electric field sta-
bilizes or destabilizes a given mode at a given moment.
During the first half-period, the high-frequency field
amplifies the first mode and weakens the second (if
two modes are present), whereas, in the second half-
period the reverse is true. A similar situation occurs
in hard-focusing accelerators. Under certain condi-
tions, the overall effect of a high-frequency field is to
suppress the instability. In long samples, the temporal

correlation of the spatial modes of a helical wave is
weak and the high-frequency stabilization is absent. A
correct description of the high-frequency stabilization
effect can be given by solving the initial differential
equation in terms of partial derivatives (variables z,t)
describing density perturbations under certain bound-
ary conditions on the ends of a sample. The equation
for nl (z, t) deduced from the Glicksman theory141 for
the | m| = 1 mode and reduced to the dimensionless
form is (for yj « 1)

—4
dz1

(19)

where

Of) \ 5 J !

θ is the time and ϊ is the spatial coordinate in the di-
rection of the electric and magnetic fields, α(θ)
= ac (1 + η sin βθ), ac cc EH, β is the frequency of the
hf field, and μ is a parameter which depends on the sur-
face recombination velocity.

The variables in Eq. (19) are not separable and it is
not possible to find the general solution of Eq. (19). If
we select the solution in the form of a plane wave: nx

~ [nx(t)] exp (ikz), i.e., if we consider just one mode,
we find that Eq. (19) for n^t) does not describe the high-
frequency stabilization effect. In fact, the plane-wave
solution also fails to satisfy zero boundary conditions
assumed in this problem:

re'l7=o,7L = °. *r-~~- (20)

These zero boundary conditions are, strictly speaking,
only justified for ohmic (weakly injecting) contacts.
Subsequent studies of the spatial structure of perturba-
tions in the high-frequency stabilization effect, carried
out by Dubovoi and Shanskii,[661 demonstrated that the
zero boundary conditions were satisfied well in their
experiments.

The coordinate basis of the reduced equation

Lnx = 0 (21)

can be found quite easily because the variables (ζ, Θ) in
this equation are separable. The basis is of the form

Φ,, (z) = exp (ipnz) sin κηζ, (22)

where

x n ^ ~ , n = l , 2,3,

The exponential factor (22) describes the fine structure
of a helical wave whose period is comparable with the
transverse dimensions of the sample and the harmonic
factor corresponds to the long-wavelength envelope of
the fine structure. The period of this envelope corre-
sponds to the harmonics of the length of the sample. It
should be pointed out that Eq. (21) also fails to describe
the high-frequency stabilization effect because there is
no temporal correlation of modes.

If the initial equation (19) is modified by substituting
the basis functions (22), it is found that the right-hand
side of Eq. (19) becomes proportional to z^1 and for long
samples this part is small (~a/L). Therefore, we can
apply the perturbation theory to the solution of Eq. (19).
The solution of Eq. (19) then becomes an expansion in
terms of the basis (22) with coefficients depending on
time. Using the Galerkin methods/111 we can reduce
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the initial equation in terms of partial derivatives to
a system of ordinary differential equations for these
coefficients. In the zeroth approximation (a/L — 0),
there is no high-frequency stabilization because each
of the modes, labeled by a number n, is described by
an equation of the first order in time due to the ab-
sence of correlation with other modes. Therefore, the
high-frequency stabilization effect should not appear in
very long samples. The temporal mode correlation is
obtained in the first order of the perturbation theory
when terms ~a/L are included in Eq. (19). In the two-
mode approximation, the initial equations describing
the time evolution of the modes reduce to the general-
ized Hill equations for each of the modes. A study of
the range of stable solutions of these equations gives
information on the high-frequency stabilization of the
helical instability. We shall give only the main results
of the theory of this stabilization effect/64'651 The effect
can appear only for a certain range of values of EH near
the oscillistor excitation threshold. This is due to the
fact that well beyond the threshold the mode growth in-
crements are so large that the correlation effect can-
not give rise to the stabilization effect. The width of
the stabilization zone decreases with increasing length
of a sample (L/a). The stabilizing modulation of the
electric field is TJC ~ L/a. For samples with a clean
surface (Gs » 1), the stabilization zone is considerably
wider than in the Gs « 1 case and the values of r)c are
smaller. The results of the theoretical calculations
were confirmed later in several experiments by Dubovox
and Shanskix.C65'66'671 The stabilization zone was deter-
mined experimentally in t 6 5 ] . The measurements were
carried out on samples of Ge of different lengths (L/a
= 6, 9, 12, 15) ranging from 6 to 15 mm. The surface
recombination velocity was reduced by etching in hydro-
gen peroxide. The instability was recorded with point
probes located on a lateral surface of a sample. Pulse
operating conditions (the duration of electric field pulses
was « 100 μ-sec and the duration of the high-frequency
field pulses was +50 μβεο) avoided heating of the lattice
and carriers when the currents were considerable. The
oscillistor oscillation frequency was ss 105 Hz and the fre-
quency of the stabilizing field was ss 106 Hz. The carrier
heating was minimized, the threshold of the excitation
zone was reached, and the stabilization zone was en-
tered by increasing the magnetic field to 13 kOe (the
electric field was kept constant). The value ?7C in the
stabilization zone remained almost constant when the
magnetic field was increased and then rose strongly
(by a factor of 3-5) as shown in Fig. 15. The value of
EH in which this strong rise of η0 was observed was
regarded as the upper limit of the stabilization zone.
The dashed lines in Fig. 15 are the theoretical limits
of the stabilization zone. We found that when the ratio
L/a was increased, the width of the stabilization zone
decreased. A strong rise of the stabilizing modulation

Vc

FIG. 16. Geometry of a system used in an investiga-
tion of the stabilization of the helical instability in
tubular samples of Ge. [68]

0 10 a 20

FIG. 15. Zones of high-frequency stabilization of the helical insta-
bility; rjc = E/E; a oc EH; L/a: 1) 15, 2) 12,3)9,4)6. [6S]

coefficient rjc near the upper limit of the stabilization
zone was a natural consequence of a transition from
the region where the system was stable to the region
where it became unstable. This considerable increase
in the value of the modulation coefficient or the ampli-
tude of the high-frequency field outside the limit of the
stabilization zone caused carrier heating and, conse-
quently, it reduced the mobility and increased the dif-
fusion coefficient, which was equivalent to the displace-
ment of the upper limit of the stabilization zone in the
direction of stronger magnetic fields.

A very important investigation of the anomalous
diffusion of a nonequilibrium electron-hole plasma
under helical instability conditions was carried out by
Dubovox and Shanskix.C67] Laser diagnostics was used
to show that the diffusion coefficient of carriers was
several times higher than the classical value. Under
the high-frequency stabilization conditions, were was
no such anomalous diffusion and this provided further
support in favor of the existence of the high-frequency
stabilization effect.

A theoretical and experimental study of the helical
instability was carried out[ 6 8 ] in the Triax thermonu-
clear geometry.[69: The instability was excited in tubu-
lar Ge samples (Fig. 16). An azimuthal magnetic field
of an axial conductor passing through a cavity in a sam-
ple suppressed the instability when the current was suf-
ficiently high and this happened irrespective of the di-
rection of the currents in the sample and in the axial
conductor. The stabilization effect was due to a strong
magnetodensity effect which appeared in the sample in
the presence of the field Ε and H^. Depending on the
directions of the axial current and the current in the
sample, the plasma was compressed either at the ex-
ternal or internal surface of the tubular sample, which
enhanced the transverse diffusion and suppressed the
instability. Similar experiments were carried out ear-
lier in a gaseous plasma.t 7 0'

In spite of the apparent success of the model experi-
ments, there is still an element of doubt associated with
the incomplete analogy between semiconductor plasmas
(where usually the mean free path of carriers is consid-
erably shorter than the sample) and hot low-pressure
discharge plasmas. However, as pointed out in C71], under
anomalous resistance conditions, when the effective col-
lision frequency increases, the helical instability may
appear even in a "collisionless" plasma of the type used
in thermonuclear research. In this case, the model ex-
periments on semiconductor plasmas may be applied di-
rectly to the thermonuclear fusion program. It should
be pointed out that modeling with the aid of semiconduc-
tor plasma units is of considerable intrinsic interest.
The most important aspect is the study of the nature of
the diffusion of particles in an electron-hole plasma in
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the case of spontaneous growth of fluctuations and under
stable conditions,, including the determination of the main
stabilization mechanisms. In this sense, the model in-
vestigations can enrich considerably the range of tools
available to investigators working on thermonuclear
fusion.
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