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We consider three groups of hydrodynamic instabilities of electron-hole plasmas in conducting solids,

namely, helicoidal, two-stream, and overheating instabilities. The helicoidal instability is discussed in Chap.

II and is due to the drift of electrons relative to the crystal lattice in constant electric and magnetic fields.

It is manifested by the growth of transverse and longitudinal acoustic oscillations which interact with

helicons. Particular attention is devoted to the explanation of the role of the magnetic field due to a

constant current. In Chap. Ill, we give a summary of theoretical and experimental results on the

interaction between a beam of electrons moving near the surface of a semiconductor and the associated

electromagnetic waves. A detailed analysis is given of the size effect, i.e., the effect of the finite size of the

specimen on the growth rates of two-stream instability. These growth rates exhibit a rapid rise in

resonances. Chapter IV is concerned with the instability due to the heating of the electron gas by a

constant electric field. Since the rate at which energy is transferred to the lattice is low, the static current-

voltage characteristic includes a falling segment (negative differential resistance). This leads to an instability

of temperature perturbations and the associated electromagnetic waves. Particular attention is devoted to

the assessment of conditions under which overheating instability has an oscillatory character.
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I. INTRODUCTION

There has been increased interest during the last
decade in studies of the electromagnetic properties of
conducting solids. Various types of weakly attenuated
electromagnetic waves in semiconductors and metals
were discovered during this time, and various instabili-
ties, nonlinear effects, interactions between waves, and
interactions of waves with external fields were investi-
gated. At the present time, these phenomena, which are
combined under the general phrase "plasma phenomena
in solids" are undergoing rapid development and are
among the most lively topics in solid-state physics.
This interest in plasma effects in solids is due to sev-
eral factors. Firstly, unstable states of electron-hole
plasma in semiconductors can be (and are) used for the
generation, amplification, and transformation of elec-
tromagnetic waves in the broad range of wavelengths
between radio and optical frequencies. Secondly, plasma
effects in conductors are associated with the specific
properties of solids and can therefore be used to inves-
tigate the energy spectrum, transport properties, and
interactions of conduction electrons. Finally, solid-
state plasma is convenient for the simulation of pro-
cesses which occur in gas-discharge plasma. It is im-
portant to note that many of the electromagnetic proper-
ties of solids are similar to the properties of ordinary
plasma. However, despite this similarity, there are
also essential differences. The chief difference is that
equilibrium solid-state plasma is absolutely stable,
whereas the gas-discharge plasma usually has a short
lifetime and decays rapidly. Other differences are due
to the presence of the crystal lattice, quantum effects,
anisotropic phenomena, and the possible variation of
plasma parameters within very wide limits.

The study of instabilities is a very substantial part
of plasma physics. It is well known that the numerous
plasma instabilities can be divided into two groups,
namely, kinetic and hydrodynamic instabilities. The

former arise for long electron mean free paths, much
greater than the wavelengths. They are due to resonant
interactions between slow waves and individual particle
groups, the velocities of which are close to the phase
velocity of the wave. An example of kinetic instability
is the inversion of Landau damping[11 during the motion
of a beam in collisionless plasma.[ 2 '3 ] Hydrodynamic
instabilities, on the other hand, are connected with the
ordered motion of macroscopic plasma volumes. As a
rule, these instabilities develop at low frequencies and
short mean free paths. The mathematical formalism
used for investigating these instabilities is provided by
the equations of hydrodynamics. A systematic account
of the theory of hydrodynamic or, more precisely, hy-
dromagnetic instability is given in the review paper of
Kadomtsev.[4] A reasonably complete theory of plasma
instabilities of both types is given in the recent book by
Mikhailovskii.[5]

The characteristic feature of electron-hole plasma
in semiconductors is the relatively high collision fre-
quency ν between current carriers and the scattering
centers. The minimum value of ν is usually not less
than ΙΟ11—1012 sec"1. It follows that the hydrodynamic
approximation is valid up to infrared frequencies. In
other words, the most common situation is that involv-
ing hydrodynamic instabilities.

In this review, we consider three groups of instabili-
ties which, in our view, are important, namely, heli-
coidal, two-stream, and overheating instabilities.

Helicoidal instability is treated in Chap. II and is
due to the drift of electrons relative to the crystal
lattice in constant magnetic and electric fields. This
instability is associated with the existence of a helical
magnetic wave, i.e., the helicon.[6>7] The presence of
elastic forces in the crystal lattice leads to the appear-
ance of transverse and longitudinal acoustic oscillations
which interact with the helicons. Under conditions of
instability, this distinguishes solid-state plasmas from
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gas-discharge plasmas. We shall pay particular-atten-
tion to the role of the magnetic field produced by a con-
stant uniform current.

Chapter III gives a discussion of theoretical, and
some experimental, results on the interaction between
an electron beam moving near the surface of a semi-
conductor and intrinsic electromagnetic waves in the
specimen. Particular attention is paid to the "size ef-
fect", i.e., the influence of the finite specimen size on
the growth of the wave amplitude. The amplitude growth
rates increase sharply near resonances where the wave
frequency is equal to the oscillation frequency of elec-
trons in the moving beam. The mechanism responsible
for this instability is analogous to the two-stream insta-
bility in gas plasmas, and is connected with the trans-
formation of the energy associated with the directed
motion of the beam into the energy of oscillations.

Finally, Chapter IV is devoted to instabilities which
appear as a result of the heating of electrons by a con-
stant electric field. Since the rate at which energy is
transferred from electrons to the lattice is low, the
static current-voltage characteristic exhibits a descend-
ing section on which the differential resistance of the
specimen is negative. This leads to the instability of
temperature perturbations and the associated electro-
magnetic fields. Overheating instability is usually
aperiodic. However, there is considerable interest in
the elucidation of conditions under which this instability
may have an oscillatory character.

The aim of this review is to draw attention to the
above instabilities. They have not, so far, been exten-
sively investigated experimentally, but they are inter-
esting both from the standpoint of general physics and
from the point of view of practical applications.

It is clear that our review will cover only a small
part of the general problem of hydrodynamic instability
in solid-state plasma. In particular, we shall not con-
sider the helicoidal instability of two-component
plasmas, the amplification and generation of sound in
piezosemiconductors, the recombination-ionization in-
stabilities, and the Gunn effect. Some of these are de-
scribed in the reviews by Gurevich,[8] Pustovoit,[9]

Volkov and Kogan,[10] and in the monograph by Bonch-
Bruevich, Zvyagin, and Mironov.[ u l Accordingly, the
bibliography given at the end of this review is not in-
tended to be complete: we cite only those literature
sources which are directly relevant to the questions
discussed.

II. HELICOIDAL INSTABILITY
1. Formulation of the problem. Equations and boundary
conditions. To obtain a solution for the instability of
magnetoactive plasma in a solid carrying a current, we
must use Maxwell's equations and the equations of the
theory of elasticity, as well as the constitutive equations
relating the varying current to the electromagnetic and
acoustic fields. The most complete and rigorous theory
describing the interaction between conduction electrons
and the lattice is given in [ 1 2 " i e ] . In strong magnetic
fields, in which the Larmor radius of electrons is much
less than the wavelength of the electromagnetic or
acoustic waves (the wavelength is also less than the
mean free path), the predominant phenomenon is the
induction mechanism which provides the coupling be-
tween electrons and the latticed1 4 1 We shall therefore
confine our attention to this mechanism.

The complete set of equations has the following form:

rotE=—i--2L, rotH = ^Lj, divH = O, (1.1)

) = 0, (1.2)

Ρ [0-s?

(1.3)
where Ε and Η are the electric and magnetic fields, u
is the lattice displacement vector, st and s/ are the
velocities of transverse and longitudinal acoustic waves,
ρ is the crystal density, and e, m, v, N, and υ are, re-
spectively, the electron charge, effective mass, velocity,
density, and collision frequency. The frequency is as-
sumed to be low enough for inertial force to be neglected
in the equations of motion for the electrons. We shall
also assume that the quasineutrality condition is satis-
fied, i.e., the electron density is equal to the lattice
charge density. The elastic properties will be taken to
be isotropic, and dissipative terms in the equations of
motion will take into account the conservation of mo-
mentum of the system during collisions between elec-
trons and the lattice.

Equations (1.1)—(1.3) must be augmented with bound-
ary conditions. These can be reduced to the following:
the forces which are impressed on a separation bound-
ary by two contacting but different media must be equal
and opposite in direction : [ 1 7 ]

(σι* + Ttk) nK = (σ« + T\k) nh, (1.4)

where the primed and unprimed quantities refer to the
different media, and the unit normal η has the same
direction in both media. Repeated subscripts indicate
summation between 1 and 3. Finally, aik is the electric
stress tensor1·18] and Tik is the Maxwell stress tensor.
It is, of course, assumed that the electrodynamic bound-
ary conditions are satisfied.

If the specimen is surrounded by a perfectly con-
ducting surface (which is the case, for example, in a
circular metal waveguide fully filled with a semicon-
ducting material), the tangential electric field compon-
ents vanish on the boundary. For a semiconductor rod
surrounded by a nonconducting medium (vacuum, σ[^
= 0), Eqs. (1.1)—(1.3) must be augmented by the Max-
well equations in vacuum:

rotH = 0, divH = ««E—«. (1.5)

Displacement currents are assumed small in com-
parison with conduction currents in the conducting
medium. When this is so, the normal components of the
magnetic field and the tangential components of the
electric field must be continuous across the boundary
of the specimen. The tangential components of Η may,
in general, exhibit discontinuities due to the presence
of surface currents.

Consider a cylindrical specimen of radius R, which
is infinitely long along the axis of symmetry (z axis).
The current j 0 = JOz = -Noevo and the external magnetic
field HOz are assumed to be uniform. In a state of
equilibrium, the remaining quantities in (1.1)—(1.3) de-
pend only on the variable r of the cylindric set of co-
ordinates (r, φ , ζ). Equilibrium values are indicated by
the subscript zero. From (1.1)—(1.3), we find that the
azimuthal magnetic field Ηθφ = 2wjor/c is related to the
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radial component of the lattice displacement vector by
the expression

pS>±[±J-iru.r)~\=!^=,'^-L(rn(№). (1.6)
dr L r dr κ υ ' j c 4;rr Or v υ τ /

Integrating this equation subject to the boundary condi-
tion (1.4) on the surface of the cylinder (we are assum-
ing that the cylinder is located in the vacuum insofar as
elastic properties are concerned, i.e.,aik = 0)> we can
determine the deformation of the cylinder and the stress
distribution in it.

It is clear from (1.6) that the relative deformation
uOr/r ~ H0tf>/4npSj2 is very small in a solid. It is obvi-
ous that the elastic constants, for example, the velocity
of sound, cannot undergo a substantial change as a re-
sult of such deformations. In the stationary state, Eo^
= Hor = 0, Eoz = -mvOi//e. Moreover, there is also the
radial component of the electric field E()r = "oHo^/c,
which leads to very slight violation of the neutrality
condition, namely,

ΔΛΌ < 1 0 " 6 .

Let us now consider small oscillations in which al-
ternating increments are described by A(r)exp(ikzz
+ ίΐφ - iwt), where ω is the frequency and I, kz are
the azimuthal and axial wave numbers. Linearizing
(1.1)—(1.3), we can readily obtain the equations for
small oscillations in the following form:

- i (ω-ivV> Η - ^ ΔΗ + ^ ^ rot [rot H. x Ho]

= cokzH(it\i + ΖωΗ0 div u — c rot (E o div u),
(1.7)

<o2u 4-stAu -f (si — s\) grad div u = — — [j0χHJ — -~ [rot Η χΉ,),

(1.8)
where ω2 = 4ire2N0/m, Η$ζ = Hoz + (e/k z r)Ho^.

It is important to note that we can use the energy
principle^41 to analyze the stability of (1.7)—(1.8) in the
absence of dissipation. The idea of this method can be
summarized as follows. If the initial set of equations
is self-adjoint, it can be obtained from the least-action
principle for the Lagrange function. Having determined
the sign of the potential energy of the oscillations, we
can use the general theorems of mechanics to judge the
stability of the equilibrium of the system.

We shall, however, use the method of natural oscil-
lations because it provides more complete information.
When the external magnetic fields are sufficiently high
(electron cyclotron frequency ω Η = eHoz/mc much
greater than the collision frequency and signal fre-
quency), weakly damped electromagnetic waves (heli-
cons) propagate through the conducting medium,[6>7] and
there are also transverse and longitudinal sound waves.
These waves are coupled,[14>16] and the strength of this
coupling is characterized by a small parameter of the
order of Ηοζ/4πρβ| ̂ . The degree of coupling may,
however, rise sharply under resonance conditions when
the frequencies and wave vectors of the initial (partial)
waves are equal. This is accompanied by strong mutual
wave transformation which results in coupled electro-
magnetic and acoustic oscillations. The presence of
conduction electrons which drift with constant velocity
v0 then leads to a change in the electromagnetic wave
spectrum. In particular, waves propagating with phase
velocity smaller than the drift velocity are found to ap-
pear in the system. The resonant interaction between
these electromagnetic oscillations and the sound waves
leads to the growth of coupled oscillations with maxi-

0 — 4jifA'o raj

mum growth rate. The partial electromagnetic waves
are then the intermediaries which transform the energy
of translational motion of electrons to the thermal en-
ergy of the entire system. We shall now investigate in-
stabilities of this kind.

2. Helicoidal instability in an infinite medium. To
begin with, we shall consider the case where the dimen-
sions of the specimen are sufficiently large and much
greater than the propagation wavelength. It is clear that
surface effects can then be neglected and, if there is no
interaction between conduction electrons and the lattice,
(1.7) leads to the following dispersion relation which
determines the spectrum and damping of the helicons:1'

(2.1)

where k = (κ2 + k | ) 1 / 2 and κ is the transverse wave
number which is determined by the boundary conditions.

It follows from (2.1) that two types of helicon can
exist in drifting plasma, namely, a fast helicon, the
phase velocity of which is greater than v0, and a slow
helicon whose velocity is less than the drift velocity.
These helicons have different polarizations: curl Η
= ±kH. Both waves are, of course, damped. The insta-
bility can appear only in the presence of several groups
of carriers with different mobility in the solid-state
plasma,1·20"221 or when the motion of ions in the gas-
discharge plasma[ 9 ) is taken into account, or in the
presence of a coupling between the electromagnetic
wave and the lattice oscillations.t23~25]

Igitkhanov and Kadomtsevt26] note that the helicoidal
instability discussed in1·251, where the intrinsic magnetic
field Ηοφ was neglected, was essentially the Kruskal-
Shafranov instability141 well known for the gas discharge
plasma. We shall see later that the instability criterion
is the same in both cases. Nevertheless, we would like
to draw attention to the fact that the Kruskal-Shafranov
instability in solid-state plasma has a number of dis-
tinguishing features.

Firstly, the elastic forces in the crystal lattice en-
sures that the instability can have an oscillatory char-
acter. Secondly, if the oscillation frequency is much
greater than the growth rate, the instability may appear
when | H(V) | is greater than Hgz.In other words, there
is a range of parameters in solid-state plasma in which
a sufficiently high magnetic field Hô > has no effect on
instability development. The results reported in[ 2 3 > 2 5 ]

are thus valid in this region even though they have been
obtained without taking into account the field H()cp.

Let us now consider the interaction between helicons
with axial symmetry (/ = 0) and transverse acoustic
waves. Since st < s ,̂ one would expect that an instabil-
ity involving the participation of transverse sound
waves would appear at lower electron drift velocities.
We note that when the linear dimensions of the specimen
are large enough (k | » κ2 ~ J72/R2), the condition for
the existence of a slow helicon (v0 > ckzHoz/4jreNo)
is equivalent to the requirement Hocp > HQ Z . However,
the helicon dispersion relation for axially symmetric
oscillations is independent of the azimuthal magnetic
field.[23>25] Assuming that the waves propagate exclu-
sively along the ζ axis (κ —- 0), and that the continuity
condition div u = 0 is satisfied, we obtain the dispersion
relation for coupled electromagnetic and transverse
acoustic waves from (1.7)—(1.8) in the following form : [ 2 5 ]
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The upper sign refers to the circularly polarized wave
with curl Η = kzH, and the lower sign corresponds to
the wave with curl Η = -kzH. During the propagation of
transverse acoustic waves with ω « kzst the presence of
the azimuthal magnetic field leads to the appearance of a
longitudinal component of the lattice displacement vector

FIG. 1. Schematic plot of cj(kz) for
coupled helicon and acoustic waves in
the presence of electron drift.

and, strictly speaking, the waves are no longer trans-
verse. However, the contribution of u z to (1.7) is
negligible if

(2.3)

It follows from (1.8) that

)Ζ>Ιφ I ·

ckzllo

where δω = ω - kzst. Thus, the final condition that the
oscillations be transverse can be written in the form

| δω
• » 2

Hlz
(2.3a) _

If we use the order-of-magnitude result
~ HozkzR, we obtain the following range of parameters
in which (2.2) is valid:

!*'»«·. (2.4)| δω I ckzllo

- — 1

During the resonant interaction between t ransverse
acoustic waves and the helicon, the frequencies and
wave vectors of both waves a r e equal. The correspond-
ing resonance points a r e shown in Fig. 1. Consider, for
example, the interaction between a slow electromag-
netic wave and an acoustic wave. Suppose that ω > 0,
v z > 0, and v0 > 0. Clearly, the resonance condition
takes the form

Hence, it follows that resonance occurs only when v0

> st- The correction to the resonance frequency is de-
termined by the right-hand side of (2.2) and is given by

6o> r e s = :"°re>y •8 π ρ ί ( ( ΐ > 0 — s,)
(2.6)

It follows from this formula that one of the coupled
waves grows and the other decays. The amplitude of
circularly polarized oscillations will grow, forming a
peculiar helical (helicoidal) structure. This type of in-
stability is therefore referred to as helicoidal by ana-
logy with the helical plasma instability discussed in[ 2 7 ].
There is no difficulty in calculating δωρββ for the other
resonance points as well. At points 2 and 4 (Fig. 1),
there is no growth2' and at point 3 the quantity Ot»>res
can be calculated from (2.6). In other words, among the
coupled waves, the wave that will grow will be that for
which the phase velocity is less than v0. Its direction
is the same as that of the electron drift velocity. In this
case, the helicoidal instability mechanism is equivalent
to the Cerenkov mechanism.

Let us now consider the character of the resulting
instability. To do this, we must find the increment fiK
of the wave vector at fixed frequency. We have

(2.6a)

where (9u>/3k)res is the group velocity of helicons at
resonance. It is readily shown [ 2 8 ] that when the helicon
group velocity is negative (v0 > 2st), the instability is

absolute, and when it is positive, the instability is con-
vective.

The formula given by (2.6) is obtained on the assump-
tion of "strong" coupling, i.e., the degree of mutual
transformation is so large that 5w r e s exceeds the heli-
con damping j/k| r e sc

2/w0. In this case, the waves can
no longer be divided into acoustic and electromagnetic,
and coupled waves appear in the resonance region, if,
on the other hand, the strong-coupling condition is not
satisfied, the waves can be divided into helicons and
sound. The helicons are then damped at a rate ν \ v0

/ > a n d the acoustic waves grow at a rate

8 π ρ (<•„ — »,)* ν '
(2.7)

Thus, for the semiconductor PbTe31 with - 3

ρ = 3.5 g cm m 10'" g, 105 msec
-101 1 sec"1, and with Hoz = 1000 Oe, v0 -

No = 101" cm
\ ^ 2 x 101 0'

st there
is weak coupling between the waves. Under these condi-
tions, k z r e s ~ 20 cm"1, w r e s / | δω Γ β δ Ι ~ 105, and the
conditions given by (2.4) are satisfactorily fulfilled for
R ~ 1 cm. In strong magnetic fields (Hoz ~ 104 Oe),
and at helium temperatures, the strong coupling condi-
tions are also satisfied ( k z r e s ~ 2 cm"1,
w r e s/ Ι δ ω Γ 6 8 | ~ 100, 15 > kzR > π).

Well away from resonance (the frequencies of
acoustic and electromagnetic waves not equal for given
kz), we can obtain a correction to the acoustic frequency
ω = kzst from (2.2) in the form

ω 4npsJ \ ckzllaz / \ st inestNa s ^ I (2.8)
k'i -1-1

4π«,ΛΓ0

The oscillations grow when
ckznoz (2.9)

This condition corresponds to the requirement that the
Lorentz force ( l/c)( jo x H) acting on the charged lattice
exceeds the force (l/c)(j x Ho). It is important to em-
phasize that, in the absence of resonance, the inequality
given by (2.9) is not connected with the relationships be-
tween the drift velocity v0 and the phase velocity of the
wave. Outside resonance, instability can therefore
probably be detected not only in semiconductors but
also in metals, where a high drift velocity cannot be
produced. The instability condition given by (2.9) is
equivalent to the Kruskal-Shafranov condition
(| H O Z | / H O Z > irR/L, where L is the length of the sys-
tem) which predicts the appearance of helical instability
in a plasma column in a strong longitudinal field. We
emphasize again, however, that the above condition is
valid for a column with small transverse dimensions
(R « L and hence | H(v> | < Hoz) whereas, in solid-
state plasma, helicoidal instability may arise even when
the intrinsic magnetic field is strong (R » L,
> Hoz).

Of course, one can speak of the growth of oscillations
only when the growth rate exceeds the nonelectron
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(lattice) damping. Since the instability is expected for
long-wave phonons, the condition ωτρη « 1 is satisfac-
torily fulfilled (rph is the thermal phonon relaxation
time). The lattice absorption is then described by the
Akhiezer mechanism[30] and is proportional to the
square of the wave vector. Comparison of the electron
growth rate and the lattice absorption coefficient shows
that, for kz < 4;restNo/cHo (v0 ~ st), absorption is
negligible[3lJ for PbTe at helium temperatures.

When the drift velocity exceeds s ,̂ the presence of
the azimuthal magnetic field Κθφ leads to the interac-
tion between the helicons and the longitudinal acoustic
waves propagating in the ζ direction. This interaction
is local and appears in the region well away from the
axis of the cylinder, i.e., for kzr « 1 and Hoz
<<: I H(v?(r)|. The formulas describing the dispersion
properties and growth rates for coupled waves, in this
case, are given in1·321.

3. Resonance interaction between helicons and
acoustic waves in a semiconductor rod with a perfectly
conducting surface. The tangential components of the
electric field are zero on a perfectly conducting surface.
It is clear that this condition should be satisfied in the
stationary case as well. Hence, we find that Eoz = 0
inside the specimen. The electron drift velocity v0 is
finite if, at the same time, we put ν = 0. Hence, in the
approximation involving a perfectly conducting surface,
the static conductivity of the specimen in the direction
of the magnetic field must be set equal to infinity, and
the transverse conductivity to zero. The boundary con-
ditions (1.4) for elastic stresses are then of the form

Oirlr=R = 0. (3.1)

The components of the Maxwell stress tensor in the
linear approximation are then removed from (3.1) be-
cause the electrodynamic boundary conditions are
satisfied. If we express air i n terms of the components
of the tensor uik, the boundary conditions (3.1) can be
written in the form (all quantities are taken for r = R)

^ + (s; -2s?) (ilu, + ur + iksu,) -, 0,
(3.2)

It is clear from (3.2) that the boundary conditions "mix"
the longitudinal and transverse acoustic waves even in
the absence of electron-lattice coupling. However, for
axially symmetric perturbations with / = 0, the equation
for the component \ΐφ separates from the equations for
u z and u r .

Let us therefore begin by considering the spectra of
axially symmetric oscillations in a cylindric specimen
in the absence of interaction between electromagnetic
and acoustic waves. The helicon polarization plane ro-
tates about the ζ axis, and the components of the alter-
nating magnetic field are related by curl Η = ±kOiH,
where koi = κοι + k| . Hence,

~ L (3.3)

where J o and J ! are the Bessel functions. From the
boundary condition Hr(R) = 0, we find that the radial
wave number spectrum, (κοι) is determined by the
zeros of J I ( K O I R ) · The helicon frequency spectrum is
described by (2.1) with ν = 0.

Acoustic oscillations with polarization u(^(~J1(/c02r))
are transverse, and their wave number is ui/st = k02

= («02 + k | ) 1 / 2 . The spectrum of radial wave numbers

«02 is found from the condition 3Z( K02R) = 0. The dis-
persion properties of oscillations with u z , u r * 0 are
described by more complicated expressions because the
longitudinal and transverse waves do not separate out
in the boundary conditions. For surface acoustic oscil-
lations in a cylinder, one can readily obtain the well
known dispersion relation

-,(κ,Λ) , 2*ι(>Ί-χί) _η (3 ί 4)

where
d

- - 0 .

0, and Io and Ix are the
modified Bessel functions.

For large R, (3.4) transforms into the well-known
dispersion relation for Rayleigh waves in a semibounded
medium.t l 8 ] The velocity of the surface wave is aj/kz

= st£, where ξ < 1 is a positive number depending on
st/s/ (see[ 1 8 J). For large but finite values of kzR, the
velocity of the Rayleigh wave is greater than st^ by an
amount of the order of l/kzR.

We must now consider the resonance interaction be-
tween helicons and transverse acoustic waves within the
body of the specimen. The resonance condition in a
bounded medium is that, in addition to the equality of
the frequencies and of the ζ components of the wave
numbers, an integral number of half-waves can be
fitted into the radius R for each partial oscillation. In
other words, JL( KoiR) and J2( K02R) must both vanish.
The corresponding resonance points without the inter-
action are shown in Fig. 2. The wave numbers kOi and
kO2 are not equal because of the difference between «01
and κο2· Assuming that in this interaction the coupled
oscillations are transverse, we obtain the following
characteristic equation which determines the frequency
as a function of the total wave number:

This is somewhat different from (2.2).

The upper sign refers to the coupled wave with
polarization curl Η = kH and the lower corresponds to
curl Η = -kH. To be specific, we assume that k, kz,
and ω are all positive. If we use the fact that in coupled
waves u r = u z = 0, and introduce the boundary condi-
tions for \ΐφ and H r , we obtain a dispersion relation
which describes the interaction between a slow helicon
and sound:

/, (
k,,y.MkmJt (3.6)

where

'meX0

All these quantities are positive.

Equation (3.6) can be used to find the correction δω
to the frequency, since Κα = «θα + 5% and

In the case of the resonance interaction, we can neglect

FIG. 2. Schematic plot of ω vs
k z for coupled helicon and trans-
verse acoustic waves in a cylindri-
cal specimen.
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in (3.7) the corrections 6koa due to the change in the
wave numbers. These corrections are small relative to
the parameter (HQZ/4jrps|)1/2. Resonance occurs when
the following condition is satisfied:

kn*St = k (v Cfcoi.ffoz \ (3.8)

Expanding the left hand side of (3.6) in powers of δω,
and recalling the resonance condition (3.8), we finally
obtain

Hnz XpiftpSf dtu/dfcpi
(δω)2 = -

Λ>*ΟΙ(*ΟΙ+*Μ)(*ΟΙ-*Μ)5 ' (3.9)

The sign on the right hand side of (3.9) is the same as
the sign of the derivative aw/akd, i.e., it is determined
by helicon dispersion. Since a slow helicon has anomal-
ous dispersion (3u>/3k01 < 0), its resonant interaction
with the transverse volume sound leads to the excita-
tion of coupled oscillations. The growth of the waves
does not occur during the interaction between a fast
helicon and sound because δω2 ~ 8ω/9ωοι > 0.

The criterion for the applicability of (3.9) can readily
be obtained by estimating the relative role of the terms
in the "equations of motion" (1.7) which contain the
magnetic field Ho<p due to the current. Simple esti-
mates[ 3 2 ] show that the necessary and sufficient condi-
tion for the oscillations to be transverse is

|δω | ' ( llteN^ ) s'—s2 (3.10)

The degree of "depolarization" of the sound waves
as a result of the interaction between the waves, i.e.,
the relative magnitude of the component uj·, is small
and is of the order of | δω |/ω.

Let us now consider the interaction between helicons
and acoustic waves when the lattice displacement vector
has nonzero components Up and u z , and u ,̂ = 0. From
(1.7) and (1.8) it follows that the coupling coefficient be-
tween the induced axially-symmetric acoustic oscilla-
tions and helicons is independent of ίίθφ, and for longi-
tudinal sound it is a function of Ho<p and HQ Z . Since we
are assuming that Ho<p(R) » Hoz> it will be sufficient
in estimating the growth rate to restrict our attention
to the interaction between the helicons and the longitud-
inal acoustic waves, and to neglect the constant mag-
netic field Hoz in the coupling coefficient (the coupling
between the transverse and longitudinal acoustic waves
is then achieved through conditions on the boundary).

The resulting set of equations can be solved by the
method of successive approximations, using the small
parameter

Sk<1· (3.11)
The result is a dispersion relation which describes
coupled Rayleigh and helical electromagnetic waves in
a semiconductor cylinder^321. However, we shall not
attempt to write out this complicated equation, and will
reproduce only the final expression for the correction
to the frequency near resonance. The resonant interac-
tion between helicons and Rayleigh sound waves occurs
when

s,£ = v j_ "oî oz fcol = y nj,4-fc;, (3.12)

where KOIR is the root of J I ( K ) . The frequency correc-
tions are given by

Since in Rayleigh waves κ/ > κ^ and kz > Kt, the quantity
in the square brackets is positive and the sign of the
right hand side is the same as the sign of the helicon
group velocity doj/dkoi. Consequently, the instability of
the coupled oscillations is possible only for an interac-
tion between Rayleigh sound waves and slow helicon
with anomalous dispersions. The situation is essentially
the same as in the case of resonance between a helicon
and transverse volume sound. However, the growth of
the oscillations in this case occurs at smaller drift
velocities than in the case of the interaction between a
helicon and volume sound waves.

In a thin rod, the transverse dimensions of which are
small in comparison with the wavelength and the depth
of penetration of the waves into the specimen, the dis-
persion relation (3.4) leads to the well known dispersion
law for longitudinal oscillations

(3.14)ω = k2s,Y2 (1 + σ),

where σ is the shear modulus. The phase velocity of this
wave is less than the velocity of the longitudinal volume
sound. The interaction between the oscillations (3.14)
and helicons is possible only through the magnetic field
due to the constant current, provided the radial wave
number /cOi of the helicon is large in comparison with
k z . The growth rate of the coupled waves [slow helicon
plus the wave (3.14)] is determined by

4npif Λ(χ?

^)". Ι-

J
(3.13)

The resonance condition can be used to determine the
magnetic field Hoz f° r given specimen size, drift
velocity, and electron density. If the transverse dimen-
sions of the specimen are smaller than the wavelength
in the radial direction ( KOIR > 1), the amplitude of the
electromagnetic wave is strongly reduced and the inter-
action between the sound waves and the helicons is re-
duced to zero.

For axially nonsymmetric oscillations, the calcula-
tion of the growth rate becomes exceedingly laborious.
We shall therefore restrict ourselves to the following
note. From the resonance condition (2.1) for slow heli-
cons and sound waves it is clear that, for nonsymmetric
oscillations, the effective magnetic field H j z can be
less the external field HQ Z . This leads to a reduction in
the drift velocity near resonance. We note that, in the
case of a perfectly conducting surface, there are no
surface helicons with both / = 0 and / * 0. The conclu-
sion reported in[ 3 2 > 3 3 ] that there are axially nonsym-
metric surface helicons is therefore incorrect.

In conclusion, let us briefly consider the instability
of coupled waves in a specimen placed in a vacuum. In
this case we must take into account both the helicon and
the surface oscillations in the medium[S4>35i because
helicons alone are insufficient to satisfy the boundary
conditions. Allowance for the surface oscillations,
despite their strong damping, leads to collisionless
helicon losses, and the presence of drift leads to the
collisionless growth of oscillations. The reason for
these losses can be found in the loss of energy through
the excitation of surface oscillations.

III. TWO-STREAM INSTABILITY

4. Instability in an infinite medium. We have con-
sidered the interaction between waves and conduction
electrons drifting with constant velocity under the ac-
tion of an electric field. However, since the drift
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velocity in semiconductors is quite low ( ν 0

Λ 10β— ΙΟ7

cm/sec), drift instability is restricted to relatively low
frequencies and slow waves. New possibilities appear
in the case of the interaction of oscillations and electron
beams moving in vacuum above the surface of a con-
ducting solid. The two-stream instability in gas-dis-
charge plasmas was predicted by Pearce [ 3 6 ] , Akhiezer
and Fainberg[ 3 7 ], and by Bohm and Gross/ 2 1 and has
now been extensively investigated[5]. On the other hand,
two-stream instability in solids has been studied to a
much lesser extent. One of the first papers in this area
was the review by Lopukhin and Vedenov[88]. These
authors discussed the principle of a resistive amplifier
based on the phase shift between the electron current
in a beam and the alternating field of a wave propagat-
ing in solid-state plasma. It is clear that this interac-
tion is much more effective when natural oscillations
are excited in the solids, e.g., electromagnetic waves[39],
excitons[ 4 0 ], spin waves[41], surface plasmons[ 4 2 a>4 3'4 4 1,
and so on. The growth rate increases rapidly as we ap-
proach resonance where the wave frequency is equal to
one of the natural oscillation frequencies in the moving
beam

(ω, k)-kV] (ω-kv0)
2 = ill [ω»- ^ J ^ y ] , (4.5)

co = to0, ω = kv0 — iiH;

where v0 is the velocity of the beam and Ω Η
= I e | H/moC is the electron cyclotron frequency.

(4.1)

In this section we shall review the theory and discuss
some of the experiments on instability due to the reso-
nance interaction between electron beams and sur-
f a c e ^ ' 4 3 " 4 " 1 and volume waves[ 4 e"4 8 ] in solid-state
plasma. The beam will be assumed to be completely
compensated, and the thermal motion of the particles in
the beam will be neglected. In the unperturbed state, the
densities and velocities of the light and heavy compon-
ents of the beam are equal. Variable fields perturb only
the electron component, and the ion density and velocity
remains unaltered. To determine the nonequilibrium
part of the density η and the perturbation in the velocity
ν we use the linearized equations of hydrodynamics in
the form

| [ v x H 0 ] )

n0 div ν + (v o v) η••-- 0;
(4.2)

where m0 is the mass of a free electron, while n0 and
v0 are the equilibrium values of the density and velocity
of the beam.

The physical origin and the properties of two-stream
instability can be illustrated by the example of the in-
teraction between transverse excitons and particles in
an infinite medium in the absence of a constant magnetic
field[40]. In this case, the Maxwell equations assume the
form

rot Η --= - *¥- ( n V o + noV) + 1 JL (E 4 4JIP),
(4.3)

where P is the electric polarization vector which is
related to the electric field by[ 4 9 ' 5 0 ]

— 4-ω,'Ρ —αΛΡ = νΕ· (4 4)

where ω θ is the frequency of exciton absorption, the
parameter a describes the spatial dispersion
(a ~Kti>e/m), and the constant γ ~ Ne2/m is propor-
tional to the strength of the oscillator Ν with frequency
ω β . The dispersion relation for a beam with excitons is

where Ω ο = -iA-nehio/m0 is the Langmuir frequency of
the beam, and

«Kk) = l -v=fe (4.6)

is the permittivity of the medium with allowance for
spatial dispersion. If we assume that the beam density
is small and Ωb -— 0, Eq. (4.5) splits into two:

ω = kv 0 , ω2 = - (ω, k). (4.7)

The first of these describes the oscillations of a beam
with vanishing density, and the second, the natural elec-
tromagnetic waves in the medium. When k2c2 > ω2,, the
second equation in (4.7) yields the spectra of photons
and excitons:

to; « kV4-4πγ;, ω» - (ω| + α**) (1 — | S . ) .

At resonance, the frequencies and wave numbers of
the beam oscillations and the excitons are equal. When
the beam density is small but finite, the growth rate of
the coupled wave is, in accordance with (4.5),

3 "1/ b
" 1 / (4.8)

where θ is the angle between k and v0. From the reso-
nance condition we see that the beam velocity v0 must
be greater than the phase velocity of the wave ω/k.
This means that the instability mechanism is connected
with Cerenkov radiation. If we take the typical parame-
ter values k-^ 105 cm'1, u>e ~ 4πγ ~ 1014"15 sec"1, v0

= 0.1 c, and n0 = 3 χ 1010 cm"3, we find that the relative
growth rate turns out to be of the order of 10"5. Since
for a number of materials1 4 9"5 0 1 the relative damping
may be lower by an order of magnitude, excitons can,
at least in principle, be amplified by the beam. However,
this effect has not as yet been observed experimentally.
We note that in optically active media such as quartz
and cinnabar[ 1 2 ] the growth rate may turn out to be much
greater.

The character of the instability depends on the sign
of the group velocity, i.e., the sign of a. In the case of
anomalous dispersion (a < 0) the instability defined by
(4.8) is absolute, and for normal dispersion (a > 0) it
is convective.

In addition to transverse waves, the beam can exite
and amplify longitudinal excitons, the spectrum of which
is determined by the zeros of the function e(a>, k). The
dispersion equation and growth rate for longitudinal ex-
citons can readily be found from (4.5) by substituting
c = •*>.

The excitation of excitons should of course be car-
ried out in thin specimens. This means that we must
analyze the interaction between a beam and waves in the
bounded medium.

5. Boundary conditions. In an inhomogeneous system
with a sharp boundary the question of boundary condi-
tions is an important one. Let us begin by considering
a quasineutral beam of electrons moving in vacuum
above the plane surface y = 0 of a semiconductor. The
tangential components of the electric field must then be
continuous across the separation boundary. The particu-
lar feature of such problems is the appearance of sur-
face currents which are due to the transport of pertur-
bations in the electron density of the beam along the
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boundary. The normal components of the induction vec-
tor Dy are then no longer continuous, and the discon-
tinuity is proportional to the beam velocity vo.

t51>521

Mathematically, this is connected with the fact that the
tangential components of the induction vector contain
derivatives with respect to the normal coordinate be-
cause the varying current in the beam

I e | υα
δ ( B

<(«-*,..) Oy

is proportional to 8(nQVy)/3y. It follows that when the
equation div D = 0 is integrated over an infinitesimally
thin transit ion layer, the integrals containing the tan-
gential component D z provide a finite contribution. If
we express Vy in t e r m s of the electr ic fields through
the equations of motion (4.2), the boundary condition for
the discontinuity in Dy can be written in the form

Δ = Ω?,-(ω-/£Λ)
2. (5.2)

Here and henceforth the indices 1 and 2 refer to regions
occupied by the semiconductor and the beam r e s p e c -
tively4 1 .

For semi-infinite sys tems, the boundary condition
(5.2) must be augmented by the condition that al l the
variable fields vanish as y —·». In a bounded specimen,
additional boundary conditions a r e necessary for other
surfaces. By solving (4.2) simultaneously with Max-
well 's equations we obtain from the boundary conditions
the dispersion relat ions describing the interaction of the
beam with surface and volume oscil lations.

The Maxwell equations in the beam have the form
given by (4.3) when Ρ = 0, and the electromagnetic
propert ies of the medium a r e character ized by the
permittivity

είΛ = εοδϋ + ε?Λ. (5.3)

In this expression £ 0 is the lattice part of the permit-
tivity of the specimen, and ejfjj i s i ts electron par t . The
nonzero elements of the tensor 5 ^ a r e given by the
well known expressions

t — £«y —
ωξ(ω-Ι-ίν)

ε·ζ = —ω (ω -\- iv) '

where ω0 is the plasma frequency of the current car-
riers in the semiconductor and the vector Η is parallel
to the ζ axis.

6. Interaction between potential oscillations and a
beam. In the case of potential peturbations the variable
magnetic field is much smaller than the electric field
because the conduction and displacement currents al-
most completely compensate one another. Assuming
that at large distances from the separation boundary the
equilibrium electron density is constant, we obtain the
characteristic equation in the form

/ciMu = 0, (6.1)

If we take into account the symmetry properties of the
tensor ey then we can only find ky from (6.1):

2 _ t» u ε« (6.2)
Ky Κχ Κχ g »

where the signs of ky are chosen so that the fields in-
side and outside the specimen are damped out, i.e.,

It is readily shown that, for potential oscillations, the
components εχχ and e z z

 i n t h e beam are given by

( ω -

From the boundary conditions (5.2) and the continuity
of the tangential components of Ε we obtain the disper-
sion relation for the potential oscillations*"1 in the
form

y t^y ~""~ ν yv ~* χ J yx — ~τ—τ— . . ι —• υ . (6.4)

In the absence of the constant magnetic field, the
dispersion relation (6.4) describes the interaction be-
tween the beam and surface plasmons

Γεο+1 π τ ΐ τ Ι ^ - ^ ο ^ - Ω ? . (6.5)

We note that when eo = 1, ν = 0 this equation de-
scribes the instability of glancing beams[5]. At reso-
nance, when

ωρ = ω0 (ε0 + I)"1'2 = kzv0, (β.6)

the growth rate of the coupled wave, in the approxima-
tion in which it is assumed that the beam density is low,
is given by

(6.7)

This formula is valid in the case of strong coupling
between the beam and the plasmons when Im ω » ν. It
can be shown that the above instability is convective in
character because the group velocity of the surface
plasmons is positive[17]. In the case of weak coupling
(Im ω « ν) the growth of the oscillations is also possi-
ble . In this case

(6.8)

The instability given by (6.8) is in a sense analogous
to the "resistive" instability reviewed in [ 3 8 ] . However,
because of the frequency dispersion of the permittivity
€(ω) = eo - ci>o/u)2the growth rate is a maximum under
the resonance conditions (6.6). When ω » ν, the growth
rate at the maximum is given by

Im δω = Ω 6 /ω ο /2ν. (6.9)

It is interesting to note that this type of instability
will also arise on the boundary between two plasma-like
media if in one of them the electrons drift under the
action of a constant electric field. According to 1 · 1 * 1 the
dispersion relation for potential oscillations is some-
what different to that given in (6.5) and takes the form

( β ·—5&Γ)( ω -Μο)=-4π<σ, (6.10)

where e0 = e<n + eO2, v0 is the drift velocity, and σ is
the static conductivity of the specimen. Hence, when
the conductivity σ is small, the growth rate is given by

Im δω = -
g — ep (VJ4

(6.11)

Im > 0.

The growth of drift oscillations occurs when the real
part of the effective permittivity e0 - [a>?/kzvo (kzvo
+ i^)] is negative (the expression in the square brackets
in (6.11) is positive). Although the growth rate given by
(6.11) is proportional to the first power of the density
of the drifting plasma, its absolute magnitude may turn
out to be greater than in the case of (6.9) because of the
greater concentration of current carriers in the semi-
conductor plasma.
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We must now consider the possible amplification of
surface waves in semiconductors by an electron beam.
In the absence of collisions, the phase velocity of a
surface wave u>/kz = c VI - | eil"1 can be as low as de-
sired. In particular, when ω = wo(eo + l)'^2 this
velocity is zero. When collisions are taken into account,
the wave exhibits relatively small attenuation for | e 11
- 1 » e'j* where e?' = ω%ι//ω3. For typical values of the
parameters, i.e., ν ~ 1011 sec"1, o>0 •* 3 χ 1012 sec"1,
and ω ~ ωο€~ι/ζ » 1012 sec"1, the quantity e(i' turns out
to be of the order of unity. This means that in such
specimens the minimum velocities of waves in the mil-
limeter band may reach up to c/-/2", i.e., a little less
than c. In other words, the strong resonance coupling
(6.6) between oscillations in the millimeter band is
achieved only in the case of beam relativistic velocities.
For velocities v0 » 0.1c, only the weak (nonresonant)
coupling (6.8) can be realized in this region. In the
submillimeter band, the phase velocity of the wave de-
creases and resonance amplification can be achieved
with a nonrelativistic beam (v0 5. 0.1c).

We note that the velocity of surface waves of exciton
origin in the optical region may turn out much less,
i.e., of the order of 109 cm/sec. The dispersion rela-
tion (6.5) remains valid in this case. If the quantity
€o - [ωρ/ω(ω + iv)] is replaced by 1 - 4πγ[ω (ω+ iv)
- ω§ ]. Under these conditions ν/ωβ ~ 10 and the am-
plication conditions become favorable from the experi-
mental standpoint.

Electron beams are usually focused with a magnetic
field Ho ~ 104 Oe. Since in such fields the cyclotron and
plasma frequencies of electrons are of the same order,
one would expect some new instability features.

Let us begin by considering the interaction of a beam
with "oblique" potential oscillations[43] in which

Substituting ky

1)2) = ±ikx(kx > 0) in (6.4), we obtain

[ω(ω-ω ΐΗ iv) - (u) - kzv0) (c,,~kA •(- Ω,,) = ίϊΐ - " 7 " 3 " ' -iV)

(6.12)
In the limit as fib — 0, the relation given by (6.12)

splits into three independent equations describing the
surface waves in a semiconductor and the charge-
density waves in the beam (4.1) in the presence of a
magnetic field. By setting the expression in the square
brackets in (6.12) to zero we obtain the limiting fre-
quencies of surface waves:

εο -;-1 (6.13)

where the root is positive for ν —• 0. In a strong mag-
netic field

ω+ = ω ' Η ^ τ π Γ ' ω " = -ω Η (^ Η -ΐ) ί1 - ' ^ - ) · (6·ΐ4)

We note that oscillations with frequency ω" exist in a
broad range of frequencies ω « U>H independently of
the ratio of ω to ν (the relative growth rate is I//O>H).

We must now consider the resonance interaction be-
tween surface waves and beam oscillations ω = kzvo
— Ω Η under the conditions of anomalous Doppler effect.
At resonance, when ω* = kzvo - Ω ^ the imaginary cor-
rections to the frequency are given by

1. (6.15)°S"iΚ-'•

FIG. 3

In this expression the subscript r represents the real
part of the frequency (6.14). It is clear that the instabil-
ity arises when the second term under the square root
is positive. In the case of strong coupling (ν — 0), the
growth rate is proportional to Ob ~ Jno· In the case of
weak coupling, the square root in (6.15) can be expanded
in powers of the second term, and the growth rate turns
out to be proportional to Ω§ ~ n0. Similar results are
obtained for the interaction between the waves (6.14)
and the oscillations in the beam ω = kzvo.

We have investigated potential oscillations with large
values of kx. In the opposite limiting case kx « kz

there are no surface waves in the region of strong mag-
netic fields. In fact it follows from (6.4) that the quanti-
ties ki are real, i.e., the oscillations are volume oscil-
lations. Let us therefore consider a sandwich-type
structure (Fig. 3) consisting of a beam and two semi-
conducting layers6'. This geometry corresponds to the
experimental conditions described in[ 4 5 1 . The dispersion
properties of this system are described by

E%kui cig [kna- a i ) + f<y/.-,;1 cig (kyid- β ^-) = 0. (6.16)

The values α = 0 (and a = 1) correspond to the sym-
metric and antisymmetric distribution of the electric
field in the beam, respectively (| y | £ a); β =0 corre-
sponds to perfectly conducting outer boundaries | y |
= a + d, and β = 1 corresponds to the boundary with
vacuum. Suppose that a = l,/3 = 0. In a strong magnetic
field (ODH » ω) ey" = e0, ε$ = 1. If Im (kyid) » 1, the
equation given by (6.16) can De written in the form

iakyl ctg (kyla) = ik,,2. (6.17)

where

""• "Ύ ΕΟω<ω + ίν) " "«--"•* y (ω-ΑΐΙ)0)2 ^

Im/c,,i>0, Rei-j,s<;0.

To simplify the final formulas we suppose that e0

» 1. In that case,

Δ ω ; (6.18)

Hence it is clear that the maximum growth rate is
achieved for ω ~ ωο€Οι/2.

In the limiting case of a "thin" beam (ky2a « 1) and
a thin plate (kyid « 1) placed in a vacuum (β = 1), the
dispersion relation (6.16) for symmetric oscillations
(a = 1) can readily be transformed with the aid of (6.2)
so that it assumes the form

= 0. (6.19)
Since the components e z z are independent of Ho, this
equation describes the one-dimensional interaction be-
tween longitudinal plasma waves and the beam. It dif-
fers from (6.5) by the fact that the quantities e0 and ω2,
contain the additional factor d/a. Therefore, when
d < a, the growth rate increases by a factor of (a/d)1^3,
in accordance with (6.7).
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FIG. 4. Measuring system [*]: O-oscillator, Αι 2-attenuators,
M[ j-modulators, MO—master oscillator, A-amplifier, 1-specimen,
2-dewar, 3-collector, 4-electron gun.

function of the voltage and current in the beam at the
resonance wavelength λ = 2.3 mm. This increment is
the difference between the output power of the system
when a beam is present and the power Po in the absence
of the beam. For small values of the ratio ΔΡ/Ρ0 this
ratio is proportional to the growth rate. We have ob-
served a monotonic increase in Δ Ρ with increasing
voltage and current. The dependence of the increment
on the beam current is essentially given by (6.18). In
fact, substituting the expression for ω - kzvo through
ky2a » 7r(n + Y2), we obtain

(6.20)

FIG. 5

FIG. 5. ΔΡ as a function of V. Beam current (mA): 90 (1), 120 (2),
200 (3).

FIG. 6. ΔΡ as a function of beam current (V = 4 kV).

The interaction between a beam and plasma oscilla-
tions were investigated experimentally in germanium1541

and in indium antimonide[45]. In the latter case, the
single crystal specimen of n-InSb had a mobility of
7 x 105 cm2 V 1 sec"1 and concentration No = 5 χ 1013

cm'3 at liquid-nitrogen temperatures. The effective
mass in these specimens was me ~ 0.015 m0 and the
collision frequency was ν = 1.7 χ 1011 sec"1. The static
permittivity was e0 = 16.

Plasma resonance was detected at the frequency
ωο//ΐ7= 8.1 x 1011 sec"1 which corresponds to a
vacuum wavelength λ = 2.3 mm. The resonance was
observed by measuring the reflection coefficient as a
function of frequency in the millimeter range. The
specimen was placed in a rectangular waveguide (7.2
χ 3.4 mm) and its thickness was chosen to be suffic-
iently large for the wave reflected from the other bound-
ary to become negligible.

The interaction between the beam and the specimen
was investigated with the apparatus illustrated in Fig.
4. The transverse dimensions of the beam were 0.4
χ 3.5 mm2, and the beam was focussed by a magnetic
field. Acceleration was achieved with a power unit pro-
ducing a variable pulse length between 0.2 and 100 μβεο.
The InSb specimen was in the form of a rectangular
plate, 6 mm long, 2.5 mm thick, and 3.5 mm wide. It
had wedge-shaped slots so that matching could be
achieved with the input and output of the waveguide. The
oscillators were backward-wave tubes, operating in the
12, 5, 2 and 1.5 mm bands under pulsed conditions (the
oscillator pulse length was somewhat greater than the
accelerating pulse length).

— lmkz = Re j y j — ^ — 2 2 3 / 2 ^1 ^-— ι

Since the beam density n0 enters only through the
Langmuir frequency Ωγ,, the dependence of the growth
rate on the current Jb takes the form | Im kz | <* /j^".

The formula given by (6.20) can also explain the in-
crease in the growth rate with increasing voltage. If we
suppose that ky2vo < ω, then for Jb = const the quantity
| Im kz | will be proportional to v3/z cc u^4, which is in
qualitative agreement with experiment. The experi-
mental results reported in[ 4 5 ] are thus explained by the
interaction between a finite beam and quasipotential
oscillations in a strong magnetic field.

The output power was found to increase with increas-
ing constant magnetic field, but from Ho ̂  2 kOe on-
ward, the power ceased to depend on Ho. This is not
predicted by the above formulas which show that when
the specimen is not too thin the growth rate decreases
with increasing Ho. Under the conditions of the above
experiment, the increase in Ho was accompanied by an
increase in the current density near the specimen sur-
face, and an increase in the length of the region in which
the beam-wave interaction occurred. The observed in-
crease in the output power with Ho is connected with
this effect.

Because of the relatively high collision frequency
(ι>/ω ~ 0.1), we did not unfortunately succeed in separat-
ing the interaction with the volume and surface plas-
mons (their frequencies differ by only 3%). For the
same reason, only the case of weak beam-wave coupling
was realized in the experiment. Hence amplification due
to the presence of the beam only partially compensated
the general energy losses experienced by the electro-
magnetic wave in the semiconductor, and the generation
of oscillations could not be achieved.

It is important to note that large conversion losses
occur at the output of the system during the transforma-
tion of potential into electromagnetic waves. The exci-
tation of nonpotential oscillations by the beam is there-
fore of considerable interest from this point of view.

7. Interaction between nonpotential waves and a
charged particle beam in a strong magnetic field. We
must first show that nonpotential surface waves are
present near the boundary between the semiconductor
and vacuum. We shall assume that a strong magnetic
field parallel to the surface of the specimen is present,
and that the semiconductor plasma is magnetized. In
other words, we shall suppose that

K x K I ^ R M , (7.1)

where eik is given by (5.3) and (5.4). In this approxima-
tion, the Maxwell equations

[k?6,k-k,kk-£ ε,4(ω, Η)] £ft=0 (7.2)

Figures 5 and 6 show the power increment ΔΡ as a lead to the two types of wave. One of them is a helicon
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and the other a potential wave. The characteristic equa-
tion for the helicon (without taking damping into account)
can be written in the form

kl^-kl-kf-^f. (7.3)

From the wave equation for potential oscillations
= 0 we find, assuming a strong magnetic field

(7.4)

It is clear that the helicon wave (7.3) will become the
surface wave in the case of "oblique" propagation if

<* | ft* |
i.e. kyh=-i\kx\. (7.5)

It is important to note that, near the separation
boundary, the helicon is always accompanied by the
potential oscillations (7.4). This follows from the fact
that, when the wave (7.4) is ignored, we cannot satisfy
the boundary conditions on the y = 0 plane.

The dispersion law and the damping of nonpotential
surface waves can readily be found by using the contin-
uity of the magnetic field across the separation bound-
ary. The result is [ 4 a ]

/ ktc \2 . ,,
I—i- I sgnk x -= 2

, , . k i c 2 I ft.. I
-= 2i ——L-ii (7.6)

The right-hand side of this equation describes the
damping of the surface wave. The relative damping rate
is given by

(7.7)

The condition that the damping is small is more readily
satisfied with increasing static lattice permittivity e0

in the magnetic field and decreasing effective mass of
the carriers. A suitable material from this point of
view is InSb or PbTe.

In InSb with No = 5 x 1014 cm 1 , e = 16, m = 0.01m0,

ω = v = 3 χ ίο 1 1 sec"1, Ho = 10 kOe, and kx = 2kz we
have kz = 40 (1 + 0.3i) cm"1. In PbTe in which No = 1017

cm"3, e = 400, m = 0.02m0, Ho = 50 kOe, kx = 2kz, and
ω = 5 x 10u sec"1, we have kz = 330 (1 + 0.15i) cm"1.

The surface helicon wave (7.6) was predicted in [ 4 * ]

and was recently detected experimentally by Baibakov
and Datsko[ 5 5'5 6 ] in n-InSb.

The wave was observed in a plate of 5 χ 13 x 15 mm
at room temperature at frequencies between 20 and
1500 MHz and in magnetic fields up to 25 kOe. The
electron density was 1.2 x 101β cm"3 and the mobility
was 5 χ 104 cm2 V"1 sec"1. The dispersion relation was
found by a resonance method based on the excitation of
a standing surface wave at the edge of the plate and the
detection of the fundamental harmonic of its dimen-
sional resonance.

Figure 7 shows the dependt ice of the wave frequency
on kz for different values of ttu magnetic field. It is
clear that the theoretical curve based on the formula
ω = 2cuH(kzc/a>o)2 is close to the experimental result
for the density corresponding to the specimen which was
investigated. The quadratic dependence of the frequency
on kz means that the detected wave was in fact a surface
helicon. The departure of the experimental curve from
the theoretical prediction is due to the fact that the fre-
quency corrections on the right-hand side of (7.6) have
been neglected.

FIG. 7. Dispersion characteristic
of a helicon in n-InSb. [S6] H(kOe):
23(1), 15(2), 10(3), and 5 (4). The
theoretical curve (dashed) refers to
Eq. (7.6) with No = 1.2 Χ 1016 cm"3.

The existence of the helicon is known to be due to the
Hall effect in a strong magnetic field. The surface
helicon Avill therefore disappear in compensated plasma.
At the same time, Alfven-type surface waves[48] which
are analogous to the volume waves[57] may appear. The
growth rates for nonpotential surface waves interacting
with a beam are found i n

[ 4 3 ' 4 e ' 4 8 ] . The excitation of
helicon-type volume oscillations excited by a beam can
evidently also be produced in sandwich-type structures.
This problem was considered theoretically in,[ 4 7 > 5 8 1 and
the corresponding experiments are described in[ 5 B > e o ].

IV. OVERHEATING INSTABILITY

We have so far considered some of the instabilities
of solid-state plasma due to the ordered (translational)
motion of electrons. Here we shall consider another
type of instability which originates from the thermal
motion of electrons in external electric and magnetic
fields.

We shall thus be concerned with the so-called
overheating instability. The mechanism responsible for
it may be summarized as follows:

In the stationary state, the mean momentum and en-
ergy lost by electrons as a result of collisions with the
lattice are compensated by the effect of the constant
electric field. At low temperatures, the transfer of
energy from electrons to the lattice is impeded because
the effective phonon mass T/s2 is much greater than
the electron mass m. Therefore, even at relatively low
field strengths, the electron gas is heated up,[ 6 1 ) and the
mean electron kinetic energy exceeds the temperature
of the crystal. For certain scattering mechanisms, the
frequency of electron collisions with momentum trans-
fer decreases as the mean energy increases. This
means that the Joule heat absorbed by electrons in-
creases with increasing field. At the same time, there
is a reduction in the fraction of energy transferred to
the lattice and this, in turn, produces too great a heating
of the electron gas, and so on. The result of all this is
the appearance of a descending segment on the current-
voltage characteristic (negative differential conductiv-
ity ρο,ιι,β2-<Β) 7>_ T h i g o v e r heating of the electron gas
leads to instability. The overheating instability of gas-
discharge plasmas was described by Kadomtsev,[41

whilst the corresponding phenomena in semiconductors
were considered in[">»",e5,ea,7z-82]_ T h i s i n s t a b i l i t y i s

usually aperiodic. We shall show below that, under
certain conditions, the overheating instability in semi-
conductors assumes an oscillatory character.

8. Basic equations. To analyze the overheating in-
stability in external electric and magnetic fields, we
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must first establish the expressions for the current
density j and the heat flow Q. This problem can be
solved on the basis of the transport equation. We shall
not derive these formulas in all their detail, but will
confine our attention to the most important approxima-
tion and then reproduce the final result (for details see,
for example/721).

The scattering of electrons by electrons, phonons,
and impurities must be taken into account in the colli-
sion integral. It will be assumed that the mass of the
impurities is infinite and, therefore, the electrons are
scattered elastically by them. Moreover, we shall as-
sume that electron-electron collisions leading to the
Maxwellization of the electron distribution function play
the most important role. In this way, we can derive the
effective electron temperature ®(r, t), and write the
energy conservation law in the form

•|-~ (№) + div Q = j E - Ψ (Ν, θ), (8.1)

where 9 is the power transferred by the electron sys-
tem to the lattice. The criterion for the validity of the
definition of the effective electron temperature takes
the usual form:

(8.2)

where Τ is the temperature of the lattice (Τ and ®
are measured in energy units), L^ is the Coulomb
logarithm, and Tph is the electron-phonon momentum
relaxation time. The inequality given by (8.2) is the
condition that the characteristic electron-electron
Coulomb relaxation time τΘ « vln rJ3/2e2/2;rLcNe4 is
small in comparison with the energy relaxation time
Tph/δ (δ * ms2/T is the small inelasticity during the
scattering of electrons by acoustic phonons). Numerical
estimates show that the critical concentration NCrit for
typical values of the semiconductor parameters is of
the order of 101 2-101 4 cm" 3 8 ' .

Since the energy transfer between electrons and pho-
nons is slow, the corresponding collision integral can
be simplified by expanding it in terms of the small in-
elasticity[ e i ]. The isotropic part of the distribution
function Fo( € ) is then the solution of the Fokker-
Planck equation in which the collisional term has the
form

ν{ί\>} = |-|-[Λ(ε)ι;(-^- + - ^ ) ] . (8.3)

where A( e ) is the diffusion coefficient in energy space.

For the anisotropic part of the distribution function
Fi 'p/p the collision integral deduces to the relaxation
time T( e ), namely,

v{F l } = J l . . (8.4)

The function τ(ε ) defines the variation of the electron
momentum with energy e.

In real semiconductors there may be several scat-
tering mechanisms and, practically always, the func-
tions A( € ) and τ( e ) take the form

The values of the constants r and q which characterize
the type of scattering are listed in the table (taken
from[ff i ]). Thus if collisions with acoustic phonons re-

sult in a change in momentum, and energy is trans-
ferred to piezophonons, then q = -1/2 and r = 1/2.

We must now formulate the basic equations and the
boundary conditions. The complete system consists of
the energy balance equation (8.1), the Maxwell equa-
tions

r o tE=-l-f,

and the continuity equations

e>0.

(8.6)

(8.7)

On the separation boundary we have, besides to the
usual electrodynamic boundary conditions, the additional
conditions for the momentum and energy flux associated
with the particles. It is quite obvious that these addi-
tional conditions (which are distinct from the electro-
dynamic conditions) are not universal in character and
must be formulated for each particular physical prob-
lem.

Suppose the semiconductor is placed in constant
electric and magnetic fields. In the stationary state, the
electron temperature ©0 is determined by the require-
ment that the right-hand side of (8.1) should vanish with
# and j replaced by the expressions

jo = σΕ0 = e2

e) e - e x p ( - - ^ ) ,

f „ (ε) β (ε). Eo;

(8.8)

(8.9)

where F 0 (e ) cc exp(-e/©0) is the Maxwell distribution
function with temperature ®0 and the tensor β is given
by

(the ζ axis is parallel to Ho).

In the dynamic situation there are both constant and
varying magnetic fields. We shall suppose that the
varying quantities are proportional to <*exp(ik-r - iait).
According to, [ 7 2 ] the expressions for the oscillatory
parts of the current and heat densities can be written in
the form

(8.11)

(8.12)

Primed quantities represent variable additions; the

Scattering mechanism

Acoustic oscillations
Optical oscillations, Τ < T D * )
Optical oscillations, Τ > T D

Peizoacoustic oscillations
Polar semiconductors, scattering by

optical oscillations,
T > T D

Neutral impurities
Charged impurities
Dipole impurities

*Tjj-Debye temperature.

3/2
1

-1/2
1/2

-1/2

1

-1/2
0
1/2
1/2
3/2

A

3/2
1/2
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thermoelectric and thermal conductivity tensors are
given by

. 4πσ

(8.13)

The rate of stationary drift is determined by the con-
stant current j 0 = -Noevo.

The combinations of the tensors σ, λ, κ in (8.11) and
(8.12) describe the contributions of varying fields to the
currents, and also the contributions due to drift motion,
diffusion, thermal diffusion, and thermal conduction.

The formulas given by (8.13) do not take into account
spatial and temporal dispersion of the dissipative coef-
ficients, and are valid provided

ωτ, kl, 1. (8.14)

However, even in the hydrodynamic approximation de-
fined by (8.14), the analysis of overheating instability in
a constant magnetic field with allowance for all the
dissipative processes is very laborious. We shall
therefore confine our attention to the most interesting
special cases.

9. Instability of isotropic plasma. In the absence of
the external magnetic field Ho, the tensors σ, λ, κ be-
come scalars.

Y(q-'-2.5)
' mv (θ0) Γ (2.5) (9.1)

where J/(© 0 ) = ( 1/T O )( T/©0)q is the electron collision
frequency at temperature Θο and Γ(χ) is the Euler
function. The energy balance equation (8.1) in the sta-
tionary state (when ®0 » T) assumes the form

3I'(r-} 1.5) Λ (Τ)
2Γ(ϊ-;-2.ό) Τ

Ι ©ο
\ Τ

• V ~ " .
(9.2)

For the slow processes discussed below, the poten-
tial and induced oscillations can be separated. In the
case of potential oscillations we may suppose that
Η = 0 and c = °°, while the relation between the longi-
tudinal electric field and the nonequilibrium concentra-
tion is given by the Poisson equation. The final result
is the following dispersion relation:

(9.3)

In these expressions

2a

(9.4)

where k,| and kx are the wave vector components along
and across the drift velocity vo = aE o /N o e and r p is
the Debye length of electrons. The parameter y is the
energy relaxation frequency in the electron system.

The fact that (9.2) is a quadratic equation is due to
oscillations in the electron temperature and density. It
is clear that these oscillations are coupled.

If the displacement current is small, i.e., the Max-
well relaxation time eo/ΐττσ is the smallest among all
the characteristic times (4ττσ » | €oB |), the solutions
of (9.3) take the form

-i-^-(krD)\ (9.5)

It is clear from the above table that r + q is always
positive while r - q may be negative (for example, in
the case of energy scattering by optical phonons and
momentum scattering by charged impurities). Over-
heating instability in the case of small £0/4ττσ is there-
fore possible only for current perturbations with k2

> [ ( r + q ) / | r - q | ] k | j which are "elongated" along the
current. The perturbation length must be sufficiently
large to ensure that thermal conduction and diffusion,
which are described by the last term in ω2, do not im-
pede instability. Consequently, the instability criterion
i s

(9.6)

Since γ > \ kvo|, the instability is aperiodic.

As in the case of gas-discharge plasmas,[ 4 ] the over-
heating instability may give rise to a stratification of
the specimen into domains which are elongated in the
direction of the current and have different conductivi-
t i e s ^ .

In the case of transverse longwave perturbations
(kn « k± « Tjj1, eEo/θο), density and temperature
oscillations can be separated, and the overheating in-
stability arises independently of the ratios of γ and
47τσ/εο. The electron density then decreases at the rate
4ττσ/€ο, and temperature fluctuations increase at the
rate

— r), q>r. (9.7)

It can be shown that short-wave perturbations are
damped out because of diffusion and thermal conduction.

Let us now analyze the evolution of longitudinal per-
turbations in the opposite limiting case of large Max-
well times (47τσ/ε0 « | r - q| γ).

For long waves (k « eEo/9o) we have

ω ΐ = £ν(ϊ-Γ), (9.8)

— kva — i " , , | l + (krn)'2 ' q ' q .
Η [r — q) L v r+g J

(9.9)

=•-0. These formulas (with k 2 r ^ « 1) were obtained in[ 7 2 > 7 3 > 7 5 ) ;
they were also obtained by Gulyaev[81] and Chavchan-
idze[ 8 2 ] with allowance for the terms including k2rf). It
is clear that, when r < q, both oscillation branches are
growing ones. Despite the fact that | α>ι| > | ωζ\ (and
the growth of fluctuations is determined largely by UJL),
let us consider the terms including k 2 r l , since there
are conflicting conclusions in the literature. It is clear
from (9.9) that, for low-frequency (ω « | u>i|) longitudi-
nal perturbations, the true electrical conductivity is
replaced by the differential conductivity adiff
= a(r + q)/(r - q) which may change sign for certain
types of energy and momentum. Scattering the term
including k 2 r | ) in (9.9) appears not only as the result
of diffusion and thermal conduction, but is also due to
the spatial transport of electron energy and density
perturbations under the action of the constant electric
fields. This was first noted by Gulyaev[81]. Analysis of
(9.3) shows that, in the longwave region (k:i « eE0/θ0),
the transport effects dominate and are responsible for
the change in the sign of k2rf-, in (9.9) (when r < q).
Hence the conclusion reported in,[ 8 2 ] namely, that diffu-
sion damping changes sign simultaneously with adiff
is strictly speaking incorrect. This misunderstanding
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is due to the fact that the authors of[82] considered the
longwave region (k|, « eEo/0o) in which diffusion and
thermal conduction are not very important. The state-
ment given in [ 8 0 ] that diffusion leads to a growth in
space-charge fluctuations is a consequence of a particu-
lar assumption about mobility as a function of current,
which is in fact invalid. (The shortcomings of this
model are discussed in[ 1 0 1). Diffusion and thermal con-
duction appear in full measure only in the region of
shortwave perturbations and always suppress the
growth of fluctuations. Thus, when kh » eE0/e0, both
oscillation branches are damped out at the rate

(9.10)

where a 2 > 3(5 + 2q).

Therefore, when the condition

(9.11)

is satisfied for solid-state plasma there is both the
aperiodic instability (9.8) and oscillatory instability
(9.9). However, the development of the oscillatory in-
stability is greatly impeded because | α>ι| » | ω2 | . This
will probably seriously impede attempts to use over-
heating instability for the generation of microwaves9'.
It is expected that, after instability develops, a speci-
men with large transverse dimensions will probably
become stratified into regions with different electron
concentration and temperature, and these domains will
be highly elongated across the current.

An interesting result is obtained when the Maxwell
time £ο/4ττσ is of the order of the energy time l/γ ί75\
When r < q and

the growth due to the overheating of electrons and the
damping of fluctuations due to Maxwell relaxation, dif-
fusion, and so on, is almost completely compensated.
The result of this is the appearance of coupled temper-
ature-density oscillations which are either slightly
damped or grow. Their spectrum and damping are of
the form

where
3ΘΟ (9.14)

The intrinsic frequency of these oscillations is analo-
gous to the Langmuir frequency of charged particles
with mass m = meff.

In the derivation of the above dispersion relations
we did not take into account the magnetic field due to
the constant current j 0 . It is clear that this is ad mis sa-
ble provided (Sgr) 2 « 1 where α>Η α aJ?iVoa/c2 is the
cyclotron frequency corresponding to the magnetic field,
and a is the maximum linear dimension of the speci-
men. For typical values of the parameters (No * 1014

cm"3, v0 » 10" cm sec"1, m » 10"28 g, ν « 1012 sec"1) the
quantity ω#τ is less than unity even for a * 5 m.

10. Overheating instability in a magnetic field. Hot
magnetoactive plasma is of interest for the generation
and amplification of oscillations because helicons can
be present in such plasma. It is expected that the ef-
fective conductivity which governs the damping of heli-

cons will change sign as a result of heating, and insta-
bility will set in. Let us therefore begin by considering
the properties of induced perturbations in a highly
overheated plasma with one type of carrier. Suppose
that the ζ axis is parallel to the constant magnetic
field Ho and the y axis is parallel to Eo. In a strong
field (U>HT » 1) the nonzero components of the conduc-
tivity tensor are

Ay* / Τ \<ιΓ(2.5-!?)
' mafr,, \ θ 0 / Γ (2.5) ' (10.1)

"'" σ"χ: mmH ' σ" m { Τ ) Γ (2.5) "

The thermoelectric and thermal conductivity tensors
Xik and Kik can be expressed in terms of σ^ as follows:

λΧχ = λΒ!/ = (2.5 — g)oyy, λ!Ζ = (2.5 + 9)σΖ Ι, λ Χ ! , = —λ,,*= 2.5σχ ι (,

2 ' ! (10.2)

In the stationary state, the energy conservation law
(8.1) assumes the form

ι. (10.3)

We shall confine our attention to sufficiently high elec-
tron densities and will neglect displacement currents.
We shall also assume that spatial dispersion is weak,
and that the perturbations propagate along Ho. More-
over, we shall suppose that the drift velocity v0 is much
less than the phase velocity ω/k.10' The electric current
j and the heat flux Q are then expressed in terms of
field and temperature perturbations as follows:

From the Maxwell equations (8.6) with e0 = 0, and
the linearized energy balance equation (8.1), we can
readily obtain the dispersion relation for the coupled
electromagnetic and temperature waves:

(10.5)

where yn = 2σννΕο/3Νο®ο is the energy relaxation fre-
quency in a strong magnetic field. We shall solve this
equation, assuming that ya is much greater than the

2 /helicon frequency k C2/4TT| a x y | . Since a
y y(9.13) « | tfXy|, we can readily obtain the following spectrum| Xy | ,

branches[ 7 5 ].

ω-2. 3 = ( ± 1 — i - | σ χ ι / | Ι ωή.
(10.6)

The first formula describes the aperiodic damping of
temperature perturbations. These formulas do not con-
tain the varying electric and magnetic fields, and the
varying current appears as a result of the transport of
temperature perturbations in constant fields.

Helicons may turn out to be unstable, and the neces-
sary condition for this is r < 0 (r + q is always posi-
tive). In particular, the growth of helicons is possible
in polar semiconductors for which r = -1/2. The insta-
bility has an oscillatory character and its appearance is
due to the fact that, at low frequencies ω « u>h « yH
the temperature can "follow" the variation of the elec-
tromagnetic field, and its dependence on the field do-
termines whether or not the amplitude of the helicon
will grow11'. It is quite obvious that at high frequencies
ω » 7H * n e temperature does not vary and the helicon
is damped at a rate proportional not to the differential
but the static conductivity gyy.
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For perturbations Ε = ( E X ) E y , 0), Η = (0, 0, Hz)
with wave vector k = (0, k, 0) the dispersion relation
assumes the form

Temperature fluctuations may grow when (kc/aXy)2

4 ( )/

OH ?s — i(r — t, (10.8)

In contrast to the case defined by (10.6), temperature
perturbations are accompanied by the y-component of
the varying electric field, and jy = 0. Hence the "trans-
port" of temperature fluctuations takes place in a dif-
ferent way than in the case described by (10.6). If the
first term in the square brackets in (10.7) is much
greater than the second, then the electromagnetic field
oscillations turn out to be unstable:

— I (r-\-g)yH, (10.9)

It is readily shown that perturbations with wave vector
k lying along the χ axis are always stable.

Thus, the necessary condition for the development of
periodic instability of the form (10.6), and suppression
of the aperiodic (10.8), is that the linear dimensions of
the specimen in the direction of the magnetic field Ho

should be a minimum.

It can be shown that the instability of potential per-
turbations in a magnetic field is also oscillatory. Insta-
bilities of this kind are discussed in[ 7 e > 7 9 ] .

"it is important to note that this spectrum is retained by the helicons
even when the amplitude is large. ["]

2)At these points the oscillations are damped with a relative rate pro-
portional to νΙω\\.

3)A11 the calculations will henceforth refer to PbTe because the inter-
action between helicoidal and acoustic waves has been found experi-
mentally in this material. [29]

4 )In all cases where we are concerned with surface waves it will be as-
sumed that the frequency of surface recombination is small in com-
parison with v, and the wave penetration depth exceeds the character-
istic inhomonogeneity length connected with this recombination.

s)Interesting results on the interaction between an axially nonsymmetric
potential wave and a beam are reported in [5 3].

6)The heating of electrons in gas-discharge and solid-state plasmas was
described in [69>70] and in Ginzburg's monograph [71 ].

7*We note that if the condition given by (8.2) is violated, the isotropic
part of the electron distribution function ceases to be Maxwellian.
This situation is discussed in detail in the review by Kikvidze and
Rukhadze [ « ] .

8)This does not, however, exclude the possibility of devices such as those
described in [83] where the current-carrying specimen is placed in a
resonator.

"This removes the question of the role the magnetic field due to the
constant current and the frequency shift due to electron drift.

10)We note that, in this case, potential perturbations in the density are
rapidly damped out and, consequently, do not affect the oscillatory
character of helicon instability.
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