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We analyze, classify, and compare the relative roles of different mechanisms of dislocation dragging, including

elastic and inelastic scattering of acoustic and optical phonons by a moving dislocation (phonon wind, Raman

scattering, flutter effect) and phonon relaxation (thermoelastic losses, phonon viscosity, relaxation of "slow"

phonons). The estimates are carried out with allowance for the finite dimensions of the dislocation core and

corresponding deviations of its elastic field from the relations known from the continual dislocation theory. We

consider a number of qualitative effects connected with the emission of phonons by a dislocation in the case

of stationary motion over the Peierls relief. We discuss the possible mechanisms whereby impurities affect the

dynamic dragging of the dislocations. A brief review is presented of the experimental methods of

investigating the dynamic mobility of dislocations. The theoretical results are compared with the experimental

data on the magnitude and temperature dependence of the dynamic dragging.
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1. INTRODUCTION

A crystal can become plastically deformed because
its lattice contains dislocations, which are linear defects
capable of being readily displaced under load. When the
dislocation is displaced from one surface of the body to
another, the crystal experiences a shift along the slip
plane by an amount on the order of the lattice parameter
a. The motion of the dislocations determines the real
atomic structure of a crystal and the kinetics governing
the change of the crystal shape under load, and serves as
the basis for controlling many important physical prop-
erties of solids.

Modern measurement techniques make it possible in
principle to trace the displacements of various disloca-
tions, thus providing an experimental base for the inves-
tigation of the laws governing dislocation dynamics. The
practical importance of the problem in conjunction with
the real research possibilities have made dislocation
dynamics one of the most rapidly developing branches of
solid-state physics.

The study of the mechanisms that limit dislocation
mobility under various conditions was initiated approxi-
mately a quarter of a century ago in a number of theor-
etical papers. It had seemed at that time that the main
source of dislocation dragging are dissipative processes
in the phonon subsystem, which should lead to viscous
friction proportional to the dislocation velocity. Subse-
quent measurements of the mobilities of individual dis-
locations, however, have revealed that the dragging of
the dislocations, generally speaking, does not reduce at
all to viscous friction. The first attempts to explain the
measured dislocation-mobility curves were not success-
ful, since they started from the incorrect premise that
dislocation dragging at all velocities is determined by a
single mechanism. It became clear only later that the
dislocation mobility is limited by the competition between
thermal-fluctuation and dynamic processes, the relative
roles of which depend on the dislocation velocity

(e.g., C 1 ] ) . This idea has gained many adherents as it
became corroborated by experimental facts.

Figure 1 shows plots of the average slip velocity ν of
a straight-line dislocation against the applied stress σ,
measured in various crystals. An important common
property can be traced in the curves plotted in a wide
velocity interval. On each of these curves there are two
qualitatively distinct stages of the dependence of the
velocity on the stress. The first stage is characterized
by an abrupt increase of the velocity, by many orders of
magnitude, following a relatively small growth of the
stress (within one order of magnitude). In the second
stage, which begins in the high-velocity region (usually at
ν ^ l(T2c, where c is the speed of sound), the abrupt be-
havior of the ν(σ) curve gives way to a linear dependence
of the velocity on the stress, i.e., the dislocation motion
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FIG. 1. Mobility curves of individual dislocations for various crystals
(see [2]). The subscripts "imp" and "irr" refer to impurity and irradia-
tion, respectively.
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FIG. 2. Dependence of the velocity of individual dislocations on the
applied stress in KC1 crystals of varying purity (from the data of [3]).

acquires a viscous character. In Fig. 2, this phenomenon
is illustrated by plots of the dislocation mobility in KC1
crystals with different impurity contents. Figure 3 shows
schematically the shift of the ν(σ) curve with changing
temperature. The experiments indicate without a doubt
that there are qualitative differences in the character of
the influence of the temperature and of the impurity con-
tent on the mobilities of the slow and fast dislocations.
Whereas in the first stage small changes of the tempera-
ture and impurity concentration lead to an abrupt change
of the dislocation mobility, in the second stage the in-
fluence of the temperature and of the impurity is much
weaker, and the dislocation mobility decreases with in-
creasing temperature at high velocities instead of in-
creasing.

At present one can no longer doubt the validity of the
theoretical scheme that attributes the difference in the
behavior of the fast and slow dislocations to a radical
change in the drag mechanism. For the dislocations to
move in the crystals it is necessary that they overcome
various types of barriers, which are connected both
with the periodic structure of the crystal (Peierls bar-
riers) and with the lattice defects. Slowly moving dis-
locations stop in front of these barriers and overcome
them with thermal fluctuations. The increase of the
mobility of the slow dislocations with increasing tem-
perature is due to the higher probability of the thermal
fluctuations. With increasing dislocation velocity, when
their kinetic energy reaches the height of the energy
barriers, conditions are produced for dynamic surmount-
ing the obstacles. The dislocation dragging acquires a
dynamic character and is limited by energy transfer
from the dislocation to various elementary excitations in
the crystal. In contrast to the region of thermal-fluctua-
tion mobility, the dislocation velocity in the dynamic
region decreases with temperature because of the in-
creased density of the elementary-excitation gas.

FIG. 3. Effect of temperature
on the (σ) plot (schematic).

Dynamic dragging occurs not only for fast disloca-
tions but also for slow ones, and determines the rate of
damping of the oscillatory motion of the dislocation seg-
ments between the barriers, and even the kinetics of the
thermal-fluctuation surmounting of the potential barriers
by the dislocations. The first of these effects can be
estimated from the amplitude-independent internal fric-
tion. The second effect becomes manifest under condi-
tions of abrupt changes in the density of the elementary
excitations (for example, if a jumpwise change takes
place in the density of the normal electrons as a result
of a transition of the metal into the superconducting
state).

In most cases, the decisive role in the dynamic drag-
ging of the dislocations is played by dissipative processes
in the phonon subsystem of the crystal. The contribution
of other types of elementary excitations (electrons, ex-
citons, etc.) becomes manifest only under special condi-
tions. For example, in metals at low temperatures, when
the phonon gas is frozen out, an important role is as-
sumed by the interaction of the moving dislocations with
the conduction electrons. In this article we confine our-
selves to an analysis of the phonon mechanisms of dis-
location deceleration.

The first attempt at a comprehensive analysis of the
various dissipation channels in the phonon subsystem
was made more than 10 years ago in the well known
paper of Lothe ^ . At that time, when the experimental
investigation of dislocation dynamics had barely started
and the role of the dynamic slowing down of the disloca-
tions was not yet fully clear, Lothe's approximate analy-
sis of the contribution of various effects to dislocation
drag at room temperatures seemed to be perfectly satis-
factory. The later review articles'-5'6-1 and mono-
graphs^7'8^, containing special chapters on phonon
dragging of dislocations, remained in fact within the
framework of Lothe's analysis.

The contemporary level of development of the experi-
mental research on dislocation dynamics imposes quali-
tatively new requirements on the theory. Recently,
theoretical papers of more general characters have ap-
peared and have made it possible to establish a definite
hierarchy of the phonon mechanisms of dislocation
dragging under various conditions, particularly as a
function of the temperature. Owing to the latest results
of the theory, it becomes possible to explain the bulk of
the experimental material on the dynamic mobility of
dislocations. There are, however, some questions still
to be answered. On the other hand, the theory predicts a
number of effects which have not yet been experimentally
observed.

The modern ideas concerning the mechanisms of
dynamic dragging of dislocations has a history of its own.
The verification of a number of physical aspects of dis-
location-phonon interaction was accompanied by pro-
longed discussions, evidence of which can still be seen in
the literature. It is necessary to deal with papers in
which the formulation of the problem corresponds to a
stage of the theory no longer current. We shall attempt
below to summarize the present status of the problem,
to present a consistent theoretical analysis of the phonon
mechanism of dislocation slowing down, to clarify a num-
ber of debatable problems, and also to formulate the
main problems that still await solution.
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2. ANHARMONIC PHONON MECHANISMS OF
DRAGGING UNIFORMLY MOVING DISLOCATIONS

The elastic field of a dislocation moving in a crystal
disturbs the equilibrium of the phonon gas. As a result,
energy flows away from the dislocations to the phonons
and the dislocations are effectively slowed down. We
shall henceforth consider "nonrelativistic" dislocations,
that move with velocities ν that are small in comparison
with the speed of sound c. In this case the elastic
deformation field of the moving dislocation is determined
with sufficient accuracy (the correction is of the order
of (v/c)2) by the quasistatic transport of the static field
at a velocity ν: <Ξη(Γ> t) ~ e^(r -v t) . It is convenient to
represent this field in the form of a packet of plane
waves, by expanding the function e^(r — vt) in a Fourier
integral:

ρ {•*· t\ I ^Q Q ι (ar—Ω ίΐ /Ο 1 \

r '

here e9. is the Fourier transform of the static deforma-
tion field of the dislocation, and Ω ο = q · V. Owing to the
nonlinear properties (anharmonicity) of the crystal, the
phonons should interact with plane elastic waves and this
should lead to damping of the packet (2.1). In the linear-
response approximation, the energy dissipated per unit
time during the dislocation motion is made up of the
dampings of the individual waves of the packet (2.1):

where 7j--iw(q, Ω_) is the effective viscosity for the wave

with wave vector q and frequency Ω _ . The dissipation

(2.2) corresponds to the coefficient of dynamic dragging
of the dislocations B, which is measured directly in the
experiment and is defined as the coefficient of propor-
tionality of the velocity ν and the viscous-dragging force
F of the dislocation (per unit length):

S = ̂  = -^. (2.3)
ν v-

Typical measured values of Β for different crystals at
room temperature are ΙΟ"4— 1CT3 poise, which corre-
sponds to the viscosity of a rather dense gas.

The coefficients of Ω
q in (2,2), which corre-ε^.εΓί
q i] κ/

spond to absorption of individual waves from the packet
(2.1), can be interpreted as the imaginary parts of the
dynamic elastic moduli c^^(q, Ω_). In terms of these

concepts, Kosevich and Natsik[ 9 ] have developed a
phenomenological theory of dislocation dragging, the re-
sults of which have a particularly elegant form in the
case when spatial dispersion c^.j^ is neglected. This

theory turned out, in particular, to be fruitful in the
analysis of the role of quasilocal oscillations of impurity
centers excited when the dislocation moves (see Sec. d
of Chap. 3). Unfortunately, the problem of phonon
dragging of dislocations is made complicated by the fact
that the predominant contribution to the dissipation is
made by processes having a sharply pronounced spatial
dispersion.

When estimating the dislocation dragging it must be
taken into account that, depending on the scale of the
temporal and spatial inhomogeneities of the external
field, the dissipative processes in the phonon subsystem
are qualitatively different. As applied to the analysis of
the damping of a plane wave, the natural quantities with
which to compare its frequency ω and its wavelength

-t--
Μ

V

\\<°l

FIG. 4. Phase diagram illustrating the different behavior of the damp-
ing of a plane elastic wave interacting with the phonon sub-system of a
crystal, depending on the region of the {ω, q} plane in which its fre-
quency and wave vector fall. 1 —Region where macroscopic relaxation
processes such as phonon viscosity and thermoelastic losses predominate
(there is no spatial dispersion of the damping in the shaded parts of
region Ι (ω > xq2)); II—quantum region, in which the principal role is
played by phonon scattering by the elastic field of the wave; Ill-kinetic
region, where the scattering and relaxation of the phonons compete.
Line 1-dispersion law ω = cq for sound waves; lines 2 and 3-dispersion
law ω = vq for the "fast" (v > cqm/) and "slow" (v < cqm/) dislocation
packets (2.1), respectively.

λ = 27r/q are the reciprocal phonon relaxation time τ ~ι

and the mean free path I = CT, In Fig. 4a, the phase plane
{ω, q} is subdivided into four regions characterized by
the parameters ωτ and qZ. We are interested in only
three regions in which the frequencies Ω and wave vec -

tors q of the plane waves from the packet (2.1) can fall.
It is clear from general considerations that in region
Ι (ωτ < 1, qZ < 1) the dissipative processes have a
macroscopic and relaxation character, in the region
II (ωτ > 1, qZ > 1) quantum processes of phonon scatter-
ing predominate, and finally in the region III (ωτ < 1,
qZ > 1) the dissipative processes should include both
scattering and relaxation. We shall analyze below the
corresponding estimates of the phonon dragging in differ-
ent macroscopic and microscopic approximations, and
then formulate a general approach that admits of a uni-
fied description of the dissipative processes in all reg-
ions Ι—ΙΠ.

a) Phonon viscosity. The damping of plane elastic
waves from the packet (2.1) is obviously limited by dissi-
pative processes of the same type as absorption of ultra-
sound. Akhiezer has shown at one time^10-1, in an analysis
of the absorption of long-wave ultrasound, that in the
course of restoration of the equilibrium of a phonon gas
disturbed by a sound wave, the phonons behave like a
gas with effective viscosity ηγ2Ετ (Ε is the thermal-en-
ergy density and γ is the Gruneisen constant). It is
therefore natural to attempt to estimate the dislocation
dragging by substituting ??(q, Ω ρ ) = η in (2.2) (we omit
the tensor indices for now on for the sake of simplicity):

q |2 (2.4)1 J (2π)3

An estimate of just this type, obtained by Mason[ 1 1 ] , is
still being used by some workers in the analysis of ex-
perimental material. Since the deformations near the
dislocation increase in inverse proportion to the dis-
tance, the integral (2.4) diverges quadratically at the
upper limit and should be cut off at a certain value q m
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~ ro1. In his calculations, Mason started from the fact
that ro has the meaning of the radius of the dislocation
core, and therefore should be of the order of the lattice
parameter a.

It is easy to verify, however, that the estimate (2.4)
is in principle incorrect and is even of the wrong order
of magnitude. As already noted, the main contribution to
the integral of (2.4) is made at large q, but it is pre-
cisely at large q that the neglect of the spatial dispersion
of the phonon viscosity in (2.4) is inadmissible and leads
to incorrect results. The concept of phonon viscosity
without dispersion can be introduced only in the "adia-
batic" part of region I, which is shown shaded in Fig. 4b,
and for which

the right-hand side corresponds here to the volume heat
release under adiabatic change of the crystal volume.
Taking the Fourier transform of (2.7), we easily obtain

; ν 7 Τ λ _ τ^ΤΑ» (2.8)

> X?2. (2.5)

where χ » cZ/3 is the thermal diffusivity (for details see
Sec. e of this chapter, the second term of formula (2.26)).
It is seen from Fig. 4c that in contrast to the acoustic
wave, which is adiabatic in the entire region I, the par-
tial waves from the packet (2.1) are adiabatic only in a
small region q < (v/cJZ"1. Thus, from formula (2,4) we
can estimate the damping of only the long-wave part of
the packet (2.1), which makes a negligibly small contri-
bution to the dislocation dragging: the use of the quantity
(c/v)Z as the cutoff radius in place of a decreases Mason's
estimates by (cZ/va)2 times!

In spite of all the foregoing, Mason's paper t l i : i played
a positive role in the development of the modern ideas
concerning dissipative processes that determine the
dynamic dragging of the dislocations. First, the idea of
the fundamental difference between the mechanisms that
limit the mobilities of the fast and slow dislocations
seems to have been advanced for the first time in his
paper. In addition, the subsequently observed fair agree-
ment between Mason's formula and certain experimental
data on the temperature dependence of the dynamic slow-
ing down of dislocations stimulated further searches for
a relaxation mechanism that leads to a dragging propor-
tional to τ. Indeed, as we shall see, the concept of a
constant phonon viscosity, which is not applicable to
ordinary "acoustic" phonons, turns out to be applicable
to "slow" phonons with low group velocities. The relaxa-
tion of these "slow" phonons will be considered in Sees,
e and f of the present chapter.

b) Thermoelastic dissipation. Dislocation motion
leads to heating and cooling of the crystal sections sub-
jected to rapid compression and tension. This causes
additional fluxes of phonons—heat flow from a hot section
to a cold one, accompanied by thermoelastic energy dis-
sipation tli^:

'; (2.6)

here κ = C\ is the thermal-conductivity coefficient, C is
the specific heat of the crystal, Τ is the average tem-
perature of the crystal, and VT and (vT) are the tem-
perature gradient and its Fourier transform. The ther-
moelastic dissipation can be treated as a particular case
of phonon viscosity, wherein the deformation reduces to
dilatation, the change in the phonon spectrum reduces to
local heating (or cooling of the crystal), and restoration
of the equilibrium in the phonon subsystem reduces to
heat flows. The heat-conduction^equation in a crystal
with moving dislocation is of the form

Let us estimate with the aid of formulas (2.6) and (2.8)
the deceleration of a straight-line edge dislocation with
a Burgers vector b, moving in a glide plane with a unit
normal vector n. The continual theory of dislocations
yields in the isotropic approximation, as is well
knownCl2],

b (pn)
4π ρ2 '

(2.9)

dT

at
•yTeu{i,t); (2.7)

where ρ is that component of the radius vector r which
is perpendicular to the dislocation, m is a unit vector
directed along this location, 5(x) is the Dirac delta func-
tion, and the Poisson coefficient has been set equal to
1/3 by way of estimate. Taking (2.8) and (2.9) into ac-
count, the integration in (2.6) can be carried out directly,
and because of the logarithmic divergence with respect
to q the integration at the upper limit should be cut off
at q = q m

°~&'ψ>>ψ· (2-10)

The quantity q m should be chosen from physical consid-
erations. Estimating the thermoelastic damping,
Eshelby '-13-1 (for vibrating dislocation segments) and
Weiner[14-' (for a dislocation moving in translation) ex-
tended the integration in (2.6) all the way to the core of
the dislocation, corresponding to the choice q m ~ l/a. It
must be borne in mind, however, that the macroscopic
approach developed here is valid only for volume ele-
ments with linear dimensions that exceed the phonon
mean free path I. In this sense, the value q m = ir/l pro-
posed by Lothe m seems more natural. The correspond-
ing value of the parameter under the logarithm sign is
still large in this case, xqm/v » c/v 3> 1. Changing over
from the dissipation D to the dragging coefficient
Β = D/V2, we have

8 = C T ' " 7 · (2.11)

A numerical estimate of the dragging coefficient in ac-
cordance with formula (2.11) leads to values that are
smaller by 1—2 orders of magnitude than the experimen-
tally observed values. This is connected in part with the
fact that the Gruneisen constant is too rough a measure
of the anharmonicity of the crystal in similar problems.
We shall return later on (Sec. e of this chapter) to a dis-
cussion of the relative role of the temperature losses,
on the basis of a more general approach to the prob^m
(in particular, with a more complete allowance for the
anharmonicity). We note only that the considered mech-
anism leads to a deceleration of only edge or mixed dis-
locations, the deformation field of which contains a dila-
tation component.

Of course, phonon relaxation does not reduce merely
to thermoelastic processes, and should take place also
in a shear field. We have seen in Sec. a that at distances
R > (c/v)Z from the dislocation the relaxation can be
described in the language of ordinary phonon viscosity.
At shorter but still macroscopic distances, I < R < (c/v)l,
the estimates of the phonon relaxation calls for taking
into account the spatial dispersion of the phonon viscos-
ity, and will be considered in Sec. e of this chapter. An
analysis of the dissipative processes near the dislocation
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(R < I) cannot be carried out in macroscopic terms, and
calls for a microscopic quantum approach.

c) Phonon scattering. A description of the phonon
processes that occur arbitrarily close to the moving dis-
locations was proposed by Leibfried'•"-', who has con-
sidered the scattering of phonons by dislocations. In a
coordinate system connected with the moving dislocation,
the flux of phonons incident on a dislocation is asymme-
trical. Owing to this purely aberrational effect, the
phonons scattered by the dislocation impart to the latter
a momentum proportional to the dislocation velocity and
directly opposite to the dislocation motion. The disloca-
tion experiences, as it were, a phonon wind. It is easy to
visualize that the momentum F transferred in this case
from the phonons to each unit of dislocation length per
unit time should be of the order fd^rE(v/c), where d^r is
the transport diameter for the scattering of the phonons
by the dislocation, and f is the numerical factor (f ^ 1).
The corresponding estimates for the dragging coefficient
Β = F/v can be usually written down, following Leib-
fried [15], in the form

bE

'We'
(2.12)

Leibfried did not calculate the cross section for phonon
scattering by the dislocation, assuming it to be of the
order of the Burgers vector b (usually b ~ a). In this
sense, formula (2.12) applies equally well to any scatter-
ing mechanism with a diameter on the order of a. As
shown by Nabarro Ε16-1, a distinction should be made be-
tween two mechanisms of phonon scattering by a disloca-
tion, namely the phonon wind (nonlinear mechanism) due
to nonlinear elastic properties (anharmonicity) of the
crystal, and the flutter effect, which is connected with
reradiation of phonons by a dislocation that oscillates in
the thermal field of the lattice. Although Leibfried had
in mind scattering due to nonlinearity of the properties
of the medium near the dislocation, Lothe has shown
subsequently t17-1 that the estimate (2.12) is valid also for
the flutter effect at temperatures on the order of the
Debye temperature. Indeed, according to£18:l the phonon-
scattering diameter due to the nonlinear mechanism is of
the order of yV/x (λ is the phonon wavelength), while
the flutter diameter is of the order of λ. It is therefore
understandable that formula (2.12) describes both effects
at sufficiently high temperatures, when phonons with
wavelength on the order of the lattice parameter pre-
dominate. But it is also obvious from this that these
mechanisms have different temperature dependences,
and the occasionally employed extrapolation of formula
(2.12) to the region of low temperatures f11'19'20^ is
meaningless.

Numerical estimates based on formula (2.12) leads to
a dragging coefficient approximately one order of mag-
nitude lower than that observed in experiment. This is
due, in particular, to the fact that the Gruneisen con-
stant, as already noted above, is a poor measure of the
anharmonicity when it comes to phonon scattering (see
Sec. d of this chapter). To obtain reliable information
on the magnitude, temperature dependence, and relative
role of the two aforementioned scattering mechanisms it
is necessary to analyze the problem theoretically in
greater detail. We shall discuss the quantum-mechanical
theory of phonon wind and of the flutter effect in Sec. d
of this chapter and in Sec. a of Chap. 3, respectively.

d) Phonon wind (nonlinear mechanism). We can at-
tempt to estimate the interaction of the phonons with the

internal-stress field in the crystal, an interaction due to
the anharmonicity of the lattice by means of the dilata-
tion effect that leads to a local change in the phonon
velocity 6c ~ Yceu a n c* °̂ a corresponding frequency
shift a t [ 1 8 ]

r, 0). (2.13)

The energy of each phonon in the dislocation field is per-
turbed in this case by an amount fiajye^ (fi is Planck's
constant). This is precisely the idea on the basis of
which the first calculations'-21'22-1 were made of the cross
section for phonon scattering by dislocations. However,
the estimate of the phonon dragging of the dislocations
based on this approach ̂  leads to a result of the type
(2.12), which is smaller by one order of magnitude than
the experimentally observed values. In addition, in the
approximation (2.13) there is no dragging (in contradic-
tion to the experiment) of the screw dislocations, for
which e^ = 0. It appears that to estimate this effect with
any degree of reliability it is necessary to take into ac-
count the anharmonicity of the lattice in terms of elastic
constants of higher order. This approach to the problem
was first used in the papers of Al'shitz1-23-1 and

The first anharmonic term in the expansion of the
elastic energy of a crystal in terms of the strains can be
represented in the continual approximation in the
form C l 8 ]

Φ Ε Ι Λ = - | Γ I dlAJSiiUHUmnUij; (2.14)

here A?nJ. is the third-order elastic-constant tensor. In
kmi

a crystal with a dislocation it is necessary to add to the
thermal strains of the crystals Ujj the dislocation strains
e^. As a result, in the approximation linear in the dis-
location field, the energy of interaction of the thermal
oscillations with the dislocation takes the form

-γ J (2.15)

which leads, after the usual transition to Fourier space
(with allowance for (2.1)) and second quantization in
terms of the phonon variables, to the following Hamilton-
ian of the interaction between the phonons and the moving
dislocationt 2 6 ]:

seint(t) = J1^^iihe-^i; ( 2 - 1 6 )

the subscripts a and β denote here different states of the
phonons, specified by the aggregate of the wave vector k
and the polarization λ: a = (k, λ), β = (k', λ'), with k'

are the phonon= k +q; ξ a = a^ λ + a ^ λ , a.^λ and
creation and annihilation operators:

Μ is the characteristic value of the third-order modulus
and G is the shear modulus. Since an energy hfi_ is

transferred in each act of phonon scattering from the
state a to the state β and back, it follows that the energy
dissipation per unit time is

α, β
e - "«) 6 K* - ω" -

α.ft

(2.18)

Here na = [exp (Ra>Q/kBx) — I]" 1 is the equilibrium

phonon distribution function and kg is the Boltzmann
constant.
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Expression (2.18) describes the dragging of not only
a dislocation but also of any elastic-field source (for ex-
ample a kink on a dislocation, a crowdion, etc.), provided
that the tensor e?. is suitably chosen, and naturally coin-
cides with the analogous formula[ 2 7 ] which deals with
the analysis of the nonlinear mechanism of phonon
dragging of a kink.

Substituting expression (2.17) in (2.18) and recognizing
at the same time that |e?. | 2 is determined in order of

magnitude by formula (2.9), we obtain, after replacing
summation by integration and after performing a number
of simple calculations, the required estimate of the con-
tribution of the phonon wind to the dislocation dragging:

l(kJ*Yf(T\, (2.19)

here
(2.20)

where η is the Murnaghan modulus. Usually |n|/G
-15-30, and therefore |M/G|2 ~ 102-103. t 2 4 3

θ is the Debye temperature, and k D is the Debye end
point in the phonon spectrum.

It follows in particular from (2.19) and (2.20) that at
low temperatures we have Β <χ Τ5, whereas extrapolation
of (2.12) to this region yields Β oc τ4.

The coefficient |M/G|2 for a screw dislocation was
determined in'-23-' in the isotropic approximation:

(2.21)

there
was obtained a low-temperature asymptotic expression
for the dragging coefficient Β for screw and edge dis-
locations in copper. The coefficient of T5, as obtained
by Gruner, is approximately seven times larger than the
coefficient corresponding to the estimate of (2.19) and
(2.21). It is impossible to explain the cause of the dis-
crepancy, since only the final result is presented in1-24-',
without proof, and furthermore in a rather strange form.
The values expressed in terms of the energy density of
the longitudinal phonons and the Debye temperature,
whereas the main contribution to the slowing down is
made by the transverse phonons2', and the low-tempera-
ture asymptotic form of (2.19) does not depend on Θ.

At high temperatures, formula (2.19) is much less re-
liable, for when the average phonon wavelength is de-
creased the problem becomes more and more sensitive
to the deviation of the phonon spectrum from the Debye
spectrum, and to the structure of the deformation field
in the core of the dislocation. Therefore, to obtain the
temperature dependence of Β in the entire region it is
necessary, strictly speaking, to know the true phonon
spectrum of the crystal, and also the dislocation field in
the region where the continual theory does not hold. In
principle, the experimentally obtained temperature de-
pendence of B(T) can be used to obtain information on
the phonon spectrum and on the structure of the disloca-
tion core. We confine ourselves here to a simple illus-
tration, which shows how allowance for the existence of a
dislocation core influences the temperature dependence
of B(T). We introduce as the simplest model of the core
a smooth cutoff of the dislocation field at short distances:

Ei;(r) = e?j(r)(l -e-V-o); (2.22)

Here e[,(r) is the strain tensor in the continual-theory

approximation and r 0 is the effective radius of the dis-
location in the nucleus (according to'-4-', r 0 « 3b). The
Fourier transform of the field ey(r) is also altered, and
to estimate |e?.|2 it is necessary to use in place of (2.9)

the expression
• , | 2 = i L 6 ( q n i ) i 'Ft J(q/9)
1 '' 2 g1 l + (rog)a ' (Δ.ύό)

where F-(q/2) is a function of the directions and is of
the order of unity. Formula (2.20), which describes the
temperature dependence of the effects, should accord-
ingly be replaced by

(2.24)'~X J .(«(_!>* β*

where β = 2k D r 0 . At β -C 1, the function ίχ(χ) goes over
naturally into f(x). It is easy to verify, however, that
usually we have, to the contrary, β ϊί> Ι (β ~ 30 for
typical values of k D and r 0 ~ 3b). It is seen from (2.24)
that at low temperatures (βχ. «C 1) the function f^x) is
practically independent of β and coincides with f (x). With
increasing temperature, the function fi(x) assumes quite
rapidly the linear form

i/4,

*/2β,
β«1,

( 2 · 2 5 )
Since usually β 3> 1, as we have seen, allowance for the
finite dimensions of the dislocation nucleus decreases
the estimate (2.19) and (2.20) at high temperatures by a
factor β/2 = kj-,r0, i.e. by approximately one order of
magnitude. This eliminates the contradiction between
theory and experiment, which was noted by
Brailsfordc , who estimated the dragging coefficient
for copper at room temperature by means of formulas
similar to (2.19) and (2.20) and obtained a value of Β ex-
ceeding the measured values by more than one order.
We shall show below that at room temperature formulas
(2.19) and (2.24) lead to values of Β close to those ob-
served in experiment, unlike the overestimates that do
not take into account the relaxation of the elastic disloca-
tion field near the core, and unlike the underestimates in
which the Gruneisen constant γ is used as a measure of
the anharmonicity.

The reason for the discrepancy between the absolute
values of the estimates based on different methods of
anharmonicity was explained in a paper by Al'shitz1-23-1.
Expressing the Gruneisen constant in terms of the
Murnaghan moduli, the author has shown that the modu-
lus n, which determines, as we have seen, the amplitude
of the effect makes a relatively small contribution to the
constant γ, and furthermore causes it to decrease. For
this reason, a direct comparison of the estimates (2.11)
and (2.19), which were obtained in different approxima-
tions, is incorrect.

The foregoing calculation of the phonon wind does not
take into account the relaxation of the phonon gas in the
process of scattering by a dislocation; this neglect is
permissible only in the case Ω τ 3> 1, i.e., for the

short-wave part of the packet (2.1) (q 3> (c/v)/"1), which
belongs to region Π on the {ω, q} phase diagram (see
Fig. 4). It is therefore necessary to introduce a cutoff
from below in (2.18). This changes the estimate (2.19)
little at sufficiently rapid dislocations and low tempera-
tures, but shows by the same token that the calculation
cannot be applied to slow dislocations and high tempera-
tures, when (c/V)/"1 > q m , and the phase line ω = qv does
not fall in the region II at all (line 3 in Fig. 4c).
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Thus, the methods considered above make it possible
to investigate only processes very close to the disloca-
tion or very far from it. An estimate of the contribution
made to the dissipation of the intermediate region
(v/c)Z < R < (c/v)Z, where the calculation should take
into account both the scattering and the relaxation of the
phonons, calls for a solution of the kinetic problem for
the phonons in the field of the moving dislocation. The
kinetic approach, as will be shown below, has the advan-
tage that it makes it possible to consider from a unified
point of view different dissipation channels and to deter-
mine their relative contribution to the dragging of the
dislocation.

e) Unified approach to the scattering and relaxation
processes. To describe different phonon mechanisms of
dislocations dragging within the framework of a single
formalism one can use, in principle, the classic kinetic
equation, as proposed by Brailsfordc . We regard as
more consistent, however, the quantum approach devel-
oped by Al'shitz and Mal'shukov '-26-1, in which it is possi-
ble to monitor the errors in the derivation of the kinetic
equation, and if necessary to go outside the framework
of the usual Boltzmann equation. Incidentally, the analy-
sis in1-25'26-1 contains, as we shall show, one common
significant gap, namely, the use of the Debye model of
the phonon spectrum has made it impossible to note and
to analyze one more important dissipation channel, which
no one has noted before, namely the relaxation of "slow"
phonons. We shall attempt below to fill this gap.

The perturbation of the phonon gas in the field of a
moving dislocation should lead to a deviation Δρ of the
phonon density matrix from the equilibrium value p 0 . In
the first-order approximation in the perturbation (2.16),
the quantity Δρ is linear in Jfmt, and the dissipation of
the energy per unit time D = —Sp (Δρ3 J^nj/9t) is corre-
spondingly quadratic in Jfint. It can be shown1126-1 that the
dissipation D is determined by formula (2.2), in which the
effective viscosity Vji^ii, Ω-) is the Fourier transform
of the two-particle retarded Green's function for the
phonons. Calculation of this function in the harmonic ap-
proximation leads, naturally, to an expression for D
identical with (2.18). The relaxation processes can be
taken into account by expanding the Green's function in a
perturbation-theory series in the anharmonicity. It is
convenient to use the well-developed diagram technique.

In the long-wave region (qZ <iC 1), the perturbation-
theory series contains singular ladder diagrams, the
summation of which is equivalent to the solution of the
kinetic equation. Leaving out the cumbersome intermed-
iate steps, we present only the final results of the real-
ization of the procedure described above. The effective
viscosity Ϊ?Η^(<1, Ω~) in the region qZ <€. 1 is determined
by the expression

investigated effects, Brailsford proposed a phenomeno-
logical approach based on the normalization of the dis-
location interaction against the experimental data on the
influence of the dislocations on the thermal conductivity.
It appears that this method is not too reliable, so that at
present there is no unambiguous theoretical interpreta-
tion of the existing data on the dislocation component of
the thermal conductivity. In particular, it is thought (see
the discussion at the conference l-2a-1) that the effect is
determined by the flutter mechanism, which is not con-
nected at all with the anharmonicity of the crystal.

The first term of (2.26) corresponds to thermoelastic
damping, and the second to phonon viscosity. In ultra-
sound-absorption theory one uses the fact that at qZ <C 1
the soundwave is adiabatic: p C l (see formula (2.5)),
so that the dispersion of the phonon viscosity and of the
thermoelastic losses can be neglected. It is easily seen,
however, that when applied to the analysis of the damping
of the dislocation packet (2.1), this neglect is permissible
only for the longest wavelength: q <sC (v/c)r\ and it is on
this fact that our criticism of Mason's theory, given in
Sec. (a), is based. It is seen from (2.26) that indepen-
dently of the spatial dispersion the contribution made to
the dragging of the dislocation by the phonon viscosity is
smaller by a factor (c/v)2 than the thermoelastic losses,
in contrast to the case of ultrasound, when Ω_ « ω_ and

both terms in (2.26) are of the same order. We shall
neglect henceforth the second term in (2.26) in compar-
ison with the first.

At qZ > 1, the diagrams do not contain any singulari-
ties. This enables us to use the relaxation-time approxi-
mation in the calculation. As a result, the damping of
the short-wave part (qZ ^> 1) of the packet (2.1) is given,
accurate to terms proportional to Z"1, by the formulaC 2 6 ]

(2.27)

here ρ = xq2/i2Q is the adiabaticity parameter, ω~ = qc,
δ·. is the Kronecker symbol, <^-^,(q/q) is an angle func-
tion of the order of unity, and a is the numerical coeffi-
cient proportional to the anharmonicity level of the crys-
tal. The values of a used in^25'26-1 were respectively
a g = γ and «^ = M/4G. The estimates expressed in^25-1

in terms of the Gruneisen constant γ do not claim to
yield the correct absolute values, but nevertheless make
it possible to assess the relative roles of processes of
different types. To estimate the absolute values of the

The expression in the square brackets, which we desig-
nate for convenience by Qaa(T)> goes over formally as
τ — °o into δ (ωα — ω η), and in this case formula (2.27)
coincides with (2.18). The degree to which Q.aJj) ap-
proaches a delta function depends not only on the value
of the parameter ω α τ, but also on the character of the
function ωα = o;(k), since the integration in (2.17) is
carried with respect to k and not with respect to ω. The
estimates i n

[ 2 5 > 2 6 : l were obtained using a formula sim-
ilar to (2.27) in the Debye approximation, when oja(k)
= ck and we have with good accuracy Qaa{r)
« 5(ωα — ω a). It is therefore natural that the corre-
spondingly expression for lu^j is independent of the
relaxation time τ :

5/2

(2.28)

Expression (2.28) is reliable enough only at low tempera-
tures, when long-wave phonons predominate. As already
noted above, at high temperatures it becomes necessary
to take into account the deviation of the real phonon spec-
tra from the Debye model. Since the dispersion of the
short-wave phonons deviates from linearity (see the plot
in Fig. 5), the fraction of the "slow" phonons with small
group velocities ν = θω/ak increases with increasing
temperature. In particular, near the boundary of the
Brillouin zone there is a region in which the phonon dis-
persion is smaller than the natural line width, \ωα — ωο|
<^i τ ~\ The contribution made to the phonon dissipation
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FIG. 5. Typical form of dispersion
curve cj(k) for acoustic phonons.

by this region differs qualitatively from the contribution
of the "acoust ic" phonons, inasmuch as for the "slow"
phonons we have Qaa(r) » τ/π. The requirement
| ω α — ωβ[ -C τ"1, of course, does not necessarily mean
that the phonon group velocity v g r i s l iterally small. It
is only necessary that the energy of the phonon in the
final state with wave vector k + q differ little from its
energy in the initial states k. Taking into account the
orthogonality of the vectors q to the dislocation line (see
formulas (2.9) and (2.23)), we can easily verify that this
property is possessed, for example, by phonons belong-
ing to the flat sections of the equal-frequency surfaces,
when these flat sections a re perpendicular to the disloca-
tion line. An analysis of rea l phonon spectra shows that
such flat sections, oriented paral lel to the boundary of
the Brillouin zone, usually occupy an appreciable volume
of phase space.

We confine ourselves below to a simplified estimate
of the role of the "slow" phonons, assuming that the reg-
ion |α>α — α>α| C T " 1 occupies a finite phase volume
amounting to a fraction g of the volume of the Brillouin
zone, and is strongly enough pronounced to be able to
neglect the contribution of the transition region. Substi-
tuting <3αβ(τ) = τ/π in (2.27), we can easily estimate the
contribution made to (2.28) by the relaxation of the "slow"
phonons:

1,-rt! (q, Ω,) ~ a2Cs ΤτΨιίΛι (q); (2.29)

here C s is the contribution of the "slow" phonons to the
specific heat of the crystal, ^ ^ ( q ) is a function of the
order of unity and decreases sharply when the vector q
exceeds the character is t ic dimension of the region of the
"slow" phonons in the corresponding direction. We have
thus returned to Akhiezer's concept of a constant phonon
viscosity, but only for the "slow" phonons, which freeze
out rapidly with decreasing temperature, as is reflected
in the temperature dependence of C S (T).

Breaking up the integral (2.2) into two t e r m s c o r r e -
sponding to the regions qZ < 1 and qZ > 1, we can easily
obtain, taking (2.23), (2.26), and (2.27) into account, an
estimate of the coefficient of the dragging of the disloca-
t ions 3 ' :

here

(2.30)

(2.31)

®s is the characteristic temperature of the "slow
phonons" (®s ~ ®), s is a numerical coefficient on the
order of unity (s = 0 for a screw dislocation and s differs
from zero in the case of an edge dislocation only at not
too low temperatures, when the Umklapp processes are

not s m a l l [ 2 6 ; ] ) . The first te rm of (2.30), corresponds to
thermoelastic damping and coincides with the Lothe
e s t i m a t e C 4 ] (2.11) at a = « B = γ. The second t e r m is an
estimate of the contribution made to the slowing down by
the scattering processes . At a = a A = M/4G this te rm
coincides with the phonon-wind estimate (2.19) and (2.24),
previously obtained under the assumption of high d is-
location velocities. The third t e r m in (2.30) corresponds
to relaxation of the "slow" phonons.

Expression (2.30) enables us to compare the relative
contributions of the dissipative processes of the types
considered above to the dragging of the dislocation. At
low temperatures, when the first and third t e r m s are
exponentially small, scattering processes predominate.
At high temperatures, when fi(T/e), ί2(Τ/θ), and CT a r e
practically linear in temperature, and the mean free path
of the phonons var ies in inverse proportion to the tem-
perature 4 ' , I = ΖΘ(©/Τ), expression (2.30) has a s tructure
(with conservation of the order of the terms)

^ ~ -̂ o N4 (~zr) + ~ΤΓ -ί- 2βλ@ ; (2.32)

Here A ~ 10'1(r0/l@)ln (c/v), and λ @ is the value of λ
at Τ = ®. Since A < 1 (A ~ 10"1 at Z@ « 5r 0 and c « 102v),
the thermoelastic processes are masked by the phonon
wind but can be separated in principle at high tempera-
tures by means of the quadratic temperature dependence.
To this end it is necessary, however, to increase ap-
preciably the experimental accuracy. The quantity 2βλ@

turns out to be of the order of unity, i.e., the relaxation
of the "slow" phonons makes a contribution comparable
with the contribution of the phonon wind to the dragging
of the dislocations, if the region of the "slow" phonons
occupies in the first Brillouin zone a relative volume
g ~ 10'1To/le, which is perfectly real is t ic . Generally
speaking, in view of the complexity of the true phonon
spectra, the quantity λ @ is ra ther difficult to calculate.
In any case, it would be difficult to get along without a
computer. Instead, we shall regard λ @ , as we do the
Debye temperature, as a phenomenological parameter
to be determined from experiment. We shall show in
Chap. 4 that the function

describes adequately the experimental B(T) curves at
reasonable values of λ@.

f) Contribution to the dissipation of the optical phon-
ons. So far, when analyzing the dynamic dragging of the
dislocations, we have considered only the acoustic
branches of the phonon spectrum, which are present in
all the crystals. Yet crystals that have more than one
atom per unit cell contain in the phonon spectrum also
optical modes, for which ω(0) ^ 0. A typical dispersion
curve for optical phonons is shown schematically in
Fig. 6.

FIG. 6. Typical form of the dispersion
curve m(k) for optical phonons.
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The contribution of the optical phonons to the damping
of the long-wave part of the packet (2.1) (qZ < 1) is limi-
ted by the thermoelastic losses, and its estimate is con-
tained in the first term of (2.30), since it is implied that
the specific heat C is determined by all the branches of
the phonon spectrum. When analyzing the short-wave
region ql > 1 by means of formula (2.27) it is conven-
ient, as before, to distinguish between the "fast" and
"slow" phonons, which interact in a qualitatively differ-
ent manner with the moving dislocation. The interaction
of the "fast" phonons with the dislocation is of the scat-
tering type, and the contribution of these phonons to the
dissipation can be estimated from formula (2.18). The
"slow" phonons relax like a gas with effective viscosity
(2.29) multiplied by (®/®0)

4, where Θο = η ω 0 Λ Β .

Inasmuch as low temperatures (T <S ©0) the density
of the optical phonons is exponentially small, a notice-
able effect can be expected only at sufficiently high tem-
peratures. Not being interested in temperatures at which
the effect is certainly known to be small, it is convenient
to confine oneself only to the temperature region
Τ 3> ΚΔω/kg; this simplifies the analysis appreciably.
It can be assumed here that vkp <ίί Δω "C ω 0 .

As expected, calculation predicts an exponential
smallness of the effect at low temperatures Τ <C ©0, but
at high temperatures the dependence is of the form
(2.32). The contribution of the "fast" phonons amounts
to a fraction on the order of 10"1 (©/®O)4WD/AO> of the
phonon wind, while the contribution of the "slow" phonons
differs from the corresponding term in (2.30) by a factor
ΙΟ"1 (®/®ογ. Usually ®0 noticeably exceeds the Debye
temperature, and the dissipative processes in the system
of acoustic phonons should prevail over the damping in
the optical modes of the spectrum. A possible exception
is crystals containing "soft" optical modes in the phonon
spectrum. In particular, under conditions of a phase
transition of the displacement type, "soft" modes usually
appear for which ©0 — 0 as Τ — T c . Accordingly, the
optical component of the viscous slowing down of the dis-
locations should increase without limit near the transi-
tion temperature. The strong dependence of the dragging
coefficient Β on the quantity ©0 (Β °= ©Ό4) gives grounds
for hoping that the predicted effect will be readily ob-
served in experiment. The resonant decrease of the dis-
location mobility near the transition point has a paradoxi-
cal character against the background of the general soft-
ening of the crystal (near T c , the crystal can behave as a
liquid with respect to certain oscillation modes).

3. PHONON DRAGGING MECHANISMS DUE TO
EXCITATION OF NATURAL DEGREES OF FREEDOM
OF MOVING DISLOCATIONS

In the preceding chapter we have considered the
phonon dragging of a linear dislocation that moves uni-
formly as a unit. Yet allowance for the internal degrees
of freedom of the dislocation leads to a number of quali-
tatively new effects. Thus, perturbations of the linearity
of the shape and of the uniformity of the dislocation mo-
tion in the thermal field of the lattice give rise to induced
radiation of phonons by the dislocation, and this radiation
increases the dissipation (the flutter effect). The motion
of a dislocation in the periodic potential due to the dis-
crete character of the crystal leads to periodic changes
in the structure of the core and to oscillations of the
velocity of the dislocation. The corresponding changes of
the elastic field and of the dislocation energy give rise to

emission of waves (radiative dragging) and to Raman
scattering of the phonons by the oscillations of the elas-
tic field. Additional phonon radiation is produced also
when a dislocation moves near various types of lattice
defects, which produce local distortion fields. Under
certain conditions, the foregoing effects turn out to be
appreciable against the background of the dissipative
processes investigated above.

a) Flutter effect. So far we have dealt only with those
phonon-dislocation interactions which are due to non-
linear properties (anharmonicity) of the crystal. How-
ever, the nonlinear properties of the medium are not the
only cause of interaction between a dislocation and the
phonon subsystem. Even in a harmonic crystal, phonons
can be scattered by dislocation as a result of the so-
called flutter effect. The dislocation has its own degrees
of freedom, which are on a par with the remaining de-
grees of freedom of the crystal. Vibrating in the thermal
motion of the lattice, a dislocation, as any other source
of internal stresses, radiates elastic waves. In other
words, in a crystal with a dislocation the wave function
of the phonon should be a superposition of a plane wave
and a wave diverging from the dislocation, and this can
be described in terms of phonon scattering.

This effect can be estimated by considering the in-
duced oscillations (flutter) of a dislocation in the alter-
nating stress field connected with the individual phonons.
Within the framework of this approach, NabarroC16-1 cal-
culated the total cross section of the flutter effect for
long-wave phonons that are normally incident on a dis-
location at rest, but reached the erroneous conclusion
that the total momentum of the radiation induced as the
dislocation moves is zero. Lothe has shownt4'"-1 that
the presence of aberrational symmetry of the induced
radiation leads to an effective dragging of the disloca-
tion, proportional to its velocity. A more detailed inves-
tigation of the flutter effect for a dislocation at rest was
carried out by Ninomiya'-29 as applied to the problem of
the influence of dislocations on the thermal conductivity.
The differential cross section of the flutter effect calcu-
lated i n [ 2 9 ] was used by Al'shitz and Sandier[ 3 o ; i and by
Ninomiya[ 3 1 ] for a consistent calculation of the contribu-
tion of this mechanism to the dragging of the dislocation
and to assess its relative role[ 3 0~ against the background
of the phonon wind.

The flux density of phonons in a state a, incident on a
dislocation, is equal to c n a . Accordingly, the number of
phonons scattered per unit time from the state a into the
state β is cnavas> where σαβ is the differential cross
section of the flutter effect on the moving dislocation.
The quantity σao can be obtained from the corresponding
expression for σ° of the dislocation at rest[-29-1 by means
of the usual Doppler frequency shift: ω'α = ωα + v k .
The requirement contained in <J°ao, that the quantity ω'α
be conserved during the scattering process, means that in
in each scattering act the energy transfer is Η (u>a — ωο)
= RB.. The energy dissipation per unit time is then de-
termined by the expression

... (3.1)D = 2 J SQqi
Ct.fi

Taking the foregoing into account, calculation by means
of formula (3.1) entails no difficulty. The dissipation
(3.1) corresponds to a dragging coefficient[30]

*=-ar/ · (•£) · (3.2)
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FIG. 7. Plot of the function f3(T/0), which determines the tempera-
ture dependence of the flutter effect for a screw dislocation (1) and an
edge dislocation (2).

FIG. 8. Plot of the function *(y) for a screw dislocation (1) and an
edge dislocation (2).

The temperature dependence of the effect is determined
by the function (Fig. 7)

ίΛχ) = Λ J^Ly(xty, (3.3)

Here *(y) is a logarithmically slow function5' shown
graphically in Fig. 8. In the case of an edge dislocation
we have

1,2
2 In2 to"2—1 (3.4)

It should be borne in mind that formula (3.2) is exact
in the sense that the expression for the phonon scattering
cross section, which was used in its derivation, was ob-
tained without perturbation theory. Nonetheless, this
estimate contains another source of errors, since no ac-
count was taken in it of the finite dimensions of the dis-
location core. Allowance for these dimensions, which is
of no importance at low temperatures when the average
phonon wavelength greatly exceeds the dimensions of the
core, can greatly decrease the amplitude of the effected
high temperautres, as we have seen with the phonon wind
as an example. Ninomiya[3i:i, while noting that the dis-
location core lowers the estimate of Β at room tempera-
ture by approximately one order of magnitude, assumes,
however, that this decrease can be offset by taking addi-
tional account of the resonant scattering of the phonons
due to the excitation of local dislocation vibrational
modes. It appears that Ninomiyat31] nevertheless over-
estimates the role of the logarithmic singularities due
to the resonant scattering. At any rate, the estimate of
Β by means of formula (3.2), obtained in[ 3 o : i with allow-
ance for resonance effects, differs by a factor on the
order of unity from Ninomiya's estimate in which these
effects are neglected. Thus, one cannot speak seriously
of any compensation, and the comparison made in^31-1 be-
tween the results of the calculations of Β by a formula
of the type (3.2), which does not take into account the ex-
istence of the dislocation core, with values of Β meas-
ured at room temperature, is hardly meaningful. One
can confine oneself to the "coreless" approximation only
to the extent to which, as we shall show, the flutter is
noticeable against the background of other mechanisms
of dislocation dragging, only at low temperatures when
this approximation is quite satisfactory.

It follows from (3.2) and (3.3) that at high tempera-

tures the flutter effect, like the phonon wind, varies
linearly with temperature: Β « T. At low temperatures,
the linear dependence gives way to a cubic dependence
Β oc T3, corresponding to the slowest of all the consid-
ered mechanisms of the decrease of the dragging with
decreasing temperature. It is seen from Fig. 7 that, just
as in the case of phonon wind, the dragging becomes
linear quite rapidly—in fact, even at temperatures much
lower than the Debye temperature.

The estimate (3.2) enables us to compare the flutter
effect with phonon wind. At low and high temperatures,
the ratio of the dragging coefficients B f l /B w should tend
asymptotically to the values

Β^~=[ΎΎ (T<®)< jj^-= rfo«const (Γ>θ), (3̂ 5)

where the quantities To and d0 are of the order of6>

IQG β

Μ kDb'
(3.6)

Estimating the ratio M/G from formula (2.21), we can
show that for copper, for example, T o « 15°K and d0

« 0.1.

Thus, from among the mechanisms considered so far,
the flutter effect should predominate at low temperatures,
and a combination of phonon wind and relaxation of the
slow phonons should predominate at high temperatures.
Incidentally, one can conceive of weakly-anharmonic
crystals (d0 > 1) in which the flutter effect predominates
over the phonon wind also at high temperatures.

A comparison of the analogous mechanisms ^Ί >32>333
of the dragging of kinks leads to qualitatively similar
conclusions[ 2 5 > 2 7 ].

b) Radiation friction. Owing to the discrete character
of the lattice, when a dislocation moves in a crystal its
atomic configuration and elastic energy experience per-
iodic changes. The corresponding relief is called in the
literature the Peierls relief. The quasistatic properties
of this relief were investigated in a number of studies
using the Peierls-Nabarro model C 3 4 " 3 6 ] and also the
Frenkel-Kontorova model1-37"40-1. To set into motion a
dislocation that lies in the valley of this relief, it is pos-
sible to apply to it a certain "starting" stress, called
the Peierls stress σρ. In the case of stationary motion
of the dislocation, however, the influence of the relief
does not reduce by far to the static resistance of the lat-
tice. In fact, in the absence of dynamic energy losses the
motion of the dislocation over the Peierls relief would
be ensured by successive conversion of the potential en-
ergy into kinetic energy and vice versa, and in order to
maintain this motion there would be no need for an ex-
ternal force at all. The role of the relief in this sense
reduces to stimulation of dynamic losses, since periodic
changes of the configurations of the dislocation core, and
the non-uniformity of its motion over the relief, should
lead to radiation of the elastic waves by the dislocation,
i.e., to radiation friction. This dissipation mechanism,
due exclusively to the discrete character of the lattice,
is preserved also at the lowest temperatures, in contrast
to the phonon effects considered above, which freeze out
with decreasing temperature. In the literature, the con-
tributions of the configuration oscillations ("breathing"
of the core) and dynamic oscillations (variations of the
velocity) to the radiation friction were investigated inde-
pendently, as individual dissipation channels. This separ-
ation can be justified in principle, although it seems
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aribtrary at first glance. We formulate below the condi-
tion under which this separation is meaningful.

The radiation of elastic waves by a dislocation, due to
the periodic changes of the form of the core of the dis-
location, was considered in the simplest formulation
back by Frenkel and Kontorova[37-1. Subsequently, the
model of Frenkel and Kontorova was used by Weiner'-41-'
and by Atkinson and Cabrera1-42-1 for a more general
analysis of the problem of radiative dragging of a uni-
formly moving dislocation. According to t41-1, radiation
friction, up to near-sonic velocities, is practically inde-
pendent of the velocity and can be described by the so-
called dynamic Peierls stress ffjjp which amounts to only
a small fraction of the static stress σρ. Only at veloci-
ties close to the velocity of sound (v J> c/2) does the
radiative dragging of the dislocation increase abruptly
and approach values exceeding the stress σρ.

Atkinson and Cabrera [ 4 2 ] , analyzing the same problem
in a somewhat more accurate formulation, obtained for
high dislocation velocities (v > c/3) results analogous to
those of1-41-1. However, according to'-42-1, with decreasing
velocity the dislocation excites an ever increasing num-
ber of phonon modes. In this velocity region (v < c/3),
the authors observed a series of infinite resonances in
the radiation, and the series condensed towards lower
velocities. The resonant situation is realized whenever
the dislocation velocity coincides with the group velocity
in one of the elastic waves excited by it in the lattice.
Incidentally, as noted in1-42-1, in the region of the reson-
ance points the amplitude of the oscillations of the atoms
of the chain should increase without limit, in contradic-
tion to the initial assumption of the theory. This seems
to indicate that there are no stationarity solutions near
the resonances, and possibly also in the entire region of
low velocities. Unfortunately, the region where the sta-
tionary solutions exist was not determined in1-42-1. The
authors of1-42·1 are inclined themselves to assign a phys-
ical meaning only to the results pertaining to the high-
velocity region c/3 ^ ν < c. They attribute the singu-
larities of the radiative dragging in the region of "low"
velocities (v < c/3) to the one-dimensional character of
the Frenkel-Kontorova model, and to the use of a piece-
wise-harmonic potential for the atoms of the chain.

Notice should also be taken of the work of Kosevich
and MargvelashviliC43], who investigated acoustic and
electromagnetic emission on the uniform motion of a dis-
location in an ion crystal under the assumption that the
radiation occurs at the fundamental frequency Ω = 27rv/a.
However, it seems that in problems of this type, the
neglect of radiation at high harmonics Ω η = Ωη can in
general not be justified.

The problem of the onset of radiation-friction reson-
ances when perturbation sources move in periodic struc-
tures was investigated in rather general form (albeit
still in the same approximation of a piecewise-harmonic
atomic potential) by Rogulat44^, who traced, in particu-
lar, the influence of the dimensionality of the problem on
the character of the singularity at resonance. According
to'-44-1 the singularities at the resonance points become
smoothed out with increasing dimensionality of the prob-
lem. Thus, in the two-dimensional case, an example of
which is an infinite straight-line dislocation, we are
dealing not with a square-root singularity of the type
(v — ν )~* , which is typical of the one-dimensional prob-
lem1-42-1, but with the discontinuities and logarithmic

singularities |v — v p | . In the three-dimensional case,

the radiative dragging as a continuous function of the
velocity and only the derivative of the dissipative func-
tion has discontinuities. It should be noted, however, that
the question of the conditions for the existence of sta-
tionary solutions was not investigated in that study,
although the author did show that stationary motion at
resonant velocities is impossible. One cannot exclude,
in principle, the possibility that the resonant radiation
has no physical meaning at all, since it pertains to the
velocity region where the stationary motion is not real-
ized, and consequently it is impossible to formulate a
problem in which resonances arise.

It appears that Rogula' s work remained unknown to a
number of researchers engaged in similar problems. A
few years later'-44-1, two papers of similar content were
published by Celli and Flytzanis [ 4 5 ] and by Ishioka[ 4 6 ],
in which, without mentioning Rogula's results, the two-
dimensional problem was again considered as applied to
radiative dragging of an infinite linear screw dislocation.
The authors of t 4 6 ' 4 6 ^ generalized, to include the case of
uniform motion of the dislocation, the model of
Maradudin'-47a-1, who proposed a method of discretely
describing an immobile screw dislocation in a cubic
lattice (with a piecewise-harmonic atomic potential).
This model constitutes in essence a two-dimensional
modification of the Frenkel-Kontorova model. Naturally,
the principal results obtained i n C 4 5 ' 4 6 ] are related to a
considerable degree to the conclusions of[ 4 4 ] and do not
differ qualitatively from the results of1-42-, and therefore
will not be reported here. We note only that these papers
also failed to explain the physical meaning of the reson-
ant radiation, since the question of the region where
stationary solutions exists was not investigated.

A separate problem of undoubted physical interest is
the possibility of near- and supersonic motion of dis-
locations. It is known, for example, that in the continual
model, the dislocation energy becomes infinite when it
passes through the sonic barrier. However, neither
in^42-1 nor in^44 46^ were any singularities whatever
observed in the radiative dragging of the dislocations in
the vicinity of the speed of sound. Earmme and
Weiner E*7b]; w ho recently turned to this problem, re-
vised the results of Atkinson and Cabrera for high-veloc-
ity dislocations. Unlike their predecessors, Earmme
and Weiner t47"-1 investigated the region of existence of
stationary solutions and have shown that the stationarity
conditions are violated even in the subsonic region, when
the dislocation velocity exceeds a certain critical value
Vg < c. Thus, the continual theory withstood one more
test of the correctness of the qualitative predictions,
although the problem undoubtedly still calls for further
study.

An interesting formulation of the problem of radiative
slowing down of dislocations was proposed by Flytzanis
and Celli'-*8-1. Within the framework of the approach de-
veloped i n [ 4 5 ) 4 6 ] , they attempted to consider the radia-
tion friction and the flutter effect from a unified point of
view, i.e., to take additional account of the non-uniform
motion of the dislocation in the thermal field of the lat-
tice. Unfortunately, the complexity of the problem forced
them to resort to major simplifications, which yielded
an approximate solution only for near-sonic and super-
sonic dislocations. Incidentally, following the work of
Earmme and Weiner, even this result cannot cause any
doubts. Nonetheless, it appears that one can agree with
the general qualitative conclusion of ^i8^ that the radiation
friction can be noticeable against the background of the
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phonon dragging only for near-sonic dislocations at low
temperatures.

In a recent paper'-49-1, Ishioka returned to the one-
dimensional dislocation model, including in consideration
also the damping of the natural oscillations in the sys-
tem and the anharmonic character of the atomic potential
in the chain. One of the most interesting results of the
work was the proof that the hitherto employed piecewise-
harmonic approximation of the atomic relief is not suit-
able for the description of the motion of the dislocation
at lower velocities, or else it leads to the absence of
stationary solutions of the problem in this velocity reg-
ion. Ishioka has shown that this difficulty does not arise
in the case of smooth potentials having a continuous first
derivative. The problem was solved numerically in1-49-1

for a sinusoidal potential and for two types of smoothly-
joined piecewise-parabolic potentials. The radiation
friction turned out to be a smooth function that decreases
monotonically with decreasing dislocation velocity. This
seemed to solve the question of the existence (more ac-
curately, of the absence) of resonant radiation at low
dislocation velocities, the investigation of which has been
the subject of so many studies. In essence, we are deal-
ing with a rather typical situation, stemming from the
fact that frequently the dissipative function correspond-
ing to the stationary solution is much easier to find than
the solution itself. Accordingly, whenever the dissipation
is determined without investigating the region of the ex-
istence of the stationary solutions, there is a danger of
obtaining all kinds of fictitious effects pertaining to the
region where there are no stationary solutions.

According t o [ 4 9 ] , at near-sonic velocities the disloca-
tion field has a clearly pronounced dynamic wave zone,
and the dislocation radiates intensively elastic waves
during the course of its motion. The radiation slowing
down of the dislocation then greatly exceeds the static
Peierls stress. When the dislocation velocity decreases,
the "relativistic" effects increase and the level of the
radiation friction drops abruptly. Accordingly, the dis-
location field becomes closer and closer to the quasi-
static field that moves uniformly with the dislocation. An
important circumstance is that the region of the quasi-
static motion of the dislocation begins at sufficiently high
velocities, corresponding to a dislocation kinetic-energy
level much higher than the Peierls level, when the per-
turbation of the uniformity of the dislocation motion can
still be regarded as negligible. It is this which makes it
possible to separate the contribution of the configuration
field oscillations of the dislocation from the contribution
of the dynamic oscillations to the radiation friction, since
the former are significant only at high velocities, when
the dislocation motion is practically uniform, whereas
the latter come into play in the dissipation at low veloci-
ties, when the first dissipation channel can be regarded
as suppressed.

For a correct solution of the problem of the radiation
friction due to the non-uniform motion of the dislocation,
it is necessary to determine in self-consistent fashion
the law of dislocation motion in a periodic potential field,
with allowance for the reaction of the radiation. This ap-
proach was first employed in a paper by Al'shitz '-50-1,
who made, however, the traditional error referred to
above, namely he calculated the radiative dragging of the
dislocation, but did not investigate the conditions for the
existence of stationary solutions of the problem. This
error was corrected subsequently in a paper by Al'shitz.
Indenbom and ShtorbergC51]. in C 5 0 ' 5 i : i we investigated in

the continual approximation the stationary motion of a
screw dislocation over a Peierls relief under the influ-
ence of a constant external force f that compensates for
the radiation losses. The exact solution of the problem
was obtained for a piecewise-parabolic Peierls
relief'-50'51-1 and an approximate solution was obtained
for a sinusoidal relief[·51-'. General expressions were
obtained for the law of dislocation motion and for the
radiation stress σ = f/b. An analysis of these expres-
sions shows that at high velocities v, when the kinetic
energy of the dislocation greatly exceeds the Peierls en-
ergy, the presence of the relief disturbs the uniform mo-
tion of the dislocation only insignificantly, and the radia-
tion is mainly at the first harmonic, while the radiation
friction, in accordance with an estimate by Hart^52-1, de-
creases in proportion to v"2. With decreasing dislocation
velocity, the degree of nonuniformity of its motion in-
creases, and accordingly the radiation losses increase,
and the radiation at a higher harmonics becomes more
and more effective. A decrease of the average velocity
is possible only to a certain critical value vc ~ c Vap/G,
and the minimum possible average dislocation velocity
corresponds to motion in which the dislocation at the
crest of the relief has zero kinetic energy.

A critical velocity exists also under conditions of
viscous dissipation, when the dislocation is acted upon
additionally by a certain viscous dragging force if = — Βχ1,
but for not too high values of the viscosity B. The criti-
cal velocity decreases with increasing viscosity and,
starting with a certain Bc, it vanishes—the stationary
motion at Β > Bc is realized at all velocities v. Without
allowance for the viscosity, the dynamic dragging is de-
termined only by the radiation friction and is character-
ized by a decreasing function of the velocity, correspond-
ing to instability of the stationary motion. The viscous
dissipation stabilizes the motion by adding to the dragging
force a term linear in the velocity. At Β > Bc, an effect
of the "dry friction" type should occur, namely, the
stress σ approaches the static Peierls stress σρ with
decreasing velocity v, and does not vanish when the
velocity tends to zero. The asymptotic form of the func-
tion σ(ν) at Β 3> Bc is described by the simple formula

%Z, ( 3 · 7 )
v

which illustrates clearly the phenomenon of "dry fric-
tion."

A similar problem was solved'-53-' for tangential mo-
tion of a kink along a dislocation with allowance for a
secondary Peierls relief. It was shown that all the quali-
tative regularities noted above hold true also in the case
of a kink.

c) Raman scattering of phonons. As a result of per-
iodic changes in the configuration of the core and the
velocity of the dislocation, configurational and dynamic
oscillations of the elastic field of the dislocation, at the
fundamental frequency Ω = 2jrv/a and at its overtones
Ω η = Ωη, are produced respectively as the dislocation
moves along the Peierls relief. The phonons are scat-
tered by this field in an inelastic (Raman) manner, ex-
periencing an energy change ΔΕ = ±ΚΩη. The predomin-
ance of the Stokes component of the scattering (ΔΕ > 0)
over the anti-Stokes component (ΔΕ < 0) determines the
dissipation of the energy and the effective dragging of the
dislocation. This mechanism was first considered by

t 0 5 ^

is the number of transitions, per unit time, ofIf
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the phonons from the state a to the state β with absorp-
tion (+) or emission (—) of an energy ΚΩη, then the power
of the dissipative losses is determined by the formula

=τΣ 2 (3.8)

The values of W^g are given by the usual quantum-

mechanical expression

-1)δ(ωα — ίϋβ + Ω , ) , (3.9)

where Vao is the matrix element of the transition. Thus,
we obtain from (3.8) and (3.9) a formula of the type (2.18)

D = rr- y. y . a i n V α β ** . g Ο ((jt>~ — 03B), /q Λ n\
η *—* *—* α ω α

 λ ' ' lUiiui
η α,β *

It can be shown that the quantity Va ο has a structure of
the form

ν «~h bi^-\ Γ » C3 111

where the coefficient h n is a dimensionless parameter
proportional to the amplitude of the oscillations of the
elastic field of the dislocation. Taking (3.11) into ac-
count, we can easily verify that expression (3.10) differs
from (2.18) by a constant temperature-independent fac-
tor. The values of this factor I, which characterizes the
relative role of the Raman scattering in comparison with
the phonon wind, turn out to be different for the configur-
ation and for the dynamic oscillations:

It follows from (3.12) that the Raman scattering of phon-
ons by configuration oscillations of the dislocation field
introduces into the energy dissipation a contribution that
is noticeable against the background of the phonon wind
only in crystals with a sufficiently high Peierls relief,
namely, at r 0 = 3b we have I c o n ^ 1 if a p / G ^ 7 χ 10'\
The fact that the numerical estimates based on formula
(3.10) were found in150'5*1 to agree with the experimental
data for certain crystals at a p / G = 5 χ 10"5 is due to the
use in [ 5 0 ' 5 4 ^ of the usual formulas of the continual theory
of dislocations, in which it is assumed that r0 = 0. Using
the transition from formula (2.20) to formula (2.24) as
an example, we have seen that allowance for finite char-
acter of the dislocation core leads to a decrease in the
amplitude of the effect by a factor kj)r0, i.e., by approxi-
mately one order of magnitude.

The relative role of the dynamic oscillations can be
easily established if it is noted that Ι ^ ν η is of the order
of the square of the ratio of the Peierls energy to the
kinetic energy of the dislocation. In the dynamic velocity
region, which we are considering, I(jyn is therefore
small, thus indicating that this dissipation channel is
negligible in comparison with the phonon wind. However,
recognizing that the dynamic oscillations lead to a
dragging that is essentially nonlinear in the velocity
(*d oc v~4), we can hope to separate their contribution,
using this nonlinearity, against the background of the
viscous slowing down.

d) Influence of impurity. When the dislocations over-
come the local fields of the impurity centers and other
lattice defects, the uniformity of the dislocation motion
becomes disturbed and phonons are radiated, so that the
level of the radiation friction increases. In particular,

Ookawa and Yazu[ 5 5 ] investigated the mechanism of the
emission of elastic waves in the field of impurity cen-
ters, a mechanism similar to the mechanism of radiation
friction for dynamic oscillations of the field of a disloca-
tion moving along a Peierls relief. According to their
calculation, the dragging force is relatively small, de-
creases with velocity like v"1 at high dislocation veloci-
ties, and vanishes as ν tends to zero. Incidentally, the
estimate obtained for slow dislocations without a self-
consistent determination of the law of dislocation motion
cannot be regarded as reliable.

Another mechanism of dynamic dragging of disloca-
tions by impurity centers can be connected with excita-
tion of local or quasilocal vibrations of impurity
atoms C56"59^ a n effect analogous to the well known Bohr
losses in electrodynamics. In the most general formula-
tion, this effect was considered by Kosevich and
Natsik[ 5 8 ' 5 9^ within the framework of the phenomenologi-
cal theory previously developed by them[ 9^, in which the
dragging of the dislocations is connected with the dis-
persion of the elastic moduli. The authors have solved
the problem of scattering of the dislocation wave packet
(2.1) by atoms of a heavy interstitial impurity, taking
into account the possibility of exciting quasilocal impur-
ity oscillations. According toC 5 9^, the dragging force has
a sharply pronounced maximum at a dislocation velocity
on the order of au^L, where U>L is the frequency of the
quasilocal level. At low velocities, the dragging force
increases with velocity in proportion to v3, and at high
velocities it decreases like v"1. If the impurity does not
excite any quasilocal vibrations, then the dragging force
is proportional to v3 in the entire velocity interval. The
entire effect is proportional to the square of the ratio of
the impurity-atom mass to the matrix-atom mass.

The influence of the impurity on the dynamic mobility
of dislocations can be due not only to the phonon mech-
anisms, but also to dissipative processes connected with
the diffusion mobility of the impurity in the field of a
moving dislocation. This problem was investigated by
many workers C59"68^ from different points of view and in
various approximations. For example, the diffusion
dragging of fast dislocations moving with practically no
atmosphere was considered in the same paper of
Kosevich and Natsik E59]. Notice should also be taken of
a recent paper by Lyubov and Altundzhi t58-1, who investi-
gated the dragging of slow dislocations moving together
with their impurity atmospheres. As a rule, the contri-
bution of the diffusion mechanisms to the dragging of the
dislocations is negligible against the background of the
phonon effects.

The influence of the structural imperfections of the
crystal on the dynamic energy losses can also be due to
the buildup of oscillations of segments of pinned disloca-
tions (so-called dislocation "scaffold") in the elastic field
of a moving dislocation (see, for example, the review of
Indenbom and Orlov^69^1). The resultant additional dissi-
pation by the vibrating segments is limited with the same
mechanisms as the direct dragging of the dislocation.
Therefore the corresponding increment to the drag co-
efficient should have the same temperature dependence
as the main term, and its role reduces to a renormaliza-
tion of the absolute value of the effect. Natsik and
Minenko'-70·1 carried out a quantitative estimate of this
effect and have shown that the renormalization can be
noticeable at reasonable densities of the dislocation
"scaffold."
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4. EXPERIMENTAL DATA ON THE DYNAMIC
DRAGGING OF DISLOCATIONS

To measure the dynamic dragging of dislocations, one
can use various methods based on the analysis of the
above-barrier motion of fast dislocations, on the deter-
mination of the damping of the dislocation segments that
oscillate between the pinning centers, and an estimate of
the macroscopic viscosity of the crystals that undergo
high-velocity plastic deformation.

a) Measurement of the mobility of individual disloca-
tions. A small number of fresh dislocations is introduced
(usually by local deformation of the sample) in a crystal
with low dislocation density and the path ΔΖ of the dis-
locations under the influence of a stress pulse of known
amplitude σ and duration At is observed. The initial and
final positions of the dislocations are usually obtained by
selective etching of the surface of the crystal before and
after application of the pulse. As a rule, the duration of
the pulse exceeds by several orders of magnitude the
characteristic time το ~ GbVBc2 of establishment of the
stationary motion of the dislocation, so that the meas-
ured values of Δ/ turn out to be proportional to At, and
their ratio ν = Al/At is a measure of the average velocity
of the dislocation at a given level σ of the external
stress. This method makes it possible to plot the mo-
bilities of individual dislocations for different crystals
in a wide range of velocities (see Figs. 1 and 2). At high
velocities the function ν(σ) is linear, and its slope char-
acterizes the level of the dynamic dragging of the dis-
locations and makes it possible to determine the value of
the dragging coefficient B:

(4.1)

dragging coefficient Β is usually determined from the
asymptotic form of the descending part of the Q'1(o>)
curve, which does not depend on L:

Urn (4.3)

In practice, the measurement accuracy is limited by the
considerable scatter (on the order of 30%) of the path
lengths of the dislocations, owing to the presence of in-
ternal stresses and various structural imperfections in
the crystal. Nonetheless, a direct determination of the
mobility of the dislocations is the most reliable method
of investigating the dynamic dragging, and it is precisely
this method that yielded the bulk of the hitherto accumu-
lated experimental material[ 7 1"8 6 ].

b) Amplitude-independent internal friction. When
high-frequency ultrasound (10e—10e Hz) is passed through
a crystal, an amplitude-independent internal friction is
observed. The frequency dependence of the damping has
a broad maximum that shifts towards lower frequencies
with increasing temperature. In this region, the inten-
sity of the internal friction is determined mainly by the
viscous losses that are produced when the dislocation
segments vibrate between the pinning points. According
to the theory of Granato and Lucke [β7ΐ, in which the dis-
location is regarded as a string with a certain constant
linear tension Τ ~ Gb2, which in turn is determined by
the linear energy of the dislocation, the dependence of
the amplitude-independent internal friction on the fre-
quency is described by the expression

(4.2)

where k is an orientational factor, p^ is the dislocation
density, L is the effective length of the segment,
Δο = 8Gb2/VT, and ω0 = Λ/ΒΐΛ The last relation en-
ables us in principle to determine Β from the position
of the maximum ω = ω0. Since, however, coo depends on
the length L and is therefore sensitive to the method
used to average the segments over the lengths, the

The dragging coefficient B was measured by this method
in a large number of crystals C19»88"10*], The accuracy of
the method is limited by the errors in the determination
of the dislocation density pd, which are usually apprecia-
ble.

c) High-velocity deformation. Another indirect me-
thod of determining the dragging coefficient of the dis-
locations is connected with macroscopic experiments on
the deformation of crystals at high velocities. The rate
of plastic deformation e can be expressed in terms of
the density p m of the mobile dislocations and in terms of
their average velocity v:

ε = bpmv. .. . .

To overcome the forces of the dynamic dragging of the
dislocations it is necessary to apply a stress

σΒ = -τ- = Β-ϊτ·. (4.5)

In some cases the contribution of σ β to the total resis-
tance of the crystal to plastic deformation can be estima-
ted from the dependence of the flow stress on the
deformation rate (in the general case this dependence
can be due also to the influence of the stress on the rate
at which the barriers are overcome). In particular, in
the case of deformation of crystals with high velocity
(e ^ 103 sec"1), when it can be assumed that all the bar-
riers are overcome without participation of thermal
fluctuations, the experimentally observed linear depend-
ence of the yield point on the deformation rate

°y=°o + *,l (4.6)

can be interpreted as a direct manifestation of the
dynamic dragging σ β = aoi, and one can estimate Β with
the aid of (4.5) and (4.6) from the value of a 0 and from
the density p m of the mobile dislocations [ 1 O 5 " l l o : i . This
method is apparently not very reliable, since only the
order of magnitude of p m is usually known.

Analogous estimates of Β can be obtained by reducing
the data on the energy dissipation in shock waves that
imitate deformation by explosion[U1]. In this case, how-
ever, considerable difficulties arise with the determina-
tion of the density of the mobile dislocations, since many
dislocation loops, which are not preserved after the load
is removed, take part in the energy dissipation.

One more method of investigating the dynamic mobility
of dislocations entails the measurement of the ranges of
the lines and of the slip bands under the influence of a
stress pulse of given durationC112"1153. Howeve-r, the re-
duction of the results obtained by this method calls for
special caution, since the leading dislocation is acted
upon not only by an external stress but also by high in-
ternal stresses due to the other pile-up dislocations. As
a result, the leading dislocation running away from the
dislocations that pursue it, moves in an alternating field
of stresses and consequently with variable velocity. This
question was considered in detail in an experimental
paper by Zaitsev and Nadgornyi ί1ίβ^.

Recently, after Indenbom and Estrin^117^1 have demon-
strated that not only the time of travel of the disloca-
tions between barriers, but also the time of the thermal-
fluctuation surmounting of the barriers is proportional to
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TABLE I. Measured values of the drag coefficient Β (millipoise) FIG. 9 FIG. 10

\ Crys-
\tal

Method\.

11

III

LiF

0 , 7 "

1,3 «9

0,34 91

NaCl

0 , 2 ' 2

0.3 82

0,16»

0,11 l»3

KC1

0,76 3

0,3519

0,48 ">'

ΚΒΓ

2,0'»

; i , 7 3 s

Cu

0 7 ? 6

0,17 81
0,21 83

0 , 1 -
—0,8 88
0,65 89
0,12 19
0 2 97
0 85 98

Λ1

0,26 i»
0,1984

2,0 9 2

1,793
3,1 »8

0 25 los
0,19-
- 0 , 3 " ο
0 , 6 ' »

Pb

0,3794

0,34 113

Zn

Basal

0.4080

Pyram-
idal

*> 5 75

i!o»«

Nb

0,17 100

Measurement methods: I—mobility of individual dislocations; II-amplitude-indepen-
dent internal friction; III—experiments on high-speed deformation of the crystals and
mobility of the slip bands.

iim/m

the dynamic dragging coefficient, new possibilities were
noted of analyzing the dynamic dragging by using macro-
scopic data, for example by using the influence of the
superconducting transition on the plastic properties of
metals.

Table I gives a summary of the main results of the
measurement of the dynamic dragging of dislocations in
various crystals, obtained by the methods listed above.
All the data pertain to room temperature. The relatively
large scatter of the values of Β measured in different
experiments on crystals of the same type may be due
both to the large level of the experimental errors (espec-
ially in the indirect methods) and to the physical non-
equivalence of the tested samples—for example, having
different dislocation—"scaffold" densities—and this, ac-
cording to [ 7 o : l (see Sec. d of Chap. 3) should affect the
level of the dynamic dragging of the dislocations.

The temperature dependence of the dragging coeffi-
cient Β was first measured in copper by Alers and
Thompson t88-1 by determining the amplitude-independent
internal friction. Analogous measurements were subse-
quently carried out by various
workers C 1 9 ' 9 0 ' 9 1 ' 9 3 ' 9 4 ' 9 7 " 1 0 5 ' 1 1 ^ 1 1 ^ on a number of other
crystals, mainly by indirect methods and on the basis of
the mobility of the slip bands. Unfortunately, these data
were not very reliable since, as a rule, the temperature
dependence of the dislocation density was not monitored
during the reduction of the experimental data, and the
principal difficulties of extracting information from ex-
periments on the dynamics of slip bands were already
mentioned by us before. In this connection, a particularly
important role was played by recent measurements of
the B(T) dependence in different crystals by direct me-
thods L79~86^. in principle, the explanation of the functional
B(T) dependence is a more serious criterion of the cor-
rectness and completeness of the theory than a simple
comparison of a numerical estimate of Β for one tem-
perature. In particular, it turned out that allowance for
the phonon wind, while giving the correct order of the
dynamic drag, does not make it possible to explain the
experimentally observed temperature dependence of B.
It is precisely this circumstance which stimulated the
search for new dissipation channels and revealed a
specific role of the "slow" phonons.

As shown in Sec. e of Chap. 2, at not too low tempera-
tures (T *£ Θ/10), any dislocation dragging is limited by

FIG. 9. Determination of the parameter Δ from the experimental

B(T) curve.

FIG. 10. Plot of f, (1) against the parameter β.

a superposition of three effects: thermoelastic losses,
phonon wind, and relaxation of "slow" phonons. The
thermoelastic losses may turn out to be significant only
at high temperatures Τ 2> ©, owing to their quadratic
dependence on the temperature (2.32). Unfortunately, at
the present time there are no reliable data on the high-
temperature dynamic mobility of the dislocations. To be
sure, Gektina and Lavrent'ev[·86-1 in a recent measure-
ment of the B(T) dependence for pyramidal dislocations
in zinc observed, at high temperatures, deviations from
linearity in the temperature dependence of B, which may
indicate a contribution of the thermoelastic component.
However, the excessively high level of the experimental
errors casts doubts on the reality of these deviations.

At low temperatures (Τ ^ ®/l0), where the flutter
effects should predominate (B & T3), and in metals,
where electron scattering should prevail1-118"121-1

(B = const) (see the note added in proof at the end of the
article), the temperature dependence of Β has also not
been investigated thoroughly in experiment. There are
only a number of partly contradictory data, obtained by
an indirect m e t h o d [ 8 8 ' 9 0 ) 9 7 ' 9 8 ' 1 0 1 ' 1 0 5 ] and data on the
mobility of the slip bands C1 1 2"1"]. Notice should also be
taken of a recent paper by Vreel and Jassby1-85-1, who in-
vestigated the low-temperature mobility of individual
dislocations in copper.

In the temperature region in which the bulk of the ex-
perimental material was obtained, the phonon slowing
down of dislocations is determined by the last two terms
of formula (2.30), which correspond to the contribution
of the phonon wind and to the relaxation of the "slow"
phonons:

In writing down (4.7), we took into consideration (2.21).
The functions fi(x) and f2(x) are given by (2.24) and (2.31),
while λ@ and ® s are phenomenological parameters to be
determined from experiment. The theoretical determina-
tion of λ@ and ® s calls for knowledge of the real phonon
spectra and of the real distortion field near the disloca-
tion core. In any case, it is obvious that owing to the
anisotropy of the phonon spectra each slip system for a
given type of dislocation should generally speaking be
characterized by its own parameters λ@ and ® s . We put
throughout, for simplicity, ®s = ©.

It is convenient to compare the temperature depend-
ence of the drag coefficient with experiment in terms of
the dimensionless coordinates B(T)/B(®) and T/®,

15 Sov. Phys.-Usp., Vol. 18, No. 1

Β (Τ)
β (θ)

V. I. Al'shitz and V. L. Indenbom

(4.8)

15



where Δ is a dimensionless parameter determined from
experiment by extrapolating to zero the temperature of
the high-temperature asymptotic form of B(T)/B(©),
which is usually linear in the temperature (Fig. 9); f2(l)
SB 0.92, the numerical value of f i(l) being determined by
the value of the parameter β = 2kDr0 (Fig. 10). To make
the use of formulas (4.7) and (4.8) convenient, Fig. 11
shows plots of the functions f!(x)/fi(l), f2(x), and
(l/x)f2(x). It should be borne in mind here that in the
scale used by us the curve fi(x)/fi(l) is practically in-
sensitive to the value of the parameter β. The reduction
of the experimental data should begin with the extraction
of the parameter β from the temperature dependence of
Β (Fig. 9). Then, choosing for r 0 a reasonable value (for
example W, r 0 « 3b), we calculate β, then fi(l), and fin-
ally the sought parameter λ@. Knowing λΘ, we can use
formula (4.7) to obtain the absolute value of Β at any
temperature. It must be borne in mind, however, that
the factor β/Τ of the function f2(T/@) in (4.7) and (4.8) is
an approximate notation for the quantity l/l@, which is
valid only at temperatures that are not too low (see foot-
note 4). A better estimate is l/l& « [C(®)/C(T)]K(T)/K(©),
and in those cases when there are no experimental data
on the temperature dependence of the lattice thermal
conductivity κ (for example, for metals) we can assume,
on the basis of the theoretical relation κ °° l/τ, that
/// « [C(®)/C(T)]©/T. Incidentally, the reduction of the
experimental data by formulas (4.7) and (4.8) in their
literal form, which is given below, seems to indicate that
the approximation lll% « ®/τ is perfectly satisfactory
in many cases.

Figures 12—14 show the results of a comparison of
the temperature dependence of B(T)/B(@) as given by
formula (4.8) with the experimental points for a number
of crystals. Table Π gives the values of the parameters
© and Δ, used to plot the theoretical curves. Unfortun-
ately, the possibility of comparing the absolute values of
B, calculated in accordance with formula (4.7), with the
measured values, are limited to a small number of crys-
tals, for which the values of the Murnaghan modulus η
are known. Of the five crystals listed in Table Π, the
modulus η was measured only for copper. According
ί ο [ 1 2 2 ] , n/G PB -33 for copper. The corresponding esti-
mates of the dragging coefficient for copper, in accord-
ance with formula (4.7) yields as Τ = 300°Κ a value
1.6 χ 10~12 poise, which agrees with the measured values
(see Table I). It should be noted that this agreement is
due to allowance for the relaxation of the elastic field of
the dislocation near the nucleus, i.e., to the replacement
of the function (2.20) by (2.24). An analogous estimate of

FIG. 11 FIG. 12

Illll/Htfii

0.1

FIG. 11. Plots of the functions f, (x)/f, (1), f2(x), and f2(x)/x.
FIG. 12. Comparison of the temperature dependence of B(T) by

formula (4.8) with the experimental points for an aluminum crystal
(from the data of ['»]).

FIG. 13. Comparison of the
temperature dependence of B(T)
as given by formula (4.8) with
the experimental points for an
NaCl crystal (from the data
of[ 8 2 ] ) .

em/sie;

i.o Τ/Θ

1.5 T/0

FIG. 14. Comparison of the temperature dependence of B(T) as
given by formula (4.2) with the experimental points for the crystals Zn,
Cu (from the data of [ 8 3 ] , and KC1 (from the data of [ M ]).

Β for copper, carried out in ̂  in accordance with
formulas of the type (2.19) and (2.20), has led to values
that exceed the observed quantities by more than one
order of magnitude.

On the whole, it can be stated that there is good
agreement between the theoretical and experimental
results on the magnitude and temperature dependence of
B(T). It is still necessary to investigate experimentally
in detail the low-temperature part of this dependence, so
as to reveal the contribution made to the dragging of the
dislocations by the flutter effect (in non-metallic crys-
tals) and by the electrons (in metals).

Another problem of interest, both theoretically and
experimentally, is the influence of impurities on the
dynamic dragging of dislocations. Unfortunately, only
uncoordinated data are available so far on the influence
of impurities. According to C 7 e : i , the dynamic mobility of
pyramidal dislocations in Zn is practically independent
of the impurity concentration. On the other hand, it was
shown in* 3 ' 8 2 3 that in the alkali-halide crystals KC1 and
NaCl one can discern the effect (albeit not a strong one)
of impurities on the damping constant B.

Using the internal-friction method, Kaneda[ 1 0 i : l separ-
ated the impurity contribution to the dragging coefficient
Β of copper doped with various concentrations of differ-
ent impurities. It turned out that the impurity increment
to Β does not depend on the ratio of the masses of the
impurity atoms to the matrix atom, is proportional to
Co 2 (Co is the impurity concentration), increases linearly
with increasing impurity non-correspondence parameter
e0, and reaches the same order of magnitude as the
dragging coefficient in pure copper only at high impurity
concentrations (Co ~ 0.1 at.% at e0 ~ 0.1). The impurity

TABLE II

Crystal

NaCl

KC1

Cu

Θ, °K

280

270

310

Λ

0,91

0,61

0,61

Crystal

Zn
(basic)

Al

Θ, °K

240

230

Δ

0,61

0,49

16 Sov. Phys.-Usp., Vol. 18, No. 1 V. I. Al'shitz and V. L. Indenbom 16



influence can be traced also at low temperatures and
cannot be attributed to the diffusion mechanisms, which
predict an exponential decrease of the effect with de-
creasing temperature. The other mechanisms mentioned
in Sec. d of Chap. 3 can likewise not explain the empiri-
cal relations obtained i n [ 1 0 ΐ : ΐ .

It appears that to solve this problem it will be neces-
sary to carry out new comprehensive experimental in-
vestigations of the dynamic mobility of dislocations in
various crystals, as functions of the content and type of
impurity at different temperatures, and also to under-
take new theoretical exploratory studies. In addition,
new investigations are needed to reveal the role of dis-
location "scaffold" in dynamic losses. Work in this
direction is already underway. One must mention the
recent experimental paper by Gektina, Lavrent'ev, and
Startsev^123-1, who have traced, in particular, the de-
pendence of viscous slowing down of dislocations in zinc
on the density of the "scaffold" dislocations.

Most phonon dissipation mechanisms lead, as we have
seen, to viscous slowing down of the dislocations. An
exception is radiation friction in the Peierls relief and
a number of impurity effects characterized by the non-
linear dependence of the deceleration on the velocity.
These exceptions, of interest in themselves, are however
difficult to observe. Indeed, as shown above, radiation
losses due to configuration oscillations of the dislocation
field can be separated against the background of phonon-
scattering processes only at near-sonic dislocation
velocities and at low temperatures. Dynamic effects of
the "dry friction" type would be observable only in pure
crystals with a relatively high Peierls relief at disloca-
tion velocities near the lower limit of the dynamic-veloc-
ity region, when the kinetic energy of the dislocation
becomes comparable with the Peierls energy. To reveal
these effects it is necessary to perform several experi-
ments which apparently are still a matter for the future.

5. CONCLUSION

At the present time there is no longer any doubt con-
cerning the role played by dynamic dragging in the mo-
bility of fast dislocations, vibrational motion of disloca-
tion segments between pinning centers, and processes of
thermal fluctuation surmounting of local barriers by
dislocation segments. For many crystals, experiment
yields rather reliable data on the dragging coefficient
and its dependence on the temperature, so that the theory
can be verified. The main debatable problems in the
theory of dynamic dragging of dislocations, with respect
to the order of magnitude, region of applicability, and
relative role of different mechanisms of phonon dragging,
have been clarified.

A unified analysis of the various dissipative-loss
channels points to a general hierarchy of the mechan-
isms of dynamic dragging of dislocations (Table III). The
main dragging mechanism is usually phonon wind, which
produces a linear temperature dependence of Β at tem-
peratures exceeding the Debye temperature and a rela-
tion Β oc τ 5 at Τ -C ©. The flutter is much less signifi-
cant at Τ <: ©, but at low temperatures its contribution
begins to prevail over the contribution of the phonon
wind, owing to the more abrupt decrease (like T3) with
temperature. The phonon viscosity, in contrast to
Mason's estimates, does not play any significant role in
dislocation dragging, but an analogous effect, the relaxa-
tion of "slow" phonons, does make a noticeable contribu-
tion to the dynamic dragging at high temperatures. Since

TABLE III

Slowing-down mechanism

Phonon wind
Flutter effect

Relaxation of "slow" phonons

Contribution of optical modes

Thermoelastic losses

Phonon viscosity

Raman scattering

Radiation friction

Temperature dependence
of effect

τ « Θ Ι τ 5 Ϊ Θ

75

J- < Γ Θ / Γ

Τ

Τ — θη/ Γ

Te

ΤΝχ

Τ
Τ

const

ΑΤ + Β

Τ'Ι

Γ-

τ

B/Bw (Τ ~ Θ)

1
- ί ο - '

~ 1

~ (θ^) < 4

- ί ο - '

\c I)

~ ΊΓ
"Ph

 r t h "Pb
 A

Β w V D w V

this contribution tends little on the temperature at
Τ <: ®, it exerts a decisive influence on the character of
the temperature dependence of the slowing down. The
thermoelastic losses are usually insignificant, but in in-
dividual cases they can become manifest at high tem-
peratures, owing to the quadratic dependence of the effect
on the temperature. The contribution of the optical
phonons, as a rule, is also small and can appear only
under special conditions (soft modes that are produced
in phase transitions, etc.).

The Peierls relief can appear both in the radiative
dragging of the dislocations and in the Raman scattering
of the phonons in the oscillating field of a dislocation.
The former effect may in principle turn out to be respon-
sible for the phenomenon of dry friction in the case of
slowly moving dislocations (and kinks). The latter effect
is significant in comparison with the phonon wind only
for crystals with a high Peierls relief (σρ/Ό <ϊ ΙΟ3).

Further refinement of the theoretical estimates calls
for a complete allowance for the anisotropy of the crys-
tal and for a consideration of concrete phonon spectra.
Such calculations are of particular interest in the case
when one can expect a noticeable anisotropy of the effect
and a sharp temperature dependence of the effect (for
example, near phase transitions). The launching of the
corresponding experimental research has by now become
quite timely.

The problem of the influence of irradiation and of
doping on the dynamic dragging of dislocations calls for
additional theoretical and experimental research. From
the presently available experimental data it is impossi-
ble to determine the causes of the observed disparity be-
tween experiment and theory.

A number of predictions of the theory are of great
physical interest, and undoubtedly are worthy of experi-
mental verification. These include the effects of the dry
friction, critical velocity, radiative dragging at near-
sonic velocities, excitation of local and quasilocal os-
cillation of impurity atoms, dragging by soft modes, and
low-temperature manifestation of the flutter contribution.
In view of the latest progress in the experimental and
experimental research of dynamic slowing down, there
are grounds for hoping that in the nearest future consid-
erable progress will be made with respect to all the
aforementioned topics.

In this review we confined ourselves to an analysis of
phonon mechanisms of dislocation dragging. The elec-
tronic mechanisms of slowing of dislocations in metals
are almost as numerous and varied (see the recently
published reveiw C 1 2 4 3) and the mechanisms of dynamic
dragging of kinks (see the review'*125-1).
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In conclusion, the author thanks I. M. Lif shitz and
M. I. Kaganov for useful discussions and valuable re-
marks, and also V. I. Startsev, Ε. Μ. Nadgornyi, and
F. F. Lavrent'ev for the opportunity of becoming ac-
quainted with new experimental data.

Note added in proof. As shown in a recent paper by Al'shitz [ 1 2 6 ] ,
in individual metals an important role may be played by the relaxation
of electrons belonging to flattened Fermi-surface sections normal to the
dislocation line. The corresponding dragging is proportional to the elec-
tric conductivity of the metal and increases with decreasing temperature.

"The attempt to solve this problem in [2 0] turned out to be incorrect,
as pointed out in [2S ].

2 )It is seen from (2.19) that at low temperatures we have Β <* c ' s . Usually
the velocity of the transverse phonons (ct) is much lower than the veloc-
ity of the longitudinal phonons (c;) and therefore the contribution of
the longitudinal phonons to the dragging is smaller by a factor of
2(c;/c()5 than that of the transverse phonons.

3 )It suffices in this case to know the asymptotic expressions presented
above for Vijki(<l< Ως) at large and small values of q, since the first
integral depends on the upper limits only logarithmically, and the
second is practically independent of the lower limit.

4)The phonon mean free path / can be estimated from the thermal dif-
fusivity χ = κ/C: / * 3x/c = 3/c/cC. Usually, starting with sufficiently
low temperatures (Τ ̂  β/10), the lattice thermal conductivity κ varies
in proportion to Τ"1, and the specific heat C depends little on the
temperature. This makes it possible to describe the temperature de-
pendence of/ by the relation /(T) * IQ Θ/Τ in the entire temperature
region in which the "slow" phonons are not "frozen out."

s)The calculation in [31] was carried out in a somewhat rougher approxi-
mation, with the same * ( y ) = const ~ 1 for screw and edge disloca-
tions.

6 ) Recognizing that the foregoing estimate of the flutter effect was ob-
tained without taking into account the specific contribution of the
dislocation core, we compare expressions (3.2) and (3.3) with the
formulas (2.19) and (2.20). The quantity T o which pertains to the
region of low temperatures, where the problem is not very sensitive to
the dimension of the dislocation core, is estimated more reliably than
the quantity d0.
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