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A review is presented of theoretical and experimental studies that have established the possible
existence of bound states of an electron or an exciton with an optical phonon (in semiconductors and
ionic crystals). These states arise near a threshold, above which emission of an optical phonon is
possible. The distinguishing features of bound states in which optical phonons participate is that they
are nonconserved particles. The stability of the bound states is therefore due to the fact that their
decay is forbidden by the energy and momentum conservation laws. Unlike virtual phonons of the
polaron “jacket,” the phonon in a bound state is “almost real.” The onset of bound states is aided
by strong electron-phonon interactions, by a strong magnetic field, by the large mass of the particle
that is bound to the phonon, and by the small dispersion of the phonons. A position intermediate
between bound states and ordinary polarons is occupied by hybrid states that are produced when the
phonon energy coincides with one of the transition energies in the phononless system; in these states,
the difference between the “real” and “virtual” phonons is lost. The existence of bound and hybrid

states becomes manifest in a number of physical phenomena, primarily in optical effects.
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INTRODUCTION The simplest argument favoring the assumption that

Research on the polaron effect in semiconductors
was devoted for a long time mainly to states close to
the ground energy level ¢, of the system. Calculations
were made of the lowering of the ground-state level of
the system as a result of electron-phonon interaction,
of the renormalization of the effective masses of the
electrons and excitons, of the polaron mobility, etc, The
present status of the research in this direction is re-
flected in the review!(!!,

At the same time, the character of states with energy
greatly exceeding €, has remained little investigated
until recently. This is due both to the specific difficul~
ties that arise in the theory and to the fact that for a
long time the available experimental data provided no
stimulus for a detailed theoretical study of any definite
section of the spectrum of the excited states. '

Yet, from general theoretical considerations, which
will be discussed later on, one should expect the appear-
ance of characteristic singularities in the electron
spectrum at energies close to the optical-phonon emis-
sion threshold. If the dispersion of the optical phonons
can be neglected, as will be assumed from now on, then
this threshold is located at € + wo, Where w, is the
phonon frequency. Therefore during the last six years,
when independent experiments were reported in which
singularities were observed near ¢, + wo in the spectra
of magnetopolarons!®®! excitons(*!, and impurity cen-
ters!®], the situation has changed radically. The near-
threshold singularities have become in recent years the
principal objects of investigation, and it is precisely in
this region that the most interesting results were ob-
tained.
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the spectrum can have a complicated structure near the
energy eo + wo consists in the following. When the sys-
tem energy is somewhat higher than €, + wo, there can
exist in the system, independently, an electron subsys-
tem (say a polaron), with an energy close to o, and a
‘‘real’’ phonon, It is therefore natural that states that
are produced somewhat lower than the threshold can
constitute weakly bound states of a phonon with an elec-
tron, It suffices here, for example, to draw the analogy
with the Wannier-Mott exciton.

In addition, there are general theoretical grounds for
the appearance of singularities near e, + wo, not con-
nected in any way with particular models. In fact, it is
well known!®! that the quantum-mechanical cross sec-
tions have singularities near reaction thresholds, and
reactions with phonon production are now exceptions.
To the contrary, inasmuch as the dispersion of the opti-
cal phonons is small, the threshold singularities in the
electron mass operator .# are enhanced, and this can
result in a complete restructuring of the spectrum near
the threshold.

Obviously, neglect of the optical-phonon dispersion is
justified only if phonons with small momenta play the
essential role. Then the theory pertains, strictly speak-
ing, only to large-radius electronic states, which are
described by the continual model. One can hope, how-
ever, that certain qualitative results of the theory re-
main in force also for systems that do not belong to
this class,

The first theoretical investigations of threshold
singularities were based on the single-phonon model, in
which only phononless and single-phonon states were
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taken into account. With the aid of this model it was pos-
sible to explain the cyclotron-resonance singularities
that occur at we ® wo (we is the cyclotron fre-
quency!™™®), to predict the existence of a new type of
local oscillations near impurity centers!'®), and also to
justify the assumption that exciton-phonon complexes
exist in the intermediate coupling!*!l,

It was observed at the same time that near the
threshold €, + wo, even in the case of weak electron-
phonon coupling, there exist in certain cases complexes,
namely states with an appreciable contribution of single-
phonon states, i.e., with an appreciable average number
(N} of phonons. We recall for comparison that near the
bottom of the spectrum e€,, the number of phonons in
the polaron ‘‘jacket’’ we have {(N) ~ a, where « is the
coupling constant. Among the complexes, we can dis-
tinguish between hybrid states, in which the contribu-
tions of the single-phonon and phononless states are
close, i.e., { N) ~ 7z, and bound states, in which the
contribution single-phonon states predominates, i.e.,
(N) = 1. Unlike the ‘‘proper polaron’’ state (as well as
magnetopolaron or exciton states etc.) containing a
small number of ‘‘virtual’’ phonons, bound states con-
tain one ‘‘almost real’’ phonon. Of course, from the
general theoretical point of view, the complexes can be
regarded simply as definite branches of the polaron
spectrum. The properties, however, are so unique that
it is more convenient to regard them as a separate
group of states.

The single-phonon model is most suitable for the
description of the resonant situation, when one of the
excitation energies of the electron subsystem is close
to wo (Fig. 1a). This situation can arise either when the
electron system has a discrete spectrum (electron in an
impurity center), or when it has in addition to the con-
tinuous spectrum also discrete quantum numbers (Lan-
dau electron, magnetoelectron), which also ensures the
presence of discrete frequencies. Obviously, the pres-
ence of a resonance enhances the electron-phonon in-
teraction effect. A typical result obtained with the aid
of the single-phonon model is that near the threshold
there are no more than two levels, in accordance with
the number of states taken into account in this model.

Further development of the theory has shown that the
spectrum near the threshold can actually be much
richer and can contain an infinite series of bound states
that condense towards the threshold. The existence of
such states is not connected in any way with resonance,

and can take place in the situations illustrated in Fig. lc.

These states were first observed for the polaron in
the limit of the adiabatic strong electron-phonon coup-
ling!'?}, where the single-phonon model is known to be
inapplicable. [n these states, the number of ‘‘almost
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FIG. 1. Three situations that can arise near the optical-phonon emis-
sion threshold [!%]. a) Resonant situation, with a discrete level of the
electron subsystem near the threshold; b) the threshold falls in the con-
tinuum of the electron subsystem; c) the electron subsystem has no levels
near the threshold.
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real’’ phonons is larger by one than for the polaron
states near the bottom of the band. There are no such
states for weak couplings!!%),

A study of the corrections to the single-phonon model
has shown that in a number of cases in the immediate
vicinity of the threshold this model is inapplicable even
in case of weak coupling!®**!, The single-phonon model
is equivalent to taking into account only the simplest
diagram for the mass operator .#. Yet near the thresh-
old the diagrams of higher orders increase progres-
sively and the perturbation-theory series for .4
diverzes. To find the spectrum in this region it is neces-
sary {0 sum an infinite sequence of diagrams for .4, or
equivalently, solve an integral equation for the electron-
phonon vertex I'l!*], When this procedure was carried
out explicitly for the magnetopolaron!'®! it turned out
that an infinite sequence of bound states of the electron
and phonon can exist below the threshold even in the
case of weak coupling.

We have assumed above and will assume throughout
that the widths of the electron and exciton band exceed
wo, as is the case in typical semiconductors. The for-
mation of bound states is then closely connected with
threshold phenomena. However, bound states (exciton
plus phonon, exciton plus magnon, two phonons, etc.)
arise also in systems where w, exceeds the band width,
namely in organic crystals, magnets, etc. A comparison
of systems of both types is given in!'"],

A distinguishing feature of complexes, including the
optical phonon, is that a nonconserved particle takes
part in them. Indeed, the Hamiltonian of the electron-~
phonon interaction is usually chosen to be linear in the
phonon amplitudes, and consequently does not conserve
the number of phonons, Therefore the stability of com-
plexes with respect to decay with vanishing of a phonon
is determined only by the energy and momentum con-
servation laws.

The general plan of the present review is the follow-
ing. In Chap. 2 we consider the single-phonon model,
and in Chap. 3 we present a general derivation of the
equation for I’ in the case of weak coupling. In the
succeeding chapters, the theory developed is applied to
particular systems and the experimental data are dis-
cussed in passing”. In those cases when the weak coup-
ling will do, the theory is based entirely on the general
approach developed in Chaps. 2 and 3.

1. ELECTRON-PHONON INTERACTION

The traditional form of the electron-phonon interac-
tion Hamiltonian is

CM:L=# Z cqei'"bq-l—a. c., (1.1)
q

where r is the electron coordinate, q is the phonon

momentum, by is the phonon annihilation operator, c

is the interaction matrix element, and V is the volume

of the system. The final results usually contain the

quantity

Bl = |egf’ (1.2)

which depends in the isotropic case only on the modulus
of q. For interaction with dispersionless optical pho-
nons, this quantity is conveniently represented in the
form

4nw

$(<I)=°‘T®(q)v po= "V Zmady, (1.3)
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where a is a dimensionless coupling constant and m is
the effective mass of the electron. The form factor

&(q) = 1—deformation interaction (DO interaction)
= p3/q®—~polarization interaction (PO inter-
action).

For the PO interaction, the value of a defined in
this manner coincides with the Froehlich value

(1.5)

where ko and ko are the high-frequency and low-fre-
quency dielectric constants. A distinction is made be-

tween the cases of weak (a « 1), intermediate (o ~ 1),
and strong (a > 1) coupling.

Sometimes .#¢], includes terms that are quadratic in
b and b"; so far, however, only the magnetopolaron
problem was considered with this type of interaction
(Cnap. 7).

2. SINGLE-PHONON MODEL

We consider a simple model in which a particle with
two branches of the bare spectrum E,(p) and Ex(p) in-
teract at zero temperature with optical phonons of fre-
quency wg (without dispersion), and the emission of a
phonon transfers the particle from one branch to the
other (Fig. 2). How does the upper branch 2 vary as a
result of this interaction?

We assume first that the interaction with the phonons
is weak. Then, in addition to the phononless states
¢s(p) (particle with momentum p on branch s =1, 2) it
suffices to consider the single-phonon state ¢g{p, q)

(q is the phonon momentum). The perturbed wave func-
tion for branch 2 is

P2 (P) 2 92 (p) + S éaTq),T_To‘_—%’fg)_qwai (P—q, 9, (2.1)
where 7,2 is the matrix element of the interaction (1.1),
and the'energy € = ¢(p) should be determined from the
equation

e — Ez (p) = o£° (ep), (2.2)
where
{ dd 2 ()2
oll®(ep) = ('-iz—:)a':_—mul_%%rl_m ’ (2.3)

We assume, as usual, that E,(p) reaches a minimum at
p =90, and we put E,(0)= €0 = 0. Then, if the energy ¢
is close to the threshold wy, then the denominator can
become small (at q =p). This is precisely why the
exact energy € in the denominator is not replaced by
the unperturbed energy Ex(p), i.e., Wigner-Brillouin
perturbation theory is used rather than Rayleigh-
Schrédinger theory.

In the region above the threshold (€ > wo) there is
no single-particle spectrum in the usual sense of the
word, and there is only a continuous spectrum of decay
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states. We confine ourselves therefore for the time
being to the region below the threshold (€ < we). In
this region, the probability of observing a phononless
state @2 when the system is in the quantum state y. is
_r a3 @ 21t
2w =1+ | s | == ||

e—0g—Ei(p— | Je=ew

(2.4)
=[1 — ofl® (ep)]"

In other words, the effective number of phonons partici-
pating in the production of y, is {N) =1 - Z,

e=e(p)’

Since the denominator in .#° can vanish, starting with
€ = wo, the quantity .#° as a function of ¢ becomes non-
analytic as € — wo. The character of this nonanalyticity
is determined by the behavior of the integrand at values
of q close to p. It follows therefore that the behavior of
4°(e) near the threshold is determined by the behavior
of E,(p) at p~0, i.e., by the spectrum at the bottom to
which the particle collapses after emitting the phonon,
and the behavior of ¥,2(q) at g = p, i.e., the interaction
with that phonon to which the particle transfers its mo-
mentum.

In a number of cases it is convenient to use a some-
what modified formulation of the problem, in which we
are interested in a definite state of branch 2 (e.g., p = 0),
but this state can be controlled with the aid of an ex-
ternal parameter, say a magnetic field H, Then E; and
#° will depend not on p but on H. Since E. usually in-
creases monotonically with increasing H as well as
with increasing p, everything said henceforth concern-
ing the dependence of the spectrum on p pertains
equally well to the dependence of the spectrum on H or
on some other external parameter,

If € is far from the threshold, then the right-hand
side of (2.2) is certainly small and, substituting € = E,
we obtain the usual polaron renormalization of the
spectrum, which is small in the weak-coupling case
considered here. This situation takes place in the initial
segment of the branch 2. On this segment Z(p)~ 1,
i.e., the states are practically phononless.

When the momentum approaches p,, the energy e
approaches w,, and the subsequent behavior of the
spectrum depends essentially on the character of the
nonanalyticity of .# °(¢ ) [**], We note that if one studies
the dependence of the spectrum on an external parame-
ter, then the approach to the threshold means an ap-
proach to resonance between the frequency of the pho-
non w, and the frequency of the transition in the spec-
trum E, - E,. In these cases, the threshold effects
become resonant,

Let us examine now several characteristic types of
nonanalyticity arising in real problems (Table I):

a) oA'(e) =— A+ B(a—e) —Clao—ef?+..., (25a)
b) MO(e) =— A+ Bl(oy—e)V*+ ..., (2.5b)
c) A0(e) = — A (@p—e) V24 ..., (2.5¢)
d) A (e) =— A(wg—e) 1+ ... (2.5d)

The quantities A, B, C in these equations are real; they
can be regarded as independent of p or H, since this
dependence usually does not affect the picture of the
spectrum near the threshold. Cases (a)—(c) correspond
to the dispersion laws shown in Fig. 2 by curves 1-3,
respectively.

In the case of strong nonanalyticity (curve 3), the
spectrum continues without limit into the region of
large momenta, and the energy ceases in practice to
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TABLE I. Classification of threshold phenomena by the character of

the nonanalyticity.

Char- Physical object P
fl ¢ -
n:‘,;::.:l. Branches of spectrum ; controlling Refer.
yticity 1 2 the spectrum ence
a Exciton (inter- Exciton Levels 2s,3s,... Position 11, 18
acting with level 1s of level
polarization 2 relative to
honons) level 1
b P Ditto Ditto Levels 2p,3p. ... Ditto n,1s
c Electron Polaron branch Momentum 19
b Exciton in Exciton Exciton Magnetic 20
strong magnetic under lowest under Landau field
field Landau band bandn=1
n=0. .
c Electron in Electron In Hectron in any Longitudinal o, 1
strong magnetic lowest Landau | Landau bandn=0,1] momentum
field bandn=0 ...whose bottom component
is lower than w,
Electron in Landau « | Magnetic 2,89
bandn=1 field
c Electron Polaron branch None 12
atp=0
(interacting
with
polarization
phonons).
c Exciton in Exciton branch Momentum L
one-dimensional
crystal
d Impurity center Electronic Excited Distance 10
ground level between
level levels

depend on p and is approximately equal to wo. This
phenomenon has been named pinning; one speaks of the
pinning of branch 2 to the branch 1 + phonon. We con-
sider now the structure of the states in the pinning
region, i.e., as € — wo. It is easily seen that in this
case Z — 0, i.e., the bare states ¢, take practically
no part in the formation of these states. The main con-
tribution to the integration with respect to q in (2.3) is
made by the region where E, = 0. This means that in the
pinning region the particle is at the bottom of band 1,
and therefore the energy and momentum of the state in
the pinning region are due practically entirely to the
phonon. The difference between the total energy w, of
the particle and the phonon and the energy of these
states can be interpreted as the binding energy. From
this point of view, the states in the pinning region are
bound states of the particle at the bottom of band 1 and
the phonon.

States with momenta close to p, are intermediate
between polaron states at the start of the branch and
bound states at the end of the branch. It is easy to
verify that for these states we have Z(po)=~ 72, i.e.,
these states contain phononless and single-phonon
states in equal amounts, We shall call states of this
type hybrid. In both hybrid and bound states there is a
noticeable participation of an almost ‘‘real’’ phonon. It
is therefore convenient to combine them into a common
concept— ‘‘particle + phonon’’ complex.

If we put A = awd?in (2.5¢), then a plays the role of

a dimensionless coupling constant, Wz can then show
that the hybrid states lie at a distance | € - wo|

~ o?’*wo from the threshold, and the bound states for
which Z <« 1 lie at a distance | € ~ wo| <« a¥*wo. Thus,
with increasing momentum we pass successively
through polaron states with { N) ~ @, hybrid states with
{N)= 7., and bound states with (N) =1,

In case (b) with the weaker nonanalyticity, the spec-
trum has an end point and approaches this end point
tangent to the straight line ¢ = w,, i.e., we likewise
have pinning, but less pronounced. Obviously, Z — 0 as
€ — wo, S0 that near the threshold we have again bound
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states, and hybrid states are located between the bound
states and the start of the branch. If we put B = awd?
in (2.5b), then the hybrid states are located at a distance
| € = wo| ~ @%wo from the threshold, and the bound
states at a distance |¢ - w,| « aw,. In the real situa-
tion, the threshold is always smeared out and if its
smearing is not too small, then cases (b) and (c) are
qualitatively close, since the farther part of branch 3
falls in the smearing region and does not come into

play.

Very weak nonanalyticity corresponds to the case
a). The spectrum has an end point which it approaches
with a finite slope. Obviously, Z ~1 everywhere, even
in the immediate vicinity of the threshold, i.e., there
are no hybrid states, and all the more no bound states
below the threshold in this case.

The possibility of introducing quasiparticles in the
region of the continuous spectrum near the threshold is
also connected with the degree of nonanalyticity. In
cases (a) and (b), when the spectrum has an end point,
this is possible, since the reciprocal lifetime of the
quasiparticle I'(e)=Im .#%¢) —~ 0 as € — wo. In
case {c) we have I'(¢) —= as € — w,, and therefore
there are no quasiparticles directly beyond the thresh-
old. We note also that owing to the interaction with the
phonons the bottom of branch 1 shifts downward; this
leads to a renormalization of the position of the thresh-
old, but does not influence the qualitative picture of the
spectrum.

Case (d), corresponding to impurity centers, occu-
pies a somewhat singular position. Neither E,nor E;
depends on p; since the spectrum is discrete, there is
no continuum at ¢ > wo, and undamped states exist both
below and above the threshold (Fig. 3). In this case
there is likewise pinning as a function of the position of
the level E: relative to E, = 0.

3. THRESHOLD APPROXIMATION
The quantity .#° defined by formula (2.3) is a mass
operator calculated in the lowest order in the interac-
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FIG. 3. Variation of impurity-center
spectrum in interaction with optical pho-
nons; it is assumed that E, = 0.
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FIG. 4. Sequence of electron-mass-operator diagrams, which plays an
important role in the threshold approximation.
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tion (simplest diagram in Fig. 4). To estimate the
limits of applicability of the single-phonon model it is
necessary to calculate the contributions from the next
higher orders of perturbation theory. Direct calcula-
tion shows that if .#°(e) increases without limit as

€ — wo (cases (c)and (d)), then the contributions from
the next higher orders increase even more rapidly as

€ — wo, and the rate of growth increases with the order
of the contribution. The diagrams that are significant in
circumstances of this type were separated by Pitaev-
skii %); it was shown that the dangerous sections of the
diagrams in the near-threshold region are those in
which the decay process is almost real. Near the
threshold with emission of an optical phonon, the dan-
gerous sections are those along one electron and one
phonon line. The separation of the dangerous cross sec-
tions leads to an equation for the vertex I', which is
shown for the considered case in Fig. 5. In this figure,
the solid and dashed lines correspond to the Green’s
functions G and D of the electron and phonon, respec-
tively; 7 is the bare vertex determined from the Hamil-
tonian (1.1); the shaded rectangle A is compact, i.e., it
has no dangerous sections. If we find I', then we can
calculate .# with the aid of the Dyson equation (Fig. 6).

It is assumed henceforth that the system is at zero
temperature and that the electron concentration is
vanishingly small, By virtue of the latter circumstance,
we can neglect the renormalization of D in all the in-
ternal lines, and assume

D (oq) = !

1
©0—wg+10  0Ffwp—i0

3.1)

For the same reason, all the G are retarded. This en-
ables us to integrate with respect to the energy parame-
ters w!"! in all the diagrams, using the relation
+oo
{ 52D @a) F (@) = F (00 —i0), (3.2)
where F(w) is analytic at Im w < 0. This means that
in all G it is necessary to replace all the w by wo, and
that the internal phonon line corresponds only to inte-
gration with respect to q.
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We consider first the representation of .# shown in
Fig. 6, where v is the set of the quantum numbers of
the electrons, ¢ is its energy parameter, and Q denotes
the set of those phonon-momentum components q which
are not determined from the quantum numbers of the
electrons by the conservation laws at the vertex. Obvi-
ously,

Hva(®) = | 5 | d0ve< (@) G5 (e—00) T, (65 Q). (3.3)
If ¢ lies near the threshold, then ¢ — wo lies near the
bottom of the spectrum, where perturbation theory is
applicable. Therefore, if we are not interested in the
renormalization of the threshold due to the renormali-
zation of the bottom, then we can replace the energy G
by the free energy:

6% (e — wo) = (e — w0 — Eg -+ i0)%, (3.4)

where Ej is the spectrum of the free electrons. Let
v = 0 correspond to the ground state, and let again E,
= 0. We then see that when ¢ is close to the threshold
wo the value of Gy as a function of 7 is large when v
is close to zero. Under these conditions we can take ¥
and T outside the integral with respect to v at v = 0.
This actually means that we assume that the vertices
are analytic in v, an assumption that holds true in most
cases of interest. For 7 this can be verified directly,
and for I this can be checked after I' is determined.
We can therefore write

My (&) == A (e) { dQi%0(Q) Tow (5 Q),

o

(3.5)

where

Ae) = S VG (£ — o). (3.6)
Since .#° is obtained from .# by replacing [ by 7, we
see therefore that A(e) and .#% e) exhibit an identical
behavior as € — wo. It is also easily seen that the
singularities of these quantities are connected with the
behavior of the density of states p(e€) at the bottom of
the spectrum since Im A(e) < p(€ = wo).

By exactly the same reasoning, we can transform
the equation of Fig. 5 for the sought I'g, into

Tou (65 Q) 7oy (Q+A () | d0on (60, D) Tov (e, @) (3.7)

The quantity A has no dangerous cross sections and is
therefore regular near the threshold; we can put for it
€ = wo, and calculate it in the case of weak coupling by
perturbation theory. If we confine ourselves to the
simplest diagram for A, shown in Fig. 7, then the solu-
tion of (3.7) is equivalent, after substituting I" in (3.5),
to summation of the series shown in Fig. 4.

The derivation of (3.7) is in a certain sense sche-
matic. Thus, it was assumed that the level v = 0 is not
degenerate and that 7o, (Q) has no singularities. These
limitations can be easily lifted by modifying the deriva-~
tion for each particular case. For example, such a
generalization was carried out inl1%! for the case of a
singularity in 7, as applied to a polaron with p = 0.
The only important circumstance is that the integration
is always carried out only with respect to those vari-
ables which do not influence the total energy of the
electron and the phonon in the dangerous cross section,

Equation (3.7) is an integral equation for I' with
kernel A and with parameter A. Although the kernel is
small, A « ¥* « @, this smallness can be offset by the
large value of A near the threshold. If A is bounded or
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if € is sufficiently far from the threshold, then the
equation can be iterated; this corresponds to expansion
of .4 in powers of a. On the other hand, if A is not
bounded and we are interested in the immediate vicinity
of the threshold, then the equation must be solved with-
out resorting to iteration.

This was done for the magnetopolaron{'®) and for the
impurity center!®). In both cases there exists an infinite
sequence of levels condensing to the threshold and de-
scribing bound states of the electron and phonon. The
richness of the near-threshold energy spectrum is
directly connected with the richness of the spectrum of
the corresponding integral equation for I'.

It is appropriate to note here that the equation used
in®*®) for I' was algebraic and not integral, and there-
fore did not lead to a rich near-threshold spectrum.
The integral character of the equation for I' is con-
nected with the fact that the optical phonon has a negli-
bly small dispersion, Therefore the energy in the
dangerous section does not depend on Q, and states with
all Q are near-threshold and the integration with re-
spect to them is conserved.

The connection between the energy spectrum and the
spectrum of the integral equation becomes most pro-
nounced when the equation for the electron-phonon scat-
tering amplitude T is considered (Fig. 8). This equa-
tion can be obtained literally in the same manner as the
equation for I':

Toy (g5 Q) Q) =T (@ Q)

+ A | 00w (@ O Tw (e Q0 Q).
The kernel OO of this equation is connected with the
kernel A of the equation for I by the relation of Fig. 9.
It is seen from (3.8) that T is the resolvent of the
kernel [J; there T has a singularity when A(¢) coin-
cides with one of the eigenvalues of the kernel A,. This
means that the equation

A(e) = Ar

(3.8)

(3.9)

determines the spectrum of the two-particle bound
states of the electron and phonon, It is appropriate to
note here that since the phonon is a non-conserved
quantity, the spectra of the single-phonon Green’s func-
tion G and of the two-particle function K = KD + GDTGD
coincide!®], This is obvious from the fact that K con-
tains the diagrams shown in Fig. 10a, while G contains
the diagrams shown in Fig. 10b,
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FIG. 10. Diagrams illustrating the agreement of the spectra of the
single-particle (electron) and two-particle (electron + phonon) Green’s
function.

Vv

FIG. 11. Diagram illustrating the presence of ¥y I
electron-spectrum excitation energies in the P W
phonon Green’s function spectrum.

Ve

Since the number of phonons is not conserved, the
poles of D and G are also interrelated. This relation
can be easily established from the form of the phonon
polarization operator # (Fig. 11). It differs from zero
only if one G-function in the loop is retarded, as usual,
and the other is advanced and therefore proportional to
the number of electrons, Integrating in .# with respect
to the electron frequency, we can easily see that all the
singularities in # are situated at the frequencies
w = €yy’ = €, — €,', which are the excitation frequen-
cies in the renormalized electron spectrum. As a result
all the poles of D which are connected with the electron-
phonon interaction have residues proportional to the
electron concentration and located at the frequencies
€y’ - Therefore the electron-excitation spectrum can
be determined equally well from the function D and
interpreted as the perturbed phonon spectrum.

In conclusion we indicate a criterion that enables us
to neglect the dispersion of the optical phonons, which
can usually be expressed in the form

2

= (3.10)

g == 2u

where u is of the order of the geometric mean of the
electron and nuclear masses. The essential values of
q are determined by the nonlocality radii of the kernels
of Egs. (3.7) and (3.8); they turn out to be of the order
of the reciprocal of the dimension a of the electron
state interacting with the phonons. The phonon disper-
sion can be disregarded if the phonon ‘‘kinetic energy”’
Awq ™~ 1pa® is much smaller than the energy scale of
the spectral fine structure resulting from the electron-
phonon interaction. Explicit estimates will be given in
the analysis of particular systems. Analogous consider-
ations apply also to the uncertainty, due to the finite
lifetime of the phonon, in the phonon energy 7.

4. POLARON SPECTRUM

We start with the simplest system, the polaron, i.e.,
an electron interacting with polarization phonons.

a) Weak coupling—threshold singularity. It is obvious
that here E,(p) = Eo(p) = p>/2m and calculation of . #°
in accord with (2.3) with allowance for {1.3) and (1.4b)
yields?

0 . P p? -
oM (£p) = —awy > arctg[———J .

2m (wg—¢)

(a.1)

At p~ po and € — w, we obtain the relation (2.5)
with

E
A =awg 5,

el
5 B awnlf.

4.2)

Since .#° remains finite, the character of the spectrum
is determined completely even in this order of perturba-
tion theory. The spectrum has an end point, near which
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weak pinning with tangency takes place (Fig. 2, curve
2)**1, Since the total momentum of the system is con-
gserved, states with definite values of the momentum
should be marked on schemes of the type of Fig. 1; in
view of this remark, it is easily understood that we are
dealing here with the case of Fig. la.

To the contrary, as € — wo states with p = 0 cor-
respond to the case of Fig. 1c. Here 4 °« (wo - €)%,
and it is necessary to sum the entire chain of Fig. 4.
This leads to

ol = —amg (]/1 —%—a)hl,

and the equation for the determination of the spectrum
€ =.4(€) has a root ¢ = ¢, that coincides exactly with
the threshold. Therefore in this approximation, which
corresponds to a binding-energy scale, W ~ a“wg, there
are no bound states, as indicated inl'?],

4.3)

This does not exclude in principle the possibility of
formation of states with W having a higher order of
smallness in a, but corresponds to allowance of dia-
grams of higher order in the irreducible four-point
diagram in comparison with Fig. 4. This therefore calls
for a more complete analysis, which was carried out by
Matulis!*® using a generalized threshold technique for
the calculation of # and I' and the Ward identity. The
result has shown that the general structure of .# and
T near the threshold remains the same as for the chain
of Fig. 4 in a finite interval of values of a (in any case
at « £ 0.26), and that there are no bound states in this
entire interval,

The singularities in the interband absorption spectra,
to which the variation of the spectrum near the end
point p = p, should lead, were discussed in'®***"), How-
ever, in these papers they ignored the Coulomb attrac-
tion of the electron and hole, which is of decisive sig-
nificance; we shall therefore not discuss these singu-
larities in greater detail.

b) Strong coupling—bound states. In the case of
strong coupling, a polaron with p ~ 0 is an electron
situated at a discrete level (with Eo~ -0.320%0,) in
the field of the self-consistent polarization of the lattice;
the effective mass of the polaron is m* ~ 2.3 x 107%*

X m!?*%°2 1 The binding energy of any complex including
a phonon should, naturally, be lower than wo. Since the
scale of the electron energies is o’wo > wo, the bound
states are more conveniently sought by using the phonon
spectrum of a polaron-containing crystal (see the end
of Chap. 3). At a » 1, according to Pekar(*!], the
lattice vibrations can be described classically, and the
state of the electron follows the ions adiabatically.
Therefore the equation that determines the spectrum of
the phonon frequencies in the crystal in the presence of
a polaron is easiest to obtain semiclassically, by con-
sidering the polarization of the electron cloud in the
lattice-polarization field. Since m* « o' is still large,
the recoil of the polaron following emission of a phonon
can be neglected; the bound states of the polaron and
the phonon then acquire the meaning of local vibrations
of the lattice near the polaron., The same equation is
contained also in the quantum adiabatic theory of the
polaront®®1,

As applied to a polaron at rest, the equation for the
electric potential ¢ of the lattice polarization corre-
sponding to oscillations with frequency w is
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(@2 — %) Ag (1) = — Snoialv Sdar: Z Yo (r) \I>nl(€r) E;ES:') i () o (),
>0 "

(4.4)
where y, and Ep(n > 0) pertain to excited levels of the
Hamiltonian #, describing the ;electron in the polariza-
tion well corresponding to the ground state of the
polaron (with electron function o). Equation (4.4) is
inconvenient because the kernel includes all the y,. The
situation changes, however, if we go over from (4.4) to
the corresponding extremal principle and introduce in
place of ¢ a new function f in accordance with

$o@ = (o — Eo) Pyf. 4.5)

This is possible, inasmuch as the quantity ¢ deter-
mined from (4.4) contains an arbitrary additive constant,
We ultimately obtain for the determination of ¢ the fol-
lowing equation!*?]

of —w? .
16nwf ma,).,{

§ dory} (V)2 }

§ d3r (¥ (Af +29/7 In yo))2 (4.6)

All the lengths on the right—hand side of (4.6) are ex-
pressed in units of (2ma*w,)™ 2, and since all the
parameters have been left out the relative binding ener-
gies W/ wo = (wo — w)/we are universal,

It is interesting that in (4.6) the entire information
concerning the electronic spectrum of the polaron re-
duces to a single function y,, which can be obtained
with high accuracy. Since y, is spherically symmetrical
and the right-hand side of (4.6) is positive-definite,
there exist extremals of f with all value of the angular
momentum ; consequently, there exists an infinite num-
ber of eigenvalues wr <wo. For the lower levels, an
estimate yields Wy = wo = wr ® (0.10—0.15) wo.

Inasmuch as all these states lie under the threshold
and Wy is much smaller than w, (to be sure, the
smallness is here numerical and not literal), they can
be naturally interpreted as bound states of a polaron
and a phonon. If account is taken of the dependence of
their energy on the total momentum p of the system
then we arrive at the conclusion that, at least near
p = 0, new branches of the spectrum are produced and
constitute lower excited states of the polaron. Since
| Eo| » wo, multiple frequencies swr should be observed
in the spectrum;at s > 1, however, they are damped.

The experimental consequences of the existence of a
bound-state spectrum have not yet been investigated.
Therefore, although the bound states should apparently
greatly influence a number of kinetic phenomena, all
that can be stated at present with assurance is that a
system of satellites is produced near the fundamental
lattice-absorption and Raman-scattering bands,

Comparing the results on weak and strong coupling,
we arrive at the conclusion that the first bound state
should occur at a certain ap, the value of which, how-
ever remains unknown so far. In the crystals experi-
mentally investigated to date, o < 3. It is therefore of
great interest whether a¢ falls in this region. The
available preliminary estimates give grounds for hoping
that this is the case and ac =1 (or even <1;cf.[**]),

5. IMPURITY CENTERS

We consider now the problem of the impurity center,
i.e., an electron situated on a local level in the field of
the defect and interacting with the phonons. Owing to
the electron-phonon interaction near the center, the
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spectrum of the phonons is perturbed and this can give
rise to localized electron plus phonon bound states,
which in another language can be described as a special
type of local phonon modes. Their appearance has
nothing in common with the usual mechanism of local-
mode formation (which are connected with the mass
differences and also with the changes in the rigidities
of the couplings as a result of changes in the configura-
tions of valence electrons) and is due entirely to the
interaction between the weakly-bound impurity electron
and the phonons. They are called dielectric modes. De-
pending on the relation between wo, and the ionization
potential R of the center, the situation can be either
resonant or nonresonant. In weak coupling, this problem
can be analyzed in general form'®!}, so that it is possi-
ble to trace the transition between different limiting
cases, The experimental data obtained by now confirm
convincingly the existence of dielectric modes.

a) Hybrid and bound states. We assume henceforth
only that the ground state of the center is not degener-
ate, and in all other respects the model of the center is
arbitrary.

Calculation of #° in accordance with {2.3) leads to
(2.5d), i.e., it is necessary to sum the series of Fig. 4.
The situation is much more complicated than with the
polaron and the magnetopolaron (cf, Chaps. 4 and 7),
because .4 and I’ are not diagonal in the quantum num-
bers of the electronic levels. However, because of the
unique circumstance that the spectrum of the electron
subsystem is discrete, the standard equation (3.7) for
T" can be reduced to an equation that determines .#
directly.

This equation is
M (e) = (6 — wg — Eq) A1—G° (& — 2aq)s (5.1)
where

Ay= S (;—:3, Y20 () Your (—)- (5.2)

The subscripts s and s’ in the vertices 7gs’(q) num-
ber all the electronic levels of the center; s = 0 corre-
sponds to the ground level.

It can be shown that the usual equation for the poles
of G

Det Jlo#-t — gojj = ¢ (5.3)
together with (5.1) leads to the equation!®*]
Det “ Au’_'su'W(Es—mO‘i—W)%E—' =0 (s 8'=1,2,...,00) (5'4)

In (5.4), Eg is the excitation energy of the center
(henceforth Eq =0),and W = w, - € is the binding en-
ergy of the complex, which will be referred to here as
the binding energy of the phonon. We emphasize that we
have excluded here the values s, s’ = 0.

Using the general equation (5.4), it is convenient to
consider limiting cases. If the system is close to
regonance, Eg ® w, (Fig. la), or more accurately if

| Es — 0l AE, (5.5)

where AE is the characteristic distance between the
electron levels, then it suffices to use a two-level
scheme, i.e., to take into account only one excited level.
Then (5.4) reduces to

Agg = W(E, — g + W), (5.6)
which coincides with the equation obtained by Kogan and

899 Sov. Phys.-Usp., Vol. 16, No. 6, May-June 1974

Hybrid states

FIG. 12. Hybrid and bound state for an
impurity center in a two-level scheme (it is
assumed that E, = 0).

1y

Bound states
@ L

FIG. 13. Level scheme of impurity

center under nonresonant conditions. &
Left—electronic levels, right—levels of the = 1
bound states of the phonon with the cen- z—fw
ter (frequencies of local modes). The fig- &
ures shows the case when one electron wy
frequency E; < wq.

ty=1

Sirus in*) in which dielectric modes were predicted.
Equation (5.6) is equivalent to the single-phonon ap-
proximation, as is in general typical of the resonant
situation. For the PO interaction we have Agg

~ awo( Rwo)l/z-

In the immediate vicinity of the resonance we have

W AY2,  ecnu |E,—op| € AY2 (5.7a)
At a certain distance from resonance we have
W Agy/(Exy—wp),  coms A:,’2<<|E,—-mol- (5.7b)

At resonance we have { N) = 7, for both modes, i.e.,
hybrid states are produced. With increasing distance
from resonance {on going from (5.7a) to (5.7b)), we
have N — 1 for the level (5.7b) remaining near wo; a
bound state is therefore produced. The second root
w = Eg corresponds to a state with {N) ~ a. The
course of the levels near resonance is shown schemat-
ically in Fig, 12. We emphasize that we have here
bound states with both W > 0 and W < 0, this being a
consequence of the discrete character of the electronic
spectrum in the absence of dispersion of the phonon
frequencies.

Outside the narrow interval (5.7a), Eq. (5.4) takes on
the simpler form
E?—o}

S, (5.8)

DetH A8, W H»:o (5, 8'=1, 2, ..., oo);
it describes the situation of Fig. 1c. The quantity W
enters in this equation linearly and therefore (5.8) can
be easily investigated by the usual algebraic methods.
If all Eg > wo, then all W > 0. If there are several Eg
< wo, then we get as many roots W < 0. For centrally-
symmetrical centers there exists states corresponding
to all values of the angular momentum, It is very im-
portant that each value of the angular momentum corre-
sponds to an infinite number of different W.*. The
level scheme is shown in Fig. 13.

Equation (5.8), while convenient for a qualitative as-
sessment, is inconvenient for a quantitative determina-
tion of W. We can return however, to the configuration

representation/® *1; then (5.8) is transformed into
24 (#— Eq) =W [(Ho—~ Eo)>— 0l , (5.9)

where #, is the Hamiltonian of the electron at the
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center without the interaction with the phonons, and the
integral operator is

A =0V =) 4o (), ViD= [ gl e P (5.10)

For interaction with polarization phonons we have

V=S8 (5.11)
2%
An estimate of the binding energy yields for this
case

(5.12)

The factors by can be determined from (5.9) by a vari-
ational method; br & 0.1 for the lower levels. It is of
interest that at fixed xo/ Kk« the binding energy is inde-
pendent of R,

Wp = bring [(%o/ %) — 1] = brawe (we/ R)V.

b) Experimental investigation of dielectric modes, It
appears that the influence of resonant interaction with
phonons on the impurity-electron spectrum was first
investigated for Bi donors in Si. Onton et al./! have
proposed that the anonomously large width of one of the
bands in the donor spectrum is due to resonant interac-
action with TO(100) phonons, and have shown experi-
mentally that uniaxial deformation causes the band to
split in two, with one of the components becoming nar-
row rapidly, These results can be easily understood if
it is recognized that, owing to the finite dispersion of
the phonons, the dielectric mode is produced only at a
definite ratio of wo to the excitation energy of the spec-
trum. Analogous data are available for Ga in Si{** and
Te in AlSb[*],

Dielectric modes were observed under nonresonant
conditions by Dean et al.l*"! for the donors S, Te, Si,
and Sn in GaP. The excitation energy ranges from 58
to 94 meV at wo = 50 meV; the following binding energy
is W~ 1 meV, It was of particular interest that modes
with different symmetnes were separated. It was
shown theoretically in{*®] that p-modes should pre-
dominate in Raman scattering, and these modes were
obtained experimentally for all impurities. At the same
time, s-modes were found in the phonon satellites of
the emission bands of impurity excitons; additional
weak satellites were ascribed to d-modes.

An even richer spectrum of bound states of phonons
was observed in the emission spectrum of impurity ex-
citons in CdS'*®! and is shown in Fig. 14. For the ac-
ceptors to which the excitons are bound we have
R =~ 4w,, i.e., the system is very far from resonance.
Although the authors of!*! have classified the observed
modes as being of the s, p, and d type, the parity selec-
tion rules predict predominance of modes with even
angular momenta; it is possible that only s-type modes
are present in the spectrum of Fig, 14, It is important
to note that owing to the negative dispersion of the pho-
nons the levels of the bound states are superimposed on
the spectrum of the short-wave phonons; consequently
the bound states are metastable. It is therefore of
special interest that although the density of the phonon
spectrum in the region of the bound states is large (this
pertains in particular to the lower level), nevertheless
the bands corresponding to bound states are narrow and
are distinctly seen,

The luminescence spectrum of impurity excitons
bound to neutral donors was recently observed also in
CdS and CdSe [*], For donors we have R < wo, S0 that
strictly speaking no bound states exist. Nonetheless, a
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T=12°A
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FIG. 14. Phonon satellites in the
luminescent spectra of impurity exci-
tons in CdS (from [*%}). The high in-
tensity band on the right corresponds
to the lattice phonons, and the remain-
ing bands to bound states of the pho-
non.
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distinct structure has been observed in the spectra, and
seems to indicate that the resultant states have consid-
erable lifetimes.

Thus, dielectric modes have already been observed
in the resona.nt["] intermediate!™), and nonresonant*"»**]
gituations. The1r main properties agree well with
theory. Inl*™®+%] they obtained also satisfactory quanti-
tative agreement between the theoretical and experi-
mental values of W; this agreement, however, should
not be regarded as too significant, since it seems to be
the result of the fact that the errors connected with the
use of the two-level approximation and the simplified
model of the center cancel each other to a considerable
degree.

6. EXCITON-PHONON COMPLEXES

The next system in order of complexity is the exci-
ton, in which, in comparison with the impurity center,
a new parameter appears, namely the mass of the hole.
The physical difference is connected mainly in the fact
that owing to the finite mass the exciton experiences
recoil when it emits a phonon, as a result of which the
divergence (2.5d) gives way to the much weaker singu-
larities (2.5a) and (2.5b).

The interest in the exciton-phonon complexes was
aroused by the experimental data of Liang and Yoffe!*],
They observed in the exciton-absorption spectrum of
ZnO, where the situation corresponds to Fig. 1b, an
absorption maximum near the phonon emission thresh-
old, and ascribed it to a ‘‘complex.’’ The spectra of a
number of other crystals were subsequently investigated
from analogous points of view.

We consider below the main theoretical premises
concerning the conditions for the formation of exciton-
phonon complexes and discuss the experimental data
briefly from this point of view. Unfortunately, the in-
terpretation of the data on exciton-phonon complexes is
still highly preliminary.

a) Discrete spectrum in the resonance situation. We
consider first the resonance situation (Fig. 1a) and con-
fine ourselves to the results that can be obtained in ac-
cordance with standard perturbation theory in the single-
phonon approximation, Separating the motioa of the
center of gravity of the electron and confining ourselves
to states with total momentum P =0, we obtain for the
interaction with the polarization phonons, in place of
(2.3),

e ID G ls
iy (E):‘S 2n)3 A )Z e—FE —?mo—(qz;lZM)-f-‘O’

(6.1)
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where

pq(r)=exp(i'"T}qr)—exp(—l——qr) M=m+my; (6.2)
m; and m; are the masses of the electron and hole;
the subscript s labels the Coulomb levels. The pres-
ence of the term q%/2M in the denominator eliminates
the divergence, We can therefore confine ourselves to
the single-phonon approximation. The threshold behav-
ior of .#° is determined by the behavior of

(s|pqls’) as q — 0. This gives rise to two possibili-
ties, depending on whether the matrix element

_ {s|r|s’') is different from zero for the pair of states
s and s’ for which |Eg - Eg' | = w,.

If it differs from zero (for example, a pair of states
of the s and p type), then we obtain (2.5b) with

A~am—%-mo, B~ap (%)a/zmé/z; (6-3)
here oy was calculated in accordance with (1.5) for
the reduced mass m. Therefore, according to Chap. 3,
exciton-phonon complexes and pinning arise in this
case; the picture is graphically described by curve 2

of Fig. 2L, At the threshold we have Z — 0 in accord-
ance with (1 5), and the probability of exciton absorp-
tion vanishes.

If (s|r|s’) =0 (for example, both states are of the
s-type), then we arrive at (2.5a) with

A 5/2
A~a,,.—1-mo,B~<z,..(M) C~ m(%’ wg 2.

(6.4)
Consequently, no complexes are produced if o is small
enough, there is no pinning (curve 1 of Fig. 2), and the
absorption probability varies slightly near the thresh-
0ld™*®!, Beyond the threshold, weak damping propor-
tionalto (e — wo ~ Eg)¥?is produced and the state s’
can be regarded as quasistationary.

It is very important that the factor M/m is contained
in (6.4) in all the increasing powers, If M/m » 1, then
it is possible to have B ~ 1 even in the region where
the usual weak-coupling criteria are satisfied for both
particles (am << 1, aM =am (M/m)l/2 <« 1), The con-
tribution of the phononless states at the threshold
Z =~ (1 + B)™! is then noticeably smaller than unity, i.e.,
complexes are produced. Consequently, the weak-coup-
ling criterion is violated early at M/m > 1, and the
theory should be generalized. This was done by a varia-
tional method by Toyozawa and Hermanson''»*°! who
constructed for the 2s state a single-phonon approxima-
tion variant in which account was taken of the ground-
state virtual phonons; the greatest changes appear in
the dependence of the intensity of the exciton absorption
on Eg’ - Eg, which becomes nonmonotonic. A generali-
zation to the case of the p-states is given inl*!],

In the limit as M/m — = the properties of the exci-
ton become identical with the properties of the impurity
center, and in this case (Chap. 5) a system of bound
states arises also off resonance (the situation of Fig.
1c). It is therefore natural to assume that at M/m » 1
they should occur also for excitons. Although there is
still no systematic theory, an estimate based on allow-
ance for the recoil leads to the following criterion for
the formation of nonresonant bound states®;

———601’:’ =, (6.5)

which is stringent, but not excessively so.
In the crystals BeQ[*’] MgO"*%**] and AgBr(*-*®
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FIG. 15. Exciton-absorption spec-
trum of CdTe at 77° K in accordance L
with [%°] (2) and theoretical spectrum § £y
(after [*"]) (3). For comparison, curve £ B £
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ton-phonon interaction. The markers N 7
Eg and Eg, show the end point of the o
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there were observed, in addition to the ground exciton
band, transitions to the excited state, which is located
above the ground state at a distance Aw such that aw

< wo < R. The hypothesis was advanced that this excited
state is an exciton-phonon complex and explains, for
example, the anomalously high intensity of the transi-
tion to the excited state in MgO. However, since no
special experiments in which the distance between elec-
tronic levels could be varied were performed, there is
no proof that this assumption is valid.

b) Absorption in the ionization continuum near
threshold. We proceed to the situation in Fig. 1b. The
exciton-phonon absorption falls in this case in the
region of the electron-hole continuum. Therefore a con-
sistent allowance for the electron-phonon interaction
should lead to a more complicated picture than for the
indirect transitions in Ge and Si, where the situation
reduces to the appearance of the known ‘‘steps.’’ In this
case, a comparable contribution is made by the change
in the probability of the purely electronic transitions
that lie in the same region of the spectrum.

The standard perturbation-theory series for the ex-
citon Green’s function F leads in second order to the

following formula for the conductivityf"l
9 (0) oo Tm 3 46 (0) 4% (0) { 72 (@) bur + F2(0) | o % (9) 50| O) Fi (o

(6.8)

(Zn
— 0= (%/2m)) (O] p3|s") F¥ (w) }.

In the second term, the residues connected with Fg
describe absorption with production of a 1s-exciton and
a phonon while the residues connected with Fg and

F » describe the change of the absorption in the elec-
tron hole continuum; yg(r) are the Coulomb wave func-
tions.

Figure 15 shows the results of the tabulation of (6.6)
as applied to the parameters of CdTe, with a phenomeno-
logical width introduced for the exciton levels, We see
that the exciton ground band is followed by a satellite,
the maximum of which is located near the phonon emis-
sion threshold Eip.

It is precisely a structure of this type, observed in
ZnO™! and then in other crystals (T1Br, TiC1L4® 48]
CdS, CdSe, CdTe!*) which served as the stimulus for
the dlscussion of the problem of ‘‘complexes.’’ How-
ever, as follows from the foregoing, it can be explained
within the framework of simple perturbation theory; it
is seen from Fig. 15 that the agreement between the
experimental and theoretical data for CdTe is satisfac-
tory. Yet in (6.6) the maximum is a result of a pure
interference effect (of the type of the Fano effect!®)), It
must be specially emphasized that formula (6.6), having
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been obtained in a finite order of perturbation theory
for F, cannot contain in principle any bound and quasi-
bound states. Of course, one cannot exclude the possi-
bility of some complicated formations occurring in
crystals with a large electron-phonon coupling (such as
T1C1 and T1Br) near the threshold. However, the at-
tempt made so far'®! to formulate the ‘‘complex’’ con-
cept theoretically in terms of quasibound states of the
exciton and the phonon was not successful, because the
imaginary part of the mass operator (damping) turned
out to be larger than the real part.

7. MAGNETOPOLARON

The question of the calculation of the spectrum of the
magnetopolaron near the decay threshold arose in con-
nection with experiments on interband magnetoabsorp-
tion and cyclotron resonance, which have exhibited an
unusual behavior when the cyclotron frequency wc coin-
cided with the frequency of the longitudinal optical pho-
non we = wQO (see Sec. (d) of this chapter and Chap.
8*"), The theory for this resonant case was constructed
in essence on the basis of the single-phonon model!®®°],
Near the threshold, a structure is produced in the spec-
trum with a characteristic scale o”w,, and is respon-
sible for the singularities in the absorption. However,
since the behavior of the mass operator in the single-
phonon model near the threshold € = wo is determined
by an expansion of the type (2.5¢), it turns out that in
spite of the weakness of the coupling (a « 1) there
exists near the threshold a region where perturbation
theory (expansion of .# with respect to a)does not
hold for the mass operator. This circumstance is not
connected in any way with the resonance we = wo. A
calculation of the next higher terms of the expansion of
.4 shows that .#° predominates at | € - wo| >» @we. This
estimate justifies the calculation of the resonant struc-
ture of the spectrum with scale a®®w,; however, this
raises simultaneously the question whether there exists
a finer structure of the spectrum in that region of the
threshold where perturbation theory does not hold.

The diagrams for .# without intersection of phonon
lines become significant at | € — wo| ~ awo. They can
be easily summed in all orders in o ['¥*!; this leads to
an expression for which differs from M°only in a re-
normalization of the fraction of the threshold, by an
amount on the order of awo. In the region | € — wo)
< a®wo, however, diagrams with intersections become
important. Their summation is possible only by the
method described in Chap. 3. When this procedure was
first carried out!'®] it turned out that in the near-thresh-
old spectrum there exist in a region on the order of
a’w, additional branches of the spectrum, describing
bound states of the electron and phonon,

a) Fundamental equations. To set up the equations of
Fig. 3 as applied to the magnetopolaron it is necessary
first to separate the set of quantum numbers corre-
sponding to the dangerous cross sections. This set com-
prises the Landau quantum number n, the longitudinal
{along H) component of the electron momentum kg = k,
one of the transverse components of the electron mo-
mentum (say ky), and the two phonon-momentum com-
ponents q; and qy. The equations become much simpler
because the exact Green’s function G is diagonal in
n, k, and kx and does not depend on kx. We note that
the diagonality of G with respect to n'>**® is far from
trivial—the symmetry group responsible for it is still
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unknown at present, The total energy in the dangerous
section nwe + (1/2m)k2 + wo depends only on n and k,
and consequently the set y, on which G° depends
critically near the threshold (see Chap. 3), must con-
sist of these two quantum numbers. Then v =0 corre-
sponds to n =0 and k = 0; in the summation over n it
is therefore necessary to retain only the term n =0,
and the main contribution to the integral with respect
to k is made by states with k = 0. The quantum number
q; can be eliminated as a result of the existence of the
integral of motion p = k + q;;, which is the total longi-
tudinal momentum of the electron + phonon pair. It is
possible to eliminate kx analogously, since qy + ky is
also an integral of the motion, As a result, only inte-
gration with respect to two quantum numbers q; re-
mains in the dangerous cross section, and it is these
numbers which play the role of the quantities Q in
Chap. 3. Consequently, it is precisely with respect to
q; that the integration is carried out in equations of the
type (3.7) and (3.8).

It should be noted that the spectrum of the electrons
plus phonon pair does not depend on ky + gx, just as
the spectrum of the electron does not depend on kx. It
is most convenient to eliminate immediately the quan-
tum numbers kyx by changing over to the gauge-invari-
ant technique!®®],

An equation of the type (3.7) for the vertex I' was
first obtained and solved for the case w; > wgin!'®l;a
more general investigation was carried out int®], we
shall henceforth use a more convenient equation of the
type (3.8) for the scattering amplitude T!®*!, Using the
gauge-invariant technique, one can choose such a defi-
nition of the four-point diagrams T and O that these
quantities turn out to depend on the difference ¢ - ¢’
between the azimuthal angles of the vectors q; and
q1. Therefore, if we expand these quantities in a Four-
ier series of the type

T(q,,q))= S o= (¢, 1),
(q;,47) 1_2 e 1 t) (7.1)

where
(1.2)

!—-%azq_’]_, a=(-e%1—)lh ’

then we can use explicitly the axjal symmetry of the
problem and determine the angle variables in the inte-
gral equation, The equation for T is then transformed
into a series of equations for Tj(-= <[ < + =), The
kernels of these equations are the Fourier components
Oy of the kernel 0. In place of A it is more convenient
to use the mass operator, which is proportional to it,

Po , Im o#0 () <0, (7.3)

ofto (e) = — iamom—(e__—_TmF—ia

where

~ {1  w
a=a—

7o Po=VZmay. (7.4)

If we change over to the dimensionless quantities
A= = o0, Liz= —ag [ty Ri=—0oTi,
Wy

then the equations for T; assume the standard form of
the Fredholm equations for the resolvent:

Ry(ep; t, t') =Ly (p; t, t') A (€) S deLy(pi ¢, 1) Ry(epi £, ). (7.5)
0
It is now clear that T has a singularity in € when
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A(€) coincides with one of the eigenvalues ’\lr (p),
r=1,2,... of the kernel. The singularity corresponds
to the bound state if it lies below the threshold, i.e., at
€ < wo, when A(€) > 0. Thus, the spectrum of the bound
states is determined by the positive part of the spec-
trum of the integral equation, and from (7.3) follows the
dispersion law

. a?

o) =00 {1— lx{(pnz} :
M(P)>0, I==00, ..., +oo, r=1,2 ...

(7.8)

The extent to which such an approach is constructed
is determined by the real possibilities of investigating
the spectrum of the kernel. Let us write it out, for ex-
ample, for the most interesting case p = 0;

Lyt ) =0 () @ (¢)] 112 e~ +12 )
- (7.7)
20 o (er)¥? [-’H—s (2 Vi) ‘—_:?-l- 81,4 ‘—j—o—] '

where J; is a Bessel function and

1, DO,
<D(t)={ (7.8)

2, P0, 0=20,
t ' We
Such a kernel can be investigated only in various limit-
ing cases; this suffices, however, to obtain a qualitative
picture of the spectrum and to establish the principal
irregularities. These will be given in the next section,
and we shall indicate here briefly the methods of inves-
tigating the nucleus.

In strong fields (o « 1), only the term with s =1
remains in the sum (7.7). For a DO interaction we can
obtain at 7 = 0 the exact solution!?] by using the in-
variance of Laguerre polynomials with respect to the
Bessel transformation, At ; = 0, this is hindered by the
second term in the bracket of (7.7); since this term,
however, yields a factorizable part of the kernel, the
problem for the spectrum of the kernel can be reduced
to a transcendental equation, As a result it turns out
that for any ! there exists an infinite sequence of posi-
tive eigenvalues, increasing without limit, which means
in accordance with (7.6) the existence of a series of
bound states that condense towards the threshold. For
the more important PO interaction it is impossible to
obtain an exact solution. However, by comparing the
behavior of the kernelat t =0 and t = = for PO and
DO, and using some general theorems of the theory of
integral equations, it can be shown(?® that the spectrum
for PO is qualitatively the same as for DO.

In weak fields (o > 1) the Bessel-function series
can be re-expanded in a series of the type Y078 (tt')s/2,

and the kernel can be approximated by degesflerate ker-
nels'®, In this case, too, the spectrum contains an in-
finite number of positive eigenvalues that increase with-
out limit, so that the series of the bound states exists
also in weak fields.

An integral equation of the type (3.7) for the vertex
T’ can be investigated in similar fashion, and this can
yield the spectrum of the single-particle electronic
Green’s function G, It can be shown[?] that the spec-
trum Gp(k) contains the spectra Tj(p) with —= <
<n and p = k, Therefore the spectrum of the aggregate
Gn(n=0,1,2,...)coincides with the spectrum of the
aggregate T;(; =0,+1,£2,.,.), in full agreement with
the general remark made in Chap, 3.
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FIG. 16. Spectrum of magnetopolaron (the energy is reckoned from
Eq(0) = 0).

b) Structure of the energy spectrum. When describ-
ing the magnetopolaron spectrum, it is necessary to
distinguish between two situations: resonant, when wo
~ we, 2we, .. . (Fig. 1a), and nonresonant, when these
frequencies are different, or where they can be of the
same order of magnitude (Fig. 1c).

We consider first the second case, for which the
spectrum is shown in Fig. 16. The thin lines represent
the nonrenormalized Landau spectrum Ep(k) of the
electron, and the thick lines the true (renormalized)
spectrum, If the bottom of the nonrenormalized band n
lies below the threshold wo (n =0, 1 in the figure), then
there exists such a branch of the true spectrum ¢(p)
with 7 = n, which differs little at momenta p < kp from
the nonrenormalized branch. The threshold momentum
kp is determined from the condition Ep(k) = wo. At
p <« kp, the true spectrum differs from the nonrenor-
malized one only in a shift of the bottom of the band and
in a change of the effective mass. Both effects are pro-
portional to @. Obviously, the lowering of the bottom of
the band n = 0 leads to a renormalization of the thresh-
old—the true threshold eth = €o(0) + wo lies below non-
renormalized one wo,. When p approaches kp and €
approaches e€gh, a radical restructuring of the nonre-
normalized branch takes place. At p = kj, the spectrum
does not reach the threshold and remains lower by an
amount proportional to a¥%we. At p > kp, the spectrum
approaches the threshold asymptotically and remains
below it at a distance proportional to o°. This picture
corresponds to the unlimited pinning described in Chap.
2.

In addition to these branches, which are genetically
connected with the branches of the nonrenormalized
spectrum (1 and 2 in Fig. 16), the true spectrum con-
tains additional branches, the existence of which is due
entirely to the interaction (3 in Fig. 16). The number of
these branches is infinite, and all lie under the thresh-
old at a distance proportional to o and form a sequence
that condenses to the threshold (not shown in the figure).
The branches of the second type exist for quantum num-
bers [ of both signs.

The states on the branches of the described two types
differ significantly with respect to the average number
{N) of the phonons that participate in their formation.
On the branches of the first type ( N} increases with
increasing p, from (N) ~a at p<kp to (N) ~1 at
p > kp through ( N) ~ %, at p = ky. The states on these
modes are therefore bound electron-phonon states for
all p. If we write the dispersion law of these modes in
the form

e(p) = & (0) + @ — W (p), (7.9)
where €,(0) is the renormalized bottom of the band
1. B. Levinson and E. !. Rashba 903



n = 0, then W is the binding energy. This interpretation
is also favored by the following: Since the energy ¢(p)
of the elementary excitation is practically independent
of its momentum p, it is clear that the contribution of
the electron to the total momentum and the total excita-
tion energy is small, for otherwise the dependence of ¢
on p would be just as large as in the nonrenormalized
spectrum. Thus, the electron is at the bottom of the
band n = 0, and the energy and momentum are carried
almost entirely by the phonon; the electron determines
only the charge and the spin of the elementary excita-
tion.

We consider now the distinguishing features of the
resonant situation, which arises starting with w, = wo
for modes with [ = 1. If we < wo, then the bottom of the
band n = 1 lies lower than the threshold, and there
exists a spectral mode with { = 1 and genetically con-
nected with the nonrenormalized n = 1 band. On the
other hand, if we > wy, then there is no such spectral
mode with [ = 1. We consider therefore in greater de-
tail the lower state with { =1 and p = 0. An investiga-
tion shows that at w; < wo this is a polaron state, i.e.,
(N) ~ @, and at w; > wo it is a bound state, i.e., (N)
= 1. At the instant of passage through resonance wg
= w,, the state in question becomes hybrid, i.e., { N)
~ 7/, K is important that in this case it lies below the
threshold, at a distance on the order of az/awo, ie.,
much farther than the bound states. States with p =0 at
higher modes of the series [ = 1 experience no qualita-
tive changes whatever on going through the resonance,
and are bound states for all H.

It is seen from this analysis that the transition from
the polaron states to the bound states via hybrid states
is possible both when p is varied and H is fixed, and
vice versa. It is also obvious that for the series
! =2,3,...,the singularities will arise in weaker mag-
netic fields we = wo/2, wo/3, ...

The bound states considered above are due to the
usual electron-phonon interaction (1.1), which is linear
in the phonon amplitudes. In some cases an important
role may be assumed by an interaction that is quadratic
in these amplitudes; such an interaction can lead to
electron-phonon binding in a magnetic field!”’!. The
binding energy turns out to be proportional to
|{#o1) |% and not to [(#eL ) |* as in the case of the
linear interaction. For this reason, the binding ener-
gies may turn out to be of the same order of magnitude.
The bound states produced in the quadratic interaction
have a number of distinguishing features. In particular,
they cannot be obtained as poles of G, and only as poles
of T. This means that the electron is bound, as it were,
not with the phonon that it emits itself, but with a pho-
non already present in the crystal. Allowance for the
quadratic interaction leads also to the appearance of
pinning at multiple and combination frequencies 2wLO,
2wTO, WLO £ wTQ, where w0 and wTQ are the limit-
ing frequencies of the longitudinal and transverse opti~
cal phonons. There are indications that a pinning of
this type has been observed experimentally(®® It is
important to note in this connection that the quadratic
interaction with TO phonons has a polarization charac-
ter{5’] although the linear interaction does not have
this character.

¢) Optical effects. The existence of electron plus
phonon complexes influences strongly the spectral de-
pendence of the optical effects in which the electron
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transition is accompanied by production of an optical
phonon. Two groups of effects should exist in this case,
one with a characteristic energy scale a**wo and due
to the existence of hybrid states with p = 0 under mag-
netophonon-resonance conditions, and the other with a
characteristic scale a“wo and due to the existence of
bound states with p =0,

The first group of effects can be investigated with
the single-phonon model. Let us dwell in detail on the
case of cyclotron resonance (CR)!®), having in mind
comparison with experiment in the next section. The
contribution of the electrons to the dielectric constant,
for right-hand polarization (which is active in CR) is
obtained in the form

- ne?
®(0) =1~ m((o——(ocmiall"(m)) » 0= 4"m ; (7.10)
here n is the electron concentration and .4° is con-
structed in accordance with type (2.3) for p = 0:
d3 1% (@2
MO (£) = (2;33 E_WO_}O"(_WMO , (7.11)
where
2 1 2 1 2
1P @P=% (@) (gu)exp { —7 (a2} - (7.12)
If we represent .#° ¢) in the form
o () = AE (g) — il (g), (7.13)

then we can easily see that this is a shift and a broad-
ening, calculated in second order perturbation theory,
of the level n =1, k =1 with energy «.

Formula (7.10) admits of a simple interpretation, It
can be assumed that allowance for the interaction with
the phonons reduces to taking the shift AE and the
broadening I of the final level into account in the
transition frequency we = Ei(0) — Eo(0). The only cause
of the peculiarity of the absorption is therefore the fact
that AE and I' depend strongly on the frequency near
the threshold (Fig. 17), this being a reflection of the
singularity in the density of states of the Landau elec-
tron near the bottom of the band.

An analysis of (7.10) shows that at w, < wo there
should be observed a CR peak shifted towards lower
frequencies by an amount on the order of awo with
width I'" determined by unaccounted for scattering
mechanisms (absorption of optical phonons, impurities,
acoustic phonons) and with oscillator strength f =1, and
also a weak absorption peak above the threshold with an
oscillator strength f ~ a. In the resonant field w¢ = wo,
two peaks of comparable intensity (f ~ 1) should be ob-
served, one narrow below the threshold, of width I",
and the other broad, asymmetrical, above the threshold,
with width on the order of o®*w,. Both peaks are shifted
relative to wo by an amount on the order of o %w,. At
we > wo, a CR peak should again be observed, with a
shift towards higher frequencies and with a width on the

r
FIG. 17. Width and shift of the 3
Landau level n = 1 as a result of elec- r
tron-phonon interaction. “y €
Af
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FIG. 18. Frequency dependence of the electron absorption in a mag-
netic field with allowance for bound states with phonons.

order of awo and with an oscillator strength f~ 1, as
well as a weak absorption peak below the threshold, with
f=a.

Further development of the CR theory for the reso~
nance situation consists of taking the finite tempera-
tures into account!® *), The splitting of the CR peak at
we = we becomes ‘‘washed out’’ if the temperature is
T 2a? 800. The influence of phonon dispersion on the
character of the absorption was also considered!®,

A study of the second group of effects calls for a
more detailed theory!®], The absorption due to electron
transitions from the bottom of the band / =n = 0 into
bound states, i.e., for optical frequencies w = w,, was
calculated. The contribution of the electrons to the ab-
sorption (excluding the monotonic contribution of the
free electrons) is expressed in terms of the scattering
amplitude.

In the notation of Sec. (a) of this chapter, this expres-
sion is

0w}
“’O (“’0 :F mc)

Im %* ()= Im {3 (@) B +42 () R, (o)}, (7.14)

where -

D= [ a0,
b
- (7.15)
Bo@= | faare G2 @y 2@ 0o @2 1y 00 L)
Q

The upper and lower signs pertain to right-hand and
left-hand polarization of the light, respectively,

It is seen from (7.14) that, depending on the polariza-
tion of the light, the transition goes to bound states with
{ =#1 from an initial state with ; = 0, This means that
the quantum number | describing the renormalized
spectrum of the electron satisfies the same selection
rules A/ =+1 as the quantum number n describing the
nonrenormalized spectrum. The selection rules are
equally valid for positive and negative {.

The first term in the curly brackets of (7.14) corre~
sponds to perturbation theory, i.e., to the single-phonon
model, It yields the absorption in accordance with ele-
mentary theory of cyclotron-phonon resonancel®!, The
second term can be easily analyzed by writing down the
pole expansion of the resolvent.

The character of the absorption is illustrated by
Fig. 18, where the dashed curve shows the absorption
calculated without allowance for the bound states. The
absorption below threshold (w < wo) consists of a
series of discrete lines concentrated in the region
| w — wo| ~ W, with rapidly decreasing intensity. The
absorption above threshold (w > wo) decreases like (w
~ wo) % far from the threshold, at | w ~ wo) > W, and
increases like (w ~ wo)”? near the threshold, at | w
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B K O W, > g

W ~
fa~

%2wg (0/wg)d | 22wy
@ (g/ne)® | a2 (wp/wc)?

fe~ o (wp/tc)

- wol| << W. We see that allowance for the bound states
modifies the absorption spectrum in analogy with the
situation for the Mott exciton. The possibility of observ-
ing the fine structure of the spectrum is determined by
the binding energy W and by the oscillator strength fg
in the discrete part of the spectrum relative to the
strength fc in the continuous part. Estimates of these
quantities for the most important PO interaction!®) are
given in Table II.

Observation of absorption in the region w & w, is
made highly complicated by lattice effects. The obser-
vation of bound states occurring at the threshold of
emission of a phonon with transition to the bottom of
the band n =1 (and not n = 0) is therefore more
promising. Although these states lie near wﬁ; wge, l.e.,
in the continuous spectrum, it can be shown!®! that if
we < wo, then their width is I' ~ o w5, which is smaller
than the binding energy W ~ o’wo. The presence of these
states should lead to a fine structure of the cyclotron-
phonon resonance line at the frequency w = we + wo. It
is also possible to go outside the range of lattice effects
by observing the fine structure of the combined-reso-
nance line at the frequency w = we + wg (ws is the
spin splitting).

The electron-phonon interaction exerts a highly un-
usual influence on Raman scattering, since a free elec-
tron with parabolic dispersion law in a magnetic field
does not produce optical scattering with a frequency
shift. This can be understood by considering the cor-
respondence principle: such an electron is a harmonic
oscillator and therefore does not mix the frequencies.
This follows formally from the selection rules with
respect to n and from the equidistant character of the
Landau electron spectrum. The interaction with the
phonons, as shown above, does not change the selection
rules but makes the spectrum nonequidistant. As a re-
sult, scattering with a frequency shift @ = +2w¢ be-
comes possible. Under magnetophonon resonance con-
ditions, the theory predicts singularities that are in
many respects analogous to the singularities of the
CR[G«!,GS)'

d) Experiment—cyclotron and combined resonance.
Experiments on cyclotron absorption under conditions
of magnetophonon resonance wg = wy,Q was carried out
in 1967 on n-InSb independently by two groups: Dickey,
Johnson, and Larsen!®] and Summers, Harper, and
Smith[*), Owing to the small electron mass (m
= 0,014m, ), resonance in the infrared band (x ~ 50 p)
is reached in not too strong fields {H = 34 kOe). The
experiments were performed on pure samples at low
temperatures (liquid nitrogen and lower).

Typical results, taken from!®!, are shown in Fig. 19.
The experimental points show the variation of the posi-
tion of the CR line with changing magnetic field. The
light circles correspond to transitions with spins anti-
parallel to the fields, and the dark one with spins
parallel to fields. The straight lines are extrapolation
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FIG. 19. Variation of cyclotron-absorption frequency with the mag-
netic field, according to [®7].
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FIG. 20. Cyclotron-absorption line width [%7].

from the side of weak fields, in which we < wpO. It is
seen in both cases that on going through the magneto-
phonon resonance w. = wlQ the position of the CR
line, in accord with the theory, shifts jumpwise into the
high-frequency region—the experimental points lie
above the straight line, The CR frequency shift is

Awe ~ 0.5 meV. If we assume ¢ =0.02 and w10 = 24
meV for n-InSb, then the theory yields Awe ~ awy o

= 0.5 meV; the agreement is perfectly satisfactory.
Figure 20 shows the dependence of the width of the CR
line on the field. We see that it increases sharply when
resonance is approached from the direction of the
strong fields, in full agreement with the behavior of I
on Fig. 17. If we subtract from the width the monotonic
background I'* which is not connected with emission of
optical phonons (extrapolation on Fig. 20), then the re-
maining width can be compared with the theoretical I'.
Such a comparison is shown in Fig. 21, where the
dashed curve joins the experimental points and the
solid lines correspond to the theory for two values of
a. Recognizing that the theory does not take into ac-
count the thermal smearing (T = 1 meV, which is com-
parable with ' = 3 kOe = 2 meV), the agreement should
be regarded as good.

The theoretically predicted splitting of the CR peak
in resonant fields is not observed in the experiment,
probably because the splitting o®°wo~ 2 meV is of the
same order as the frequency region in which an import-
ant role is played by the lattice reflection (w0 — wTO
~ 2 meV) and by the lattice absorption (| w ~ wtQ]
< 5% wtO =1 meV),

The splitting of the peak in resonant fields can be
observed in combined resonance!®!, in which a transi-
tion from the n =0 level to the n =1 level with spin
flip takes place. Since the LO-phonon emission takes
place without spin flip, the threshold of the decay of the
final state is we = w10, a8 in ordinary CR; yet the
absorption takes place at the frequency w = we + wg,
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FIG. 21. Comparison of theory and experiment for the CR line
width [87],

where wg is the spin splitting of the Landau level
n=0. In InSb at H = 34 kOe we have wg~ 10 meV,

so that the electron absorption does not fall outside the
region of the lattice reflection and absorption. The ex-
perimental results for n-InSb at 30°K!*®*} are shown in
Fig. 22, which shows clearly not only the shift of the
peak on going to the resonant field (on the order of 0.7
meV), but also the splitting of the peak in resonant
fields (on the order of 1.5 meV, which agrees with the
theoretical estimate o*’wpo ~ 2 MeV).

Similar effects were observed in impurity transitions
in{™]_ If the scattering by the phonons is accompanied
by spin flip, resonant effects are possible when the pho-
non frequency w, either coincides with the paramagnetic
frequency wg!™) or with one of the combination frequen-
cies wc + wg. Insofar as we know, no experiments were
performed on Raman scattering under magnetophonon
resonance conditions,

It is obvious that effects quite similar to those that
occur near the threshold for the emission of one phonon
can take place also near the threshold of emission of
two and more phonons!*’), We take notice in this con-
nection of the anomalies in the intensity of combined
resonance in n-InSb, observed!™l at H ~ 70 kOe when
the level n =1 goes through the threshold of 2w1,Q.
Another group of effects can be connected with partici-
pation of surface optical phonons. Thus, pinning was
observed in p-InSb at the frequency wro!™*!.

We shall show that the dispersion and the finite life~
time of the optical phonons do not influence these ef-
fects appreciably. The characteristic dimension of the
electronic state is in this case the magnetic length, so
that the phonon-energy scatter is Awg ~ (m/p)we (see
the end of Chap. 3), and the characteristic energy scale
is o”’wo. The dispersion of the phonons and their width
¥ can therefore be disregarded if

x
Wy

, %((q,zl-", (7.16)
This condition is satisfied in In-Sb, since ¥/wo~ 1072
m/p ~ 107%, and ¥~ 107, The phonon dispersion was
taken into account explicitly in(®*,

An analysis of the experiments under conditions of
magnetophonon resonance allows us to state that the
influence of hybrid states on the optical effects has
been reliably observed. In those cases when highly
stretched pinning is observed, one can probably expect
also the appearance of the bound states into which the
hybrid states are transformed when the distance from
resonance is increased.

Additional branches of the spectrum, which exist
independently of the resonance, have not been observed
so far, although they are possible. It is seen from (7.16)
that the optimal fields are those with we ~ wo, Since
W does not increase in stronger fields and the ratio
fq/de decreases. In n-InSb we have in this case
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W ~ 102 meV, which is beyond the experimental capa-
bilities, More promising is CdTe, which has been used
frequently of late to study magnetopolaron effects!”®"" 1,
This material is attractive because it has a large coup-
ling constant (a ~ 0.4) at not too large a mass

(m = 0.096m, ). Resonance is reached in a field

H = 180 kOe, which is experimentally attainable. In
fields of this order we have W ~ o’w,0 ~ 3 meV; the
collision smearing in pure samples is 1/7 ~0.2 MeV.
One can therefore expect the bound states to appear in
optics, even if an unfavorable numerical factor de-
creases W by one order of magnitude.

8. EXCITON-PHONON COMPLEXES IN A
MAGNETIC FIELD

The singularities that appear in the absorption
spectra when the cyclotron frequency of the electrons
is at resonance with the phonon frequency were first
observed by Johnson and Larsen!?! in the spectrum of
the intrinsic (interband) absorption in InSb. The physical
picture is here much more complicated than in cyclo-
tron (intraband) absorption, since a hole also takes part
in the absorption process. To ignore the Coulomb inter-
action of the electron and the hole, as was done int®l is,
to say the least, unjustified, since the entire clearly
pronounced structure in edge absorption is connected
with exciton bands whose specific weight increases with
increasing magnetic field"), In the investigation of
polaron effects in interband absorption we therefore en-
counter a three-body problem (electron, hole, and pho-
non). Naturally, the problem can be solved only in limit-
ing cases, only a few of which have been investigated so
far.

The magnetoexciton is usually obtained under strong-
field conditions, when

med 1 eH

1 1
Wey Wers wcz>>R~—-273: T Ty e

(8.1)

where the subscripts 1 and 2 refer to the electron and
the hole. The carrier motion is quasi-one-dimensional;
the transverse motion is determined by the magnetic
field, and only the slow longitudinal motion is controlled
by the Coulomb attraction. Therefore each pair of
Landau bands n; and n, generates its own system of
exciton levels Eg,s =0, 1, 2,... Since the exciton is
neutral on the whole, the total momentum P is an inte-
gral of the motionl"™®; since we are interested in ex-
citon absorption, we confine ourselves to states with

P = 0. Assuming L= In (we/2R) >» 1, we have!?%8!]

Eo= —RL%, E,— —% (s_1,2, ... (8.2)

With increasing H, almost the entire absorption is con-
centrated in the band s = 0: its intensity increases like
HL.
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FIG. 23. Scheme of electron and hole Landau levels.
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FIG. 24. Energy spectrum of electron and hole in a magnetic field
with allowance for Coulomb attraction and electron-phonon interachon.

In the study of polaron effects it will be assumed
that the holes do not interact with the phonons, This as-
sumption can be fully justified only in the resonant situ-
ation we1 & wo, since the interaction of the holes with
the phonons is nonresonant (my = m;) and is therefore
insignificant. The assumption can be justified in the
nonresonant situation, strictly speaking, only in non-
polar crystals, since the DO-interaction constants a.
and o2 are independent. In PO interactions, «, and a:
are not fully independent, so that it would be necessary
to take into account also the interaction of the hole with
the phonons. This has not been done so far, however,

Figure 23 shows the scheme of electronic levels with-
out allowance for the Coulomb interaction. We assume
that the transitions between the edges of the hole and
electron bands are allowed at H = 0, Then magnetoopti-
cal transitions n; = nz, shown in Fig. 23 by the solid
arrows, are allowed for isotropic bands, When the
longitudinal motion of the particles is taken into account,
the corresponding energies are continuous-absorption
thresholds. We note that if the electron transition is
accompanied by production of a phonon, then the selec-
tion rule n, = n; is lifted. The dashed segment I shows
the energy of the phononless transition with pair pro-
duction (n; = 1, np = 1), while segment II shows the
energy of production of a pair (n;=1,nz=1) witha
phonon, The dependence of these thresholds on H is
shown by lines I and II in Fig. 24; they coincide at we1
= wo. When the Coulomb interaction is taken into ac-
count, a series of exciton states s =0,1,..., shown
by the lines I, I;,...,II,, II,, ..., splits away from
each threshold. The transition to the lower level I,
should then predominate in the absorption spectrum;
there should also be present weak transition to Ig
(s = 0) and weak continuous absorption above I.

Further modification of the spectrum takes place
when account is taken of the electron-phonon interaction.
In analogy with Chap. 2, we can predict that this will
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FIG. 25. System of basic diagrams for irreducible electron-hole ver-
tex under resonance conditions (the wavy lines show the Coulomb inter-
action).

lead to pinnings near the crossing of levels belonging to
the system I and system II. The levels constructed in
this manner for the dominant transition are shown in
Fig. 24 by thick lines. They correspond to magnetoexci-
ton—phonon complexes. We note that the choice of the
hole band n; = 1 is dictated exclusively by the selection
rules for optically allowed transitions; a similar level
scheme exists in principle also for nz = 0.

All these complexes are quasistationary, since they
lie in the electron-hole continuum (n; = 1, n; = 0) and
can decay with production of a fast electron and a fast
hole. The rate of this decay, however, is small relative
to the adiabatic parameter R/w, <« 1, and we shall
therefore neglect it. In this approximation, the com-
plexes corresponding to the lower mode of the spectrum
B (Fig. 24) can be regarded as stationary; W has the
meaning of the binding energy relative to the detach-
ment of a phonon from an exciton. The higher modes of
the spectrum are nonetheless, however, modes relative
to the production of the exciton (n, =0, ny = 1) plus
phonon pairs., We shall therefore consider henceforth,
in accordance with{*®] only the fundamental mode B
and the states near its end point T.

In the study of polaron effects in the exciton spec-
trum, as already noted in Chap. 6, there arises the
same question as in the polaron problem, that of the
appearance of additional spectral modes describing
bound states of particles and existing independently of
the resonances. It was shown in!® that under certain
limitations on the parameters R, L, and mz/m,, these
bound states of the electron, hole, and phonon actually
exist. These states are also quasistationary with re-
spect to the parameter R/ wo.

a) Magnetophonon resonance. Under resonance con-
ditions w¢1 = wo, as usual, we confine ourselves to the
single-phonon approximation. This corresponds to re-
taining the first diagram of Fig. 4 in .4 and the sequence
of diagrams of Fig. 25 in the electron-hole vertex. The
main difference from Chap. 2 lies in the presence of
internal degrees of freedom in the exciton. Therefore,
instead of the algebraic equation (2.2) for the spectrum
we obtain here an integro-differential equation for the
Green’s function F(w |z, z’) describing the longitudinal
internal motion in an exciton with a momentum P = 0(%3],

This equation is
[0 1 — 0p — R o (D) F (5, 2)— S Mie)z, 5 F (5 o) db=6(z—z), (8.3)
where the mass operator is given by
A ein 5= | Gkl @ e e g 159
xexp[ =132 029 | .(8.4)
LR
HPM =L FUR™ () (8.5)

U;‘,‘ nz(z) is the Coulomb energy averaged on the func-

tions of the transverse motion of the free electron-hole
pair with momentum P and Landau quantum numbers
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FIG. 26. Dependence of the
levels of the magnetoexciton +
phonon complex on H when the
Coulomb interaction is weaker than
the electron-phonon interaction. The
binding energy increases sharply in
comparison with the hole-detach-
ment energy W to the right of the
resonance. {(Lines 1 and 2 corre-
spond to lines I and 11 of Fig. 24.)

&
g
&

=

wy H
n, and np, while 7 is defined by (7.12). The energy €
in (8.3) is reckoned from the straight line II of Fig. 24.
The bound-state spectrum is determined by the poles
F, and the absorption spectrum is determined by the
function F(w|z =0, 2z’ =0).

Near the threshold, i.e., when the straight line I, is
approached (see Fig. 24), .4 behaves in accordance with
(2.5b). The spectrum is therefore similar to curve 2 of
Fig. 2: it has an end point T at which it approaches the
straight line II, tangentially. Consequently, according to
Chap. 2, exciton plus phonon bound states are produced
on curve B near.T, and hybrid states are produced op-
posite the intersection of I;and II,. Thus, the magneto-
exciton spectrum differs greatly from the magneto-
polaron spectrum in that it has an end point, which re-
sults from the fact that the transverse mass of the
magnetoexciton M, is finite albeit large.

The limiting cases that can be investigated more
completely, depending on the ratio of the Coulomb en-
ergy LR to the characteristic energy (a/2)¥°wo of
the resonant electron-phonon interaction for the mag-~
netopolaron (cf. Chap. 7). If L®R » (a/2)% w®»*),

then we have at resonance

W = awg (0/2LR) Y2 (M/my) V2, (8.6)

The effect is weaker here than in the magnetopolaron
(on the order of o and not o ), but become stronger
in comparison with the usual exciton, as a result of the
factor wo/LR » 1.

The absorption spectrum should consist of a narrow
band corresponding to the appearance of a complex
(curve B) and of a continuum corresponding to produc-
tion of exciton plus phonon pairs; its maximum lies al~
most directly beyond the line II,. As H — Hr, the
maximum of the background and the narrow band ap-
proach each other and coalesce, the intensity of the
band decreasing continuously." At H > Hy only the con-
tinuum is left, but its maximum also gravitates initially
towards Il,. All this should produce a pinning picture—
motion of the absorption maximum along IL.

If L?R « (a/2)"%w,'®), then it is more expedient to
represent the level scheme in a somewhat different
manner. In Fig. 26, the upper solid curve shows the
energy of the magnetopolaron plus phonon complex, and
the lower curve that of the magnetoexciton plus phonon
complex, Therefore W has the meaning of the binding
energy with respect to detachment of a hole. In the left
part of the curve, this energy is close to L?‘R, but after
passing through resonance (after the intersection of 1
and 2) it begins to increase rapidly. Thus, under these
conditions the electron-phonon interaction leads to a
considerable enhancement of the effective attraction
between the electron and the hole, On the section where
W increases, the intensity of the absorption with forma-
tion of a complex (branch B) remains practically un-
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changed. Subsequently W begins to decrease and the ab-
sorption decreases rapidly at the same time.

b) Additional modes of the spectrum. The question
of the existence of additional branches of the spectrum
in the three-body (electron, hole, and phonon) problem
near the threshold for the production of a pair (n; =0,
n. = 0) and the phonon was also investigated(®*], The
spectrum was obtained from the three-particle T
matrix, for which it is possible to write an equation
analogous to the two-particle equation (3.8). If we as-
sume both the Coulomb and the polaron interactions to
be weak, then the equation for the T matrix can be in-
vestigated by methods close to those described in Chap.
3, although the technical aspect of the problem becomes
much more complicated, As a result, the problem of
the spectrum of the T matrix can be reduced to the more
lucid problem of the spectrum of the following Schro-
dinger equation:

1 ot 1 02

g e T o= V8(2) — U8 (2:—2) | ¥ (2 22) =0, (8.7)

_2my 0zF T 2my 0:3

Here ¢ is the energy reckoned from the threshold; z.
and z, are the longitudinal coordinates of the hole and
of the electron that interacts with the immobile phonon
at the point z = 0. The two potential terms describing
the polaron and Coulomb interaction, respectively.

The potential V is determined by the eigenvalue AT
of the polaron kernel O (Chap. 7). If we put U =0 and
solve the equation with respect to z,, then the eigen-
value will be the binding energy of the electron and pho-
non with p =0, i.e.,

_ 1 a2ug
lel=Wly.-o =7m1V2=(A—r)a—.

(8.8)
Thus, each additional in the magnetopolaron spectrum
has its own equation (8.6) with the appropriate value of
V. If we put V = 0 and solve the equation with respect
to z: -~ z, then the eigenvalue is the binding energy of
an electron and a hole in the lower state, i.e.,

o] =W |y_g =5 mU?= RL2. (8.9)
Equation (8.7) can be easily investigated in various
limiting cases, from which it is seen that at least one
bound state of the three particles always exists (for
each bound state of the electron plus phonon pair).

Equation (8.7) takes no account of two circumstances:
1) the possible decay of the bound state with transforma-
tion of the phonon energy into kinetic energy of the rela-
tive motion of the pair, which leads to a certain finite
level width T'; 2) the energy of the recoil of the trans-
verse motion of the exciton, which can exist by virtue
of the finite transverse exciton mass M, and therefore
prevents the occurrence of bound states. Both effects
can be taken into account in the equation for the T
matrix by perturbation theory, and the smallness of the
corresponding corrections in comparison with W yields
a criterion for the existence of bound states of three
particles. For example, at

RI ¢ atog € RI%, L =L %}M (8.10)

we have

2\ 3/2
W~ T2 g2, p~ﬂazmo(£) "
my my g

(8.11)

i.e., we have indeed T" « W relative to the adiabatic
parameter RL?/ w,.

c) Experimental data. Figure 27 shows the experi-
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FIG. 27. Positions of peaks of in- 7
trinsic absorption of InSb, according
to ["], in the region of magnetopho-
non we] & wo. Band 2 can be set in
correspondence with the ground state

of the magnetoexciton + phonon com- %7
plex (1 and 2 correspond to A and B
in Fig. 24.) Lok

A6y

deEr

FIG. 28. Dependence of TIBr exci-
ton-absorption peak frequency on H at ;- ;1
4.2° K (according to [*°]). The light
triangle corresponds to the energy
Eexc + wo, and the dashed line drawn
from it is the pinning threshold.
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mental datal’! on interband magnetoabsorption in InSb,

which have stimulated the development of the theory of
resonant electron-phonon interaction. The curves show
the positions of the maximum of individual bands as

~ functions of the magnetic field. The general picture is

quite similar to the scheme of Fig. 24. The pinning is
clearly seen; the difference between the asymptotes
(12 and [3) for the upper and lower branches is un-
doubtedly due to the Coulomb interaction; it appears
that the additional branches lying between 1 and 2 stem
from the same source. The fact that the effect is en-
tirely due to the electron-phonon interaction is clear
also from the band Z (cf. Fig. 23), which experiences
no noise whatever in this range of fields, One can as-
sume that the pinning picture is just as clearly pro-
nounced, owing to the large mass ratio m./m, ~ 10,
and the higher quasistationary states are clearly seen
because of the weak coupling o = 0.02.

A more complete comparison of theory with experi-
ment is at present impossible for two reasons. First,
there are no experimental data on the dependence of
the absorption intensity in band 2 on the magnetic field,
nor are there any data on the spectral distribution of
the absorption beyond the asymptote (., where dissocia-
tion of the complexes should set in. In addition, in InSb
we have L~ 3, L°R~0.6 meV, and {a/2)%wo~ 0.8
meV, Consequently, the logarithmic approximation is at
the applicability limit, and in addition, L®R ~ (/2 )*°w,,
i.e., the theory can claim only a description of the quan-
titative tendencies.

Figure 28 shows analogous data for TIBr(**! which
is a crystal with intermediate coupling (a = 2.5). The
bands 1—-3 correspond to the successive terms of the
lower exciton series, while bands 4—7 correspond to
the excitons from the succeeding magnetic sub-bands.
Here wo > R 2 wg, i.e., fields ~100 kG cannot be re-
garded as strong, and consequently the situation is in-
termediate between those considered in Chaps. 6 and
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8. The pinning picture is very clearly pronounced. It
is interesting that bands 4-7 have no continuation ana-
logous to curve 1 of Fig. 27. It is natural to attribute
this to the large width of the upper states, due to the
intermediate coupling. In these experiments, there is
one more interesting feature, noted but not explained
inl*®1 namely, the pinning is observed not near the first
threshold (E1g + wo) but near Egy( + wo, where Egxc
is the energy of the lower excited states. It is natural
to explain this fact on the basis of the results of Chap.
6: the optically excited s-states should experience the
strongest pinning in interaction with p-states. Conse-
quently, the pinning should set in near Egp + wo, in full
agreement with experiment,

Thus, exciton-phonon complexes were observed in
the resonance situation for both weak and intermediate
coupling. They have not yet been observed in a non-
resonance situation.

9. CONCLUSION

Bound states with participation of optical phonons
have two qualitative differences from ordinary bound
states. The first is due to the fact that particles whose
number is not conserved take part in them. Therefore
such states are stable only because their real decay
with vanishing of a phonon is forbidden by the conser-
vation law (energy in the case of a localized electron,
and energy-momentum for a free electron or exciton).
The second difference is due to the absence of a simple
conception of the character of the interaction in con-
figuration space, where the electron-phonon interaction
is essentially nonlocal. Thus, in particular, it is not
obvious beforehand whether the interaction between the
electron and the phonon is effectively attraction or re-
pulsion,

It should be emphasized that the existence of bound
states with optical-phonon participation has nothing in
common with the well known intersections of the boson
modes, first considered in the theory of optomechanical
oscillations by Tolpygo!®*! and by Huangi®), although
many of the pictures (for example, Fig. 3) are quite
similar®, For the resonance situation the difference
between these phenomena can be explained, for example,
in the following manner: For boson intersections, both
resonant states are single-particle, whereas for the
systems considered by us one of the states is single-
particle and the other is two-particle. It is this which
generates the difference in the results, namely the ap-~
pearance of end points, of additional modes, etc.

The formation of complexes is determined by the
competition between the kinetic energy of the particle
with which the complex is bound and the energy of their
interaction; the character of the complex and the energy
scale of the structure of the spectrum therefore depend
strongly on the degree of localization of the particle
that takes part in the formation of the complex. When
an electron and a phonon are bound, the effects are
strongest if the electron is localized on an impurity
center: the energy scale of the structure of the spec-
trum is of the order of a'?w, at resonance and awo
off resonance (we assume that o <« 1). For an electron
in a magnetic field, which is ‘‘localized only across the
field, the effects are weaker: a®*wo at resonance and
o’wo off resonance. If there is no magnetic field, then
the bound states exist only in the case of strong coupling
(a >> 1) and possibly also in the intermediate-coupling
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state. The exciton, being a neutral particle, is not
“‘localized’’ by the magnetic field, so that there is no
strong difference between the behavior of a magneto-
exciton + phonon complex and that of an exciton + photon
complex. However, a strong magnetic field increases
the transverse mass of the magnetoexciton, bringing it
close to that of the magnetopolaron. This contributes to
the appearance of bound states with the phonon. Acting
in the same direction is an increase in the ratio of the
hole and electron masses in the ordinary exciton, bring-
ing its properties closer to those of the impurity center.

The comparison of theory with experiment is still in
the initial stage, and in many cases even the qualitative
interpretation is not unambiguous. The only question
where there is full qualitative and semiquantitative
agreement is intraband absorption in n-InSb under con-
ditions of magnetophonon resonance. For interband ab-
sorption under the same conditions, there is no doubt
that the cause of the effect is correctly understood, but
there is still no detailed interpretation of the spectrum.
No bound states were sought under nonresonant condi-
tions, although their observation in crystals that are
more polar than InSb, for example in CdTe, is perfectly
realistic. It can be assumed that such states should
lead to a fine structure of the cyclotron-phonon reso-
nance peaks,

There is no doubt that the bound states of a localized
electron with an optical phonon (dielectric local vibra-
tional modes) have been experimentally observed, in-
cluding also in the nonresonant situation. Their com-
parison with the levels of the theoretical spectrum is,
however, not fully clear.

In the case of an exciton without a magnetic field,
there is practically no agreement between theory and
experiment, and the nature of the singularities in the
spectrum in the region of energies of the electron-hole
continuum remains unclear, it being uncertain whether
they are due to exciton plus phonon complexes or simply
to interference effects.

The bound states should become manifest in most
natural fashion in absorption experiments, as a result
of interaction between the particles produced upon ab-
sorption of the photon (interaction in the final state),
Naturally, the same bound states can be observed in
principle also in hot luminescence, but this time as a
result of interaction in the initial state. In lumines-
cence they can be manifest in certain cases also as a
result of interaction in the final state and it is precisely
in this way that center + phonon bound states are ob-
served in the vibrational satellites of the luminescence
of impurity excitons.

There is no doubt that bound states with phonon par-
ticipation can affect also other phenomena. For example,
since phonons can become bound with different quasi-
particles, these quasiparticles can in principle become
bound to one another via a real phonon. This means that
excited quasistationary bound states of quasiparticles
can arise even if there are no bound states in the ground
state. Arguments of this kind may turn out to be impor-
tant for the interpretation of different optical and
kinetic experiments. By way of another example we can
point to the question of valley-orbit splitting in the ex-
citon spectrum, which has been under discussion re-
cently'® %1, For the ground state of the exciton, such a
splitting is obviously impossible because of translational
symmetry. For the exciton plus phonon complex, how-
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ever, which can have zero momentum (owing to the
cancellation of the momenta of the two particles), such
a splitting should arise and appear in the spectrum.

It should be borne in mind that the concrete systems
considered in Chaps. 4—8 correspond to the traditional
objects of the experimental papers. However, the ap-
proach developed in Chap. 3 is general, and it is possi-
ble to study on its basis also other systems, to the ex-
tent that experiments on these systems are performed.
In connection with recent work on spatially-quantized
electronic spectra of thin films and on surface phonons,
it must be emphasized that in systems with smaller
dimensionality the conditions for the formation of bound
states with phonon participation should turn out to be
particularly favorable in a number of cases,

DThe experimental data are analyzed in greater detail in ['7}.

IDFor DO interactions, the integral for .#°diverges at large q, and this
case will not be considered here.

NThe number of dielectric modes is limited by the phonon dispersion;
its role in some cases was analyzed in [** 3?]. Using the remark made at
the end of Chap. 3, we can easily indicate a criterion under which the
dispersion can be neglected. Since the role of a is played here by the

Bohr radius of the center, allowance for (5.12) yields a(wu/R)m > mju.

In systems with a more complicated spectrum, the phonon dispersion
can sometimes contribute to the formation of bound states [*3].

A review of different effects that arise under conditions of magneto-
phonon resonance is given in [%].
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