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The paper presents a review of the results of experimental and theoretical study of the influence of
conduction electrons on the mobility of dislocations in normal metals and superconductors. The
influence of the superconducting transition on the macroscopic mechanical properties of metals
connected with dislocation motion, namely, plasticity and sound absorption, are also discussed.
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1. INTRODUCTION

Recently obtained experimental data show that a
superconducting transition is accompanied by a unique
softening of metals, namely, the plasticity of the metals
is greatly increased by the transition1-1"4·'. Since the
crystal-lattice properties are not very sensitive to the
superconducting transitions [42~45], it is natural to as-
cribe the observed effect to the influence of the conduc-
tion electrons, the energy spectrum of which exper-
iences very significant changes.

It is well known that the plasticity of metals is de-
termined by the motion of the elementary " c a r r i e r s "
of the plastic deformation, the dislocations, so that an
explanation of the softening effect must be sought in the
influence of the electrons on the dislocation mobility.
This point of view is advanced in almost all the experi-
mental papers cited above, and is at present univer-
sally accepted.

The dislocation dragging mechanism is customarily
divided into two groups, in accordance with the physical
nature.

The first group includes mechanisms due to elastic
interaction of dislocations with various structure de-
fects, such as individual impurities, impurity clusters,
other dislocations, etc. These defects are sources of
potential barriers that hinder the gliding of the disloca-
tions, and can play a twofold role. On the one hand, they
are connected with long-range elastic fields that pro-
duce in the crystal a " r ipple" of internal stresses with
a certain amplitude σ4 that depends on the defect den-
sity. As a result, dislocation motion becomes possible
only when the external stress σ applied to the disloca-
tion exceeds oj. On the other hand, the defects that enter
in the glide plane produce barriers localized at atomic
distances. Such barr iers , owing to their small spatial
dimensions, are overcome by the dislocation even at a
low level of external stress, with the aid of thermal or
quantum fluctuations.

The discrete character of the crystal structure is the
cause of the existence of unique potential barr iers ,
called Peierls barr ires. These barriers also have
atomic dimensions in the direction of dislocation
motion, and can be overcome with the aid of the fluctua-
tions .

The second group of drag mechanisms is of dynamic
origin, due to the interaction of the dislocations with
the elementary excitations of the crystals, such as
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phonons, conduction electrons, spin waves, etc. The
moving dislocation collides with the quasiparticles,
transfers .their energy to them, and is therefore slowed
down.

The drag force determined by the dynamic losses has
a viscous character, vanishing when the dislocation
velocity vanishes and increasing with increasing veloc-
ity. In spite of the fact that this force assumes the
principal role only at very large velocities ~ (10"2—lO'^s
(s is the speed of sound), at which the dislocation kinetic
energy exceeds the aforementioned potential barr iers,
it can play a rather appreciable role also in the fluctua-
tion motion of dislocations through barriers [ 4 e ' 4 7 ] . As a
result, viscous drag exerts an influence on the disloca-
tion mobility in the entire velocity interval.

The dissipative properties of metals at low temper-
atures, as is well known, are determined by the ab-
sorptivity of the conduction electrons. Under these con-
ditions, the electron viscosity is the principal mech-
anism of dynamic dislocation loss, and any change in
this viscosity (for example, a superconducting transition)
should be accompanied by a change in the dislocation
mobility and by the same token should influence those
mechanical characteristics of metals which are con-
nected with dislocation motion.

The first to point out the dislocation dragging by con-
duction electrons were apparently Tittman and
Bommel'48-1 and Mason[ 4 9 ]. The first experimental data
indicating this effect were obtained by Love and Shawt50]

and by Tittman and Bommel[48>5i : l, who observed an
amplitude dependence of the ultrasound absorption coef-
ficient in lead following its transition to the supercon-
ducting stage. It was shown later [ 5 2"5 7 ] that nonlinear
absorption takes place also in the normal state, but at
much larger sound amplitudes; the role of the super-
conducting transition reduces to a lowering of the
critical amplitude of the effect. The nonlinear absorp-
tion observed in the cited papers is customarily con-
nected with the breakaway of the dislocation from the
impurity atoms that pin them[ 5 8 ]. Since the critical
amplitude of the sound at which the breakaway takes
place depends in general on the magnitude of the drag
forces that act on it, it was perfectly natural to
assume1 4 8 ' 4 9 · 5 1 1 that the observed lowering of the critical
amplitude is due to the weakening of the electron drag
force on the dislocation in the superconducting state in
comparison with the normal state.

The shift of the critical amplitude of the nonlinear
absorption is a rather "subt le" experimental effect.
Copyright © 1975 American Institute of Physics 878



It is very sensitive to peculiarities of the defect struc-
ture of the crystal and its detection calls for very pre-
cise measurements. Its observation hardly gave any
ground for expecting the electron drag of dislocations to
become noticeably manifest in "coarser" measurements
such as ordinary mechanical tests of metals. However,
the discovery of the weakening effects has shown that
the influence of the superconducting transition on the
mechanical behavior of metals is quite appreciable. In
particular, it turned out that the superconducting transi-
tion is accompanied by a lowering of the elastic limit
(the critical shear stress[ 2 ]) by several dozen per cent,
and by a decrease of the deformation stress in the case
of plastic flow by several per cent'3'2 1 1. A rather large
effect was observed in creep experiments, namely, the
superconducting transition of the sample leads to an
increase in the creep rate by dozens of times [22~311. The
superconducting transition exerts also a rather strong
influence on the stress relaxation1·32"391, on the glide-band
mobility1·40'411 and on the twinning process[ 2 4 ].

Special experiments have shown that within the limits
of the measurement accuracy the superconducting
transition exerts no influence on the elastic-deforma-
tion process; noticeable effects appear only during the
stage of well-developed plastic deformation, when a
large number of dislocations are displaced in the
crystal. This circumstance is apparently the principal
proof in favor of the assumption that the softening
effects are based on the same physical mechanism as
the shift of the critical amplitude of the nonlinear ab-
sorption of sound, namely the increase of dislocation
mobility, which occurs in the superconducting transition
as a result of the sharp decrease in the electron vis-
cosity.

Thus, an analysis of the electron drag force on the
dislocations and of its change in the superconducting
transition is essential for the understanding of many
experimentally observed features of the mechanical
behavior of metals at low temperatures.

In this review we report from a unified point of view
the results of theoretical papers devoted both to the
study of the electron-drag force on individual disloca-
tions in normal metals [ 5 9~e 3·1 and in superconductors'·64"671,
and to the analysis of the influence of this force on the
dislocation absorption of sound[49>51>61>68], and on the
kinetics of plastic deformation[47>69'72] of metals. We do
not attempt to touch here upon all the questions per-
taining to this problem. Principal attention is paid to
the influence of electrons on the mobilities of individual
dislocations; these questions constitute the contents of
Chaps. 2 and 3. In the last two chapters of the review,
using simplest models as examples, we show how the
electrons influence certain macroscopic mechanical
characteristics of metals.

2. ELECTRON DRAG OF DISLOCATIONS
IN NORMAL METALS

The problem of electron drag of dislocations is
equivalent in many cases to the problem of absorption
of high-frequency sound ql » 1 (q is the wave vector of
the sound wave and I is the electron mean free path).
The moving dislocation produces in the crystal an
alternating elastic-deformation field uyjir, t), which
exerts on the conduction electrons a force determined
by the deformation potential A-j^u^tr, t) (the nonzero
tensor components Aĵ  are of the order of the width of

the electron bandL"J). Owing to this potential, the dis-
location produces transitions in the electron system and
loses its energy to the perturbation of this system. The
drag force is equal in absolute magnitude to the energy
absorbed by the electrons when the dislocation
traverses a unit path.

In a concrete calculation of the drag force it is con-
venient, using a Fourier expansion, to represent the
dislocation deformation field υ^(τ, t) in the form of a
superposition of elastic waves. Within the framework
of linear theory of elasticity, the action of each of these
waves on the electrons can be regarded independently.
Such an approximation does not take into account effects
due to nonlinear deformation near the dislocation core;
however, there are grounds for assuming that the rel-
ative magnitude of these effects is small.

The subsequent calculation is similar to the solution
of the problem of absorption of ultrasound in metals'·731

and can be carried out in two ways. The first is
kinetic[5Ql and is based on the solution of the kinetic
equations for the conduction electrons with the deforma-
tion potential of the dislocation as the external perturb-
ing field, followed by calculation of the dissipative func-
tion. It turns out, and this is important, that the main
contribution to the dissipative function is made by
elastic waves with extremely large wave numbers
q ~ I/a (a is the lattice constant). This means that the
inequality ql » 1 is satisfied with a large margin for
all the waves that must be taken into account. In this
case, as shown int 7 3 ], the interaction of the electron with
the elastic medium can be regarded as a quantum-
mechanical process of electron-phonon collision. This
circumstance justifies the second, quantum method of
calculating the dislocation drag force[601. Calculation of
the drag force by this method reduces to a calculation of
the number of electronic transitions with energy ab-
sorption .

The exposition that follows will be based on the
quantum method, since it is much simpler and can be
easily generalized to include the case of supercon-
conductors.

The qualitative features of electron drag can be
established by considering a straight-line dislocation
moving with constant velocity V through an equilibrium
gas of free electrons with isotropic quadratic dispersion
law. In this case the strain tensor is u ^ = ujjjtr - Vt),
where r is a two-dimensional radius vector in a plane
perpendicular to the dislocation line. Choosing the
electron wave functions in the form plane waves
normalized to the volume of the crystal, we can show
that the Hamiltonian of the interaction of the electrons
with the dislocation, expressed in the second-quantiza-
tion representation, is

SC 1 y λ u<\ e - ' < V ( a + . ' •LAil"" ν,Γ*' w" (i)

q
here u^n is the spatial Fourier component of the strain
tensor and depends on the two-dimensional wave vector
q lying in a plane perpendicular to the dislocation line;
Lj and L2 are the transverse dimensions of the crystal;
aJc and afc are the operators for the creation and
annihilation of electrons in a state with the wave vector
k and the corresponding spin direction.

The frequency of the electronic transitions i^ k + q
with absorption of a quantum of energyfiw™, calculated
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by perturbation theory with the matrix elements of the
Hainiltonian (1), is given by

where f (e) = (1 + e(« - « F ) / T ) " ' is the equilibrium
Fermi function1', e k =4i2k2/2m is the energy of the
electron in the state k, ep is the Fermi energy, m is
the electron mass, and the index (N) indicates that this
quantity pertains to the normal metal. Formula (2)
takes into account the spin degeneracy of the electronic
states.

The electron drag force per unit of dislocation length
is determined by the relation

F = -jV 2 ^W1Vk, k+1. (3)
1. k

in which L3 denotes the dislocation length. We note that
formula (3) in this form is valid both for the case of
the normal metal and for the case of the superconductor;
the difference between these two cases lies in the con-
crete form of the transition frequency v. Substituting
(2) in (3), changing from summation to integration, and
using the fact that in our case'najq, Τ « ep and
f(e) - f(e +/ha>q) SS/hwq6(e - ep), we obtain for the
dislocation electron-drag force in the normal metal
the expression

F 2

expression for the drag force of a screw dislocation
in a normal metal:

The presence of the small parameter majq/hkpq « V/vp

« 1 (kp is the radius of the Fermi sphere in k-space
and vp is the Fermi velocity of the electron) makes it
easy to integrate with respect to the variable k, after
which we obtain

" (2n)S J (5)

The integration region in (5) is a circle with radius 2kp.

Expression (5) enables us to draw two important
conclusions concerning the behavior of F N even before
we specify the form of the deformation potential. First,
we see that the dislocation electron-friction force in the
normal metal does not depend on the temperature.
Second, since Wq ~ V, it follows that the force F N
depends linearly on the dislocation velocity V.

No further analysis is possible without specifying the
explicit form of the strain tensor ujn· By way of ex-
ample we consider a screw dislocation for which two
components of the strain tensor differ from zero[ 7 4 ]. In
a coordinate system with Oz axis along the dislocation
line and Ox axis along its velocity V, these are the
components u x z and UyZ. Using the well known formulas
for these quantities , we obtain the following
expression for the Fourier component of the deforma-
tion potential:

Xlnufn = ib (6)

where b is the value of the dislocation Burgers vector.

Substituting (6) in (5), we can easily confirm the
statement made above concerning the role of waves with
large values of q. Indeed, the integrand in (5) does not
depend on the modulus of the vector q, and consequently
the integral is determined by the upper integration limit
2kp ~ 1/a.

Integrating in (5), we arrive at the following final

(7)

where λ2 = (1/4) (λ^, + 3λ^ζ), q m = 2kF. A formula sim-
ilar to (7) holds also for an edge dislocation, the only
difference being that the quantity λ2 was determined by
a combination of other components of the tensor λιη.
Thus, the dislocation electron-drag force in the normal
metal does not depend on the temperature and increases
linearly with increasing dislocation velocity. It is easy
to verify that if we assume λ ~ ep, then we obtain for
the drag coefficient B N the estimate

BN~-

where η is the concentration of the conduction electrons.
For standard metals we have B N ~ 10"5 g/cm-sec.

A few remarks must be made concerning the accuracy
of the result. First, we point out that in the expression
for the deformation potential (6) we have used for the
dislocation strain tensor the value obtained within the
framework of linear elasticity theory. This means that
expression (6) reflects correctly the behavior of the
deformation potential only at values q < l/r0, where r 0

is the radius of the dislocation core. If furthermore
l/r 0 < 2kp, then the upper integration limit q m in (5)
should be chosen to be the quantity l/r0, which is not
rigorously defined. Second, the deformation-potential
constant is a phenomenological parameter of the theory,
for which only the order of magnitude is known. Finally,
the structure of the energy spectrum of the conduction
electrons in real metals (the shape of the Fermi surface,
etc.) is much more complicated than in the very simple
model (free-electron gas) used in the calculation. Al-
though there are no grounds for expecting the foregoing
circumstances to influence the main features of the
force F N , namely the linear dependence on the disloca-
tion velocity V and independence of the temperature,
nevertheless, by virtue of these circumstances, the
numerical value of the drag constant B N becomes some-
what indefinite. Therefore BN syould be regarded as a
semiphenomenological parameter, the exact value of
which must be determined from experiment.

The foregoing seems to explain the difference be-
tween the theoretical and experimental values of BJJ
and the large scatter of the theoretical estimates
(BN ~ 10"β- ΙΟ"4 g/cm-sec)[ 5 1 ' 5 3 ' 5 5 ' 5 9 ' e 2 ] .

The external fields, by changing the state of the elec-
tron gas, naturally influence the electronic part of the
dislocation drag force.

An external electric field applied to the metal causes
a direct electric current j to flow. Owing to the mo-
mentum transfer from the conduction electrons to the
crystal lattice distorted by the presence of the disloca-
tion, the dislocations should be dragged by the electrons
in the direction of the current. The drag force can be
calculated by replacing the Fermi function f(ek) in the
expression for the transition frequency (2), by the quasi-
equilibrium distribution function in the presence of a
current ?(k), which, as is well known, is given by

7(k) = / (<i) + 8 (ek _ eF) fikV0,

where Vo = (l/ne)J is the electron drift velocity (n is the
electron concentration, j is the current density, and e
is the electron charge). In the simplest case when the

880 Sov. Phys.-Usp., Vol. 16, No. 6, May-June 1974 M . I . Kaganovetal. 880



electric field is directed along the dislocation-motion
direction, the total force exerted on the dislocation by
the electrons is determined by the expression
(V. Kravchenko[61])

FN = BK (V - v0). (8)

The current increases the drag force if it is directed
opposite to the dislocation motion (Vo < 0) and de-
creases this force in the opposite case (Vo > 0). An
immobile dislocation is acted upon, in the direction of
the current, by a dragging force F = Bĵ V0, which in
principle should cause motion of the dislocation2'. How-
ever, it is difficult to obtain in experiment large drift
velocities Vo for typical metals, and the question of
observing this effect remains open (see,
incidentally, C 7 6-8 0 ]).

A much greater effect on the electron drag of the
dislocations is exerted by strong magnetic fields.

A magnetic field changes the structure of the energy
spectrum of the conduction electrons, and this leads to
different quantum oscillations (in particular, oscilla-
tions of the sound-absorption coefficient). There is no
theory that takes into account such effects in the cal-
culation of the dislocation-drag force. However, the
magnetic field influences the propagation and absorp-
tion of sound in metals also in the classical approxima-
tion, since it increases the viscosity of the electron
gas'81]. Therefore the application of a magnetic field
should lead to an increase in the dislocation electron-
drag force.

We present here the results of a kinetic analysis
(V. KravchenkotMI), without dwelling on the details.
Naturally, the kinetic analysis is valid if the magnetic
field is not quantizing, i.e., if -ίιΩ << Τ (Ω = eH/mc is
the cyclotron frequency).

The influence of a weak magnetic field (rjj » I,
where rjj is the Larmor radius) on the dragging of dis-
lications by the electrons is small, and there is no need
to discuss it. In the case of a strong fidld (rn « I),
the electron-drag force is considerably altered, since
it depends on the magnetic field and on the electron mean
free path I = νρτ, (τ is the relaxation time).

In the simplest case, when the magnetic field is
parallel to the dislocation line, the drag force is given
by

(9)

It is easy to see that at low dislocation velocities
V « b/τ ~ s/a)or (ω0 is a frequency on the order of the
Debye frequency), the drag force remains linearly de-
pendent on the velocity:

N " ' ι Ν 2 "'
XT

We note, however, that the drag coefficient B N greatly
exceeds B N . At large velocities V » b/τ, the de-
pendence of the drag force on the velocity becomes
weaker, logarithmic:

F% = QbB, ln~. (11)

So far we have considered electron drag of uniformly
moving linear dislocations. We now discuss the in-
fluence of the nonstationary character of the motion and

the bending of the dislocation line on the electron drag
force. It was shown above that the main contribution
to the drag force is made by transition due to elastic
waves with the maximum possible values of the wave
number q ~ l/r 0 (r0 is the radius of the dislocation
core). This means that effective exchange of energy in
momentum between the electron and the dislocation
occurs at distances on the order of r 0 from the disloca-
tion line and after times on the order of ro/vp. As a
rule, the characteristic curvature radii of dislocation
line are R » r0, and the characteristic periods of
motion are τ0 >> ro/vp. It is almost obvious that the
corrections due to the nonstationary character of the
motion and to the bending of the dislocation line should
be small, of an order determined by the parameters
r o / T o v F < < : 1 and To/R « 1·

An exception in these rules are kinks on disloca-
tions[ 8 2 > 8 3 ] in crystals with high Peierls barriers. In
such crystals, individual segments of one and the same
dislocation can be in neighboring valleys of the potential
relief; the section of the dislocation line joining these
segments is called a kink (Fig. 1). A kink can move
along the dislocation, transferring it from one potential-
relief valley to another. Obviously, in this case the dis-
location mobility on the whole is determined by the
mobility of the kinks, while the latter in metals at low
temperatures should be determined in the main by the
electron drag.

Since the radius of curvature of the dislocation at the
location of the kink is comparable with the atomic dis-
tance, the force that decelerates the kink calls for a
special analysis.

Calculation of the force of the electron fraction of the
kink F§ reduces to calculation of the elastic dislocation
field with a kink moving along it with velocity V^; in all
other respects the calculation is almost identical with
the calculation in the case of a straight-line dislocation.
In a normal metal in the absence of external fields,
this force is determined by the expression[84·1

Fl=Bivk, fl£ = i ^ . (12)

where d is the width of the kink and a is the lattice con-
stant in the direction of the dislocation glide.

3. SINGULARITIES OF ELECTRON DRAG OF
DISLOCATIONS IN SUPERCONDUCTORS

At a superconducting transition temperature Τ = T c ,
a gap Δ appears in the energy spectrum of the conduc-
tion electrons, as a result of which the absorptivity of
the electrons decreases strongly. It is therefore quite
natural to expect also an abrupt decrease in the force
of the dislocation drag by the electrons.

One might assume[ 4 9 > β 1 ί that the dislocation electron
friction force in a superconductor decreases with tem-
perature in accordance with the change of the concen-
tration of the "normal" electrons, as does, for example,
the ultrasound absorption coefficient[85]. The actual

FIG. 1. Schematic repre-
sentation of a kink on a dislo-
cation. d-Width of kink, VR—
velocity of kink, a-lattice
constant.
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situation is much more complicated for the following
reason: As shown in the preceding chapter, the max-
imum energy transferred from the Fourier component
of the elastic field of the dislocation to the electrons is
of the order of 4qmV. Very simple estimates show that
at a velocity V ~ 104 cm/sec, which is quite easily
attainable under the experimental conditions, this energy
becomes comparable with the Cooper-pair binding
energy 2Δ. Therefore a dislocation moving in a super-
conductor can cause not only transitions connected with
the scattering of the "normal" excitations that exist at
the given temperature, but also transitions connected
with the creation of new excitations (breaking of the
Cooper pairs). This circumstance leads to a compli-
cated dependence of the electron-friction force in the
superconductor on the dislocation velocity and on the
metal temperature (ΕΜ>β5>ββ>β71),

A generalization of the calculation performed in the
preceding chapter to include the case of a super con-
cuctor encounters no fundamental difficulties. Consider-
ing, as before, a uniformly moving straight-line dis-
location and changing over in the Hamiltonian Jf^t (1)
from the electron operators a^Jfand ak*"to the operators

of the elementary excitations of the superconductor
Ύ^( and yjj< with the aid of the Bogolyubov transforma-
tion (see, e.g.,t86]), we obtain

* l n t — -AT- 2 ^inUfne"""1!1 [(lik+qlik + Vk+rf\) (Yk+qtYkt + Vi+qtYk*)

(13)
k+qUlc) (Vk+qjVtkt + V-k-q

Here u k and vk are transformation coefficients that
satisfy the following system of equations:

where t£ = Vek - eFf + Δζ is the excitation energy,

e k

 =in2k2/2m denotes as before the electron energy, and
Δ = Δ(Τ) is the temperature-dependent gap. The phys-
ical meaning of the terms in the Hamiltonian (13) is
obvious: the first and second terms describe the transi-
tion of the quasiparticle with corresponding spin direc-
tion from a state with a wave vector k to a state k + q
via absorption of a quantum with energy-hu^; the third
term describes the process of production of two quasi-
particles in states k + q and -k (breaking of a Cooper
pair) with simultaneous absorption of a quantum of
energynWq; the fourth term describes the annihilation
of the pair of quasiparticles in the states k and -k - q
and the production of a quantum of energy-hWq. The
last two processes, naturally, are possible under the
condition^nG)- > 2Δ. The transition frequencies for
each of these processes separately have been written
out in[e7]. The total number of transitions with absorp-
tion of energy'fi'-i'q is determined by the expressionc -1

* i A
{2 (Uk+qUk — Wk+ql'k)2

(14)

Vt. k+, Γ

X !φ(εί) — φ(ε{+,)]δ(ε£+, — ε£ — «ω,)

+ ("k+qfk + yk+q«k)2 [ 1 — φ (εί) — φ (ε£+,)]

Χ [δ (8k-f-q + 8k — ĈOq) 6

where <p(e*) *[1 +exp(e*/T)]"1 is the equilibrium dis-
tribution function of the normal excitations of the super-
conductor .

An expression that determines the dislocation
electron-friction force F$ in the superconductor is
obtained by substituting (14) in (3) and using the con-
crete form (6) of the deformation potential. Further

calculations become much easier if it is assumed that
the dimensions of the Brillouin cell of the crystal are
smaller than 2kp, and if the region of integration with
respect to q is confined to a rectangular Brillouin cell.
Under these assumptions, the integral with respect to
the projection qy of the vector q can be easily cal-
culated, since the integration limits in this integral can
be regarded as infinite without incurring a large error.

Omitting the rather cumbersome calculations, we
present the final expression for the force Fg in a form
convenient for analysis:

- 2 Δ ) '? * l (15)

[1_φ(ε)-φ(ε'—ε)]};

here BJJ is the dislocation drag coefficient in the normal
metal (7), q m is the dimension of the Brillouin cell in
the direction of motion of the dislocation, χ(χ) = 1 at
χ > 0, and χ(χ) = 0 at χ < 0.

Formula (15) shows that the dependence of the
electron-friction force FS(V, T) on the dislocation
velocity V and on the superconducting temperature Τ is
quite complicated, and its explicit form can be estab-
lished only in limiting cases™. Let us consider some
of them.

1) At absolute zero temperature (T = 0, Δ = Δο) we
have

(16)

Obviously, in this case the electron-friction force is
equal to zero at dislocation velocities V < Vc = 2A0/nqm.
At V > Vc, the friction force differs from zero, and if
V - V c « Vc, then

• Fa=±Bs(V-Ve). (17)

The appearance of the critical velocity Vc is a con-
sequence of the existence of a gap in the energy spec-
trum of the superconductor, and has the same nature
as the threshold absorption of the electromagnetic[85]

and acoustic1·87] energy, due to the breaking of the
Cooper pairs.

The character of the singularity of Fs(V) near the
critical velocity must be discussed in greater detail.
The point is that the relation (17) is not universal, and
was obtained as a result of a special choice of the form
Ujk and as a result of the simplifying assumptions made
in the integration with respect to q. A detailed analysis
of this question is contained in[87]. In the general case
it is apparently necessary to replace (17) by188-1

BKVC(-L·-1)". F - Vc, (17')

where Bĵ  ~ Bĵ , and ρ is a positive parameter, the value
of which is determined by the form of the dislocation,
by the symmetry of the crystal, etc.

At large velocities V 5> Vc, the friction force F$
in the superconductor tends asymptotically to the value
of the friction force F N in the normal metal (Fig. 2a).

2) At nonzero temperatures, special interest
attaches to the case of small dislocation velocities
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FIG. 2. Schematic plots of the dislocation electron-drag force in a
superconductor against the dislocation velocity at different tempera-
tures (solid curves); the dashed lines show the electron-drag force in
the normal metal [6 6].

V « T/nqm, A(T)6qm. In this case the ratio of the
friction force in the conducting and the normal states
behaves, in accordance with the asuumption made by
MasonC49], like the ratio of the ultrasound-absorption
coefficients in the BCS theory[85]

F8--=BSV, (18)

When using (18), it must be remembered that the
velocity interval in which this formula is valid depends
strongly on the temperature. For intermediate tem-
peratures, this interval is quite large (0—103 cm/sec),
but it becomes much anrrower as Τ — 0°K and Τ — T c .

3) If the superconductor temperature is low in com-
parison with the critical temperature, Τ « T c , then
the small linear section (18) on the plot of FS(V) of Fig.
2b is replaced with increasing velocity (T «"fiqmV
« Tc) by a parabolic section:

9R l/nTV

(19)

Further increase of the dislocation velocity Ί κ ^ ν > 2Δ
«< 2Δ0 turns on a threshold drag mechanism, namely
the breaking of the Cooper pairs. At velocities
-tqmV » 2Δ0, the friction force in the superconductor
differs only negligibly from the friction force in the
normal metal:

•.BxVil—, -ln-

The value of the force Fg at the point V = Vc is
determined in this case by the expression

2Λο

(20)

(21)

4) At temperatures close to T c (Tc - Τ « Tc) and

at low velocities-nqmV « 2Δ « 6. 4 Tc[l + (T/Tc)]1'2,
formula (18) is valid. At higher velocities 2Δ(Τ)
« hqmV « Tc we have

η τ/Γι ΑίΙΙΊ (22)

With further increase of the velocity &qmV » Tc) we
have

FB = BHv[l-^.lni!^.] ^ (23)

It is obvious that as Τ - T c the force Fs — FJJ in the
entire velocity interval (Fig. 2c).

With the aid of formulas (17)-(23) it is easy to find
the friction-force discontinuity GFjyjS = F N ~ FSt6e]>
which determines the change of the dislocation mobility
in the superconducting transition. The temperature de-
pendence of CFNS coincides in the limiting cases with
the temperature dependence of the gap Δ(Τ), but there
is no single linear dependence of oTwg on Δ(Τ).
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The formulas cited above, together with Fig. 2,
present a qualitative picture of the velocity and tem-
perature dependences of the dislocation electron-fric-
tion in the superconductor. Some quantitative char-
acteristics of this dependence, obtained by a computer
analysis of formulas of the type (15), are given in[ 6 4 ' e 7 ].

The analysis results given above for the electron
friction in a superconductor are valid, generally speak-
ing, for linear dislocations. However, as expected, on
the basis of considerations advanced at the end of the
preceding chapter, allowance for the bending of the
dislocation1671 hardly affects these results if the curv-
ature radius is much larger than atomic dimensions.
Electron drag of kinks on dislocations in a supercon-
ductor, just as in the case of a normal metal (see
Chap. 2) calls for a special analysis.

In concluding this chapter we note that in a super-
conductor, unlike a normal metal, it is more important
to take into account effects connected with the dislocation
core. First, the crystal deformations are nonlinear
near the dislocation axis, so that the elastic-wave
spectrum should contain also multiple frequencies, in
addition to the fundamental frequency ^q = q · V, and
this leads to a lowering of the threshold velocity Vc. In
addition, if account is taken of the discrete structure of
the crystal, then the partial spectrum of the stationary
elastic field of the dislocation contains frequencies that
are multiples of the quantity V/a (V is the average dis-
location velocity, which is constant in time, and a is
the lattice parameter in the glide direction); this cir-
cumstance should also affect the "prethreshold" drag31.

4. MECHANISMS OF NONLINEAR ABSORPTION OF
ULTRASOUND IN METALS

Absorption of sound in typical metals at low tem-
peratures is determined mainly by the conduction elec-
trons . Transfer of energy from the acoustic wave to
the electrons is effected in two ways—by direct inter-
action of the wave with the electrons and by electron
drag of the dislocations that are actuated by the wave.
The dislocation part of the absorption depends, nat-
urally, on the dislocation density and can therefore be
easily separated. In addition, this component of the
absorption has a number of distinguishing features, the
most essential of which is the appearance of an ampli-
tude dependence at sound amplitudes at which the direct
absorption is still linear.

The pure well-annealed single crystals usually em-
ployed in ultrasonic measurements contain a three-
dimensional dislocation grid.[58>88] whose nodes are
"rigid" for the pinning of the dislocation lines. When
impurities are introduced, the dislocations are addition-
ally pinned by the impurity atoms that settle on them.
Consequently, there are two characteristic lengths of
the dislocation segments, L determined by the grid and
I determined by the impurities (Fig. 3a). At sufficiently
small sound-wave amplitudes the dislocation segments
bounded by the impurities vibrate like elastic strings in
a viscous medium (Fig. 3b). The absorption coefficients
determined by these vibrations do not depend on the
amplitude and have a resonant dependence on the fre-
quency, reaching a maximum near the natural frequency
of the segments. With increasing sound intensity,
starting with a certain critical amplitude crc of the
stresses in the sound wave, the dislocations break away
from the impurities (Fig. 3c), as a result of which the
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Β χ

FIG. 3. Successive stages of the motion of a pinned dislocation in
the field of a sound wave when the amplitude of the sound oscillations
is increases [ s 8 ] . L-distance between the nodes of the dislocation grid,
/-distance between the impurities that settle on the dislocation, u—
displacement of dislocation from the equilibrium position x-coordinate
of the dislocation element.

dislocation absorption increases strongly and becomes
nonlinear. The critical amplitude depends not only on
the binding energy of the dislocation with the impurity
atoms, but is also sensitive to a certain degree to the
drag force that attenuates the oscillations of the dis-
location segment. Therefore the change in the disloca-
tion electron friction in the superconducting transition
or when a strong magnetic field is turned on should lead
to a shift of ac.

We shall analyze this phenomenon in the simplest
case, by considering an aggregate of dislocations of the
same type belonging to one glide system, and assuming
that all the dislocation segments have the same length
Λ4' To describe the absorption on an individual segment,
we use the Kohler-Granato-Lucke "string" model of the
dislocation1581, according to which small vibrations of a
pinned dislocation in the field of a sound wave are de-
scribed by the equation

u(0, t) = u(l, i)-0, o<ac.

Here u(x, t) is the displacement of the dislocation from
the Ox axis passing through the pinning point (Fig. 3d);
F(V) is the drag force and depends on the velocity
V = 9u/9t; σ is the amplitude of the component of the
stress tensor in the glide plane of the dislocation; Μ and
C are respectively the effective-mass linear density
and the coefficient of linear tension in the dislocation.

It was shown in the two preceding chapters that in a
number of cases the dislocation electron drag force in
the normal metal and in the superconductor depend
linearly on the velocity: F(V) = BV (the drag coefficient
Β can depend on the temperature or on the magnetic
field). In such cases the solution of (24) takes the form

U I* · I- *M

where
{2k+t) [K - « ' (25)

The energy W absorbed by an individual dislocation
segment during one period is

Ι π/ω

W= jdx j dtVF(V), (26)

and the dislocation component Γ of the sound damping
decrement is connected with W by the relation

r=^T, (27)
where G is the shear modulus and Ν is the dislocation
density. Substitution of (25) in (26) and (27) yields

3Ε3Γ- (28)

Expression (28) describes the dislocation component
of the sound absorption in metals at sufficiently low
amplitudes σ < ac (in the linear region). We recall that
the region of applicability of this formula is connected,
in particular, with the conditions under which the force
F(V) depends linearly on the velocity V, namely the
condition |9u(x, t)/9t| « T/nqm, A(T)/nqm in super-
conductors and the condition |9u (x, t)/9t| << b/τ in
metals placed in a magnetic field, if Ωτ » 1 (see (9)
and (10)). Incidentally, estimates show that in the cases
of practical interest these limitations are not too
stringent.

Let us find now the amplitude rrc at which the dis-
location breaks away from the impurities and the ab-
sorption becomes nonlinear. In this model, the criterion
of breakaway from the pinning point Ο (Fig. 3d) is
equality of the angle ψ to the critical value <pc = ir
- (E/bC), where Ε is the binding energy of the disloca-
tion with the impurity atom. Since the dislocation vibra-
tions are assumed to be small, it follows that
φ = π - 2(9u/9x)x = ο; using this circumstance, we
obtain

EMI
[Σ (29)

This formula determines the dependence of the critical
amplitude ac on the dislocation drag coefficient γ = Β/Μ.

In a superconductor we have γ = yg = (2BJJ/M)
x[ l + e 4 /T]" ' , so that ac should decrease sharply when
the temperature is lowered. This effect should be
particularly large if the inequalities ω « ω0 and
γω > ω2 are satisfied (under experimental conditions
we usually have u> ~ 107-108 sec"1 and ωο ~ 109-1010

sec"1, and the value of γ for typical metals in the normal
state is of the order of >-N ~ 1010-10U sec"1).

We note that the qualitative character of the behavior
of the quantities Γ and a c can be obtained in many cases
of practical importance by retaining only the first
terms of the series in (28) and (29).

Figure 4 shows the character of the nonlinear-absorp-
tion critical-amplitude variation observed experi-
mentally in superconducting indium1-521. The observation
of nonlinear absorption in superconductors [ 4 8 ' 5 0 > 5 1 > 5 3 ' 5 7 ] ,
and the fact that it is not observed in the same crystals
in the normal state, pertain apparently to a case when
the sound amplitude σ satisfied the inequality

If the metal is placed in a strong magnetic field,
ίίτ » 1, then the coefficient γ, together with the crit-
ical amplitude aC) depends on the field intensity H,

= ̂ TeH/mc. Insofar as we know, there
are no experimental data on this effect at present.
namely y = yS

erim

In superconductors at low temperatures Τ « T c

ΛΤΚ

nM £Δ (2k+l)2[(G)jj— α
t-0 •

FIG. 4. Dependence of the
difference Γ Ν - Ts between
the sound-damping decrements
in normal and superconducting
indium on the amplitude of
the acoustic oscillations at
different temperatures ["]
(the damping decrements and ' •*
the amplitudes are shown in Λ Μ 1 > · un-
arbitrary units). The absorption in the normal state was independent of
the amplitude in the studied interval of a.
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there is in addition to the nonlinear absorption con-
nected with the breakaway of the dislocations from the
impurities also another nonlinear-absorption mech-
anism[e8·' due to the essentially nonlinear dependence of
the friction force Fg(V) on the dislocation velocity V.

To simplify the analysis, we confine ourselves,
following[68], to consideration of extremely low tem-
peratures (T = 0°K). In this case there is no direct ab-
sorption of sound by electrons at all frequencies
ω < 2Δ0/η ~ 1011 - 1012 sec"1.1871 As to the absorption
due to the dislocation electron friction, it should also
be absent at sufficiently low sound amplitudes at which
the amplitude of the velocity of the vibrating segment
V is lower than the threshold velocity Vc = 2A0/hqm,
inasmuch as Fg(V) = 0 at these velocities (see (16)). At
sufficiently large amplitudes, starting with a certain
critical amplitude <7C, the velocity of the segment ex-
ceeds Vc during a certain part of the period, and the
dislocation experiences during that time electron drag.
As a result, at amplitudes σ > ac, the dislocation ab-
sorption should acquire an increment that is connected
with the electron drag and increases with increasing
amplitude.

At Τ = 0°K and σ < σ^, the only cause of the damping
of the vibrations of the dislocation segments are the
losses to phonon emission (radiative losses'89-1), which
are small enough to be neglected in other cases. We
shall show below that for the phenomenon in equation
greatest interest attaches to the frequencies ω ~ ωο#

In this case, when solving Eq. (24), we can confine
ourselves with sufficient accuracy to the first term of
the series:

V (σ, ω) , t g 6 H = -
(30)

where VR is the radiative-damping coefficient, which
has, in accordance with[89], a value y^ ~ lO"1^.

Equating the dislocation-velocity amplitude V (σ, ω)
to the threshold velocity Vc and solving the obtained
equation relative to σ, we obtain

iba
(31)

It is easily seen that the minimum value of the threshold
amplitude is reached at a frequency ω close to the
resonant frequency of the segment wQ:

min[oc(o)] ~ σο(ω0) (32)

Assuming the amplitude of sound ο to be close to the
threshold amplitude (0 < (or - 5"c)/<rc « 1) and using
formulas (17'), (26), (27), and (30), we can obtain for the
electronic part of the damping decrement Fg in the
superconductor, at Τ = 0°K, the expression

Γ, = -
" σ — a c (ω)

- <*c (ω) r (33)

We note that the character of the singularity in the
amplitude dependence of Fg near σ^ is directly con-
nected with the character of the singularity of Fg(V)
near Vc.

At sound amplitudes σ » ffc, we have I
» Vc, over practically the entire period of the
oscillations, and consequently we can put F(V) » BNV
in (24). Therefore at large sound amplitudes the damp-
ing decrement should approach asymptotically the
amplitude-independent value Γ Ν determined from

formula (28) with γ = yN.

Two mechanisms of nonlinear absorption of ultra-
sound are thus possible in a superconductor at low tem-
peratures (as Τ — 0°K). The threshold amplitudes of
these mechanisms are determined by different para-
meters and therefore, generally speaking, they do not
coincide, so that these mechanisms can be separated.
It should be noted that for not very pure crystals one
should expect nonlinear absorption connected with the
threshold velocity Vc to manifest itself at amplitudes
larger than those needed for the dislocations to break
away from the impurity; only after breakaway from the
dislocations do the dislocation-segment lengths become
large enough to be able to satisfy the inequality
V(<r,«)>Vc.

We know of no attempts of separating the second non-
linear-absorption mechanism by analyzing the experimen-
tal data.

5. CONDUCTION ELECTRONS AND PLASTICITY
OF METALS

We shall analyze the influence of electron drag of
dislocations on the plasticity of metals by using as an
example the simplest dislocation model of plastic de-
formation.

Assume that the crystal contains one effective glide
system with a mobile-dislocation density Ν which is
uniform along the crystal. In this case the fundamental
equation that determines the kinetics of the plastic-
deformation process is

ip = bN.V(a, σ,); (34)

here £„ is the instantaneous value of the plastic-de-
formation rate, and ν(σ, σ̂ ) is the average velocity of
an individual dislocation and depends on the instantane-
ous value of the external deforming stress σ and on the
average level of internal stress σ^ the velocity V should
be averaged along the direction of motion of the dis-
location, over distances in which its motion has a non-
stationary character (for example, atomic distances in
a crystal without defects or the characteristic distances
between local barriers produced by structure defects).

We must stipulate at once that Eq. (34) with Ν con-
stant is highly idealized and does not take into account
many singularities of the real deformation process.
These are, first, the multiplicity of the glide systems,
each of which has values of Ν and V that are in general
different from those of the others. Second, the mobile-
dislocation density N, even if homogeneous along the
crystal, can in the general case depend on the time and
on the external and internal stresses; the assumption
Ν = const is equivalent to the assumption that the dis-
location sources operate in a regime in which each
mobile dislocation that goes out of play is immediately
replaced by a new one. Finally, owing to the long-range
character of the elastic dislocation field, it is very
important to take correct account of their interaction
with one another. This circumstance is taken into ac-
count in (34) only by introducing a certain character-
istic internal-stress level aj.

Nevertheless, experience shows that Eq. (34) makes
it possible to describe, at least qualitatively, most of the
important features of the plastic deformation of crystals.
Since the superconducting transition does not lead to
excessively large changes in the deformation process
(the integral value of the effects is < 10%), one can hope
Eq. (34) to remain applicable, in the sense indicated
above, after the superconducting transition.
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To use (34) to describe the deformation it is neces-
sary, of course, to have the explicit form of V(a, aj),
and also to know the law governing the hardening, i.e.,
the connection aj = <Jj(ep) between the internal stresses
(Tj and the value of the plastic deformation £p.

The V(cr, ffj) dependence is determined by drag
mechanisms that control the dislocation mobility; as
already noted in the Introduction, in real crystals the
physical nature of these mechanisms is different at high
and low velocities.

The hardening law depends on the type of mechanism
controlling the multiplication of the defects when the
crystal is plastically deformed. There is at present no
consistent theory of strain hardening; only certain
particular cases have been considered (see, e.g.,t88'90]).
Experiment shows that at low temperatures and not too
high strains, a good approximation for most metals is
a linear hardening law described by the following
phenomenological relation[88]:

ai = a?> + k(tip-e<l), (35)

where σ·0' and e0 are respectively the internal stress
and strain at the yield point, and k is the hardening
coefficient5'.

Let us note an experimental fact of importance in
the exposition that follows: at low temperatures, the
hardening coefficient of most metals is not sensitive
to the temperature and does not depend on the rate of
plastic deformation in a wide range of rates. This coef-
ficient retains its value also after a superconducting
transition.

The assumption that the parameters Ν and k in (34)
and (35) are not altered by the superconducting transi-
tion greatly simplifies the problem of determining the
influence of the transition on the plastic deformation
process, reducing it to the problem of the change in the
mobility of an individual dislocation.

It must be borne in mind, however, that one cannot
exclude cases when the deformation process is governed
to a considerable degree by the rate at which the dis-
location sources operate. In this case, the cause of the
softening should be sought in the influence of the super-
conducting transition on the work of the sources. Un-
fortunately, this process has not yet been sufficiently
studied; there is only one paper[72] in which the influence
of the transition on the initial stage of the work of a
Frank-Read source is analyzed. According to[ 7 2 ], this
influence is also a consequence of the change of the
mobility of an individual dislocation (which breaks away
in this case from the source).

Depending on the deformation conditions, the role of
the variable quantity to be determined from (34) can be
assumed either by the plastic deformation ep or by the
deforming stress σ. For an experimental study of the
plasticity, the following types of mechanical tests are
most frequently used:

Creep: deformation of the sample under the influence
of a constant stress (σ = const). The plastic deforma-
tion ep is then a monotonically increasing function of
the time (Fig. 5a).

Active deformation: strain at a constant rate gov-
erned by the testing machine (έ = έρ + ee = const φ 0,
where e e is the rate of the elastic deformation); the
variable quantity is the stress σ producing a specified
deformation rate (Fig. 5b).

FIG. 5. Time dependence of the quantities characterizing plastic
deformation of crystals in different types of mechanical tests (e = et).

Stress relaxation: the testing machine is stopped
and the deformation of the sample is the result of
elastic stresses existing in the sample and in the
machine; in this case έρ + €e = 0, and the stress σ
decreases monotonically with time (Fig. 5c).

In the simplest case when the internal stresses are
negligibly small and the external stress is so large
that the dislocation motion is above the barrier, the
function V(<r) is determined by the balance between the
external force ba acting on the dislocation and the dy-
namic drag force F(V):

ba = F (V). (36)

As already noted in the Introduction, the principal
dynamic drag mechanism in normal metals at low tem-
peratures is electron viscosity. In this case relation
(36) takes the form (see formula (7) of Chap. 2)

ba = BNV. (37)

In a superconductor we have

ba = FS(V, T), (38)

where Fg is determined by the formulas of Chap. 3.

Under the experimental conditions, the superconduct-
ing transition is produced most frequently by rapidly
turning on or off the magnetic field that destroys the
superconductivity. The electron drag force on the dis-
location in this transition changes jumpwise61 by an
amount OFNS = BJJV - Fs(V, T), and this should nat-
urally lead to an abrupt change in the deformation
process. It is easily seen that the transition of the
metal to the superconducting state under creep condi-
tions should be accompanied by a sharp increase in the
strain rate ep, and under conditions of active defor-
mation the deforming stress σ should decrease sharply
in such a transition; in either case, the plasticity of the
metal is sharply increased.

The extent to which the plasticity is increased in the
considered "dynamic" case is determined only by the
jump in the drag force SFjjg, and can be obtained in
principle with the aid of formulas (34), (37), (38), and
the formulas of Chap. 3 for Fg(V, T). However, it is
difficult to examine these quantities analytically be-
cause of the complicated form of the function Fg(V, T),
and we shall not dwell on the analysis here. It should
furthermore be noted that a purely dynamic situation
is apparently rarely realized in plastic deformation.
Large dislocation rates are realized, for example, in
the heads of glide bands propagating under the influence
of large pulsed loadst40>41], and possibly, in the case of
a high active strain rates induced by large deforming
stresses.

It is much more difficult to take into account the
effect of the electrons on the plasticity of metals in the
case when the dislocation mobility proceeds via fluc-
tuation surmounting of local barriers. We confine our-
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selves here to a discussion of crystals with negligibly
low Peierls barriers7 1 and assume that the main ob-
stacles to dislocation motion are barriers produced
by defects such as impurities or "forest"
dislocations[8β].

The elementary act of plastic deformation in motion
of this type is shown schematically in Fig. 6. If the dis-
location moving under the influence of internal and ex-
ternal stresses has assumed the metastable configura-
tion AOB, then after a certain time, owing to quantum
or thermal fluctuations of required magnitude, the dis-
location breaks away from the local barrier at the point
Θ, after which the stress brings it to the position AC^B.
The average dislocation velocity V in formula (34) is
then given by

Ϋ(σ, σ,) « Ιιο(σ, σ,), (39)

where Ζ is the characteristic distance between the bar-
riers and w is the average frequency at which the in-
dividual barrier is surmounted. Formula (39) is of
course meaningful only so long as the average time w"1

required to overcome the barrier is much larger than
the time of the free motion of the dislocation between
neighboring barriers. To this end it suffices as a rule
to satisfy the inequality σ - CTJ « crc

0), where

ac

0> = tfE/8b2i is the value, at ω = 0, of the breakaway
stress a c introduced in Chap. 4 (at σ - σ̂  2: ffc

0), the
dislocation breaks away from the pinning point by purely
mechanical means).

An analysis, within the framework of fluctuation
theory, of the process whereby the dislocation sur-
mounts the local barriers via fluctuations, shows that
in the simplest cases the following expression holds for
the quantity w(<r, (Tj):

w =- ν exp —
U — v(o — σ.)

]• (40)

Here U is the activation energy and is directly con-
nected with the energy of interaction between the dis-
location and the defect, ν is the activation volume, ν is
a frequency factor (the frequency of attempts, and T*
is the effective temperature and is a function of the
usual temperature Τ (Τ* = T*(T)).

The quantities Τ* and ν should be discussed in
greater detail.

At sufficiently high temperatures, the breakaway of
dislocations from barriers is due to thermal fluctua-
tions, and T* goes over into the ordinary temperature

χ[92,93] At extremely low temperature (as Τ — 0°K),
the principal role is assumed by quantum fluctuations,
and T* tends to a constant value determined by the
probability of breakaway as a result of quantum fluctua-
tions t 9 2"9 4 ] 8 ) .

The pre-exponential factor in (40), namely the
attempt frequency v, cannot be obtained within the
framework of thermodynamic fluctuation theory (unlike
the argument of the exponential), and its calculation
calls for an approach based on methods of nonequilibrium

FIG. 6. Schematic representation of
the elementary act of plastic deformation
by fluctuation motion of the dislocation
through an aggregate of local barriers.

statistical mechanics. Usually, on the basis of purely
phenomenological considerations, it is assumed that this
factor is close in magnitude to the characteristic fre-
quenty of the thermal fluctuations of the dislocation
segment, and the latter is identified with its natural fre-
quency ω0 = (π/Ι) VC/M ~ s//t88]. A simple analysis
shows, however, that the factor ν depends essentially on
the mobility of the segment, i.e., in final analysis, on
the viscous drag force acting on it (see[46]). This de-
pendence can be introduced phemomenologically, assum-
ing as before that ν coincides with the frequency of the
thermal oscillations of the dislocations, but taking into
account the renormalization of the latter by the drag
force. An analysis based on the fluctuation-dissipation
theorem (see, e.g.,t47]) shows that the role of the char-
acteristic frequency of the thermal oscillations of a
dislocation string experiencing viscous drag is played
by the quantity ,/«* - (y74) at γ « 2<ι>0 and
(y - W* - 4ω*)/2 at γ > 2ω0. Considering for sim-
plicity the limiting cases of weak and strong friction,
we have

, γ«2ω0,
, γ > > 2 ω ο .

In a normal metal we have γ = yj$ = B^/M. In a super-
conductor, formula (41) remains meaningful so long as
the electron-friction force depends linearly on the
velocity, i.e., the condition for the applicability of
formula (18) is satisfied. In this case γ = ys = Bg/M.
Using for the estimates the rms fluctuation as the char-
acteristic rate of thermal motion of the segment, we
obtain the following criterion for the applicability of
formula (41) to the case of superconductors1473:

It is easily seen that this condition is satisfied in prac-
tically the entire temperature interval in which super-
conductivity exists. Exceptions are small vicinities of
absolute zero (T = 0°K) and of the superconducting-
transition temperature (T = T c ) .

Combining formulas (34), (35), (39), and (40), we
obtain the following equation for the description of the
kinetics of plastic deformation of a metal at low tem-
peratures and small external stresses ( σ - (Tj « crc

0'):

ερ — Αν (Τ) exp -I — (42)

where A = bNi, and the function v(T) is determined,
according to (41), by the temperature dependence of the
dislocation electron drag coefficient B.

With the aid of (42) it is easy to analyze the changes
that occur in the plastic deformation and accompany the
superconducting transition of the metal[47].

a) Creep (σ = const). In the normal state, we have an
unsteady logarithmic creep:

(t) = f - τίτ In (α .vi- (t) = -
(43)

The superconducting transition is accompanied by a
jump in the strain rate Sejjg and by additional deforma-
tion of the sample eejjg (Fig. 7a):

It is seen from Fig. 7b that the theoretical conclusion
that the jump of the deformation rate δε*™ i s propor-
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tional to the rate eN(t0) at the instant of the transition
agrees qualitatively with the experimental data[24].

Experiment shows'22·24'911 that the strain rate in-
creases not simultaneously with the superconducting
transition, but after the lapse of a certain time (delay
time). It is natural to assumet91] that the character-
istic time of transition from one deformation regime
to another is close in magnitude to the average time w"1

needed by the dislocation to surmount the local barriers.
An analysis based on formulas (40) and (42) confirms
this assumption[69].

When the conclusions of the theory are compared
with experiment, it must be borne in mind that Eq. (42)
and the ensuing formulas (43) and (44) describe only the
stage of unsteady creep; the case of steady-state creep
calls for a separate analysis.

b) Active deformation (€ = £p + ke

tk
p e e_ = const).

In a normal state, plastic flow takes place with linear
hardening :

(45)

The superconducting transition decreases the de-
forming stress by an amount δσ^ (Fig· 8):

(46)

The experimental values of the jump δσ^ of the de-
forming stress are < 10 6 - 10T dyn/cm2. Thus, e.g., for
lead we have δσ^β <~6 x 10" dyn/cm2[15]. The inde-
pendently measured parameter T*/v of lead is equal to
10s dyn/cm2t911. Recognizing that the factor Ι η ί ^ / ι ^ )
in (46) can reach a value of several units (see formula
(50) below), we can state that the theoretically pre-
dicted order of magnitude of 6ajjs agrees with the ex-
perimental data.

c) Stress relaxation (ep + e e = 0). The elastic de-
formation e e is connected with the stress by the re-
lation e e =Χ'ισ, where X is the effective elastic mod-
ulus of the testing machine. The equation describing the
relaxation process is therefore

(47)

Assume that during the time preceeding the instant t0

at which the testing machine is stopped the sample had
been deformed at a constant rate e p = const and was in
the normal state. Expressions describing the process
of stress relaxation after the stopping of the machine
can be easily obtained with the aid of (42) and (47):

) = σ0 _1η[β(ί-ί

(48)

(>ίο·

A superconducting transition of the metal at the
instant t = tl is accompanied by an increase δό-jjg in the
relaxation rate and by an increase 6aR in the depth of
relaxation (Fig. 9):

ί-ί,»τ.
(49)

The proportionality of the jump of the relaxation rate
δσΝ8 to the quantity ff^ftj) was observed in139·1 (Fig. 10),
and the logarithmic dependence of 6<JR on the time τ at
large values of τ was observed in[ 3 4 > ] (Fig. 11).

It is seen from (44), (46), and (49) that the softening
effect is determined to a considerable degree by the
ratio ^s/^N- T h i s ratio depends significantly on the
temperature, owing to the temperature dependence of the
coefficient Bg. According to (18) and (41) we have
(assuming that I « l0 = (2π/ΒΝ) /MC")

T>TC,

Ta<T<Tc,

T<T0.

The temperature To is determined here from the
equation

A(H } in ,\

We note, however, that the temperature dependence

(50)

2.1

A B

Ζ t, 1 S f,min 6 i.min

FIG. 7. Change of creep curve in superconducting transition, a) Jump
of creep rate and additional elongation of an indium crystal following
the superconducting transition at the instant of time t 0 [ " ] ; b) de-
pendence of the jump in the creep rate on the instantaneous rate at
the instant of the superconducting transition: at the points A, B, and
C, a transition from the normal to the superconducting state was ef-
fected respectively in three identical lead samples [2 4].

T<TC

FIG. 8. Upper curve—section of
deformation curve of lead with a
magnetic field Η > H c repeatedly
turned on and off (H c is the critical
superconductivity-destroying field)
[ l s ] . The lower curve shows a
schematic representation of the
jump in the deforming stress when

the metal goes from the normal to the superconducting state and back [*].
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FIG. 9. Variation of stress relaxation in a lead crystal during the
course of a superconducting transition I3*]: r-duration of relaxation
in the normal state, δσ^ additional depth of relaxation.

FIG. 10. Jump of the stress relaxation rate, in the transition of a
lead crystal from the normal to the superconducting state, vs the instan-
taneous relaxation rate at the instant of the transition [3 9].
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of the stress relaxation in the super-
conducting transition vs the dura-
tion τ of the relaxation in the
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of the softening is sensitive also to the form of the
function T*(T), which is presently known only for zinc[ 9 2 ].

This circumstance and the fact that the experiments
were performed in a rather small temperature interval
(there are practically no measurements at Τ < 0.3Tc)
make, in our opinion, a detailed discussion of the tem-
perature dependence of the softening effects premature.
We note only that under reasonable assumptions con-
cerning the form of the function T*(T), formulas (44),
(46), and (49) yield relations that agree qualitatively
with those observed in experiment.

If the characteristic distances between the barriers
that hinder the dislocation glide are sufficiently small
(/ « lo = (2π/ΒΝ) νΤνίϋ), then we have ^ / " N a t a 1 1 t e m "
peratures; obviously the softening effects should vanish
in this case. For typical metals, the length is l0 ~ 10"5

cm; incidentally, this estimate is quite approximate, in
view of the uncertainty in the values of B^, M, and C.
A decrease of the effect with increasing impurity con-
centration was observed in a study of the creep of lead
with antimony impurity'-31-'. When the impurity was in a
nonequilibrium solid-solution state obtained by quench-
ing the crystal from a high temperature, increasing its
concentration from 1% to 3% decreased the value of
i>eNS by several times. This decrease was determined
mainly by the increase of the hardening coefficient k,
which was measured independently. After prolonged
aging, the effect practically vanished in the same
crystals (Stĵ S = 0)> but an increase of k could no longer
ensure such a decrease. It appears that aging has led
to the formation of impurity clusters and by the same
token to a sharp decrease of the effective length of the
dislocation segments.

We call attention to one important circumstance that
must be remembered when the results of the theory are
compared with the experimental data.

Many experimental data demonstrating the depend-
ence of the softening effects on the number and form of
the impurities, on the magnitude of the deforming stress,
or on the preliminary plastic deformation, have been
obtained by now[ 1 9'2 1 '2 4 ' 2 e > 3 1 ]. The theoretical formulas
presented above do not contain these relations in ex-
plicit form. They are, however, implicitly contained in
the relations between the aforementioned factors and
phenomenological parameters of the theory such as the
hardening coefficient k and the activation volume v.
These parameters can be easily determined by experi-
ment, and the theoretical conclusions can be verified by
studying their dependence on the number and type of im-
purities and on the total plastic deformation. At the
same time, a more detailed theoretical study of these
relations would be quite useful.

In addition to the mechanism described above, one
more mechanism was proposed for the influence of the
superconducting transition on the surmounting of local
barriers by dislocations; this mechanism employs the
inertial properties of the dislocations[70>71], and unlike
the preceding mechanism it becomes manifest only in
the case of weakly damped dislocation segments (I < l0)
and in a stress interval that is bounded both from above
and below (σ£"/2 < σ < σ£", if it is assumed,
following1-70' ], that there are no internal stresses).
Owing to the inertial forces, the dislocation can sur-
mount local barriers by purely mechanical means at
external stresses σ < ac

0 ), and the role of the inertial
effects increases because of the decrease in the dis-

location drag coefficient in the superconducting transi-
tion. However, no analysis based on a consistent ac-
count of the inertial effects in (34) has been made so
far of the influence of this mechanism on the plasticity
of metals, and we are therefore unable to assess this
mechanism. It must only be emphasized that the inertial
mechanism becomes manifest in the intermediate stress
region (σ *** <rc

0l),when both mechanisms of surmounting
the obstacles by the dislocation play approximately
equal roles. In addition, the time to surmount an in-
dividual obstacle becomes comparable in this case to
the time of travel between neighboring obstacles. There-
fore the separation of the inertial mechanism in pure
form seems to be difficult. It should also be noted that
the authors OfC20>70>71] use in the analysis of the inertial
mechanism an expression linear in the velocity for the
drag force in the superconductor, Fg(V, T) = Bg(T)V,
in spite of the fact that in this case the realized dis-
location velocities are quite high, and the function
Fg(V, T) is essentially nonlinear (see Chap. 3).

The foregoing theoretical premises concerning the
influence of electron dragging of dislocations on the
plasticity of metals are based on a rather simplified
model of plastic deformation, in which no account is
taken of a number of factors inherent in a real crystal,
such as the multiplicity of the glide systems, the in-
homogeneity of the deformation along the sample, the
uneven distribution of the distances between barriers,
etc. A number of phenomenological and semiphenomeno-
logical relations such as (35) and (40) have been used,
so that the results contain phenomenological parameters
that depend significantly on the structure and internal
state of the crysta. This means that the existing theory
can claim only a qualitative description of the softening
effects. Nevertheless, a comparison of the results ob-
tained in this obviously qualitative theory with experi-
ment shows that this theory "works"! To be sure,
some of the conclusions of the theory (they were noted
above) still await their experimental confirmation,
primarily when it comes to the dependence of the soften-
ing effects on the temperature and on the defect struc-
ture of the crystal.

Solid-state theory is customarily divided presently
into several distinctly delineated branches: electron
theory of metals and semiconductors, dynamic theory
of crystal lattices, plasticity and strength theory, etc.
The development of each of these branches is accom-
panied, naturally, by "junctions," "intersections," and
"overlaps." It seems to us that the present review
offers evidence of the appearance of a new junction,
between the electron theory of metals and plasticity
theory.

We take the opportunity to thank V. V. Pustovalov
for great help in the selection of the literature on the
questions considered in the review.

''Strictly speaking, the electrons become redistributed around the dis-
location in the metal, so that the Fermi function contains in place of
eF the coordinate-dependent chemical potential. This refinement,
however, leads only to a certain renormalization of the deformation-
potential tensor in the final results and is therefore inessential.

2)Dislocation dragging by an electron stream in a particular case of
electron wind, which is the displacement of crystal defects under the
influence of translational motion of the conduction electrons [7 S].

3)The authors are indebted to A. M. Kosevich for these two concluding
remarks.

4 ) Actually there is a certain scatter of the segment length, and allowance
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for this scatter greatly complicates the picture of the phenomena from
the quantitative point of view.

5)Generally speaking, the deformation of the crystal from the start of
the plastic flow to the failure goes through several (most frequently
two) stages of linear hardening, with different hardening coefficients.
In these cases the quantities σ<0) and e0 should pertain to the start of
the considered stage.

6)The time required to change the drag force is determined by the time
of the superconducting transition in the sample. As a rule, this time
is much shorter than the characteristic times of the deformation
process. This is confirmed by the results of studies of the effect of
delay of the deformation in the course of a superconducting transi-
tion under creep condition [66>91] and the kinetics of the transient
process under active-deformation conditions [ 1 7 > l 8 ] .

''Softening effects were observed in the metals Pb, In, Sb, TI, Hg and
Nb and in a number of superconducting alloys. There are grounds for
assuming that almost all these metals have low Peierls barriers; the
only possible exception is niobium.

8'lt should be noted that the problem of the influence of quantum,
fluctuations on the breakaway of a dislocation from the defect that
pins it is in essence a particular case of a more general problem of the
influence of quantum fluctuations on the kinetics of phase transitions,
which has been under a lively discussion of late ['s>'6]. The role of
quantum fluctuations in the course of generation of double kinks on
dislocations in crystals with large Peierls barriers is analyzed in [97>98].
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