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1. INTRODUCTION

The invention and refinement of holographic meth-
odsCl~33 has aroused interest in light diffraction, and in
particular, in diffraction in thick films. The practical
value of this phenomenon has grown considerably. The
use of light diffraction in holography has its own fea-
tures . Holography can become of practical importance
only when the light output of the hologram is large
enough, i.e., when a significant part of the light incident
on it goes into the reconstructed image.

The light output of a hologram is characterized by its
diffraction efficiency, which shows what part of the light
radiation intensity goes into the first order of diffraction
when the hologram is a sinusoidal diffraction grating.
Such a grating can be obtained by action of two interfer-
ing waves on a light-sensitive film. One of the waves is
considered the reference wave, and the other is the ob-
ject wave. By varying the angle of incidence of the ob-
ject wave, one can get a grating with a varying spatial
frequency that corresponds to one of the spatial frequen-
cies of the holographed object. Hence, such a grating can
be treated as a recording of one of the components of
the Fourier image of the object being holographed, while
the result of light diffraction by such a structure is
treated as a response of a linear system to one com-
ponent of the Fourier image of the object (the diffrac-
tion phenomenon is linear, owing to the linearity of the
original equations).

By treating the dependence of the diffraction efficiency
on the spatial frequency, we can thus get the directional
diagram of the hologram, since the expansion in terms
of spatial frequencies is at the same time an expansion
in terms of plane waves that proceed at different angles
from the object.

The dependence of the diffraction efficiency on the
spatial frequency arises mainly from two factors: the
properties of the photosensitive film, and the properties
of the hologram itself. We shall not consider the first
factor, but shall treat only the effect on the diffraction
efficiency of the properties of the hologram itself.

As we know, holograms can be classified as thin-film
and thick-film. For thin-film holograms, all directions
of plane waves into which one can resolve the wave
emerging from the object are equivalent, and there is
no need for a directional diagram of the hologram itself.

For thick-film holograms, as Fig. 1 illustrates, the
effective path length that the light wave traverses within
the medium depends on the direction of propagation of
this wave, and a directional diagram exists.
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I shall discuss below the criterion by which one can
classify holograms as thin-film and thick-film.

Moreover, holograms can be amplitude and phase
holograms (however, holograms are mainly prepared as
mixed amplitude-phase holograms.1' Thick-layer phase
holograms are the most promising from the standpoint
of getting the maximum diffraction efficiency. Hence, we
shall treat here mainly the diffraction of coherent light
by a phase diffraction grating.

However, the diffraction efficiency does not fully
characterize the properties of a hologram, since it
neglects the phase relations between the components of
the Fourier image of the holographed object. The phase
relations play a substantial role in constructing the image
from its Fourier components, and in determining the
properties of a hologram we must also have its phase
characteristics.

In order to answer the question of how the diffraction
efficiency will be related to the spatial frequency of the
grating, i.e., the directional diagram of a thick-film
hologram, we must solve the problem of diffraction of
coherent light in a medium having a spatially periodic
distribution of refractive index.

Different theories exist for light diffraction in thick
films. These theories have been mainly developed by
studying diffraction of x-rays in crystals143 and by
studying diffraction of light by ultrasonic waves.

Without taking up all of these theories here in detail,
we shall only point out that there are two theories for
diffraction of x-rays in crystals: the kinematical theory
(the solution by the perturbation method)t63 and the dy-
namical theory1·73 (the solution for the first orders of
diffraction). The kinematical theory as applied to thick-
film holograms has made it possible to establish the
following features:183 1) directional selectivity; 2) color
selectivity; 3) existence of only one reconstructed
image. However, this theory does not give the true

[ 5 ]

FIG. 1. Resolution of the wave F(f, f) proceeding from the object
into plane waves. The dotted lines show some of the directions of the
plane waves into which the resolution is being made.
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values of the amplitude, and it seems impossible to
calculate the diffraction efficiency by using it.

A theory of coupled wavesC9>10] has been developed
for diffraction of light by ultrasonic waves. This theory
is of interest, in that it permits one to distinguish two
limiting cases of diffraction. They will be treated below.

Moreover, the problem of light diffraction in a thick
film has been solved with a computer1"3 for certain
special cases.

In this review, we shall first establish which parame-
ters characterize the holographic diffraction grating
used in the theory. Then we shall obtain and study exact
solutions of the problem. In conclusion, we shall treat
the approximate solutions, which permit one to present
a physical picture of the phenomenon, and shall con-
struct the directional diagram of thick-film holograms.

2. PARAMETERS OF A PHASE DIFFRACTION
GRATING OBTAINED BY INTERFERENCE OF TWO
PLANE WAVES

Let us consider a spatial (three-dimensional) inter-
ference pattern obtained by superposing two plane waves:
the reference wave Ji = AeiP·* and the object wave J 2

= Bei ( C # r, where A and Β are the amplitudes of the
waves, and the vectors ρ, κ, and r have the components

ρ = {k sin Θ, 0, k cos θ), κ = {k sin φ , 0, k cos φ ) ,

r as {*, y, z).

Figure 2 shows the directions of propagation of the
waves and the angles θ and φ .

The intensity I = (Ji +J2)(J* + J*) of the total wave
can be represented as follows:

+ Ss + 2AB cos { (p - κ) r}. (1)

The first term in this expression is the square of the
amplitude of the reference wave, and it does not depend
on the angle Θ.

The second term is the square of the amplitude of the
object wave, for which we have taken only one Fourier
component of the radiation emerging from the object.
Since the different Fourier components have different
values, depending on the angle φ , Β2 will be a function
of the angle φ .

In phase holograms, the low-frequency component of
the function B2=B2(<p) will superpose on the image dur-
ing reconstruction to create highlights that diminish the
image contrast. This is the essential defect of phase
holograms. However, there are methods for diminishing
interference of this type. t l 2 ] Discussion of these methods
lies outside the scope of this article. However, we note
that one of the conditions for getting an acceptable signal-
noise ratio is that B2 should be small in comparison with
A2. That is, we must have A2 » B 2 , a condition which we
shall use later on.

Without considering the concrete properties of the
photographic material, we shall assume that the illumina-
tion of the hologram by the two beams of rays and the
subsequent treatment (whenever necessary) will result in
changes in the dielectric constant that are proportional
to the light intensity that was incident at each point of the
the photomaterial. Hence, we can assume that the di-
electric constant of the photomaterial after the diffrac-
tion grating has been recorded on it will depend as
follows on the coordinates:

ε = e0 + Δε cos {(p — x) r}. (2)

If we bear in mind the above-cited inequality, which
implies that (Ae/e 0 )«1, then we get the following ex-
pression for the propagation constant β =

l-Ksuif

Ί,-Be"

FIG. 2. Wave vectors of the reference (R) and object (O) waves, their
coordinates and angles of incidence of the waves on the photosensitive
film.

P = fcj/l+^cos{(p-x)r}«;A:[l+-|^.cos{<p-*)r}] (3)

Thus the characteristics of a phase diffraction grating
are determined by three parameters: the angle of in-
cidence θ of the reference ray, the angle of incidence
φ of the object ray, and the maximum relative change
in dielectric constant. When the relation of the dielec-
tric constant to the coordinates has this form, we can
also take account of absorption in the holographic
film by replacing the quantities e0 and Δε by their
complex values, respectively. However, we shall con-
sider e0 and Ae to be real.

In some cases, the angle of incidence of the light
on the grating in diffraction (i.e., in reconstructing the
hologram) differs from the angle of incidence of the
reference beam of rays during recording. Then a fourth
parameter $ will arise, which is the angle of incidence
of the light on the grating during diffraction.

3. METHODS FOR SOLVING THE PROBLEM

The steady-state Maxwell equations for a non-mag-
netic medium have the form

rot rot Ε + p«E = 0. (4)

If we consider the relation between the dielectric
constant and the coordinates that was established
above, in this case we can represent the propagation
constant β as follows:

P = k? + k'a [exp {i (p - κ) r} + exp {-i (p - x)r}]

where ρ, κ, and r are the vectors defined above, and

Let us use the method of coupled waves, and seek a
solution of Eqs. (4) in the form of the following Fourier
series:

(5)

The vectors Em(z) (which are subject to the defini-
tion of the function) are assumed to depend only on the
variable ζ, since we consider that the relation of Ε to
χ is purely periodic, owing to the periodicity of struc-
ture and unlimited dimensions of the diffraction grating
in the direction of the χ axis.

We can easily convince ourselves that we can derive
from the Maxwell equations a system of equations with
constant coefficients by using such a Fourier series. In
order to do this, we must define the vectors Mm as
follows:

•μη=σ + m{p-*), m = 0, ± 1 , ±2 (6)
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Here σ is the wave vector of the reconstructing wave
incident on the grating:

a = {A; sin 0, 0, A: cos»}.

If the reconstructing source wave is incident on the
grating in the same direction as the reference wave
had been during recording, then σ = ρ, and ,? = Θ.

FIG. 3. Propagation directions of the
diffracted waves within the medium.

For the values of
takes on the form

CO

E= 2

defined above, the solution

(7)

The physical meaning of this solution is that an in-
finite series of diffracted waves Em(z) exp{im(p-K) -r}
lying on both sides of the source wave arises in addition
to the wave Εο(ζ)βίσ·Γ that coincides in direction with
the source wave within the medium (i.e., after the wave
has passed through the surface).

The amplitudes and phases of all the waves depend
on z, since the waves interact among themselves as
they propagate within the medium. They interact be-
cause they are periodically reflected and refracted as
they pass through the film structure. Owing to the
periodicity of reflections and refractions, as well as
interference, light is propagated in the medium only in
certain directions. That is, the energy is "channelized,"
so that its transfers caused by reflection and refraction
can occur only between adjacent channels. Figure 3 il-
lustrates the arrangement of these channels. It shows
several first wave vectors, and the case is shown in
which the direction of the reconstructing wave coincides
with the direction of the reference wave during recording.

In order to derive a system of equations in a form
convenient for solution, we shall make one assumption
that does not limit the generality of the solution. We
shall assume that the polarization of the waves does not
change during diffraction. This assumption is fully
valid for isotropic media. Then we can take

E m (z) = emEm (z),

where Em(z) is a scalar function, and e m is a u n i t vec-
tor that does not depend on ζ and lies in the plane of
polarization and perpendicular to the direction of propa-
gation of the wave. Consequently, the vectors em obey
the relations

emem = l> e m p = 0.

By substituting the Fourier series into the Maxwell
equations, with account taken of all of the cited rela-
tionships, we get the following system of homogeneous
equations with constant coefficients for Em(z):

—j-|2—f- 21 [cos d + m ( c o s 9 — c o s φ)1 d f

m

—imsin-2-^— sinlw + -!-2—1 + "* sin-^-ί—\Em \o)

where we have introduced the new variable t = kz.

The value of the scalar product e m · e m + i depends
on the orientation of the vector Eo of the source wave.
If this vector is perpendicular to the plane of incidence
(i.e., parallel to the y axis), then as we can easily see,
all the vectors em are parallel to one another, and we
have e m - e m + l = l ·

However, if the vector Eo does not form a right angle
with the plane of incidence, then e m "em+l— 1· Thus,
rotation of the vector Eo from a position parallel to the

y axis will decrease the coupling between the waves.
We shall treat only the case of greatest practical im-
portance of maximum coupling, and we shall assume
that e m - e m + l = l . Then em'« = 0.

The coefficients of the system of equations acquire
a simpler form when the direction of the source (re-
constructing) wave, i.e., the wave incident on the grat-
ing during diffraction exactly coincides with the direction
of the reference wave during recording. The equations
will then be

it* — mcos ip]—^
(9)

—4m(ro+l) sin2-^^-Ea + a(Em.l + Em+i) = 0.

4. STUDY OF THE SYSTEM OF EQUATIONS. THE
EXACT SOLUTION

Regardless of the direction of the source wave, we
can represent the system of equations that describe
diffraction in the form:

iEw,
'~df —ymEm + a (Em-, + Em+l) = 0. (10)

The form of this system is such that we can inter-
pret it as a system of equations describing oscillatory
processes in a system of coupled resonators. Let us
call them quasiresonators. However, we should remem-
ber that the comparison with resonators is purely for-
mal, and the oscillation of the quasiresonators occurs in
space, rather than in time.

In addition to the system (10), we can also write a sys-
tem for the coupled quantities:

- — 2ipm •%- - ymE'm f a (££_, + £'„) = 0. (ID

The boundary conditions for solving the problem must
be chosen by starting with the assumption that in the
absence of coupling (a = 0) there will be no diffraction,
and the amplitudes of oscillation of all the quasireso-
nators but Eo will be zero, while only a constant com-
ponent exists for Eo. The amplitude of this constant
component equals the amplitude of the source wave. We
shall take it to be unity. Thus we have

= 0, (12)

where

•-{
1 when m = o,
0 when

The diffracted waves arise only because of the mutual
coupling of the waves. Hence, the boundary conditions
for a * 0 should not differ from those that have just
been stated. A difference in them would imply that we
had introduced other causes for appearance of dif-
fracted waves besides the coupling between the waves.
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Let us consider the conservation laws. The system
of equations for the coupled waves Em has two inte-
grals that we can obtain as follows. Let us multiply
the systems for E m and E m by their conjugate quan-
tities, and sum over all m and subtract the one sum
from the other. We get

2 J { dt™ l
df· at ' I

Since the solution of the system of equations with
constant coefficients is the exponential function
exp(iwt), the first two terms of the obtained relation-
ship compensate one another, and we have

J 3 _PmEm(z)Em(z) = const. (13)

This is the first law of conservation in the system of
coupled quasiresonators.

As we can easily see, the obtained expression is the
flux of energy passing through a surface perpendicular
to the ζ axis lying at an arbitrary site within the
medium. Thus, it is not the amount of energy overall
that is conserved in diffraction, but its flux (in the di-
rection of the ζ axis) through the surface of the film,
and energy can "spread" in the direction of the χ axis,
i.e., it can enter higher orders of diffraction.

The boundary conditions (12) imply that

(14)

In order to obtain the other integral of the system of
equations, let us multiply the system for Em by dEm/dt,
and correspondingly, the system for E m by dEm/dt.
After summing and adding the two systems analogously
to what we did before, we get the expression

Σ [ Λ1? Τ ~ . + Em+1)E'm] = 0 ,

which we have written with account taken of the condi-
tions (12).

This is the second law of conservation of energy in
the system of coupled quasiresonators. We can inter-
pret the first term (dEm/dt)(dEm/dt) in the expression
for the second law as being the kinetic energy ("rate"
of growth of the wave along the χ axis), the term
- y m E m E m as the potential energy, and the term
a(Em-l + E m+l)E m as the coupling energy. Thus, the
integral (15) characterizes the movement of energy in
the system of quasiresonators, and it shows that the
gradient of energy that characterizes its transfer into
different orders of diffraction depends on the coupling
coefficient a and the constant y m .

As we see, the quasiresonators in our interpretation
substantially differ from ordinary resonators. There
are two forms of potential energy in the system of
quasiresonators that resemble coupled diffracted waves:

This closely involves the existence of two partial fre-
quencies that differ in value (rather than in sign, as in
the usual case). These frequencies will be calculated
below. In the approximate solution that we shall treat
in Sec. 5, the term that corresponds to the energy
gradient in (15) is lacking, and there remains one con-
servation law (13) and one partial frequency for each
quasiresonator.

The convergence of the series that express the first
and second conservation laws is implied by the theorem
of existence of a unique solution of a system of differ-
ential equations. The convergence of these series im-
plies that Em —" 0 as m —• ±°°. Thus, the waves of the
zero and first orders play the major role in diffraction.
It is easy to see that we have y0 = 7i = 0 when the re-
constructing and reference beams coincide, and the en-
ergy % 2 does not exist for these orders. Hence, the
potential energy % 2 that accumulates in the higher or-
ders plays the role of a restraining factor in the system
that hinders transfer of energy into the higher diffrac-
tion orders.

We interpret the spatial distribution of light as it
passes through the medium along the ζ axis as being
the oscillation of the quasiresonators in time.

During the diffraction process, energy is transferred
from the zero-order wave Eo (which exists alone in the
medium immediately after the light has passed through
the surface) to the higher-order waves. In a system of
coupled resonators, the ability for energy to be trans-
ferred from one resonator to another depends on syn-
chronization of the oscillations at the partial frequen-
cies, i.e., the frequencies that the single resonators
would have if separated into individual partial systems
in the absence of coupling.

Let us find the partial frequencies. If we set the
coupling coefficient a to be zero, we get the system of
equations

(16)

that describes the oscillations of mutually uncoupled
quasiresonators.

Each quasiresonator that is described by one of the
equations of the system has (in contrast to ordinary res-
onators) two different partial frequencies that differ in
value:

The oscillations of the partial system corresponding
to the quasiresonator will not be harmonic, since the
ratio of the two partial frequencies ωι/ω2 is not a ra-
tional number.

Let us write out the values of the partial frequencies
for several quasiresonators close to Eo (we are treating
the case in which the reconstructing ray and the refer-
ence ray coincide):

E-,

- 3 c o s 6 + 2cos<p± ]/{— 3cos9 + 2cos<p)a — 24 sin*

— 2 cos θ + cos φ ± y (— 2 cos θ + cos <p)s — 8 sina

0,
0,

cos θ
cos φ

cos θ — 2 cos ψ ± γ (cos θ — 2 cos φ) 2 — 8 sin2

Examination of the values of the partial frequencies
shows that the most favorable conditions for energy ex-
change are between the zero and minus-first quasires-
onators. However, if the angles θ and φ are small,
then the partial frequencies of all the quasiresonators
are close to zero. Hence, decrease in the angles θ and
φ improves the conditions for transfer of energy into
the higher diffraction orders. Conversely, if we increase
the angles θ and φ, then the energy will mainly be
transferred from the zero-order wave only into the
minus-first-order wave.

822 Sov. Phys.-Usp., Vol. 16, No. 6, May-June 1974 Ν. Μ. Pomerantsev 822



It is precisely this condition, which ensures the ex-
istence of waves of only two orders, that is necessary
for getting a high diffraction efficiency. However,
knowledge of the partial frequencies makes it possible
to get only a qualitative picture of the energy distribu-
tion over the diffraction orders.

Let us proceed to the system of equations in the
presence of coupling:

(18)

Its natural frequencies are defined as the roots of the
characteristic equation

Ο α fl, α Ο Ο Ο ...

0 0 α Ο0 α 0 0 . . .

|_Ο0 0 α β-ι α 0 . . .

(19)

Here Dm=-(co2

has the form
2a>|3ln + )' r n), and the general solution

(20)

The coefficients CmZ a r e fcund from the above-men-
tioned boundary conditions. The total solution, which is
the sum of all the diffracted waves, now has the form

Cm, exp liar + im (ρ — κ) r + ίω;Λ:ζ]. (21)

As we see from this solution, there are two series
of diffracted waves. The first series is a distribution
over the individual channels (which are shown in Fig. 3),
in each of which an entire group of waves is propagated.
Thus, each wave of the m-th order Em(z) consists in
turn of a series (generally infinite) of closely distributed
waves. These second series of waves are represented
in Fig. 4 by their wave vectors. For clarity of illustra-
tion, the angles between the vectors have been made
much greater than they actually are, while the number
of waves has been restricted to four. While propagat-
ing in almost the same direction, these waves interfere.
Consequently, as the diffracted waves propagate within
the medium, their intensity varies according to a
complicated law.

The natural frequencies ωι are not multiples of one
another, and the oscillation of the entire system cannot
be expanded into a series of harmonic oscillations. The
functions Em(z) become sums of periodic functions of
non-multiple periods. That is, they are almost-periodic
functions of the variable ζ, as represented by their
Fourier series. The theory of such functions and opera-
tions on them has been well developed.iis:s According to
this theory, the sum of oscillations of the form
CmZ exp(icojt) (which in the terminology of H. A. Bohr

FIG. 4. The groups of waves that
propagate in the direction of a dif-
fraction order. The value of kcj( is
half the distance between the ends
of the mean vectors.

are commonly called "pure") can be combined into a
series (the Fourier series of the almost-periodic func-
tion). The convergence of the series (20), which is
composed of pure oscillations arranged in order of in-
creasing ωι is implied by the theorem of existence of
a unique solution of a system of differential equations.

According to the theorem of approximation of almost-
periodic functions/133 the functions Em(z) can be ap-
proximated by a finite series composed of pure oscilla-
tions of the form CmZ exp(iwjt):

We can make the infinite characteristic determinant
(19) absolutely convergent by dividing each of its rows
by -(ω2 + 2ω/3πι + '>Ίη)· Η w e restrict ourselves to the
numbers mmax = Mi and I— mmaxl = M2, and solve the
characteristic equation, we get 2(Mi = M2 + l) eigenfre-
quencies of the system, and thus, we can represent the
functions Em(z) as sums of 2(Mi + M2 + l) pure oscilla-
tions. Thus we can get a solution of the system of equa-
tions for Em(z) with any given accuracy.

As an example, we shall give the solution for the fol-
lowing values of the parameters: a = 0, l;# =θ = φ = 10°.
Figure 5 shows graphically the spectra of the functions
Em(z) for Mi = M2 = 2 as calculated with a computer.Cl4]

We see from this diagram that the waves of orders Eo

and E-i are mainly represented by oscillations at two
frequencies. This gives us grounds for solving the prob-
lem in the two-wave approximation, as will be discussed
below.

Figure 6 shows the relation of the wave intensities
I E m I2 to the variable t = kz. As we see from this dia-
gram, the intensities of all the waves oscillate strongly
as they propagate within the medium. The intensities
of the waves Eo and E.j attain maxima close to unity,
and they decrease to values close to zero. The maximum
intensities of the other waves are smaller. We also can
see from this diagram that waves having I m 12 3 no
longer play a substantial role, and we can neglect them.

We must note that in this problem we have neglected
reflection and refraction of waves at the surfaces of the
medium. However, these phenomena have no relation to
diffraction within the medium, and it makes no sense to

FIG. 5. The spectrum of
eigenfrequencies of the quasi-
resonators for the diffracted
waves of orders 2, 1,0,-1,-2,
fora = 0, \,θ=φ= 10°.

5 S S *4

FIG. 6. The oscillations of the
light intensity in the diffraction
orders 2, 1, 0, - 1 , -2 as the light
passes through the thickness of
the medium for α = 0, \,θ =φ-
10°. The two groups of presented
segments of curves are two parts
of the very same curves.
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complicate the problem by taking them into account. We
must bear in mind the fact that the angles θ and φ are
the angles at which the reference and object beams of
rays propagate within the medium, rather than outside.

Re-reflection of light from the two surfaces within
the medium can also be treated separately.Cl5]

5. APPROXIMATE SOLUTIONS

By using a set of simplifying assumptions, we can
get an analytic solution for two limiting cases of diffrac-
tion, which we shall now examine. Let us assume that
θ = φ (symmetrical incidence of the object and reference
waves on the hologram), and introduce into the equations
a small parameter, for which we shall make the substitu-
tion of variable t = (ξ cos θ)/α. Then the system of equa-
tions describing the diffracted waves will be

(22)

If we turn to the simplified system of equations that
describes the oscillation of coupled quasiresonators,

If the parameter a2/cos20 is smaller than a, then
the term containing the second derivative can be omitted,
and the system of equations is considerably simplified:

2f ~ 4m (m +1) + Em+
(23)

In studying these equations, let us first assume that
there is no coupling between the waves (a = 0), and
study the partial frequencies. We get a system of equa-
tions

2i dEJdx -im(m + 1) sin2 θ Em = 0, (24)

where T=kz/cos0.

This system describes the oscillations of quasireso-
nators that are not mutually coupled (now they are har-
monic). Each of the resonators will oscillate with its
own partial frequency, which is a multiple of 2 sin2 Θ.

As we know, the condition for best energy transfer
in a system of coupled resonators is synchronization of
the partial systems, i.e., their ability to oscillate in
phase for a prolonged time. We shall assume that the
oscillations of the quasiresonators are synchronous
enough when the phase of oscillations having a frequency
equal to the partial frequency varies little throughout the
path of the light ray in the medium. That is, the value of
the phase 4 sin2 β · Tl z = d , which we shall denote as Q, is
small (here d is the thickness of the film).

Under these conditions, energy transfer from one
quasiresonator to another is simplified, and the maximum
intensities of a large number of diffraction orders (start-
ing with the zero order) will differ little from one
another. We can estimate quantitatively the smallness
of the parameter Q by comparing theory with experi-
ment. Such a comparison, which has been made many
times in studying diffraction of light by ultrasound, has
shown that excitation of a large number of symmetrically
arranged diffraction orders is observed at values of Q
of the order of π/ΐ2 or less.

Hence we have Q s π/ΐ2, or if we bear in mind the
fact that Q=4kd sin θ tan θ, we get

(25)

The region of kd values that satisfy this inequality is
called the region of Raman-Nath diffraction, named after
the investigators who studied this type of diffraction. 1 6 ]

i^SL + £m.J + Em+i = m (m (26)

and if we assume therein that Q= 0, we get the relation-
ship

2i dEJdl + £m_, + Ewl = 0, (27)

which is satisfied by the Bessel functions, if we assume
that

Em (ξ) = imJm (ξ). (28)

This is the solution of the posed problem in the Raman-
Nath approximation.

The functions Em(£) satisfy the boundary conditions

Em (0) = 6m0,

in full accord with the conditions of the problem.

The nature of the variation of the amplitudes of the
diffracted waves indicates that, in the Raman-Nath dif-
fraction region, energy is gradually transferred from
the zero-order wave symmetrically to all the higher-
order waves, with an insignificant backward return to
the zero-order wave. Owing to this process, the energy
finally is transferred to the high-order waves, and the
amplitude of the zero-order wave is considerably di-
minished. This is well illustrated by Fig. 7, where we
see how the intensities of the waves in the first three
orders of diffraction oscillate as the light penetrates
into the interior of the medium.

However, such a picture is an idealization, and it pre-
supposes synchronization of the oscillation of the partial
systems. Actually, as the thickness of the medium in-
creases (i.e., with increasing z), the synchronization of
the diffracted waves breaks down ever more, and this
hinders energy transfer into the higher diffraction orders.

The general solution is the sum of all the waves

E(z) = e«" fj i-Vm(!)exp{tm(p-x)r}.
TH«=-oo

We can easily sum the series over the Bessel func-
tions, and we get the wave

Ε (ζ) = exp [ίστ + i -^ cos {(p - κ) r}] ,

which corresponds to the source wave, but modulated in
phase.

Now we can easily see that in diffraction in the
Raman-Nath region only the phase of the source wave
shifts, and the shift is proportional to the index of re-
fraction in the medium.

Let us consider the other limiting case in which Q
is large. Now there will be no synchronization of the

FIG. 7. The intensitives ( I m )
of the waves propagating in the zero,
first, and second diffraction orders
in diffraction in the Raman-Nath
region.

824 Sov. Phys.-Usp., Vol. 16. No. 6, May-June 1974 Ν. Μ. Pomerantsev 824



partial systems, and energy transfer into the higher dif-
fraction orders will be hindered. However, we can
easily see that the partial frequencies of the quasi-
resonators of indices 0 and -1 are zero, while the
partial frequencies of all the rest of the quasiresonators
now differ considerably from zero. This gives us grounds
for treating oscillations in a system that consists only
of two coupled quasiresonators and for considering it
to be isolated. That is, we assume that energy is not
transferred to other quasiresonators.

Such a situation arises when the Bragg condition is
satisfied:1173

λ/ηΑ = 2 sin θ,

where Λ is the period of the diffraction grating, and η
is the refractive index.

As we know, the period of a grating recorded by using
two plane waves is

Λ = λ/2η sin Θ.

If the wave incident on the grating during diffraction
exactly coincides with the reference wave used in re-
cording, then i> = Θ, and the Bragg conditions are auto-
matically satisfied.

Now we have a system of equations in the two-wave
approximation:

This system has the non-zero eigenfrequencies
ak/2 cos θ and -ak/2 cos0. Under the boundary condi-
tions given above, its solutions will be the harmonic
oscillations

(30)

The intensities of the propagating waves are deter-
mined by the expressions

cos (akz/cos Θ)
2

(31)

We must find the Q values for which we can assume
the two waves Eo and E-i to be isolated from the other
waves. Experimental studies have shown that this hap-
pens when Q&4TT, or

M>^W (32)

The region of kd values that satisfies this inequality
is called the region of Bragg diffraction. The region of
ks values lying between the limits

(33)
48 sin Θ tg Θ sint) tgU

can be considered to be the intermediate region.

We can conclude from the expressions for the intensi-
ties of the diffracted waves that energy in the Bragg dif-
fraction region is periodically transferred back and
forth between the zero-order wave to the adjacent
(minus-first) order. Here the diffraction process is
analogous to the oscillations of a system of two coupled
pendulums, where under certain initial conditions the
energy is transferred from one pendulum to the other in
a similar way.

We can also treat diffraction in the Bragg region as
resulting from "beating" that arises from adding the

two waves that propagate in each of the two channels
that correspond to the diffraction orders:

Emi ~ exp UOT + im (p — κ) r + il (a.k/2 cos Θ) z];

where m = 0, -1 are the diffraction orders, and 1= 1, -1
is the index of the wave.

Both the zero-order wave Eo and the minus-first-
order wave E-i consist of two waves, as is shown in
Fig. 8. Superposition of these waves leads to beats.

If the Bragg conditions are not exactly satisfied
(ύ- * θ), then the partial frequency of the minus-first-
order wave differs somewhat from zero. So that there
will be no complete synchronization of the waves of or-
ders zero and minus one. As in the general case, the
oscillations of the set of quasiresonators become non-
harmonic . However, we can distinguish cases in which
the angles J and θ are close to one another, and the
partial frequency of the minus-first order quasiresona-
tor is much closer to zero than the partial frequencies
of all the others. Then energy transfer again mainly oc-
curs between the waves of orders zero and minus one.

The approximations that we have discussed give a
correct picture of diffraction only if the coefficient of
the second derivative aVcos2 θ is much smaller than the
coefficient a of the first derivative, i .e., when the fol-
lowing inequality is satisfied:

cos» Θ > α. (34)

This is well illustrated by Fig. 9, which shows the
approximate solution by the dotted curve/1 8 3 and the
exact solutions for different values of α by the solid
curves.C l 4 ]

The inequality (34) is always satisfied at small angles
θ (since a cannot be larger than l/2). However, Q
decreases with decreasing angle θ, and the diffraction
changes from the Bragg region into the intermediate
region. At large angles Θ, the discussed approximation
will be valid only if a is very small.

Figure 10 shows in a graph the classification of dif-
fraction in thick films into three regions by showing
curves relating the quantity kd to the angle θ along
the boundaries of the regions.

As we see from this diagram, when we vary the angle
θ from 10° to 30°, the thickness of the hologram can be

FIG. 8. The pairs of waves that propa-
gate in the zero and minus-first diffraction
orders in diffraction in the Bragg region.

OS,

' i 3 S 7 ζ

FIG. 9. Comparison of the exact and approximate solutions. Dotted
curve—approximate solution. The values of α are the following for the
other curves (exact solutions): 1-0.01; 2-0.05; 3-0.1; 4-0.2. The
values of? =akz are plotted as the abscissa.
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FIG. 10. The regions of light diffraction in thick films: (I)-the
region of Raman-Nath diffraction; (Il)-the intermediate region; (III)-
the Bragg diffraction region.

reduced by an order of magnitude, but the hologram re-
tains thick-film properties. The dependence of the prop-
erties of a hologram on the angle θ can explain how one
can record, on material having the same thickness,
holograms that have both thick-film and thin-film prop-
erties, depending on the angle of incidence of the ref-
erence beam of rays.

At small angles Θ, it takes a very large thickness
of film to get thick-film holograms. At angles θ close
to 90°, the required value of kd becomes small, and in
the limit (0 = 90°), it vanishes. We can easily understand
this from the diagram of incidence of rays shown in
Fig. 10. When a ray is incident on the grating at a large
angle (as shown in the diagram by the dotted lines), the
path of the light in the medium greatly exceeds the film
thickness. Hence, the dimensions of the region in which
diffraction occurs are considerably increased. Thus, the
thickness alone of the film does not yet suffice for char-
acterizing holograms. In classifying them into thin-film
and thick-film holograms, it is quite insufficient to com-
pare only the film thickness with the wavelength, and one
can get holograms having different properties on a film
of the same thickness.

Moreover, we must consider the fact that Bragg dif-
fraction cannot be observed in practice at angles of in-
cidence of the rays less than 10°, and holograms with
thick-film properties cannot be obtained here. We see
from Fig. 10 that the curve sharply rises in the region
θ = 8-10°. Thus, even when the thickness of the film is
increased greatly, for angles of incidence of the rays,
e.g., of 10°, the point representing the value of kd will
still lie in the immediate vicinity of the boundary of the
Bragg region with the intermediate region, where the
conditions for appearance of this type of diffraction are
unfavorable. The graphs of the exact solution (see Fig.
6) demonstrate the same thing. Here we see that at
θ= 10° the orders adjacent to the zero and minus-first
orders are excited for such values of kd, for which Q
is known to be large.

6. THE DIRECTIVITY PATTERN OF A THICK-FILM
HOLOGRAM

The diffraction grating considered above was obtained
by recording on the hologram the amplitude and phase of
a plane wave corresponding to one spatial frequency of
the object being holographed. By using such a grating, we
can study the relation of the radiation intensity in the
first diffraction order to the direction of the plane wave,
and thus get the relation between the diffraction effi-
ciency of the hologram and the spatial frequency of the

object being holographed. We can call this relationship
the directivity pattern of the thick-film hologram.

The diffraction efficiency is defined as the ratio of
the radiation energy in the first (minus-first) order of
diffraction to the radiation energy of the source wave.
As we established from the law of conservation of en-
ergy discussed above, the flux of radiation energy
through a plane perpendicular to the ζ axis is con-
served in diffraction. Hence, in order to determine the
diffraction efficiency, we must find the ratio of the cor-
responding energy fluxes. The expression for the dif-
fraction efficiency (with account taken of the fact that
I Eo(0) I2 = 1) will have the form

η = (cos <p/ cos θ) | £_, |«. (35)

We assume that the reconstructing wave coincides with
the reference wave, i.e., $ = θ, and diffraction occurs
in the Bragg region.

In order to find E_i when φ * θ, we must solve the
system of equations

(36)

Calculation of the natural frequencies of this system
gives

2 ycoa θ cos φ

and the solution for the initial conditions Eo(0) = 1,
E-i(0) = 0 will be

E0=cos( akz

2 ~ l / c o s β c<> s 9 •

akz
' 2 ~l/cos θ cos φ• )

The diffraction efficiency is determined from the above
expression as follows:

akz 4 ( 3 7 )η = sins

. 2 "1/cos θ

As is well known and as the derived expression
shows, the diffraction efficiency is a periodic function
of the film thickness, and it varies from 0 to 1. The
period of oscillation of the diffraction efficiency de-
pends on the amount of coupling a and the angle of in-
cidence of the rays on the hologram. As a increases,
the period of oscillation of the diffraction efficiency
decreases in such a way that a change in ζ over a small
range will lead to substantial changes in the diffraction
efficiency. On the other hand, increase in the angle θ
also decreases the period of oscillation of the diffrac-
tion efficiency, and hence, it leads to the same results.

Study of the relation of η to the angle φ makes it
possible to determine the capability of thick-film holo-
grams for reproducing a spectrum of spatial frequenc-
ciesC l 9 ] (directivity pattern). Thick-film holograms sub-
stantially differ in this capability from thin-film
holograms.

For a pictorial representation of the relationship
between the diffraction efficiency and the spatial fre-
quency, we must construct graphs of the relation of η
to φ for different values of ζ, which will now be the
parameter. We can select a set of ζ values for which
it is convenient to construct graphs from the condition
that η must be 1 for φ = θ for the chosen value of z.
The following values of the argument fulfill this condi-
tion:

or J =
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FIG. 11. The relation of the
diffraction efficiency of a thick-film
hologram to the angle ψ in rectilinear
coordinates (0 = 30°).

In conclusion, we note that the graphs of directivity
patterns given here are idealized because we have used
the approximate solutions, which are valid only when
a « cos2 θ. We can envision the degree of idealization
by comparing the exact solutions given above with the
approximate solutions. This has been done in [ 1 4 : .

30· 40' 50·

FIG. 12. The directivity patterns of thick-film holograms in polar

coordinates for: a) m = 0; b) m = 1.

Here m = 0, 1, 2 ... is the number of periods of "beats"
of the two waves that propagate in one given channel.

If we substitute this ζ value into the expression for
η, we find

η = 8ίη2 [ ( m + -jr) n]A;os6/cos(p1 . (38)

Hence we can conclude that the optimum thickness of
the hologram will be the one that gives m = 0. This gives

π cos θ
z°**—w •

We can also see this from Fig. 11, which shows the rela-
tion of η to φ for several values of m.

Figures 12a and b show the directivity patterns in
polar coordinates for m values of 0 and 1. The value
9= 30° was adopted for constructing the graphs.

As we see from the graphs, increase in the thickness
of a hologram leads to a considerable non-uniformity of
the directivity pattern, owing to the increase in the
number of lobes that it has. As a increases, the non-
uniformity of the directivity pattern is manifest at ever
smaller film thicknesses. Thus, if m = 5, then the pat-
tern has the form shown in Fig. 11 when a = 0.01 and
z = 65 μΐη, or when α =0.1 and ζ = 6.5 μΐη, etc.

As we have said, the relation of the diffraction ef-
ficiency to the spatial frequency (the directivity pattern)
does not fully characterize a thick-film hologram. We
must also study the phase relationships between the
components of the spectrum of spatial frequencies.
However, we can easily see that the phase will not de-
pend on the angle φ in our case. The expression for
E-i is purely imaginary, and hence, the phase of all the
components of the spectrum is shifted in comparison
with the phase of the wave Eo by the very same angle π/2,

''Of course, one can also classify them according to other traits. For
example, there are permanent-recording and re-recording holograms,
but there is no need for such a classification in treating diffraction.
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