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The electronic properties of strongly doped semiconductors (SDP) differ greatly from the properties
of pure semiconductors, to which many monographs and text books have been devoted. A serious
study of SDP was started about 10 years ago. The quasiclassical method, its results, and the region of
applicability are discussed in detail. It is shown that this method cannot be used to describe deeply-
lying fluctuation levels. This is followed by the recently developed method of optimal fluctuation,
which makes it possible to find the argument of the exponential of the density of states deep in the
forbidden band. Using this method, the density of states is analyzed at different relations between the
semiconductor parameters and at all values of the energy for which the effective-mass method is ap-
plicable. The difference between the spectra of the majority and minority carriers is indicated. The
influence exerted on the state density by the correlation in the impurity distribution is considered. A
study of the structure of the fluctuation levels makes it possible to construct the theory of the inter-
band light absorption coefficient (ILAC) at frequencies below the threshold. It is shown that the fre-
quency dependence of the ILAC does not always duplicate the dependence of the density of states on
the energy. An analysis of the experimental data indicates that the minority carriers play an impor-
tant role in the formation of the "tail of the ILAC."
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1. INTRODUCTION

Modern semiconductor electronics makes extensive
use of strongly doped semiconductors (SDS), the elec-
tronic properties of which differ significantly from the
properties of pure semiconductors described in most
monographs and text books.

A serious study of SDS started about 10 years ago.
It was stimulated by the invention of a number of de-
vices in which an important role is played by electronic
states that are produced in the forbidden band under the
influence of imparities. Since that time, very many
original papers on this subject have been published, and
by now the theory of the density of state and of inter-
band absorption of light has reached a certain degree
of completeness. Calculation methods have been de-
veloped and results have been obtained that are valid
when the semiconductor parameters differ strongly
from one another. Unfortunately, in the analysis of the
experimental data one encounters most frequently inter-
mediate cases, so that numerical agreement between
experiment and theory cannot be expected as yet. How-
ever, an analysis of limiting cases yields a physical
explanation of the phenomena and this explanation, of
course, remains in force in the intermediate cases and
makes it possible to gain an approximate understanding
of the intermediate cases. Further development of the
theory in this region will probably follow mainly the
path of development of numerical calculation methods.
It is clear that the analytical results obtained in limit-
ing cases will play a very important role in this case.

The difficulty in the grasping of all the original
papers lies in the fact that different authors use differ-
ent approximations, without always distinctly stipulating
the limits of their applicability, It is therefore neces-
sary to exert considerable efforts to compare various

results. This leads frequently to confusion in the reduc-
tion of the experimental data. The number of review
articles on this subject is extremely small (see the
survey[ 1 ] and small fragments devoted to SDS in the
reviews1·*'31). We therefore deemed it advisable to pre-
sent the present-day ideas concerning the properties of
the electronic states in SDS from a unified point of
view.

We consider a semiconductor doped with shallow
impurities (for the sake of argument, donors). The
electronic states on these impurities can be investi-
gated within the framework of the effective-mass
method. We assume for simplicity that the carrier
spectrum is isotropic and quadratic. Then the states
localized near one isolated impurity are hydrogenlike.
The energy Eo and the radius a of the ground state are
expressed in the usual manner

Ε1 '"
0 = ~^λ

(1.1)

in terms of the effective mass of the electron m and
the dielectric constant κ (e is the absolute value of the
electron charge).

We shall attempt to ascertain now how the electronic
states are arranged at low temperature if the entire
volume of the semiconductor is filled with randomly
disposed donors with density N. Obviously, if the
density Ν is low enough, then the electrons are in
hydrogenlike ground states localized near individual
donors, and the electron density in the conduction band
decreases with temperature like exp(-E 0 /T), where
Τ is the temperature expressed in energy units. It is
obvious also that the impurity density should be low
enough so that the wave functions of the electrons
located at neighboring donors overlap very little, i.e.,
the condition Na3 « 1 must be satisfied; we shall call
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this the weak-doping condition. Under this condition,
the scatter of the levels of the electrons located at the
impurities is small in comparison with the energy Eo

(the impurity band is narrow). With increasing impurity
density, the band broadens and finally coalesces with
the bottom of the conduction band.

In the case Na3 » 1, which is customarily called the
case of strong doping and to which our review is de-
voted, the picture of the electronic states is entirely
different. It is clear that there are no states localized
near individual donors. The conduction electrons that
appear in the semiconductor together with the donors
form a Fermi gas. The Fermi energy increases with
the impurity density more rapidly than the interaction
energy of the electrons with one another and with the
impurities. Therefore at Na3 » 1 the kinetic energy of
the overwhelming number of electrons is large in com-
parison with the potential energy. Thus, in a weakly
compensated SDS the electrons form an almost ideal
Fermi gas. The electronic conductivity at low temper-
atures is of metallic character (independent of the tem-
perature).

The Bohr radius a in semiconductors can be very
large. Thus, in n-InSd the radius is a « 600 A, i.e., the
strong-doping condition is satisfied already at Ν κ 101β

cm"3. In practice, with modern methods of purification,
it is very difficult to obtain weakly doped compounds
such as n-InSb or n-InAs. (Samples with small electron
densities are usually compensated.)

The most important task of the SDS theory is to de-
scribe the electronic states, the energies of which lie
in a region that is a forbidden band for a pure semicon-
ductor. The electrons in such states are responsible
for the operation of a large number of modern semi-
conductor devices, such as lasers, various spontaneous
emitters, and tunnel diodes. The levels in the forbidden
band result from fluctuations of the concentrations of
the charged impurities and are called fluctuation levels.
In fact this is the problem of the spectrum of a dis-
ordered system, but in the case of the SDS it has the
following distinguishing features:

1) The impurity potential is of the Coulomb type,
i.e., long-range.

2) The potential screening radius, which is deter-
mined as a rule by the electron, is larger than the aver-
age distance between impurities. This circumstance
prevents us from applying to the SDS the models con-
sidered in the theory of disordered systems (see, e.g.,
the review by I. M. Lifshitz1*1), in which the potential is
assumed to be short-range.

3) From the condition N a 3 » 1 it follows that one
Coulomb potential well, cut off at the average distance
between the impurities, does not contain a bound state
at all. The electronic states in the forbidden band are
produced as a result of fluctuations that include a large
number of charged impurities. The deeper the state, the
lower the probability of its formation. Therefore the
density of states in the SDS decreases monotonically
towards the interior of the forbidden band.

4) The characteristic energies that determine the
fall-off of the density of states are much smaller than
the width of the forbidden band. The theory can there-
fore be constructed within the framework of the effec-
tive-mass method.

Our review consists of three parts. Chapter 2 is
devoted to an exposition of the "band bending" method,
which makes it possible to describe the electronic
states near the unperturbed bottom of the conduction
band. (By unperturbed bottom of the conduction band we
understand the energy corresponding to the bottom of
the band in the absence of impurities.) This method,
however, is not applicable for a description of states
whose energy is lower than the bottom of the unper-
turbed band by an amount greatly larger than the mean-
square fluctuation of the bottom of the band. In this en-
ergy region, the density of states decreases towards
the interior of the forbidden band exponentially, like
exp(-n(e)), with £l(e) » 1. In Chap. 3 is described the
optimal-fluctuation method, which makes it possible to
determine the argument of the exponential that describes
the tail of the density of states. The most interesting
cases from the point of view of the SDS are considered
by this method.

Finally, in Chap. 4, the optimal-fluctuation method
is used to find the law governing the decrease of the
interband light absorption coefficient at frequencies
lower than the width of the forbidden band. Experi-
mental data on light absorption are analyzed at the end
of this chapter.

2. DENSITY OF STATES NEAR THE BOTTOM
OF A BAND

a) Quasiclassical approximation. Bonch, Bruevich,
Kane, and Keldysh, at the 1962 International Conference
on Semiconductor Physics at Exeter, have independ-
ently advanced the idea that quasiclassical concepts can
be used to describe the density of states of a strongly
doped semiconductor.

If the potential produced by the fluctuation of the im-
purity density is small in comparison with the Fermi
potential, then the screening of such fluctuations can be
regarded in the Debye approximation. In this approxima-
tion, the Poisson equation is linearized and each charged
center is screened independently of the remaining cen-
ters . It is therefore possible to assume that the poten-
tial produced by all the centers is equal to the sum of
the potentials of the individual centers screened in the
Debye manner.

Let V be the potential energy of a test electron in
the field of impurities. Then

τ-τ,), <p(r)=—f-e-r

where

Γα ==1 '

(2.1)

(2.2)

is the screening radius, rj is the radius vector of the
impurity center, and the summation is carried out over
all *V centers present in the crystal. In order not to
clutter up the formulas by unnecessary summation
signs, we assume that there are only attracting impuri-
ties (donors) with density Ν (there is no compensa-
tion). Then the neutrality condition yields therefore the
electron density η = N. As will be shown below, at not
too high degrees of compensation the generalization of
the results is very simple.

We shall assume that the electrons are classical and
"feel" only the potential of that point at which they are
located. This means that we should calculate the density
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of states in accordance with the usual formula for free
e lec t rons [ 5 ] , but we must assume that the kinetic energy
Κ at some point r i s equal to e - V(r) , where e is
the total energy, i.e., Κ is reckoned from the conduc-
tion-band bottom perturbed by the fluctuation potential.
(For this reason, this procedure is sometimes called
the method of "bent bands" . ) For the state density we
obtain

the potential energy of the electron in the field of such
1 / 2

(2.3)

where the integral is taken over the entire volume Vo

of the crystal , and the integrand should be regarded as
equal to zero at the points V(r) > e. Replacing the inte-
gration over the volume by averaging over all the con-
figurations of the impurit ies, we obtain

(2-4)

where F( V) is the distribution function of the potential
energy. By definition we have

i-i

We calculate F(V)by the Markov method ( see [ e l ) . To
this end, we substitute in (2.5) the identity

die

We then obtain

where

and

(2.6)

(2.7)

(2.8)

(2.9)

Changing over in (2.8) to the limit as J/ -~ <*>, Vo — °°,
and .Ml No — N, we obtain ultimately

F(V) — -^— \ dteivl+NIW. (2.10)
— 00

Assuming t to be small , we now expand the exponen-
tial in (2.9). We then obtain

(2.11)

(2.12)

where

and

Γ = — Ν f φ (r) d3r = 4π (e2/xrs) Nr>,

γ2 = 2JV j φ 2 (r) d*r = 4n (e'/xVS) Nr>. (2.13)

The first te rm of (2.11) describes the shift of the
bottom of the band as a result of the average potential of
the charged impurit ies . This term is exactly compen-
sated for by the potential of the electrons, and will be
disregarded in the calculations that follow. Substituting
the second term of (2.11) in (2.10), we obtain the
Gaussian distribution

^L-e-WvV (2.14)

The physical meaning of the r m s potential y is very
simple. The r m s fluctuations of the number of impuri-
t ies in the volume r* is of the order of ( N r | ) 1 / 2 , and

rgy

e7a fluctuation is ( e 7 w s ) ( N r s ) 1 / 2 « Ύ.

if
It is easy to show that our expansion in (2.9) is valid

NT\ > 1 and V < (e2/xr.) Ν A. (2.15)

The meaning of these inequalities i s perfectly obvi-
ous. Since the main contribution to F(V) is made by
fluctuations with dimension r s , it follows from the first
inequality that the average number of particles in a
fluctuation should be large. Representing V in the form
V = (e2/Krs)b.J/, where A > i s the excess number of
particles in the fluctuations, we see that the second con-
dition signifies t±J/« N r | , i .e., the excess number of
particles should be much smal ler than the average.
Thus, the inequalities (2.15) a re the usual conditions of
the applicability of Gaussian statist ics to the fluctua-
tions of the dimension r s .

Substituting (2.14) in (2.4), we obtain the principal
result of Kane[7> and Keldysh [ 8 ] :

P e l = :

At e > 0 and e » y we have

Pel = p o — ;

where

(2.16)

(2.17)

u_ (2m)3/2 VI

from which we see that in this case pc\ is close to the
density of states p 0 of the free electrons. At e < 0 and
| e | » y we have

i )"%-"*·. (2.18)

Thus, the density of states decreases exponentially
in the interior of the forbidden band. The integral (2.16)
is tabulated i n [ 7 ' 9 1 . The corresponding plot is shown in
Fig. 1.

It is easy to verify that at Na3 » 1 the Fermi energy
μο = (37r 2 ) 2 / 3 (n 2 /2m)N z / 3 i s much larger than y, i .e., the
Fermi level is located in the energy region where the
density of states is close to p 0 . It is this circumstance
that enables us to regard the fluctuation screening as
Debye screening.

Measurement of the Moss-Burstein threshold, and
also other experiments, offer evidence that the Fermi
energy in the SDS is somewhat lower than μ0. This is
caused by the nonideal character of the electron gas.
Let μ = μ0 - μββ - μ β ί , where μ θ β and μ Θ ί a re cor-
rections due to the interaction of the electron with one
another and with the impurit ies . The main correction is
due to the exchange interaction of the electrons. Ac-
cording t o [ 1 0 ) we have

(2.19)

The correction
(2.16):

can be obtained with the aid of

11
μο

(2.20)

It describes the lowering of the Fermi level as a result
of the tail of the density of s ta tes .

A generalization of the results to the case of a com-
pensated semiconductor entails no special difficulties^1
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FIG. 1. Quasiclassical density of
states. Solid curve-plot of the func-
tion

X

C (*> - y - J i-V2 tx — v)·/1 iy.

According to (2.16) we have

•2mJ/«vV* .

if it is assumed, as before, that the single-electron ap-
proximation is applicable and that the impurities are
screened in Debye fashion. In addition to positive
donors, there are also in this case negative acceptors
with density NA and the electron density is η = Ν - ΝΑ.
The obvious generalization consists in the fact that it is
necessary to replace Ν in the rms potential y (2.13)
by the total density Ν + NA of the charged centers.
Since Ν < Ν + ΝΑ < 2N, we can ignore this circum-
stance in the estimates. What is much more important
is that in the screening radius r s (2.2) and in the Fermi
energy μ0 it is necessary to replace Ν by the electron
density n, which can be much smaller than N. With de-
creasing n, the screening radius r s and the character-
istic value of the potential energy r increase, while the
Fermi energy μ0 decreases. It is obvious that the Debye
approximation is applicable if

α = γ/μ0 » (Ν/ή)3»/{Να*)-*1> (2.21)

This condition limits the applicability of the theory de-
veloped above to strongly compensated semiconductors.
The case a > 1 is considered i n ' u ] , but its description
is beyond the scope of our review.

b) Region of applicability of the quasiclassical ap-
proximation. It may seem at first glance that formula
(2.4) and the corrections to it can be obtained by expan-
sion in terms of Planck's constant h, assuming the
potential of the impurities to be a smooth one. Such an
expansion for the partition function is described in the
text book of Landau and Lifshitz1"1. Formula (2.4) is
indeed obtained in the zeroth approximation (it is
purely classical), and F( V) is not necessarily expressed
by formula (2.14). It can be shown[13], however, that the
ratio of the correction term of the expansion, which
takes into account the gradients of the potential, to the
zeroth term near the bottom of the band is of the order
of a/r s . This result can be easily understood. The
considered potential (2.1) is a superposition of the
screening of Coulomb wells. The condition a/r s « 1
means that each such well contains many bound states.
It is under this condition that the expansion indicated
above is valid. It follows, however, from the conditions
Na3 » 1 and a « 1 (2.21) that a/r s » 1. Thus, the ex-
pansion in terms of the derivatives of the potential can-
not be used in the case of SDS.

A rigorous derivation of formula (2.16) for SDS was
first obtained by Keldysh[8] by a diagram technique.
This derivation is not an expansion in terms of fi, and
is based on an ultraquantum property, namely the ab-
sence of a level in a strongly screened Coulomb well.
Later on, in[ 1 4 ), a special diagram technique was de-
veloped, in which the large-scale fluctuations of the
impurity potential were taken into account in all orders
of perturbation theory, but in a quasiclassical manner,
and the small-scale fluctuations were taken into account
quantum-mechanically, but by perturbation theory. Un-
like ordinary perturbation theory, which is applicable

only when e » y, the modified theory is applicable at
all positive and not too large negative energies. The
Green's function obtained in the zeroth approximation
of this theory leads to formula (2.16), and the next ap-
proximations yield corrections to it. With the aid of
such a theory it is easy to obtain the expansion parame-
ter and the region of applicability of (2.16). We present
here only qualitative arguments that lead to the results
oft14).

As seen from (2.13), the main contribution to the
rms potential γ is made by fluctuations of the scale rs .
Typical potential wells have a dimension r s and a
depth y. The energy of the ground state in the well is
higher than the bottom of the well by an amount on the
order of Eg = R2/mr§. The overwhelming majority of
the states in this potential can be described quasiclass-
ically if y » E s . This is the principal condition for the
applicability of the developed theory. As shown in1·141,
the expansion leading to (2.16), is based on the relation

\5/24
(2.22)

This parameter, of course, is very poor. (According to
(2.21), the ratio n/N cannot be very small.) Nonethe-
less, expansion in terms of this parameter seems to us
to be the only possible analytic approach to the problem
of the density of states near the bottom of the band, and
makes it possible, in any case, to understand the physi-
cal nature of the electronic states. This in fact consti-
tutes the main significance of the method of the bent
bands.

However, the condition (E s /y) 1 / 2 « 1 is not suffic-
ient if one deals with the region e < 0, | e | » Y, where
the density of states is exponentially small. In this
region the main contribution to p(e) is made by wells
with depths V very close to e. Indeed, in the integral
(2.16) the important role in this case is played by the
values

e — 7 « γ2/| (2.23)

Thus, the kinetic energy Κ = e - V of the considered
states decreases with increasing | e | .

We now recall the small-scale fluctuations. At a
specified kinetic energy K, the fluctuations having a
larger scale than the wavelength fi/VmK can be re-
garded classically. Fluctuations of smaller scale aver-
age out over the wavelength of the electron. The shift
of the electron level to which the small-scale fluctua-
tions lead can be estimated by calculating the rms
potential of these fluctuations. We introduce the quan-
tity y(R), which we define as the rms potential ( V2)1 / 2,
and the potential of each individual well ψ(τ) (V
= ^φ(τ - rj)) will be regarded as cut off at a distance

j
R « r s . Then

γ2(Λ)=2ΛΤ f φ2(Γ)ώ-ν«^ΐ^. (2.24)
|r|<B

The energy shift of an electron having a kinetic en-
ergy K, due to nonclassical fluctuations, can be esti-
mated by replacing R in (2.24) by the wavelength
fi/VrnK. The quantity yg obtained in this manner in-
creases with decreasing K. We introduce the energy
Kc, defined by

Kc = yKc ΟΓ Ko = E0(Na3Y'K (2.25)

For electrons having a kinetic energy Κ » Kc, the po-
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tential V(r) can be regarded as classical, since the
energy shift occurring as a result of small-scale fluc-
tuations of λκ, which cannot be taken into account
classically, is small in comparison with K. Since KQ
> Es, the minimum value of the kinetic energy at which
the quasiclassical description is applicable is Kc. Sub-
stituting in the left-hand side of (2.23) the quantity K<.
in place of e - V, we obtain the energy e0 = yV'Kc, be-
low which formula (2.16) does not hold. According to
(2.18), at e < 0, | e | » 7 we have p(e) ~ exp{-e.2/yz).
Since ec/y = (Na 3 ) V 6 0 (N/n) 1 / 1 2 « 1, the condition
e > ec means in practice that in the region where the
density of states is exponentially small the quasiclassi-
cal approach cannot be used, and new ideas and methods
are necessary to describe this region, This is the sub-
ject of the next chapter of this review.

3. DEEP TAIL OF DENSITY OF STATES

a) The optimal-fluctuation method. Halperin and
Lax[ 1 5'1 6 ), Zittartz and Langer[ 1 7 ], and I, M. Lifshitz[18i

have proposed a brilliant method, which we shall call
the optimal-fluctuation method, of determining the law
of exponential decrease of the density of states in the
region of the tail. The gist of this method reduces to
the following. Assume that the radius of the wave func-
tion of the fluctuation level is larger than the average
distance between impurities in the fluctuation. (In the
SDS this is always the case, since r s < a and one im-
purity center does not produce a bound state at all.)
Then the quantum-mechanical averaging smooths out
the discreteness of the charge of the individual impuri-
ties and the fluctuation can be characterized by a
smooth function of the coordinates f(r), which repre-
sents the deviation of the impurity concentration from
the mean value. To find the state density p( e ) it is
necessary to sum the contributions from all the im-
purity configurations, i.e., from all the potential wells
that produce electronic levels with specified energy e.
In the energy region of interest to us, all these proba-
bilities are exponentially small and the indicated sum
is determined by the contribution of the most probable
configurations. We represent the fluctuation probability
f( r) in the form exp (-Ω{Γ£}). If we find the most prob-
able fluctuation 1£ from among all the fluctuations pro-
ducing the level e, then we can assert that the density
of states decreases with e like exp(-n{fe}). When de-
termining f e it suffices to consider only those fluctua-
tions in which the level with energy e is the lowest,
since the probability of a fluctuation in which this level
is an excited state is undoubtedly smaller.

The optimal-fluctuation method in the form in which
we described it here does not yield the pre-exponential
factor in the expression for the density of states, but it
does make it possible to determine the principal term
in the argument of the exponential, i.e., ln[p(e )/p(0)].
In practice it is just this quantity which is measured in
the experiment.

Of course, the problem of calculating the pre-
exponential factor turns out to be much more compli-
cated. As in the usual saddle-point method, it is neces-
sary to take into account states that are close to ex-
tremal. In addition, it is necessary to take into account
the translational invariance, i.e., the fact that the
localized state can arise at any point of coordinate
space.

An approximate method of calculating the pre-expo-

nential factor was proposed by Halperin and Lax1-15'.
They proposed that the wave functions of all states of a
given energy produced on the fluctuations close to the
extremal fluctuation coincide with the extremal wave
function. It was natural to compare the result obtained
by them for one-dimensional "white noise" with the
asymptotic form of the exact solution that holds in this
case. The difference between the pre-exponential fac-
tors was by 1//5" times. In a second paper[ 1 6 ], the
authors proposed a method of introducing in their ap-
proximation corrections that greatly decrease the indi-
cated discrepancy.

Simultaneously with the first paper by Halperin and
Lax, Zittartz and Langer[ 1 7 ] also published a paper de-
voted to a determination of the asymptotic density of
states in a region whose probability is exponentially
small. They considered in that paper a potential of the
white-noise type (in the case of one, two, and three
dimensions). They obtained an exact result that differed
from the result of Halperin and Lax by a number in the
pre-exponential factor. This number itself can be ob-
tained only in the one-dimensional case, where the re-
sult of Zittartz and Langer coincides with the asymp-
totic form of the exact solution. In the three-dimen-
sional case, a rather complicated procedure was pro-
posed to find this number.

I. M. Lifshitz[181 considered the case when the poten-
tials of the impurity centers overlap little (the effective
radius is of the order of the minimal distance between
the centers). This makes it possible to make a very
important mathematical simplification, namely, assume
that the potential is locally connected with the concen-
tration f(r). In the SDS, however, as a rule, this cannot
be done, since the screening radius is larger than the
average distance between the impurities. Therefore, as
will be shown below, the state density in SDS differs
significantly from that obtained by I. M. Lifshitz, al-
though the idea of the "extremal fluctuation" is quite
fruitful also in this case.

Halperin and Lax performed their calculations
directly for semiconductors. They considered, however,
only the case of Gaussian statistics, and therefore the
results are applicable to fluctuation levels that are not
very deep.

Shklovskii and the author1 1 8'2 0 1 considered a region
where Gaussian statistics are not applicable. In addi-
tion, a simple method was developed in[ 1 9 1 to determine
approximately the optimal fluctuations and the state
density. In this method it is assumed that the fluctua-
tions have the form of uniformly charged spheres. The
sphere is characterized by two parameters—the radius
R and the total excess charge eZ. One of these parame-
ters is c'.iosen such that the energy of the ground state
of the electron in the potential produced by such a fluc-
tuation is equal to the specified value e, and the second
parameter is varied to obtain the optimal fluctuation.
It is easily seen that in such a calculation we lose only
numerical coefficients that depend on the true shape of
the optimal fluctuation. The simplicity of the method
enables us to analyze easily the possible cases and to
compare their classification^81. This method is devel-
oped in the next section (b), and is used to investigate
the spectrum of the majority carriers in the SDS. In
Sec. (c) we obtain the exact distribution of the impuri-
ties in the optimal fluctuation and the numerical coef-
ficients that have been left out from Sec. (b). In Sec. (d)
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we consider the spectrum of the minority carriers. The
distribution of the impurities in Sees, (b)—(d) is as-
sumed to be uncorrelated. In Sec. (e) we show that the
correlation connected with the repulsion of the charged
impurities, a correlation that arises when the sample
is prepared, greatly influences the asymptotic form of
the density of states as a function of energy.

b) Uniformly charged sphere approximation. Spec-
trum of majority carriers. The fluctuation levels in
the forbidden band can result from the clustering of at-
tracting impurities or from rarefaction of repelling
impurities. We start with only attracting impurities.
We assume that the fluctuations are homogeneous spher-
ical impurity clusters of radius. R. We assume also
that the impurity distribution is random. Then the
probability that k impurities will fall in the volume
containing on the average k~ impurities is given by the
Poisson formula

W = (A)*e-*/JH. (3.1)

Assuming that k » 1 and k » 1, and retaining the
principal term of the probability logarithm, we obtain

In W = A: In (k/k) + k — 1. (3.2)

The considered cluster contains on the average k = NR3

impurities. (In the description of this method we shall
not write down the numerical coefficients, since this
would mean an exaggeration of the accuracy. The
expression for k, as well as the equations that follow,
should be taken only as order-of-magnitude estimates.)
We represent k in the form

k = ζ NR', (3.3)

where Ζ is the excess number of impurities in the fluc-
tuation. Substituting k and k in (3.2), we obtain the
probability of the fluctuations as a function of R and Ζ:

\nW(R,Z) = (Z + NR3)In + Z. (3.4)

Our problem is to obtain with the aid of the Schrb-
dinger equation the energy of the ground state e(R, Z)
in a potential produced by a sphere with parameters R
and Z. Since the characteristic dimension of the wave
function of the ground state turns out to be much larger
than the average distance between the impurities, the
charge can be regarded as distributed over the con-
sidered sphere. Finding e(R, Z), we express Ζ in
terms of R and e and, substituting in (3.4), we obtain
the probability W(R, e) that a homogeneous cluster of
radius R produces an electronic state with energy e.
Further, we obtain R = r m ax, a t which In W(R, e) has
an absolute maximum at a fixed energy. Deep in the
forbidden band, where the density of states p( e ) is
very small, and the number of impurities in the cluster
is large, this maximum can be regarded as sharp, so
that

In [p (e)/p (0)j = In W (r m . x , ε). (3.5)

This is the calculation scheme.

We introduce an auxiliary function W(R, V) that de-
fines the probability that an impurity cluster of radius
R produces a well whose maximum depth is V. The
potential energy V, like the energy electron e, will be
reckoned everywhere in this chapter downward from the
unperturbed bottom of the conduction band. Then, if
R « r s , we have

V = (eVxR)Z ( Λ < Γ . ) . (3.6)

(We take into account only the fluctuation potential pro-
duced by the excess impurities. The average potential of
the donors is cancelled by the electrons.) If R » r s ,
then a contribution to the potential is made not by all
the impurities of the cluster, but only by those located
at a distance smaller than the effective radius r s . The
concentration of the excess impurities is Z/R3, and
their number in the effective radius is ( Z/R 3 )r | . We
therefore obtain in place of (3.6)

(3.7)V = (e»/xr.) Ζ (R » r.).

Expressing Ζ in terms R and V with the aid of (3.6)
and (3.7) and substituting in (3.4), we obtain In W(R, V).

The auxiliary function W(R, V) has a certain bearing
on the sought function W(R, e). Indeed, it is easy to
imagine that the potential well produced by a uniformly
charged sphere has an electron level e close to the
potential energy at the center of the sphere V, if
V » fiVmR2. Therefore at R > r q = R/VmV we can ob-
tain In W(R, e) from In W(R, V) by simply replacing V
by c. At R £, rq it is necessary to substitute in (3.4) the
function Z(R, e) obtained by quantum-mechanical
means.

In this and succeeding chapters we shall study the
spectrum of the majority carriers in a strongly doped
and weakly compensated semiconductor (for the sake
of argument, η-type). As shown in Chap. 2, at e < ec

the density of states is expressed by the quasiclassical
formula (2.16). Since, strictly speaking, ec > y, it is
obvious that the argument of the exponential, obtained
by the optimal-fluctuation method at not too high ener-
gies, should coincide with the exponent in formula (2.18).

We introduce a length r 2 = (W/Ne2)1/2 with a ratio
r 2 / r s = (V/T)1/2, where Γ = (e2//crs)Nr|. According
to (2.12), Γ is the average potential energy produced by
the donors. Since Γ > y, the ratio r 2 / r s can be arbi-
trary in the region where the density of states is expo-
nentially small. A plot of the function In W(R, V) at
V < Γ and V > Γ is shown schematically in Fig. 2.

We consider first the case V < Γ. It is easy to
verify that the region R > r2 in Fig. 2a corresponds to
Gaussian statistics. Indeed, the condition for the ap-
plicability of Gaussian statistics is Ζ « NR3. If
R < r s , then, using (3.6), we obtain

NH3
-I r*\2 (3.8)

At R > r 2 we have

In W = —ZVNR". (3.9)

Substituting (3.6) and (3.7) in (3.9), we obtain

(3.10)
72

and

(3.11)

Thus, at R > r 2 the function In W( R, V) increases
with R up to R = r s , and then decreases, as shown in
Fig. 2a. The decrease of In W(R, V) at R > r s is per-
fectly understandable. An increase of the radius R of
the sphere beyond the limits of the effective radius r s

is meaningless, since the potential of the peripheral
impurities does not reach the center in any case. Thus,
we have shown that the function In W(R, V) has a rela-
tive maximum at the point R = rs . From the inequality
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FIG. 2. Logarithm of the probability of producing a potential well
of depth V by a cluster of radius R, as a function of R at V < Γ (a) and
V > r (b).

r q / r s = (Y/V) ( E s /y)1 / 2 < 1 it follows that this maximum
is located in the region R > rq, i.e., where the energy
of the ground state e coincides with the bottom of the
well V. Then, in accordance with (3.5), we substitute
R = r s in (3.10) or (3.11) and obtain the contribution
made to the density of states by the just-obtained maxi-
mum

In lp (ε)/ρ (0)] ---• - ε 2 / γ 2 . (3.12)

This formula coincides with the result (2.18) of the
quasiclassical theory but, as we shall see, it has a much
wider range of applicability[19].

As seen from Fig. 2, the maximum at R = r s exists
and formula (3.12) takes place only at e < Γ. Substi-
tuting R = r s in (3.8), we verify that at V = Γ the fluc-
tuations in a well of dimension r s cease to be Gaussian.
It is easy to show that values of V larger than Γ can
in general not be obtained with the aid of Gaussian fluc-
tuations (there is no Gaussian section at all on the
curve of Fig. 2b). However, even at e < Γ the fluctua-
tions lying to the left of the minimum on Fig. 2a may
turn out to be more probable than the fluctuations with
R = r s . To this end it is necessary (but not sufficient)
to satisfy at V = £ the inequality rq < r2. Then
In W(R, e) increases with decreasing R down to
R » fi/Vrne.

At R « r2, taking (3.8) into account, we obtain from
(3.4)

In w =- — Ζ In (ZINR3). (3.13)

Substituting (3.6) in (3.13), we get

Vx

The function (3.14) decreases with decreasing R, as
is indeed shown in Fig. 2a. At the same time, Ζ de-
creases to unity at R = r,.= U2/VK. It is clear, however,
that if V > Eo, the well remains of the quantum type (it
does not contain a bound state) at much larger values
of R than Γι. Indeed, r i / r q = ( E 0 / V ) 1 / 2 < 1.

It is easy to visualize the function e(R, Z) at
R « fi/Vme. In this case the fluctuation represents an
almost pointlike nucleus of the atom, the lowest term
of which realizes the energy e. With the correction for
the non-pointlike nature of the nucleus, we have

e = Z * £ . ( l - ^ . (3.15)

Thus, at R « K/Vme the ground-state energy e never
coincides with the maximal depth V (3.6), which tends
to infinity as R — 0, but tends to a constant value
Z 2 E 0 .

Inverting (3.15), we obtain

(3.16)

- > - » as R - 0 . inasmuch as at R » n/Vme we can
use for In W(R, e) formula (3.14), in which we can put
V = e, this means that In W(R, e) has a second maxi-
mum (Fig. 3). It is determined by the competition be-
tween the combinatorial logarithm in (3.13), which shows
that " fr iable" nuclei are more probable on the one
hand, and the correction for the fact that the nucleus is
not pointlike in (3.16), which indicates that pointlike
nuclei can ensure the specified energy with decreasing
Z, on the other. Since the correction for the non-point-
like nature enters in (3.3) in power-law fashion, it has
a stronger influence and the optimal nucleus is point-
like ( r m a x < fi/Vme). To determine r m a x it suffices
therefore to substitute (3.16) in (3.13) and obtain the
maximum with respect to R. As a result we have for
the optimal fluctuation

_ ~_H i /-a I V1

It was assumed in the derivation that the argument
of the logarithm in (3.17) is much larger than unity. At
energies for which the density of states is determined
by the considered maximum ( e > Eij see below), this
condition is satisfied.

Thus, the dimension of the optimal cluster is small
in comparison with its Bohr radius, i.e., this cluster
represents almost a pointlike nucleus of the atom.

Substituting Ζ = /e/E 0 and r m a x from (3.17) in
(3.13), we obtain[ 2 0 ]

,PW -i/_g ι» !7 * (3.18)

where

(3.19)

From a comparison of (3.18) and (3.12) we see that
(3.18) holds at e > Ei and (3.12) at e < Ei, where

(3.20)

It is easy to verify that Ej < Γ in this case. If
e > Γ, as already mentioned, the maximum at R = r s

vanishes, and the arguments pertaining to the maximum
at R = Rmax (3.17) do not change at all. Thus, formula
(3.18) is valid for all energies e > Ei within the limits
of the effective-mass method. Let us discuss now the
assumptions made in the derivation of this formula.

In the derivation of (3.18) we have regarded Ζ as a
continuous variable. This is true if the width of the
maximum of the function In W( Z, e) with respect to the
variable Ζ is large in comparison with unity. It is easy
to verify that this takes place if

/ ι ι"1

(3.21)

Formula (3.18) was obtained in the uniformly charged
sphere approximation. The dimension of the optimal
fluctuation was determined without taking into account
the numerical factors, since they actually depend on the
distribution of the density with respect to the fluctuation.

Substituting (3.16) in (3.13) we see that In W(R, e)

FIG. 3. Logarithm of probability of pro-
ducing an electronic state of energy e by a ~.
cluster of radius R as a function of R ^
( E s < e < r ) . |

rs ff
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However, the statement r m a x < a/Z does not depend on
the made approximation. Therefore the factor preceding
the logarithm in (3.18) contains no additional numbers
at all, as is indeed confirmed by the theory developed
in Sec. (c), in which the true distribution of the charge
in the fluctuation is determined and the exact function
D(e) is obtained. Furthermore, within the framework
of the effective-mass method the factor preceding the
logarithm does not depend on the spectrum (if Ko is
taken to mean not (1.1) but the exact value of the ground-
state energy). Indeed, the form of this factor is a con-
sequence of the fact that e ~ Z2, but this is always the
case when the Hamiltonian is a quadratic form of the
momentum components.

The entire reasoning of this chapter is based on the
one-electron approximation and on the assumption of
Debye screening of the impurities. Actually, however,
we needed the Debye screening only in the derivation of
(3.12). Inasmuch as Ει < μ0 in a weakly compensated
semiconductor, where μ0 is the Fermi energy, the
Debye screening assumption imposes no limitations on
the region of applicability of (3.12). As to formula (3.18),
allowance for electron-electron interaction does not
affect it also when e > μ0. The formation considered by
us constitutes a multielectron atom, the lowest term of
which realizes the required energy ε. However, as is
well known^21], the outer electrons alter the energy of
this term little if the charge of the nucleus is large.

Thus, (3.18) is an asymptotic expression for the
state density at high energies within the framework of
the effective-mass method. It is important, however,
that we have assumed that the impurities are randomly
distributed. As will be shown in Sec. (e), correlation
effects (if they exist) alter the asymptotic form of the
state density. To use the Poisson formula it is also
necessary that the average distance between the impuri-
ties and the clusters be much larger than the lattice
constant. It is easy to verify, however, that the energies
at which this condition is violated are comparable with
the width of the forbidden band.

We have thus considered the density of states of the
majority carriers in strongly doped and weakly com-
pensated semiconductors, and have proved that it is
described by formulas (3.12) and (3.18), which become
equal at e « E^

c) Exact distribution of impurities in optimal fluc-
tuations . 1) Derivation of fundamental equations. In the
preceding section we have carried out a qualitative
analysis in which it was assumed that the fluctuations
constitute homogeneously charged spheres that differ
from one another only in the radius and in the charge
density. We proceed now to the development of a rigor-
ous theory with which to obtain the true form of the
optimal fluctuations.

We introduce the function f(r) = N(r) - N, where
N(r) is the impurity density at the point r averaged
over a volume larger than N"1. We obtained the proba-
bility of the fluctuation f(r), assuming that there is no
correlation in the impurity distribution. To this end we
consider a volume element Δ V small enough to regard
N(r) as constant within it, but containing a large num-
ber of impurities Jf = N(r)AV » 1. To calculate the
number of states we assume that the impurities can be
located only at the lattice sites, and that the concentra-
tion of these sites is ρ » N(r). Let us find a number of
ways in which it is possible to distribute Jf impurities

over the lattice sites located in the volume AV. The
number of sites is & = ^AV, and the sought number of
methods ΓΑ ν is the number of combinations of 9 taken
Jf at a time:

Γ 4 ν = &\ljr\ (3s - JT)1. (3.22)

For the entropy of the volume AV we obtain

SAV = In T&v = Jf" In (PeUT). (3.23)

We now introduce the entropy density

Si.v = σ (r) &V, σ (r) = Ν (r) In (pelΝ (τ)). (3.24)

The total entropy of the crystal, which has a volume Vo,
is

S= (3.25)

Let us obtain the entropy of an impurity distribution
such that a fluctuation f(r) generally speaking com-
parable with N(r), takes place in a certain volume V
constituting a negligible fraction of Vo, and in the re-
maining part of the volume we have f(r) « N. From the
law of conservation of the number of particles we have

f /(r)d'r=-f/(r)<iV (3.26)

The entropy of such a fluctuation is

(3.27)

Transforming the last term with the aid of (3.26), we find
that the difference between S and the entropy So

= V0N In (pe/N) of the uniform distribution of the im-
purities is

(3.28)

If f(r) decreases rapidly enough for the integral
(3.28) to converge, the integration can be extended to
infinity. Then the probability that a fluctuation f(r) has
been produced in a certain part of the volume is
βχρ(-Ω{ί}), where

« { / } = - j [ > - < - / ) i n ^ - »r. (3.29)

We introduce now the f u n c t i o n a l V r { f } and λ ο { ί } ,
the f irst being the te s t -e lec t ron potential energy p r o -
duced by the fluctuation f at the point r , and the second
the e lectron ground-state energy determined from the
Schrodinger equation

—-^.Δψ + Κ,-^ψ^λοψ. (3.30)

In the Debye-screening approximation we have

Vr{f}= j / (r') φ (r - r') dV\

φ (Γ) = _ (Λ«τ) . - * · . ( 3 · 3 1 )

The optimal fluctuation f(r) should minimize Ω{ί}
under the condition

λο{/) = -ε. (3.32)

The corresponding equation is

δ (Ω {/} + βλ0 {/}) = 0, (3.33)

where β is a Lagrange multiplier that must be deter-
mined from (3.32).

Varying (3.29) and recognizing that

δλ0 {/} - f | ψ (r') |2 d»r· f φ (r' - r") 6/ (r") dV, (3.34)
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we ultimately obtain the expression1-1 8 1

(3.35)

which together with (3.30) determines the optimal fluc-
tuation I . The principal term of the logarithm of the
state density is given by

!„ eJrl =— Ω {/}. (3.36)

We now present a rigorous derivation of (3.12) and
(3.18) and determine the numerical factors that depend
on the form of the fluctuation.

2) Derivation of formula (3.12). The optimal fluctua-
tion corresponding to (3.12) is described by Gaussian
statistics. In this case (f « N), Eq. (3.29) takes the
form

Ω {/} = (1/2JV)[ f d?r.

and in place of (3.35) we obtain

/--• -Λ'β f | ψ (r') | s <p(r- r ' )dV.

(3.37)

(3.38)

Let us assume that the characteristic dimension of
the wave function is λ « r<=. Then

(3.39)

and the potential energy of the optimal well is, in ac-
cordance with (3.31),

<p(r')<p(r-r')dV

or

(3.40)

(3.41)

The potential energy drops off over a distance on the
order of r s , and at e » E s = R2/mr| the energy of the
ground state is close to the bottom of the well. We can
therefore determine β from the condition

V /ft ι — ο Π ά9\

Then

(3.43)

Substituting (3.43), (3.39), and (3.37) in (3.36), we obtain
formula (3.12), and the numerical coefficient in Υ turns
out to be the same as in (2.13).

We now obtain the wavelength λ of the electron in the
ground state. To this end we note that according to (3.38)
we have at r « λ

7«Λφβ2/χλ (3.44)

and that Γ does not depend on r. Thus, the internal part
of the fluctuation (r < λ) is a uniformly charged sphere.
For this solution to be self-consistent, the radius of the
sphere should be such that the potential produced by the
sphere contain an electron level with wavelength on the
order of the sphere radius. A sphere of radius λ and
charge density (3.44) produces a potential well of depth
Ν/3(ε2/κ)λ. The radius λ can be obtained by equating
this quantity to K2/mx2. As a result we obtain

λ « r, (Ε,/ε)'". (3.45)

At e » E s the inequality Λ « r s assumed in the deriva-
tion is satisfied.

Halperin and Lax [ l s ] solved Eqs. (3.30) and (3.38)
numerically. It is of interest to compare the foregoing
analytic solution with the results of these calculations.
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FIG. 4. Plots of the dimensionless potential U (r) and of the wave
function S (r) against r/rs, obtained in [ l s ] with a computer. The
dashed line shows the potential calculated from formula (3.41) in the
region where it differs from V (r); a) ν = 10; b) ν = ΙΟ3; ν = Σ/Ε5.

Figure 4 shows the optimal potential and the wave func-
tion obtained in[ 1 5 1 with a computer at ν = e/Es » 1.

The plots represent the dimensionless potential
U(r) = VrK

2/2jre4N0rs and the dimensionless wave func-
tion S(r) = /4j7i/)(r)rrs/2. In accordance with (3.41), in
those places where S(r) is small V(r) coincides ex-
actly with the plot of the function exp(-r/r s ) , which
is shown dashed in Fig. 4. Since we did not obtain the
exact form of the wave function, we can only compare
(3.45) with Fig. 4 approximately. To this end we as-
sume that the wavelength λ is proportional to the co-
ordinate of the maximum of S(r). The ratio of the wave-
lengths obtained in this manner at ν = 10 and ν - 103

is λ1 0/λ1 0 0 0 = 4.4. According to (3.45), this ratio is
equal to (100)1/3 = 4.6. Thus, the analytic and numerical
solutions are in splendid agreement.

3) Asymptotic density of states in the absence of
impurity correlation. We rewrite (3.35) in the form

f = Ν (eW> — 1),

where

χ(Γ) =

(3.46)

(3.47)

We shall show now that at high energies there exists
a spherically-symmetrical solution of (3.30) and (3.46).
This solution has the property that the function F de-
creases exponentially over a distance χ that is small in
comparison with the wavelength λ of the electron in the
ground state (x is of the same order as r m a x (3.17)).
In addition, it turns out that λ « r s . Assuming all this
beforehand, we should regard the fluctuation as con-
stituting an almost pointlike nucleus of an ion with a
charge

ζ = / (/•) Λ-, (3.48)

and the wave function of the ground state is given by

^(r) = -yJ~e-*l\ (3.49)

with λ a/Z. Since the ground state should have an
energy t , we have

Ζ = (e/£0)
1/2, λ = α (EJt,)^. (3.50)

We shall prove that this solution satisfies the equa-
tions. To this end, we substitute (3.49) in (3.47) and ob-
tain the explicit form of x(r) and f (r). To determine
β, we substitute Ϊ in (3.48) and use (3.50).

Substituting (3.49) in (3.47) and expanding in powers
of r/λ, we obtain

X ( r ) = t -

where

(3.51)

(3.52)
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We see that the assumption made above, namely that
f~(r) falls off sharply at small distances, is equivalent
to the assumption t » 1. If indeed t » 1, then at
r < λ the argument of the exponential in (3.46) is large
and

7(r) = (3.53)

Substituting (3.53) and (3.50) in (3.48), we obtain a
transcendental equation for the determination of t :

From this we get at sufficiently high energy

t SB In l(e/E0)VNaa) > 1, (3.55)

and this justifies the assumption made. Thus, the pre-
dicted solution does indeed exist.

To calculate Ω{ί}, we recognize that F » Ν and that
(3.29) can be rewritten in the form

Ω {f') = f 7In (f/Ne) dV. (3.56)

Substituting (3.53) in (3.56), we easily obtain

Ω {/} = Ζ (t - 1) - (3/2) Ζ. (3.57)

This expression contains terms of order Zt and Z. It
is therefore impossible to substitute here Ζ = Ve/E0,
and it is necessary to take into account the corrections
of order t"1 to this expression. The ground-state en-
ergy, with the correction for the non-pointlike charac-
ter of the nucleus, is [ 2 2 )

e = * i , ( l « g ) . (3.58)

Hence

here

(3.59)

(3.60)

Substituting (3.53) in (3.60) and (3.59) we obtain

The corrections to Eq. (3.54), obtained with the aid of
(3,59), are of the order of t"1, and can be disregarded.
Substituting (3.61) in (3.57), we obtain

Ω {/} = (e/Eo)1" (t - 1). (3.62)

Substitution of (3.62) in (3.63) leads to the result
(3.18)[2°1, with

D (ε) = (2/3π)3/2 №-\ (3.63)

and t is determined by (3.54).

We note, however, that the exponential decrease of
f(r), described by (3.53), takes place only if r < λ. At
large distances, it turns out to be smoother. At
r » λ we obtain from (3.47)

x(r)'-!£..-'*.. (3.64)

Substituting /3e2/κ from (3.52), we verify that x ( r )
« 1 at r » λ, and consequently

/ (r) = t (λ/r) e-"" (Γ>λ). (3.65)

The potential produced by this part of the charge at the
center of the fluctuation leads to a classical level shift
by an amount

JL jl£ldVs»-£-iAttr.. (3.66)

(The shift can be regarded as classical, since the main
contribution to the integral is made by the region where
r » r s » λ.) The theory developed above is valid if the
right-hand side of (3.66) is small in comparison with e.
This calls for the condition e > E1( where Ε ι is deter-
mined by (3.20). In addition, of course, we need also the
condition λ < r s , i.e., e > E s . These two conditions
suffice also to make the expression under the logarithm
sign large.

Thus, the region of applicability of formula (3.18)
was obtained correctly in the preceding section.

d) Spectrum of minority carriers. As will be shown
in the next chapter, in a degenerate semiconductor the
frequency dependence of the coefficient of the interband
absorption of light at frequencies below threshold is de-
termined just by the minority-carrier spectrum. The
problem of calculating the density of states has in this
case two important features:

a) The majority impurities are repulsion centers for
the minority carriers (for example, a charged donor for
a hole).

b) The electron and hole masses usually are greatly
different from each other. The problem has therefore
many aspects. As we have seen in the derivation of
(3.12), an important role was played by the condition
y > E s = fi2/mr§, meaning that a typical potential well
with dimension r s contains quantum levels. If we are
dealing with minority carriers, then it is necessary to
substitute their mass in the expression for E s , and the
mass of the majority carriers that produce the screen-
ing in the expression for r s . This can give rise to dif-
ferent situations, which we shall now analyze.

1) The classical case (7 > E s ). We consider the hole
spectrum in an η-type semiconductor, assuming that the
hole mass mn is larger than the electron mass m. We
assume first that there is no compensation at all, i.e.,
there are only donor impurities, and the strong-doping
condition Na3 » 1, where a = «K2/me2 is the Bohr
radius of the electron, is satisfied for the electrons.
The condition y > E s is not easier to satisfy, since it
takes the form fi2/mhr§ <y or (mh/m)(Nr|) 1 / e > 1.

Since the donors repel the holes, deep hole states
are produced not by clusters but by donor voids. In
Gaussian statistics, the clusters and the voids are
qually probable. It is therefore easy to verify that the
conclusion that leads to formula (3.12) remains un-
changed. According to (2.15), Gaussian statistics are
applicable at e « Γ . If the clusters are large, their
symmetry or that of the voids is violated. It is obvious
that the spectrum of the single-electron problem has
an end point at e = Γ. Indeed, if the donors free com-
pletely a region with linear dimension R » r s , then all
that remains in the center of this region is the potential
produced by the positive background, and this potential
raises the energy of the hole by an amount Γ. It is im-
possible to produce a larger increase.

Near the end point, the single-electron approxima-
tion is valid only if the Fermi energy μ » Γ . This
takes place if the number of electrons is much larger
than that of the donors (for example, if the electrons
are produced by additional illumination). If η = Ν, then
μ and Γ are equal apart from numerical coefficients.
Therefore the single-electron approximation is not
valid near the end point. In regions with decreased
donor concentration, the electron density is likewise
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reduced. This increases the screening radius, and
consequently also the dimension of the region that must
be rid of donors in order to obtain the required rise of
the bottom of the conduction band and of the top of the
valence band (Fig. 5). Near the end point, the screening
radius tends to infinity and therefore the density of
states vanishes exponentially.

Let us find the form of the density of states of the
holes near the end point[ 1 3 ]. We assume that the fluctua-
tion has produced a region with a donor density
Ν « Ν. The energy scheme of the contact with such a
region is shown in Fig. 5. The contact potential differ-
ence that raises the bottom of the conduction band and
the top of the valence band by an amount e is given
by the relation μ - e « B ^ ' / m . This rise does indeed
occur if the dimension of the region in which the fluc-
tuation takes place exceeds the screening radius
r s = r s (N/N)1/6 in this region. The probability of this
fluctuation is exp (-Nr | ) . Expressing r s in terms of
(μ - e), we obtain for the hole density of states

l,,£|j.-: !_A r i . j(_A_)3 / 4. (3.67)

(When investigating p(e ) for holes, we reckon e up-
ward from the top of the valence band. The chemical
potential μ in (3.67) is reckoned, of course, from the
bottom of the conduction band.) If μ and e are of the
same order and μ - e is of the order of μ, then the
result (3.67) coincides with (3.12), as expected. We
note, however, that in the derivation of (3.67) we have
assumed that the electron gas in the fluctuation is
ideal. This calls for satisfaction of the condition Na3

» 1 or μ - e » Eo. (All these formulas, of course, con-
tain the electron effective mass.) Since Eo « μ, formula
(3.67) describes the decrease of p(e ) in a rather wide
interval.

If it is assumed that the semiconductor contains com-
pensating acceptors, then the state density at an arbi-
trary depth differs from zero. At a sufficiently large e it
is possible to use formula (3.18), in which N, a, and Eo

should be replaced by a n = rVVmne
2 and Eh =K2/2mha2.

(For details see[ 1 3 ' 1 9 ] .)

2) Quantum case (Ύ < E s ) . In typical semiconductors,
the heavy-hole mass is much larger than the electron
mass. Therefore the quantum-case condition y < E s is
easily realized if the electron spectrum is investigated
in a p-type semiconductor. We assume as before that
the strong-doping condition NAan » 1 is satisfied for
the majority carriers. Since this is equivalent to the
condition NArs » 1, it follows from the inequality
Ύ < E s that r s « a , where a is the Bohr radius of the
electron. (We recall that the screening is determined
by the holes, and that E s = R2/mr|, with m the effec-
tive mass of the electron.) This means that an individual
donor impurity has no bound state.

As in the classical case, an important role is played
at low energies by fluctuations to which Gaussian sta-
tistics are applicable (| Ζ | « N A R 3 ). We can therefore
use formulas (3.6) and (3.7), bearing in mind that we
are dealing with acceptor voids that produce potential
wells for electrons. As already mentioned, a plot of the
function In W(R, e) coincides with the curves of Fig. 2
at R > r q = fi/ ime. Let at first e < E s , i.e., r q > r s .
Then (Fig. 6) at R > r q the function In W(R, e) de-
creases with R. The fluctuations having a radius R
satisfying the condition r s « R « K//me can produce
a level e only if the well depth is V * K2/mR2 » e

FIG. 5. Bending of the bands in
a region depleted of donors. The
occupied states of the conduction
band are shown shaded.

FIG. 6. Solid curve—the same as in
Fig. 3 but for e < Es, dashed-ln
W (R, V).

(narrow well with shallow level). Substituting (3.7) in
this condition and expressing Ζ in terms of R, we ob-
tain

Ζ = n/i/rf, (3.68)

(3.69)

From this we see that at R < h/Vme the function
In W(R, e) decreases with decreasing R (Fig. 6). It is
easy to show that it continues to decrease also at
R < r s . Thus, the optimal fluctuation is possessed by a

. Substituting this radius in (3.69), we
s

radius R = K/>

^ ~ ( * Γ ^ <•<*.>• (3.70)

Thus, unlike in the classical case, where the expo-
nential decrease of p( e ) begins at e = 7 and is de-
scribed by (3.12), in the quantum case the decrease be-
gins at e = Eo( r / E s ) 2 and is described by (3.70).

The subsequent course of p( e ) depends on the ratio
of E s and Γ. If E s < Γ, then at e = E s the lengths r q

and r s become comparable, (3.70) goes over into (3.12),
and the subsequent course of p(e) is the same as in the
classical case. On the other hand, if E s > Γ, then the
Gaussian statistics are violated at r q > r s and (3.12)
does not hold at all. If there are no attracting centers,
the electron spectrum terminates at e » Γ. In the pres-
ence of compensation, the density of states differs from
zero also at high energies, and is determined by the
donor fluctuations. The asymptotic form in terms of
energy is described as before by formula (3.18)1'.

e) Asymptotic form of the state density with allow-
ance for correlation and distribution of the impurities.
In the preceding arguments it was assumed that there
was no correlation in the distribution of the charge
centers. If the centers are produced by irradiation at
low temperatures, this assumption may be correct. On
the other hand, if the sample has been subjected to high-
temperature treatment during the course of which the
impurities could move freely, then an interaction-in-
duced correlation appears in their distribution. The
impurity diffusion coefficient decreases very sharply
with temperature. Since the samples cool sufficiently
rapidly, it can be assumed that the impurity distribu-
tion is a "snapshot" of the plasma existing at a certain
temperature To corresponding to the cessation of the
diffusion[23]. This temperature is usually close to the
melting temperature.

Allowance for the correlation turns out to be import-
ant in the calculation of the asymptotic form of p( e ) at
large e. Indeed, we have assumed that the probability
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of formation of a nucleus consisting of Ζ impurities
having a radius R is exp[-Z In (Z/NR3)]. At the tem-
perature To, however, these impurities repel one
another. To gather them together it is necessary to
perform work equal to Zze2/«R. Therefore the probabil-
ity of such a fluctuation is

exp(_Zl,lji|5)exp(-^.). (3.71)

At sufficiently large Z, the second factor must be-
come more important than the first. Let us find the
dimension of the optimal fluctuation in this case. If
R > K/Vme, then the well is classical and e » Ze2/«R.
(We have in mind values of R that are small in compar-
ison with the screening radius.) Hence Ζ « «Re/e2, and
the probability exp(-(cRe2/e2T0) of such a well de-
creases with increasing R. If R < K/Vme, the well
represents a point like nucleus, Ζ = Ve/E0, and the
probability is equal to exp(-ee2/E0KRT0) and decreases
with decreasing R. Thus, the optimal fluctuation has a
dimension R « fi Vme of the order of the radius of the
first orbit. Nonetheless, Ζ » Ve/E0. Substituting these
values of R and Ζ in the second factor, we obtainr2O>24]

l_P( s ) η β3/2 /ο 70 \

lnpiur-c-iF%· i3-w'
where C is a numerical coefficient. This is the asymp-
totic form of the state density with allowance for the
impurity correlation. In1-201 we obtained a dimensionless
equation that determines the form of the optimal fluc-
tuation and the value of C. Formula (3.18) is replaced
by (3.72) at e> To ln[(T 0 /E 0 ) 2 D(T 0 i/Na 3 ].

4. INTERBAND ABSORPTION OF LIGHT
a) Connection between the interband light absorption

coefficient (ILAC) and the density of states. The most
important method of investigating fluctuations of levels
are experiments on interband absorption of light near
the threshold. Typical experimental data obtained with
n-GaAs are shown in Fig. 7. We see that the ILAC de-
creases by four orders of magnitude when the quantum
energy decreases by an amount that is negligible in com-
parison with the width of the forbidden band (Eg = 1.51
eV at Τ = 77°Κ). With increasing electron density, the
curves shift towards the short-wave region and become
more gently sloping. The shift of the curves is connected
with the filling of the conduction band (the Moss-Burstein
effect). In strongly doped η-type semiconductors (SDS)
the transition at low temperatures is to the Fermi level
(Fig. 8), since all the states below it are filled. The
threshold energy exceeds the width Eg of the forbidden
band in this case by an amount equal to the Fermi en-
ergy μ, if account is taken of transitions from the bot-
tom of the valence band, accompanied by change of mo-
mentum (indirect transitions), or else by an amount
μ[1 + (m/mn)], if only direct transitions are taken into
account (see Fig. 8). The indirect transitions become
possible because of the presence of impurities and, as
a rule, their probability in SDS differs little from the
probability of the direct transitions. We shall therefore
henceforth take the threshold energy to be the minimal
energy of the indirect transitions.

At a finite temperature, the ILAC can be different
from zero at frequencies below the threshold frequency,
owing to the holes in the Fermi occupancy. Since the
probability of the existence of a hole with an energy
lower than μ by an amount e is proportional to
exp(-£/T), the ILAC decreases with frequency ω like
βχρ[(μ + E g -Κω)/Τ]2 ).
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FIG. 8

FIG. 7. ILAC (in cm"1) as a function of the quantum energy (in eV)
in n-GaAs samples with electron densities (cm"3): 2X 10 1 6 ( l ) ;
2.2 X 10"(4);5.3X 101 7(5); 1.2 X 10 1 8 ( l l ) ;and 6.5 X 101 8(13)
(according to the data of I 4 0 ] ; T = 77°K).

FIG. 8. Transitions with threshold quantum energy. Vertical
arrow—direct transition, inclined arrow—indirect transition.

With decreasing temperature, this absorption mecha-
nism turns out to have low probability3'. The only ab-
sorption mechanism that exists at zero temperature
consists of transitions from fluctuation levels that lie
above the top of the valence band. For the sake of
argument, we shall again speak of an η-type semicon-
ductor.

When a light quantum with energy Κω < Eg + μ is
absorbed, a hole is produced and should be located
above the top of the unperturbed valence band, by an
amount not less than eh = Eg + μ - Κω. The scheme of
such transitions, in the presence of a fluctuation poten-
tial that bends the boundaries of both bands is shown in
Fig. 9. The number of fluctuation levels of the holes
decreases exponentially with increasing eh- As a re-
sult, the ILAC decreases exponentially with decreasing
frequency.

However, the ILAC is proportional not only to the
probability of the existence of a deep hole level, but
also to the probability of the interband transition. The
latter can also be exponentially small, since the hole
level is produced by a cluster of negatively charged
acceptors, and the wave function of the electron can be
greatly impoverished in this region. As shown in Chap.
3, in the region of Gaussian fluctuations the potential
does not distort strongly the electronic states near the
Fermi level (we have used this fact when we assumed
a Debye screening). In this case the probability of the
transition to the Fermi level is not low and the argu-
ment of the exponential in the ILAC is obtained from
the argument of the exponential of the hole state density
by replacing e by eh = Eg + μ - Κω[25].

In the region of non-Gaussian fluctuations, the prin-
cipal role in the hole state density is played by clusters
of acceptors that form nuclei of multiply charged ions,
the ground state of which has an energy e. At e > μ, the
impoverishment of the wave function of an electron with
energy μ can be appreciable. This impoverishment,
however, occurs in a relatively small region of space,
and it may turn outr20] that it does not affect the fre-
quency dependence of the ILAC.

Thus, in a strongly doped and weakly compensated
semiconductor with degenerate carriers, the frequency
dependence of the ILAC duplicates the density of states
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FIG. 9. Scheme of interband
transitions in a degenerate semi-
conductor at Τ = 0. The sinuous
lines are the band boundaries bent
by the fluctuation potential. The
occupied states of the conduction
band are shaded.

of the minority carriers (for example, holes in the n-
type semiconductor case considered above).

b) Absorption of light as a result of Gaussian fluc-
tuations in the absence of carrier degeneracy. We con-
sider a strongly doped semiconductor in which the
Fermi level lies deep in the forbidden band. This can
be the result of a high temperature or strong compensa-
tion. This includes also the situation (which exists, for
example, in germanium), when quantum absorption gives
rise to the transition of an electron to an unfilled band
located over the valence band, and the electrons form a
Fermi-occupancy in the lateral extremum, while the
Fermi level passes much lower than the bottom of the
unfilled band into which the electron goes over. Let,
furthermore, the sample contain charged donors and
acceptor with total density Nt = Ν + ΝΑ. We shall as-
sume them to have a Coulomb potential up to a certain
distance r0, after which the potential drops off rapidly.
This decrease can be due either to electron screening
or to correlation in the disposition of the impurities.
What will be important to us is only the fact that the im-
purity correlation can be disregarded in Gaussian fluc-
tuations of dimension R « r 0 and that the length r 0 is
large, so that the fluctuation potential can be regarded,
in accordance with the terminology of Chap. 3, as clas-
sical for both electrons and holes, i.e.,

£ < * £,<* T-£W*·*. (4.1)
As already shown, in this case the state density of

the electrons or holes drops off in the interior of the
forbidden band in accordance with (3.12), and the opti-
mal fluctuations are wells having a dimension r 0 and
having many levels. It is easy to understand that in this
case the absorption coefficient is not a replica of the
state density. This is clearly seen in Fig. 10. Let us
assume that we are investigating a transition that has
caused the production of an electron and a hole with
energies ee and eh (these energies are reckoned up-
ward from the bottom of the conduction band and from
the top of the valence band). This is accompanied by
absorption of a quantum with a deficit Δ = eh - ce. (The
quantum deficit Δ is defined as the amount by which the
energy of this quantum is less than the width of the for-
bidden band, i.e., Δ = Eg - Κω.)

As seen from Fig. 10, if Δ > 0, then the regions in
which the electron and hole are located are separated
in space. Indeed, the region to the right of the point A
is classically inaccessible to the electron, and the
region to the left of the point Β is classically inacces-
sible to the hole. The absorption coefficient contains
the overlap integral of the wave functions of the elec-
tron and hole. We let the electron mass and the hole
mass go to infinity (at fixed ro). Then the tunneling
probability vanishes and the absorption of a quantum
with Δ > 0 becomes impossible. At the same time, the
state density determined only by the probability of pro-
ducing the potential well is expressed by the classical

•„ i - f

FIG. 10. Absorption of a quantum
with a deficit Δ in a nondegenerate
semiconductor. Solid horizontal
lines-boundaries of unperturbed
bands, bent lines-boundaries of
bands bent by the impurity poten-
tial (Eg is designated E).

formula (3.12), which does not contain the mass at all.
Thus, the absorption of light in this case calls for a
special analysis. In essence, this is the Franz-Keldysh
effect but not in an external electric field, but in a ran-
dom field of charged impurities.

We solve this problem by the optimal-fluctuation
method[2β], i.e., we obtain the impurity configuration
that makes the maximum contribution to the absorption
of light with a specified deficit. In the region of large
deficits, where the absorption coefficient Κ(Δ) is
exponentially small, the maximum corresponding to the
optimal fluctuation turns out to be very sharp. There-
fore the principal term In Κ ( Δ ) is determined by the
contribution of the optimal fluctuation. Of course, this
method does not make it possible to determine the pre-
exponential term in Κ(Δ).

We present only a simplified derivation analogous to
the uniformly charged sphere approximation (Chap. 3),
which enables us to determine the argument of the ex-
ponential in Κ(Δ) accurate to a numerical factor. This
factor is determined in the rigorous theory constructed
i n ^ .

Let us assume that fluctuation of the impurity density
in a volume with linear dimension R has produced a
homogeneous electric field g. We assume that R and
g are connected by the relation e g R = Δ. This is
necessary to enable a quantum with a deficit Δ to be
absorbed in the field of such a fluctuation. (The absorp-
tion of a quantum occurs also at R > Δ/β<?, but such a
fluctuation has obviously a low probability). The excess
number of impurities necessary to produce the required
fluctuations is determined from the condition
g = Ze//<R2, i.e.,

(We do not write out here the numerical factors that
depend on the form of the fluctuation). The contribution
made to the absorption coefficient by such a fluctuation
is proportional to the quantity

C'XP ( —V~BF e x P ( τ;— ) · (4 ·*·)

The first factor is the probability of the appearance
of Ζ c::cess impurities in the volume R3. The second
factor is the probability of tunneling of the electron to
a depth R (we assume for simplicity that the hole mass
is larger than the electron mass and that the hole does
not tunnel). Expressing Ζ in terms of R and Δ, we
rewrite (4.2) in the form

(4.3)

from which it is clear that at a given Δ the tunneling
probability increases with decreasing R, whereas the
probability of fluctuation production decreases.

Let us find the dimension of the optimal fluctuation
R from the condition of the maximum of the argument
of the exponential in (4.3):
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R- (4.4)

Substituting (4.4) in (4.3), we obtain the contribution
made to Κ ( Δ ) from the optimal fluctuations. In accord-
ance with the foregoing, we obtain ultimately

"Ml- _«iiV" ι (4.5)

Here β is a numerical factor that cannot be obtained
from such a simplified derivation. Inr 2 e ] it is shown that
if mh » m, then β = 2/5 V"iF. Later on Merkulov and
Perer [ S 7 ] have shown that at comparable electron and
hole masses it is necessary to use in (4.5) the reduced
mass mmh/(m + mn), and the coefficient β remains
unchanged. It is seen from (4.5) that the law governing
the decrease of the absorption coefficient differs sig-
nificantly from the law (3.12) governing the decrease of
the state density.

We now investigate the region of applicability of (4.5).
It was very important in the foregoing derivation that
the potential of the impurities was of the Coulomb type,
at least at a distance on the order of R. Therefore the
result is valid provided only R < ro or, taking (4.4)
into account,

Δ < Δ,, Δ, = Ea
(4.6)

On the other hand, in order for (4.5) to be applicable we
need to satisfy the condition 11η[Κ(Δ)/Κ(0)] | » 1, or

From the first inequality of (4.1) it follows that Δι
> Δ2, i.e., the region of applicability of (4.5) exists and
is wider the larger ro.

The fluctuation considered by us, as seen from Fig.
10, represents a potential well for an electron and an
adjacent potential well for a hole. In our derivation it
was also assumed that the electron energy has been
lowered by an amount Δ, and the hole energy has been
raised the same amount, i.e., each potential well has a
level with an energy on the order of its depth. To this
end it suffices to satisfy the inequality fi2/mR2 « Δ,
which follows from (4.7) and imposes no additional
limitations.

Let us see now what happens at Δ > Δ ι. If R > r0,
then at R = r 0 the second term in (4.3) is small in com-
parison with the first, i.e., the tunneling is negligible.
As we have seen in Sec. (b) of Chap. 3, the probability
of producing a potential well of depth Δ and dimension
r decreases at R > ro with increasing R (the potential
of the more remote impurities does not extend to the
center). Therefore just as in the theory of the density
of states, the dimension of the optimal cluster is in this
case r0. Substituting in (4.3) R = r0, we obtain at
Δ > Δι

which is the same expression as for the density of
states.

It is possible that even at Δ < Δι the non-Gaussian
fluctuations of atomic type will make a larger contribu-
tion to the ILAC than the Gaussian fluctuations con-
sidered above. In this case there is no region at all in
which (4.8) is valid.

The question of light absorption in compensated
semiconductors has been the subject of many papers, in
which various methods were used. We shall attempt to

compare the results. We discuss first the work of Red-
field et al.[27"3°!. The idea of their papers is that the
ILAC with a deficit Δ in a homogeneous electric field
<f averages out with the distribution function of the
electric field F(«f) produced by the charged impurities:

(4.9)Κ (Δ) = j K% (Δ) F (») d%.

According to Keldysh[31] and Franzr 3 2 ]

(4.10)

where η is a numerical coefficient.

InC 2 7 > 2 8 ], a Holtsmark distribution was used for the
function F(g). At large g we have[33]

F (») ~ l/«»/2. (4.H)

Therefore at large Δ in the interval (4.9) an important
role is played by i « gc = V m Δ Δ/fie and, in contrast
to (4.3), the integral is not exponentially small. The
reason for this discrepancy is obvious. Formula (4.10)
is valid provided only that the field g is homogeneous,
at least over the distance Δ/β<? over which the deficit
Δ is accumulated (see Fig. 10). On the other hand, the
asymptotic form (4.11), corresponds to a field produced
by one impurity located at a distance R( S) = V (e/ κ) <?
away from the observation point. This field can be re-
garded as homogeneous over a distance R « R( g). At
g = gc we have &/egc = R(^ c ) (Δ/Ε0)1 / 4 . We see
therefore that at Δ > Eo the indicated procedure is
contradictory.

In[ 3 0 ] (see also[34]) it is noted that in the calculation
of Κ<?(Δ) it is important to take into account the elec-
tron-hole interaction. It is clear that if the quantum
deficit is large enough this interaction is negligible and
the asymptotic form (4.10) is valid. Numerical calcu-
lations performed in1·291 have shown, however, that there
exists a rather wide intermediate region of Δ, where

K% (Δ) ~ exp (-Δ/8 C), (4.12)

with C independent of g or Δ. It is proposed inf 3 0 ] that
F((?)~ exp(-3<f2/2<f2

ns). Then it follows from (4.9)
and (4.12) that Κ(Δ) ~ exp (-Δ/CAns)· It seems to us,
however, that the representation of F(<?) by a Gaussian
function is not justified, since the mean-squared field
^ms f o r Coulomb centers diverges at short distances.

As shown by Merkulov and Perel j [ J 5 ] , allowance for
the interaction of the electron and the hole as a small
term to the argument of the exponential (4.10) if Δ2

» e3 g. Substituting in it the inequality eg = Δ / R ,
where R is given by (4.4), it is easy to verify that the
electron-hole interaction can actually be disregarded
in the derivation of (4.5).

The result of Bonch-Bruevichr36] likewise differs
somewhat from (4.5), but it is difficult to explain the
cause of the discrepancy in this case, since the most
important formula (12) of that paper is presented wlth-

FIG. 11. Dependence of Δο on
the carrier density in n-gaAs in
accordance with the following data:
[ " I d ) , [3*](2),[3*](3), [39C](4)
and [«] (5).

" 20V

°-2, "-4, o-5
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out derivation, and there is no physical interpretation
of the result.

In conclusion we note an interesting paper by Merku-
lov and Perel ' i 3 7 1 , in which the optimal-fluctuation
method described above was used to construct the
theory of electroabsorption in SDS.

c) Discussion of Experimental Data

Oh no, what is similar to you is
only the ghost which you yourself
recognizes, not I.

(Goethe, Faust)

In this section we shall attempt to use the theoretical
concept developed above to explain experimental data on
interband absorption of light.

In semiconductors, the experimentally observed
ILAC at frequencies below the threshold usually agrees
well with the formula

1ηΊ

S(">thi—ω) (4.13)

where Ru>thr ^s the threshold energy and Δο is a char-
acteristic energy that does not depend on the frequency.
The first difficulty which we encounter is that neither
of the considered cases of absorption as a result of
fluctuation levels gave rise to the linear relation
In Κ (ω) («thr - ω ) . All the obtained rules, how-
ever, were asymptotic, and the measurements are al-
ways carried out in a rather narrow frequency interval,
in which the plots of / Δ In Λ or Δ5 / 4 are difficult to
distinguish from straight lines.

The most complete experimental data, including
measurements at helium temperature, are available for
η-type gallium arsenide. We confine ourselves to their
analysis. Figure 11, which is borrowed from[a81, shows
a plot of Δο and the electron density in GaAs of n-type.
The circles denote the results Pankove1-381 obtained at
Τ = 5°, and the remaining data were obtained at nitrogen
temperatures in[39>401. At Τ = 77°Κ, samples with elec-
tron densities η > 1017 cm"3 are degenerate. Therefore
the absorption coefficient duplicates the density of
states of the valence band.

Assume that the samples are not compensated, i.e.,
that there are only electrons and positively-charged
donors. We know that in this case the state density
above the unperturbed valence band decreases like
exp( -e.z/yz). This holds true if e « μ, where μ is the
Fermi energy, while at e close to μ the state density
vanishes in accordance with (3.67). The ratio μ/r is
equal to (NrJ )1 / 2, apart from a numerical factor:
Therefore the presence of a Gaussian section is most
essentially connected with satisfaction of the condition
N r | » 1, i.e., with the presence of a gas parameter. In
n-GaAs we have ( 4 Τ Γ / 3 ) Ν Γ | = (l/2)(N/101 8)1 / 2, from
which we see that the gas parameter is practically non-
existent at the concentrations investigated inr 3 8"4 0 ] . This
means that the Debye theory is not applicable and the
radius of action r s should be regarded as close to the
average distance between the electrons. Therefore the
long-range action, which is so important for the Gaus-
sian section, does not exist. The energies μ and /'be-
come quantities of the same order when r s is replaced
by N"1'3. If we calculate Ύ by formula (2.13), then we
see that y > Δο in the entire region of concentrations
represented in Fig. 11. Thus, at Ν = 10i 8and 1019 cm"3

we have Ύ = 15 and 47 MeV, respectively. In addition,

it is seen in Fig. 11 that Δ ο depends on Ν not in a
power-law fashion but logarithmically. All this leads
us to a very important conclusion: The donor-density
fluctuations cause only a narrowing of the forbidden
band, by an amount on the order of 7. On the other hand,
the tail of the absorption coefficient must apparently be
attributed to fluctuations of minority impurity[ 1 9 ].

Let us assume that the samples are compensated.
Because of the large mass of the heavy hole, the radius
of the majority acceptor state is small in comparison
with r s . There exist therefore states on one acceptor.
On going deeper into the forbidden band, clusters of 2,
3, etc. acceptors become more important in the state
density. At a sufficient depth in the forbidden band,
formula (3.18) (with acceptor density and hole mass),
which is equivalent to the ILAC, becomes valid41.

Comparison of formula (4.18) with experiment is
difficult for two reasons. First, the acceptor concentra-
tion in the employed samples is unknown. The usual
methods that make it possible to assess the degree of
compensation (for example, measurement of the mo-
bility) are suitable only when the donor and acceptor
densities are close. If the absorption coefficient at large
deficits is indeed determined by the acceptors, then it
should feel them regardless of the donors also at very
low densities. We can therefore calculate only the ac-
ceptor density necessary for the formation of the ob-
served tail of the density of states, and to examine the
extent to which it is reasonable.

The second reason is that formula (3.18) is an
asymptotic expression that is valid when e/En » 1. In
the experiments referred to above, we observed the
region e/En < 5. This is patently insufficient to regard
the charge of the nucleus as a continuous variable (see
(Sec. (b)of Chap. 3)). Nonetheless, we can obtain from
(3.18) an order-of-magnitude estimate. In the observed
region, the dependence of (3.18) on e differs little from
linear. To calculate Δο we can use the following
formula:

(We put e/En = 4. Since the dependence is close to
linear, the derivative depends little on the choice of the
point). Calculation by means of formula (4.14) with an

= 30 A yields Δο = 9.1 meV at NA = 1017 cm'1, Δο

= 12.3 meV at NA = 1018 cm"3, and Δο = 20.3 meV at
NA = 1019 cm'3. These results agree with the experi-
mental data shown in Fig. 11, if it is assumed that the
acceptor density in the samples increases with increas-
ing donor density and is comparable with it in order of
magnitude.

An indication of the role of the acceptors in the
formation of the tail of the absorption coefficient is the
appreciable spread of the points in Fig. 11. Thus, for
two samples with identical electron density, equal to
6.8 χ 1018 cm'3, Pankove[38) and Hill[40l obtained values
of Δο that differed by 30%. It is clear, however, that
under equal conditions we have Δ0(5°Κ) r= Δο (78ΟΚ),
yet in this case the opposite inequality has been ob-
served. One can therefore assume that the samples used
in [ 3 8 ] were compensated.

From this point of view it is of interest to discuss
the results of Hwang[41]. The experimental curves ob-
tained at 77°K are shown in Fig. 7. The values of Δο

obtained by us with the aid of this curve are listed in
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Ml

η, cm*1

Δο. MeV

1

2.10»

2.6

4

2-10"

4.3

5

5.3-10»

4.6

s

1.2-101S

5.7

g

1.6-1018

6.3

11

3.11018

6.6

13

6.5-1018

6.6

the table. The numbers of the samples correspond to
the numbers in Fig. 7.

Attention is called first of all to the fact that when
the doping is increased Δο tends to 6.6 meV and does
not depend on the concentration. This value of Δ ο is
undoubtedly of temperature origin, since Τ = 6.6 meV
(77°K). From the fact that such a slope is possessed
only by sufficiently doped samples, and that the slope
is much larger for weakly doped samples, it follows
that these are not transitions with phonon absorption,
but temperature smearing of the Moss-Burstein thresh-
old. The associated shift of the absorption curve is
clearly seen in Fig. 7. We note now that in the case of
sample 13, for example, the donor density is not less
than 6.5 χ 1018 cm'3, and consequently, according to
(2.13), Υ is not less than 38 meV, which is much larger
than T. This confirms the point of view that the donor-
density fluctuation does not produce the absorption-
coefficient tail in degenerate n-GaAs. It follows also
from Hwang's experiment that in his samples 11 —13 the
characteristic energy of the tail of the valence band was
smaller than 6.6 meV, for otherwise the absorption co-
efficient would reproduce this tail and not the thermal
smearing of the Fermi level. On the other hand, in
Pankove's experiment at Τ = 5°Κ, performed on a sam-
ple with approximately the same electron density (6.8
χ 1018 cm"3), a value Δο = 19 meV was observed. This
fact can also be explained by assuming that the ILAC
tail is formed by acceptors and that· the samples of[38]

were more complicated.

Thus, the only possibility of explaining the experi-
mental data in n-GaAs is seen by us in the hypothesis
that the ILAC tail is due to acceptors. Unfortunately,
the experiments known to us do not offer a decisive
proof of this hypothesis. Data pertaining to other semi-
conductors are much less skimpy, and their analysis
yields little information[13]. The most important prob-
lem in this region is, in our opinion, that of experi-
mentally determining the role of the minority impuri-
ties in the formation of the ILAC tail. If the hypothesis
discussed above is confirmed, new theoretical investi-
gations will be necessary, aimed at numerically calcu-
lating the ILAC in the region of not too large quantum
deficits.

The author takes the opportunity to thank B.I.
Shklovskii for numerous discussions of the questions
touched upon here.

'>The transition from (3.70) to (3.18) is quite complicated (for details
seef ' ] ) .

2)When only direct transitions are taken into account, we obtain

''Similarly, at low temperatures the absorption mechanism representing
transitions with simultaneous phonon absorption is quenched out.

4>The temperature of the diffusion quenching in n-GaAs is of the order of
900°K. Estimates show that in this energy region the correlation in
the distribution of the impurities does not lead to a replacement of
(3.18) by (3.72).
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