
Covariant quantization of the gravitational field
L. D. Faddeev and V. N. Popov

Leningrad Section of the V. A. Steklov Mathematical Institute. USSR Academy of Sciences
Usp. Fiz. Nauk 111, 427-450 (November 1973)

A review dedicated to the contemporary methods of quantization of the gravitational field. In view
of possible applications to elementary particle theory, the authors consider only asymptotically flat
gravitational fields. The basis of the exposed method of quantization is the method of quantization of
gauge fields in the functional integration formalism. The main result is the formulation of covariant
rules for a diagrammatic perturbation theory. Its elements are the lines representing gravitons and
the vertices of graviton-graviton interaction, as well as the lines and interaction vertices of fictitious
vector particles ("Faddeev-Popov ghosts") characteristic for the theory of gauge fields. The
expressions for the propagators and vertex functions are given explicitly. It is shown that the
presence of fictitious particles in the covariant diagram technique guarantees the unitarity of the
theory and the agreement between the covariant quantization with the canonical quantization. The
bibliography contains 44 entries (54 names).
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INTRODUCTION
The interest in a quantum theory of gravitation is

maintained to a large extent by hopes that inclusion of
gravitation into the scheme of quantum field theory will
allow us to construct a self-consistent closed theory of
elementary particles. In this connection there are two
directions. One is related to cosmology and to the use of
cosmological considerations in the theory of elementary
particles (cf. the papers of Wheeler1-1-1, Misner^2-1,
Markov and collaborators t3-1). The other direction,
which does not make use of cosmological considerations,
considers the field of the particles concentrated effec-
tively in a finite volume and vanishing at spacelike infin-
ity. In the latter approach the gravitational field is con-
sidered on the same footing as any other field (cf. ̂ *•')
and the theory is a variant of the theory of gauge fields.
The role of gauge transformations is played by coordin-
ate transformations which do not affect the spacelike in-
finity, and the role of the gauge group is played by the
Poincare group (in more detail this problem is discussed
in the report by one of the authors1-5-1). The role of
Lorentz-invariance in the general theory of relativity
was underlined by Fock^6-1.

The interest in elementary particle theory is mainly
related to the hope that it may be just the gravitational
field which could play the role of a natural "physical
regularizer" which removes the singularities and infini-
ties from quantum field theory. The first results which
supported this point of view were obtained by De Witt1-
and Khriplovich^83. At the present time this direction is
actively developed by Salam and collaborators'-9-1, mak-
ing use of methods developed by Efimov, Fradkin, Volkov
andFilippov1110"133.

In this review article we restrict our attention only
to the problem of constructing covariant rules for a dia-
grammatic perturbation theory. The most convenient
tool for this purpose is Feynman's functional integral.
In this formalism the physical degrees of freedom, which
are quantized, and the gauge-field degrees of freedom,
which remain c-numbers, are treated on the same foot-
ing. This makes it possible to use a large class of dif-
ferent transformations.

The first correct formalism for the quantization of
the gravitational field was constructed by Dirac in
1958C14], within the framework of the Hamiltonian me-
thod. Other methods, essentially equivalent to that de-
veloped by Dirac have been developed by the Arnowitt-
Deser-Misner group1-15-1, by Schwingerc 16] and also some
others[17"19-1. The absence of explicit covariance in the
Hamiltonian formalism makes perturbation theory very
cumbersome. U. is appropriate to recall the analogous
situation in quantum electrodynamics. The noncovariant
perturbation methods of the thirties did not allow one to
go beyond the first nonvanishing approximation of per-
turbation theory. The creation of a covariant perturba-
tion theory toward the end of the forties and the develop-
ment of the diagram technique associated to it have sim-
plified the calculations considerably, so that at present
the theory can be compared to experiment up to the
seventh decimal place. In the theory of gravitation the
technical difficulties are so great that a noncovariant
quantization scheme becomes practically useless in con-
crete perturbation-theoretic computations.

The first attempts of constructing a covariant quan-
tization scheme for the gravitational field were con-
tained in the papers of Gupta1-20-1. He followed the scheme
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developed for quantum electrodynamics, and to over-
come the difficulties related to the singularity of the
free Lagrangian of the gravitational field, he made use
of a trick analogous to the well-known Fermi method of
quantization for the electromagnetic field
(cf., e.g., [ 2 1 ' 2 2 3 ) .

It turned out, however, that an uncritical transfer of
the Fermi quantization method (which is justified in
quantum electrodynamics) to more complicated systems
can lead to a violation of the unitarity condition of the
theory. This was first discovered by Feynman in 1963[ 2 3 ]

on the examples of the Yang-Mills field and gravitation
theory. Feynman has mapped out the path to overcome
the difficulties which he had pointed out. He has shown
that the unitarity of a closed-loop diagram can be recov-
ered if one subtracts from the appropriate matrix ele-
ment the contribution of another diagram, also having the
form of a loop and describing the propagation of a fic-
titious particle. It was not possible to extend the Feyn-
man method to more complicated diagrams.

The solution of the problem for arbitrary diagrams
was found in 1967 by De WittC24] and by the authors of
the present review[-253, using basically different me-
thods. Both methods are unified by the use of the method
of functional integration, which provides a scheme of co-
variant perturbation theory for gauge fields. In the case
of a non-Abelian gauge group the method involves lines
corresponding to fictitious particles and vertices
describing their interactions with the quanta of the gauge
field. The fictitious particle lines enter into the diagram
as closed loops, each identical with the diagram intro-
duced by Feynman in order to recover the unitarity of
the one-loop diagram for the real particles. The sign
(— 1) in front of the contribution of the closed loop shows
that the fictitious particles (which are also known under
the name of "Faddeev-Popov ghosts"—transl.) are sub-
ject to Fermi statistics. This makes a direct interpre-
tation of the fictitious particles difficult, since they have
integral spin (they are scalar for the Yang-Mills field
and vectorial for the gravitational field). The results ob-
tained in'-24'25-1 have been repeatedly rederived by var-
ious authors, and other methods of solving the problem
have been proposed. We note here the papers by
Mandelstamt2"3, Veltman[27: i, Fradkin and Tyutin[ 2 8 3,
Khriplovicht2"3, BoulwareC3o:l, ' t Hooft^313, Altukhov and
KhriplovichC32].

The construction of a correct covariant quantization
scheme for gauge fields has generated a series of papers
where the (massless) gauge theory is compared to the
corresponding massive (non-gauge) theory and the prob-
lems of the limit m — 0 are discussed (the papers of
Faddeev and SlavnovC33], Vainshteih and Khriplovich113*3,
Zakharov11353, Veliman11273, Fradkinand Tyutin113"3. The
basic result of the majority of these papers reduces to
the fact that the limit of a massive theory for m —• 0
does not, in general, coincide with the corresponding
massless theory.

As we already noted, methods of quantization of the
gravitational field have been developed within the frame-
work of the canonical Hamiltonian formalism and in ex-
plicitly covariant form. The functional integration me-
thod allows one to relate both formulations. The canon-
ical Hamiltonian yields a unitary normalized theory and
the covariant formulation allows one to construct a per-
turbation theory which is convenient for concrete calcu-
lations.

Here are some details about the plan of our review
article. Chapter 1 deals with the scheme of derivation of
rules of covariant perturbation theory in the functional
integration formalism, on the example of a scalar self-
interacting field theory. The Feynman rules for the
gravitational field are formulated in Chap. 2. The deri-
vation of these rules in Chap. 3 is based on the form of
the functional integral for the gravitational field postu-
lated there. A justification for this is the possibility of
reducing the theory to an explicitly Hamiltonian form.
For this reason we deal in Chap. 4 with the canonical
Hamiltonian form of the theory of gravitation, and in the
last, fifth, chapter we show that the functional integral
following from this theory can be reduced to the rela-
tivistic form which was used in the derivation of the
Feynman rules.

1. THE FEYMAN RULES FOR COVARIANT
PERTURBATION THEORY AND THE FEYNMAN
FUNCTIONAL INTEGRAL

We recall and discuss here the recipe for the deriva-
tion of the rules of covariant perturbation theory accord-
ing to Feynman[ 3 7 3. We start with the simplest example
of a self-interacting scalar field φ with the Lagrangian

Z{x)=~ (5μφ (χ) δμφ (χ) -mV (*)) - (λ/3!) φ· (χ). (1.1)

The diagrams corresponding to the terms of pertur-
bation expansions is constructed out of two elements:
the line G (propagator) and the vertex V:

(1.2)

The scattering amplitude Mn(ku ..., kn) describing η
(incoming or outgoing) particles with momenta kx, ..., kn

is represented by a sum of contributions corresponding
to diagrams with external (non-closed) lines. The con-
tribution of a given diagram is obtained by associating
to its elements the following expressions: to internal
lines one associates the propagators

(1.3)

to the vertices one associates the vertex function (coup-
ling constant)

V = λδ (4, + hi + k,), (1.4)

and after integrating over all the momenta k of the in-
ternal elements of the diagram, the final result must be
multiplied by

-°+', (1.5)

where I is the number of internal lines, ν is the number
of vertices and r is the order of the symmetry group of
the diagram1'. To obtain the amplitude for a real process
one has to go onto the energy shell k° = ± (k2 + m 2 ) 1 2 ;
the sign depends on whether the particle is incoming or
outgoing.

The described elements of the diagram technique are
determined by the Lagrangian (1.1) in the following man-
ner. We consider the action

S [φ] = j X (x) dlx (1.6)

as a functional of the Fourier transform 7p (k) of the field
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φ (χ). This functional consists of a quadratic form in the
field and a form of third degree:

S [φ] = S2 [φ] + Si [φ]. (1.7)

The function G(ki, k2) is the kernel of the integral
operator inverse to the operator which defines the quad-
ratic functional form S2; the function V is the coefficient
function determining the form of third degree.

This correspondence can also be seen in many other
examples for which there exists a diagram technique,
e.g., for the pseudoscalar theory of pions and nucleons.
The only difference is the appearance of the factor (— l ) s ,
in the weight (1.5) of the diagram, where s is the number
of closed loops formed of fermion lines.

The described recipe is not directly applicable to
theories where the corresponding quadratic form is
singular. The simplest example is provided by electro-
dynamics, where the action integral of the free photons

„ i_ r .„ . . 2 /1 o\

is degenerate owing to gauge invariance, and does not
depend on the longitudinal component 8 Α μ of the poten-
tial Αμ. However, in this case it is known (cf.1-21'22-1)
that one can use as photon propagator a generalized
inverse operator of the quadratic form (1.8); the momen-
tum-space representation of this propagator is the fol-
lowing

) = fi<4> ( f t + (1.9)

where the constant is arbitrary. The scattering ampli-
tudes for real processes do not depend on this constant.

However, as we have already pointed out in the intro-
duction, a direct adaptation of this recipe to theories with
nonabelian gauge groups leads to incorrect results. In
order to make clear the reason for these difficulties it is
useful to analyze the derivation of the rules of covariant
perturbation theory. In our opinion the most convenient
approach is the formalism of the Feynman path (func -
tional) integral2'.

We recall the main features of this method on the ex-
ample of the scalar field with the Lagrangian (1.1). The
scattering amplitude is obtained as an integral over all
possible fields with a given asymptotic behavior for
t — ± <» of the functional exp(iS), where S is the action
integral. We shall use the following notation for such
integrals

f exp{iS{((}}lldtf(x), (1·10)

where the symbol Τχάφ(χ) signifies that the integration
variables q?(x), which are considered independent at each
point x, take on all possible values from —«to +°°, and
the integration measure with respect to these variables
is Lebesgue measure. Moreover, we omitted an inessen-
tial (infinite) normalization factor.

A rigorous mathematical theory of such objects does
not exist as yet. We shall use the functional integral
only for the derivation of the rules of perturbation
theory. In order to explain the formal rules of manipula-
tion of such objects we shall appeal to finite-dimen-
sional analogues.

Expansion of the functional exp(iS) in powers of the
coupling constant λ leads to integrals of the form

(1.11)

where the integrands have the form

exp [i(quadratic form)] χ polynomial.

Such integrals can be explicitly calculated and can be
expressed in terms of the operator which is the inverse
of the operator of the quadratic form as well as the co-
efficients of the polynomial.

Indeed, let us consider an integral of this type for a
finite number of variables:

7= jdz. . . . j dx^xp^^A^x,) ^ cfl ίηΐ·'...ΐ·η». (1.12)
-'« -» υ i,...in

It can be calculated by differentiating the generating
function

Ζ ( η , , . . . , η , , ) =

namely:

x,Xl + i Υ, (1.13)

,η,,)

η = 0

The generating function can be computed by a shift of the
variable, yielding

(2πί)"'2 (det A) - '/* exp ( - ± 1.14)

where the matrix Β is the inverse of the matrix A. The
first factor here plays the role of the normalizing con-
stant which we have agreed to neglect. The differentia-
tion of the second factor leads to a result which in words
can be formulated in the following manner: The integral
J is represented by the sum of the coefficients c^ . . . in,
contracted with products of the elements B^ of the ma-
trix B, carrying the same set of indices.

In our infinite-dimensional case the analogues of the
coefficients Cj ; are products of the coefficient-

functions of the cubic form in the action. The role of
the matrix A is played by the hyperbolic differential
operator (the Klein-Gordon operator) (D —m2), or, in
momentum space, the multiplication operator by
(k2 - m2). A natural generalization of our finite-dimen-
sional result leads then to the Feynman rules formulated
above.

Two remarks are in place here. The first refers to
the definition of the inverse of the operator A, i.e., of
the Green's function of the operator (• — m2). There
are many such Green's functions: the retarded one, the
advanced one, the causal one, etc. The Feynman rules
require the use of the causal Green's function. One can
justify this within the framework of the functional integ-
ral method, by using the asymptotic conditions on the
integration variables. The same condition determines
the form of the external lines of the diagram. Both these
circumstances are characteristic for all field theories.
We have no room to discuss them in detail in this review,
which is dedicated mainly to the distinguishing features
of the quantization of gauge fields, to which we go on,
on the example of the gravitational field.

2. FEYNMAN RULES FOR THE GRAVITATIONAL
FIELD

The peculiarities of the gravitational field are rela-
ted mainly to its self-interaction. Therefore the major-
ity of this chapter will deal with the "free" self-interact-
ing gravitational field. The main result, namely the dia-
gram technique, is listed at the end of the chapter. We
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also indicate there the changes made necessary by the
presence of a matter field or the electromagnetic field.

Among the most frequently used parametrizations of
the gravitational field the following two are the most im-
portant: the metric tensor and the moving-frame or
tetrad (Vierbein) formalism. We summarize both of
these.

In the metric tensor formalism the gravitational field
is described by the potentials gμ„(x) and the Christoffel
symbols rP (x). The latter can be considered as inde-
pendent dynamical variables (the Palatini formalism) or
as functions of the gμI/:

-δσ?μν). (2.1)

The contravariant g^ "-matrix is the inverse of %^v, g
denotes the determinant of the matrix g .

In this review we shall only consider asymptotically
flat gravitational fields. In this case the space-time
manifold is topologically equivalent to four-dimensional
Euclidean space and can be parametrized by global co-
ordinates χβ (-« < xM < +00, μ = 1, 2, 3). These coor-
dinates shall be compatible with the conditions at space-
like infinity, such that

, Λ /_1_\ pP (~ι /_1_\ τ· no /O 9\

where r = ((x1)2 + (x2)2 + (x3)2) l / 2, and η is the metric
tensor of Minkowski space, with the signature (+ ).

The action functional has the form

_
4- V -

(2.3)
] d'x,

where κ is the Newton constant, is invariant under the
group of coordinate transformations acting on the quan-
tities gM", r Ρ according to the rules

μν

(2.4)

We have written here the equations for infinitesimal
transformations; η Μ are the infinitesimal components of
a vector field which generates the coordinate trans-
formations

Sz» = ψ (χ). (2.5)

Variation of the action (2.3) with respect to the r £
leads to equations, the solutions of which are the func-
tions (2.1). In this sense one may consider the rP as
independent variables, which is sometimes convenient to
do.

Substituting into the expression (2.3) the explicit form
(2.1) of the Christoffel symbols Γ ? in terms of the
metric tensor, it becomes

where for convenience we have introduced the contra-
variant tensor density

hv = y — g £"v,

(2.7)
h = det hi". v

In the tetrad formalism (also known as the "moving-
frame formalism" or "Vierbein formalism") the gravita-
tional field is described by the components of the tetrad

(frame) e^a(x) and the torsion coefficients ω

= -ωμ) ) 3 ί 1(χ). The set of e'xa(x) form a matrix with posi-

tive determinant e(x). The action functional

S = (l/2xa) f [ωνα,Λ (e-l«"«e»*) - ω μ α ! ι 3 ν («-'β»"**·) ,

+ e-ie^evb (ω μ ο οω° „ - ω ν Μ ω μ 6 ) ] dlx

is invariant with respect to coordinate transformations

(2.9)
ο ω μ α 6 = — η λ 3 ν ω μ ο ( ) — (ui.abdllr\>-

and with respect to local Lorentz transformations

6e>"" =
(2.10)

A variation of S with respect to ω leads to equations
which allow us to express ω in terms of e. The solution
is conveniently written in the form

where

If necessary, one may assume that this is already
done ahead of time, so that S may be considered as a
functional only of the functions e ^ a .

We shall talk about a formalism of the first order if
the variables g and Γ ^ (or e ^ a and ω ^ are con-
sidered as independent. If the Γ are expressed in terms
of the g, and the e in terms of the ω we shall talk about a
formalism of the second order.

The descriptions of the free gravitational field in
terms of the gμ1/ or the e^a are equivalent. The differ-
ence in the number of components—10 in the first case
and 16 in the second—is compensated by the difference
in the gauge groups, which in the first case is parame-
trized by four functions and in the second case by ten.
The tetrad formalism is convenient for the description
of interactions with spinor fields.

The equivalence between first- and second-order
formalisms may disappear when the interaction with
other fields is switched on. Geometrically Eq. (2.11)
defines a connection without torsion. The minimal inter-
action of the gravitational field with the spinor field in
a first-order formalism leads to the appearance of tor-
sion (cf.C 3 8 3).

The remainder of the exposition of this chapter will
be mainly on the example of a tensor formalism of the
second order. We set

ftHV = η μ ν _>- κ Μ μ ν (2.12)

and consider u ^ " a tensor field describing the gravita-
tional field. The action functional (2.6) takes on the form

•s = 5,-t- S x»Sn+2, (2.13)
n - l

where S2 is a quadratic form and S n is a form of n-th
degree in the variables u*1" and their first derivatives.

The linearization (2.12) is in many respects not a
natural one. It can violate the signature of the metric
tensor if u^ v is not sufficiently small. Recently exponen-
tial parametrizations have become popular, e.g., for the
tetrad matrix e ^ a = βχρ(κχΜ^). in principle the expan-
sion (2.13) can be computed in this parametrization. We
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note that the quadratic form S2 does not depend on the
parametrization.

A direct application of the recipe from Chapter 1 to
the case of gravitation would lead to the following formu-
lation of covariant perturbation theory rules: the quad-
ratic form S2 defines the propagator and the coefficient-
functions of the forms Sn give the expressions for the
vertices, which in this case are infinite in number. We
note here that in a first-order formalism the lineariza-
tion (2.12) and the substitution

ΓΕν-χγϊ, (2.14)

transforms the action into a sum of forms of second and
third degrees, so that in this formalism the number of
vertices is finite.

As a consequence of the invariance of the action with
respect to transformations (2.4) the quadratic form

S2 = | j (-ηνσδ£δρ

μ + | η α Ρ η μ ρ η ν ο — ζ ^ η ^ ή d^dtuWx (2.15)

is degenerate. It does not contain the longitudinal com-
ponents djjaW. The example of electrodynamics suggests
the idea to use as propagator for the gravitons a gener-
alized inverse operator, e.g., the one-parameter family

In addition to these elements, in the internal parts of
the diagrams one must make use of additional elements
which can be interpreted in terms of vector particles
interacting with gravitons. Such an interpretation is in-
troduced only for convenience. The mentioned vector
particles have no independent physical meaning and they
are usually called "fictitious" (or, by other authors:
"Faddeev-Popov ghosts"—Transl.). The propagator of
such a fictitious particle has the form

βμν = _ημν/ΑΛ, (2.18)

and its interaction vertex with gravitons is generated by
the trilinear form

κ j θ μ («^ ν 5 λ θμ + 3,ιί*·βλ№ — dxu^d^ - βλδν^"№-) dlx (2.19)

and has the expression

(ft) = -L (ημρηνσ νρ 4_ (α-ι _ 2) ημ

(2.16)

with the elements of the S-matrix independent of the
choice of the constant a.

However, Feynman'-23-' has shown that the matrix ele-
ments calculated according to the naive rules depend in
an essential way on this constant, and the unitarity con-
dition is violated. Feynman has also outlined the way out
of this difficulty. As a result of the efforts of a large
number of authors, as described in the introduction,
correct rules for the perturbation theory have been ob-
tained, rules which we describe here. Their derivation
will be given in the following chapters.

The diagram technique contains, to be sure, all the
elements of the "naive approach": graviton lines, for
which the expressions have the form (2.16) and vertices
generated by the forms Sn +2 of expansions of the type
(2.13). Here is the explicit expression for the third-
order vertex, corresponding to the linearization (2.12):

κ ί' Α*

"2> { 1 ~Τ

£ = ~ \ (eS(ftl0ft2ff + ftlOft2p)-/'-i1
№ 3 p + 6ρμ&3«)1

. (2.20)

Fictitious elements participate only in closed loops and
the external lines are always graviton lines.

The contribution from a given diagram is obtained if
the product of expressions of the form (2.16)—(2.18),
(2.20) associated to its elements is integrated over the
internal momenta, and the result is multiplied by

[i/(2jt)4]'-c+17-1 (—1)', (2.21)

where s is the number of closed loops formed by fic-
titious particles. A comparison of this equation with
(2.5) shows that the fictitious particles act like fermions,
i.e., they violate the spin-statistics theorem. This
shows that their role reduces to a subtraction of the
contributions from unphysical degrees of freedom.

In addition to the described diagrams perturbation
theory involves infinite contributions of the renormaliza-
tion type, contributions which are proportional to powers
of the delta-function 6<4)(0). The structure of these
terms will be described below in Chap. 3. In the first-
order formalism the elements associated to fictitious
particles do not change. In addition to the tensor propa-
gator (uu) the perturbation theory also involves the
propagators (uy) and {γγ). In the momentum-space
representation these propagators have the form:

1"1 (ft) = | (η

, μν (ft) = | (

Ρ) G"»· μν (ft) =

(2.22)
+ 6^65ημτ + δμδ?ην τ)

ν, αΒ (ft) Ω5χ, yt(-k) G«P. ν« (ft),

+ ηρ,ηΐσ) + (&2μ*3ν + *2

ν + M m ) (ΐλσηρτ + Ίχρ

pτγlvσ Ι

where

The only graviton vertex is generated by the trilinear
(2.17) f o r m

and has the expression
a

•fir

(2.23)

inear

(2.24)

+ the sum over permutations of the pairs ((μ, ν), (λ, ρ),

(.«, τ))}· Ρ
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(δαδί + δ + ό?δϊ) -
? - δμδαδ?δ|1 - δΐδ£δμδ? - δΧΡΧ\. (2.25)

We do not write out the elements of the diagram
technique in the tetrad formalism. The reader can obtain
them by himself using the methods described below. The
inclusion of matter fields does not lead to the appear-
ance of new fictitious particles and the corresponding
elements of the diagram technique, as long as the quad-
ratic forms in the action functionals of the matter fields
are nondegenerate.

As an example we list the interaction Lagrangians of
the gravitational field with a scalar field and with a
spinor field. In the first case it is convenient to use the
metric formalism and in the second case one must use
the tetrad formalism:

S [ω] = - | j dlx Υ - g (£*
(2.26)

here we have utilized the standard notations for the
components of the scalar and spinor fields; y a and σ
= V* (y c y d - y d y c ) are the usual Dirac matrices. We
note that if there is no mass term it is easy to choose
the parametrization of the gravitational field in such a
manner that these functionals generate only a finite num-
ber of vertices.

3. A DERIVATION OF THE MODIFIED
PERTURBATION THEORY RULES

Functional integration is a convenient heuristic means
for the explanation and heuristic derivation of the rules
of perturbation theory for the gravitational field, rules
which have been enumerated in the preceding chapter.
Within the framework of this approach the additional
terms mentioned there are interpreted as a consequence
of the nontriviality of the measure with respect to which
the functional exp(iS) is being integrated.

Let us explain this in more detail, making use of
natural geometric terms. The functional exp(iS) is in-
variant with respect to the infinite group of coordinate
transformations in the metric formalism or with respect
to the semidirect product of this transformation group
and the group of local Lorentz transformations in the
moving frame (tetrad) formalism. Thus, this functional
is a function on (equivalence) classes of fields, where
one class unites all the gravitational fields which can be
transformed into one another by transformations from
the indicated group.

We shall assume that it is a class rather than an in-
dividual field which describes a concrete physical situa-
tion. This is the content of the principle of general co-
variance. Keeping such a formulation of this principle
in mind we can consider that in quantum theory the
Feynman functional exp(iS) should be integrated with
respect to such classes of fields, rather than individual
fields. The nontriviality of the measure which we have
mentioned is related just to this circumstance.

Let us discuss how one can describe measures on the
set of classes of fields. Following our method, we first
consider the finite-dimensional case. Mathematically
we are dealing with the following situation: we are given
a manifold Μ (in the sequel this will be the set of all
fields) and a group G (in the sequel this will be the
group of gauge transformations) acting on M. Let ξ be a

point in Μ and a a group element, | a denotes the action
of the group element a on the point ξ. Consider the quo-
tient manifold M/G = M*, formed by the class of all
points of the form ?a, where I (the representative of the
class) is fixed and a runs over the whole group (£ a is
also called the orbit of the point ξ and M* is the orbit-
space of G—TransL).

Any measure μ* on the orbit space M* can be exten-
ded, in view of its being constant on the classes, to a
measure μ on Μ which is invariant under the group ac-
tion. Conversely, given an invariant measure μ on Μ it
is not hard to construct a measure μ* on M*, which ex-
tends to μ in the sense indicated. One can make the
selection of representatives from the classes concrete
by defining in Μ a hypersurface which intersects each
orbit (class) once. This means that if the hypersurface
is defined by the equation

/(B-0. (3.1)

then for given ξ the system of equations

/ (I") = 0 (3.2)

must have a unique solution a (depending in general on ξ).
Η one uses such a parametrization the measure μ* looks
as follows:

<2μ* (ξ) = δ (/ (ξ)) Δ, (ξ) (3.3)

where the function Af(l) is defined by the relation

Δ,(ξ) j 6 (/(|«)) da = 1, (3.4)

and da is the invariant measure on the group G. The
function Δ|(ξ) is invariant, i.e., A f ( i a ) = Af(£). Equa-
tion (3.3) can be explained in the following way. We go
over to the new variables

ξ - UT, a). (3.5)

where a is the group element defined by Eq. (3.2) and
ξιρ = | a . Let the invariant measure on Μ have the fol-
lowing expression in terms of the coordinates ξ:

άμ=Μ (|) dl. (3.6)

In the new variables it will have the form

Μ (I) D, dl T da, (3.7)

where

d|T = δ (f (ξ)) d| (3.8)

is the measure generated by the measure <3ξ on the
hypersurface, Df is the Jacobian of the transformation
to the variables ( ξ τ , a). The measure on the orbit space
M* is obtained from (3.7) by omitting the invariant
measure da in the group coordinates.

We show that the Jacobian Df coincides with the in-
variant function Af (ξ) defined by the relation (3.4). We
consider the integral

Φ (ξ) Μ (I) (3.9)

of the arbitrary invariant function Φ(ί), integrated with
respect to the measure M(|)d£. The invariance condi-
tion

Φ (ξα) = Φ (ξ)

allows one to assume that Φ depends only on ξ -ρ· Indeed,
since ξ τ = £ a ,

Φ (ξ) = Φ (1") = Φ (Ιτ).
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Making use of the expression (3.7) for the measure
M(£)d£ in the integral (3.9), we transform the integral
to the form

f Φ (I) M(\) D, (ξ) d£T da = μ (G) f Φ (ξτ) Μ (ξτ) D, (£τ) ά\Ύ,
J (3.10)

where μ(ΰ) = Jda is the "volume of the group." Another
expression for the integral (3.9) can be obtained by in-
troducing into the integrand the factor (3.4) which equals
one, then carrying out the substitution | a — ξ, with
respect to which the functions Φ, Aj- and the measure
Md£ are invariant:

$Φ (Ε) Μ (ξ) d\ = ^ Φ (ξ) Μ (ξ) ΙΔ, (ξ) j 6 (/ (ξ«)) da] d£ (3.11)

= j Φ (ξ) Δ, (ξ) Λ/ (ξ) δ (/ (1)) dl da = μ (G) j Φ (|τ) Λί (ξτ) Δ,(ξτ№τ·

In view of the arbitrariness of the function Φ( ξ) the
measures in the integrals (3.10) and (3.11) must coin-
cide:

μ (G) Μ (ξτ) D, (ξτ) dlr = μ (G) Μ (ξτ) Δ, (ξτ) d£T,

which yields the equality Dj = Af.

Let us return to the gravitational field. From what we
just said it is clear that in order to define a measure in
a class of fields it suffices to define the measure on a
manifold of fields which is invariant with respect to co-
ordinate transformations (and local Lorentz transforma-
tions) and to specify the equations which parametrize
the classes. These equations should be Lorentz-invar-
iant if we wish to obtain a covariant perturbation theory.
In the metric formalism we choose as such equations
the harmonicity conditions of de Donder-Fock:

(V-g (3.12)

where Ζ^(χ) is a prescribed vector field. The arbitrari-
ness in the choice of /^(x) will be useful in the sequel
for formal transformations. The condition (3.12) is not
generally covariant and therefore can serve for the
parametrization of classes. The analog of Eq. (3.2) is
a complicated nonlinear equation for the parameters of
the coordinate transformation which takes a given metric
into a harmonic one. Within the framework of perturba-
tion theory this equation has a unique solution.

In the following chapters it will be shown that one
must select as the invariant measure the expression3'

ΠΓ? 5 / 2 (*)ΙΊ dg**(*)l = Hrfc-5 / 2W Π <*fc"vWl, (3.13)
s L μ5ν J χ L μίν J

where

g = det |Τμ = V—g £ μ = det k^ ~ g. (3.14)

This will be done on the basis of an investigation of the
Hamiltonian formulation, which we shall interpret as an
alternative, non-Lorentz-invariant method of parame-
trization of field classes.

The advantage of the Hamiltonian formalism is the
fact that in it the unitarity condition leads to the stan-
dard expression for the integration measure.

Having the parametrization (3.12) of the classes and
the measure (3.13) we obtain the following expression
for the functional integral:

exp (iS) ΔΛ [g] -1») 1 (gs/2 [] d g m \ ( 3 .15)

where according to (3.4) the functional An[g] is defined
by the equation

( Π [ Π ν ( Λ | 1 ν Γ - ' μ ) ] * ΐ - = 1 (3.16)

and thus is expressed in terms of the integral of the
δ-functional Π 6(61 /(h'i i ;)a - №) over the gauge group,

χ, μ

Let us discuss the calculation of this integral. The
expression An[g] enters into the integral (3.15) only on
the hypersurface determined by the equations (3.16). For
such g^" the total contribution to the integral from (3.16)
comes from an infinitesimal neighborhood of the unit
element of the group. In this neighborhood the action of
group transformations on the h^ v and the measure da
can be parametrized by means of the infinitesimal func-
tions τ)^(χ) introduced above in (2.5). With this parame-
trization

dv {hi»)a'x> — I» (x)

= Λν». (j;) dvdtf\» (x) + · (χ) 0λψ (χ) - β,ηΐ»» (χ) 9,.ηλ (ι) (3.17)

- 3λβνηΐ™ {χ) ηχ (*)·

At the unit element of the group, the measure da has the
simple form

da = Π Π i fW· (3.18)

Consequently, the integral in which we are interested
has the form

f IT
J χ, μ

(3.19)

Formally this integral equals (det A) 1 where A is the
operator acting on the quartet of functions η^:

(Λη)μ· = θ ν (h*>< 3λψ) — θλ (η'-tViHv). (3.20)

Thus we have found that

Aft[gl = det/1. (3.21)

For the formulation of perturbation theory it is con-
venient to represent det A as an integral over auxiliary
fields of a functional of exponential type. These fields
must be anticommuting fields, since we need an integral
which yields the first power of the determinant. These
requirements are satisfied by the expression

det A = j exp {i j θμ (χ) /4μν [g (χ)] 0ν (χ) d4
d8" (x) d&" (x), (3.22)

where θ and θ are classical anticommuting fields satis-
fying the relations

θ* (χ) Θ* (y) + Θ" (y) Θ» (x) = 0 (3.23)

and similar relations for the pairs (θ, θ), (θ, Θ). A defi-
nition and rules of operation with integrals over anti-
commuting variables can be found, e.g., in the mono-
graph of Berezin^39-1.

Returning to the integral (3.15) we can not write it in
the form

exp

which can be used directly for the formulation of per-
turbation theory. However, we still transform it, making
use of the arbitrariness in the selection of μ. The in-
tegral (3.24) does not depend on the choice of №, by
definition. We may therefore average it over IV- with an
arbitrary weight. Let us use as a weight the exponential
of the quadratic form in the fields

expKiaMjjZTi^d1*], (3.25)

where ημν is the Minkowski metric tensor. The averag-
ing can be done explicitly and yields the expression
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exp

( π dgf )

which contains a quadratic form in the longitudinal parts
of the fields hM^ with the arbitrary coefficient a. Β fol-
lows from our reasoning that the integral does not depend
on a. A method for seeing this directly has been pro-
posed by DeWitt'-2*-'. Here we have followed the simpler
method of 't Hooft[ 3 i ; i.

The diagram technique discussed in the preceding
chapter follows from the expression (3.26) in the same
manner as explained in Chap. 1 for the example of the
scalar field. By introducing the "fictitious" fields 0M
and θ Μ we have managed to make the quadratic form in
the exponent nondegenerate. Thus the inverse operators
corresponding to the operators of the quadratic forms
in hP-v, θ^ and θν become well defined, i.e., we obtain
the propagators of the particles corresponding to the
lines of the diagrams. The graviton propagator <h^tTiP°I)
contains the arbitrary constant a. The propagator
{θ^θν) of the fictitious vector particles in the k-repre-
sentation is given by Eq. (2.18). The anticommutation of
the fields 0M, 6>M leads to the factor ( - l ) s for a diagram
containing s closed fermion loops. The higher-degree
forms in the expansion of the action (3.26) in powers of
the fields h^v, θ^, θν give rise to the vertex functions of
the diagram technique, as described in Chap. 2. Their
concrete form depends on the choice of linearization
used.

We note also the role of the local factor Π h"s/2(x) in
χ

the measure. For the linearization (2.12) we have

(3.27)

and thus, this factor should be taken into account in the
construction of perturbation theory. Formally its role
reduces to the appearance of a contribution of the form

(3.28)AS = (5/2) ίδ(1> (0) j In h (x) d'x,

in the action giving rise to vertices which are propor-
tional to δ(4)(0). The appearance of such renormalization
terms is noted in many papers treating nonlinear theor-
ies (cf., e.g., t*0'*11). We note that they are absent in
the exponential parametrization. In this parametrization
the measure (3.13) has, up to a constant factor, the sim-
ple form

Π II (3.29)

without any local additions.
We have considered in detail the case of the gravita-

tional field in vacuo. Introducing interactions with other
fields does not change substantially the scheme of con-
struction of perturbation theory. For matter fields with
nondegenerate Lagrangians interacting with the gravita-
tional field no new fictitious particles appear. Such par-
ticles and their corresponding diagrams appear only
when a field with larger gauge group than the gravita-
tional field is included, e.g., the electromagnetic field
or fields of the Yang-Mills type. We shall not consider
this case in detail here. We just list, as an example the
expression of the functional integral corresponding to the
electromagnetic and gravitational fields:

f exp {,7? [<?>" Λμ]Δ[?]Πβ(<ν^)Πβ(<νίμν)ΙΐτΓ2 ΓΙ dg

where S g is the action of the free gravitational field and
A[g] equals the product of the determinants

det Λ -det (θμΛ"ν0ν),

where A is the operator (3.20). The presence of a non-
trivial second factor in this product shows that the in-
essential scalar fictitious particle which could be intro-
duced for the description of the electromagnetic field
also interacts with the gravitational field. Thus, in co-
variant perturbation theory for the electromagnetic and
gravitational fields a fictitious neutral scalar particle
participates in addition to the elements which have been
described above.

The reader who has understood the basic principles
of construction of the diagram technique for gauge fields
may, if he wishes, perform the appropriate calculations
for the more complicated case.

4. THE HAMILTONIAN FORMULATION OF
GRAVITATION THEORY

A justification of the correctness of the expression
(3.13) for the invariant measure is based on the Hamil-
tonian formulation of gravitation theory. This formula-
tion has been developed by D i r a c [ 1 4 ] . A series of var-
iants for this formulation were obtained by diverse
authors'-15"19-'. The construction of an explicitly Hamil-
tonian form of the Einstein equations runs into the diffi-
cult problem of finding solutions to the constraint equa-
tions. For us it will be sufficient to consider a general-
ized Hamiltonian formulation of gravitation theory,
where it is not necessary to solve the constraint equa-
tions, and one can restrict one's attention to a verifica-
tion of the commutation relations.

We explain the generalized Hamiltonian formulation
of the example of a system with a finite number of de-
grees of freedom. In this formulation the action func-
tional of the system under consideration has the form

= f ( Σ Piil~ (4.1)

Here p, q denote canonically conjugate coordinates and
momenta which form a phase space of dimension 2n, SC
is the Hamiltonian, φ & are the "constraints," Xa are
Lagrange multipliers (a = 1, ..., m, m < n). The con-
straints φ Ά and the Hamiltonian Si are in involution, i.e.,
satisfy the conditions

{Si, Ψ") = Σ4Ψ\

{Ψ", q>')=2eiV. ( 4 ' 2 )

d

In these equations the notation {f, g} is adopted for the
usual Poisson brackets

if (4.3)

s [g"v, Λ! = ss -

The conditions (4.2) lead to a reduction of the dimen-
sion of phase space to 2(n — m). This space can be real-
ized as a submanif old Γ * in the space Γ, determined by
the m constraint equations

φ " (ρ, q) = 0, a = 1, . . ., ro (4.4)

and the m supplementary conditions

χα (p. g) = 0, ο = l, . . . . m. (4.5)

The functions x a are subject to the conditions

det IKJC, φ'} | |^0. (4.6)
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In addition it is convenient to assume that the func-
tions x a commute with one another:

(Χ*. Xb} = 0. (4.7)

In this case it is simple to introduce canonical varia-
bles on the submanifold Γ * . Indeed, in view of (4.7), a
canonical transformation in r allows one to go over to
new variables, where the x a take the form

= 1 m, (4.8)

The variables Γ Ρ which differ from the r j ^ are not
dynamical variables. They can be excluded with the help
of the constraint equations

: Pa,

where p a are part of the canonical momenta of the new
system of variables. Let q a denote the coordinates con-
jugate to them and p*, q* the other canonical variables.
In the new variables the condition (4.6) has the form

det 1^-\φθ

and can be interpreted as the condition for solvability of
the constraints ψ3- = 0 with respect to the coordinates
q a . As a result of this the surface Γ * is defined in Γ by
the equations

Pa = 0, q" -= 9° (p*, ?*),

so that the p* and q* play the roles of independent varia-
bles on Γ * . By construction these variables are canon-
ical. A more detailed discussion of the generalized
Hamiltonian formulation for the finite-dimensional case
with applications to the theory of the Yang-Mills field is
contained in a paper by one of the authors i i 2 1 .

Let us return to the gravitational field. We shall show
that its action can be reduced to a form which is a field-
theoretic analog of (4.1), with the appropriate constraints
and the Hamiltonian satisfying conditions of the type
(4.2). We shall follow the general method proposed by
one of the authors in a form especially adapted for the
gravitational field^19-1.

For our purposes it is convenient to make use of a
formalism of the first order. We consider the expres-
sion of the action for the gravitational field in the form
(2.3) and collect in the corresponding Lagrange function
all the terms which involve derivatives with respect to
time:

(4.9)

This expression does not contain the variables Γ^; which
occur in x(h, Γ) linearly and play the roles of Lagrange
multipliers. The factors (denoted by Αμ°) in front of rj£
are the constraints. The constraint equations

A°o° = tikT°ih + W T U + dth><> = 0,

ΑΪ" = 2hh°Tih + ft00 (Γ°ο -ΓΪ») + dth
m = 0

(4.10)

(r?g ~ inallow us to express the variables
terms of the rH and h^v. Then the terms containing
time-derivatives take the form

(4.H)

if one omits the terms

—L55 (doh°° d,h™ - ^ft»» d0V°) = ± (0« In ft»» dthf - dt In ft»» doh<°),

(4.12)
which vanish upon integration by parts. Equation (4.11)
suggests that the natural dynamical variables are the
quantities

' r?ft. (4.13)

dX {h, Γ) = 0 (4.14)

The system (4.14) contains the equations (4.10) to-
gether with the equations

ahh
l«+fc'Tj, + ft°»rL+h"n. - ft«TL = o,

The solution of the system (4.10), (4.15) expressing the
"nondynamical" quantities TPQ, THQ, ΓΗ· in terms of the

9 and h^ is of the form9,
IK

Η·

r° — Γ" d'h°° h'° F°
1 ill — Ι ϋ Too 1,00 1 '"

(4.16)

where Γ · ^ are the three-dimensional connection coeffi-
cients, defined by the three-dimensional metric g i k

(i, k = 1, 2, 3).

Let us substitute the expression (4.16) for the Γ ? ο ,
T^Q, r k . into the Lagrange function x(h, Γ). After

omitting several terms of the type of a divergence, which
vanish when integrated over three-space when the
asymptotic conditions (2.2) are taken into account, the
result of the substitution reduces to the form

where
Γ ο (x) = g
T, (x) = i (qh'nkl) -

(4.17)

(4.18)

here g3 = detgj^, R3 is the three-dimensional curvature
scalar associated to the three-dimensional metric g ^
(i, k, = 1, 2, 3). The symbol Vjj in the expressions for
the constraints Tj denotes the covariant derivative with
respect to the metric g^.

As pointed out by Arnowitt, Deser and Misner'-15·1,
the canonical variables and the expressions for the con-
straints have an intuitive geometric meaning. The func-
tions q ^ and π^ serve as the coefficients of the first
and second quadratic forms associated to the surface
x° = const, submerged in the four-dimensional space-
time with the metric g^v and connection Γ*3 . More pre-
sicely, q ^ are a covariant metric density of weight +2,
and the ;ri k form a covariant density of weight - 1 . The
constraints are then the well-known Codazzi-Gauss re-
lations in the theory of surfaces (cf. e.g., [ 4 3 ]).

Equation (4.17) solves the problem of reducing the
action of the gravitational field to the generalized Hamil-
tonian form, analogous to (4.1) for finite-dimensional
systems with constraints The constraints Τ μ , as is
easily checked, commute with one another. In order to
write explicit expressions it is convenient to introduce
the quantities

Τ (η) = j Τκ (χ) η* (χ)χΡχ, Τ (φ) = j To (*) φ (χ) <Ρχ; (4.19)

where η is a vector field, φ is a scalar field (a scalar
density of weight —1). The following relations hold

{T(r\i), Γ(η2)} =

{Γ (η), 7·(φ)} =

{Τ (Φ),

(4.20)
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here [ηχ, η2] is the Lie bracket of the vector fields, i.e.,
the vector field with the components TJ^TJ^ — r^diV^,
ηφ = r\hj(p - d^tp, η φ is the vector field with compon-
ents q ^ a ^ . The relations (4.20) are the field-theoretic
analogs of the equality (4.2). The first row in (4.20)
shows that the constraints Tk(x) (k = 1, 2, 3) pJay the
role of generators of coordinate transformations. The
other relations do not have a simple group-theoretic
interpretation.

It is easy to see that the action written in the general-
ized Hamiltonian form (4.17) gives rise to the correct
canonical equations of motion for the dynamical varia-
bles q1* and 7riIt, with the constraints T u = 0 (μ = 0, 1,
2, 3).

We note the role of the divergence d^tf^ in the
Hamiltonian density^(x). If the constraint equations Τ μ

= 0 hold, the Hamiltonian S£ reduces to the three-
dimensional integral of the divergence, i.e., to an in-
tegral over an infinitely remote surface. The latter is
determined by the asymptotic behavior of the functions
q1* for r = |x| — «. For an asymptotically flat gravita-
tional field we have1-8-1

where Μ is the total mass which can be obtained by
integrating <P?(x):

Se - \ Se (x) d>x = =± f didd" d'x = = i lim & (dkq
ik dS,) = M.

Thus, one may consider that SS= Jd'i(x)d3x plays indeed
the role of energy. The integrand

SB (x) = To (x) - (*),

which plays the role of energy density, has the form of
a sum of two quadratic forms: one in the derivatives of
q ^ and another in the "momenta" t^, as required for
the energy density of a wave field. In our case this is the
energy of the gravitational field having two polarization
states in agreement with the usual counting:

2 = 6(coordinates) - 4(constraints).

We remark moreover, that in the weak field approxima-
tion the Hamiltonian is represented by a quadratic form
in the densities of the transverse components of the
linearized field.

We now discuss the selection of supplementary condi-
tions. It is widely accepted to use the conditions which
were first proposed by Dirac t"-1:

5*?"1"?'* = 0 (i = 1, 2, 3), π = , (4.21)

where q = det q^ = (det g^)2. These conditions have a
simple geometric sense: the surface x° = const is mini-
mal and the coordinates x1, x2, x3 on it are "harmonic"
coordinates.

For us the following supplementary conditions will be
more convenient:

(ΙΦΚ), (4.22)

where Φ is a function with the asymptotic behavior C/r
at infinity. The commutation relations (4.7) are satisfied
for these conditions. The Poisson bracket matrix of the
conditions (4.21) with the constraints is determined by
the equations

(Ci\f = {Γη, In q - Φ (χ)) = - η'3. In q - 43,η· +4πη», }

(Ct))1 = {Γη, q») = -rfd,q* + fd.r? + g»'<W-

— 2gal3,T]· — 2 (π3 1 — J^JI) η°,

(4.23)

- 2 ϊ

ι 2 3 ί η * — 2 ( π 1 2 - 31 2π) η»

and is nondegenerate if the curvature of the metric g^
is nonzero.

5. THE HAMILTONIAN FORM OF THE FUNCTIONAL
INTEGRAL

The functional integral for the quantization of a class-
ical system defined in a generalized Hamiltonian formu-
lation has the following form (cf.11421):

n

Jexp[i j ( 2 Piq'-Hip, 9))<«]Ε[<ίμ(ρ(0. ?(*))• (5.1)

The integration measure is here defined by the equation

(5.2)

To prove this we reduce the integral (5.1) with the
measure (5.2) to an integral over paths in the physical
phase space Γ*. For this purpose we go over to the
coordinates p a , p*, qa, q* described in Chap. 4. In these
coordinates the measure has the following form:

άμ (t) = (2B)"-» det |||5£ | Π δ (Ρα) δ (φ·)^ dp, dq\

which can be rewritten:

Π 6 (pa) δ (<f - 9° (Ρ', 9*)) dpa dqa J

The integration with respect to the p a and q a is reduced
by the delta-functions. As a result the integral takes the
form

j exP {i j [ 2\?; · ' -№, 9·)]*} II".Π (5-3)

which is standard for the usual Hamiltonian formula-
tion^"-1. This proves the correctness of Eq. (5.1), which
has the advantage over (5.3) of not requiring a solution of
the constraint equations.

The integral (5.1) can be represented in the form

(5.4)f exp (i5) Π det [| {χο, φ')||Πδ(χ°)<ίλα ft
J i α (=1

where the functional exp(iS) (S is the generalized action
of the system (4.1)) is integrated over all independent
variables pA, q1, Xa. Indeed, the Lagrange multipliers
Aa enter linearly into this action and the integral with
respect to them yields a delta function in the constraints
φΆ. Starting with this formula we shall not write out the
factors of the type of π or the volumes of the integration
lattices.

Let us return to the case of the gravitational field.
We select the supplementary conditions in the form
(4.22) and introduce the notations

In q _ φ = χ0> q» = X l , q"- = χ2, j» = χ3.

The analog of the integral looks as follows

jexp[f j ( π , ^ - ^ Γ , - ^

(5.5)
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u, χ(,}αΠ)δ(χο) (g dnadq") d±tt d% . (5.6)

We intend to reduce this expression to a form where
the integration is only over the field g^v. This will
allow us to identify the invariant measure we are looking
for. For this purpose we must integrate with respect to
the fields ττ^. This integration can be done explicitly,
since the expression

det {Γμ, χα} = det C (5.7)

depends linearly on n^, and thus the integral turns out
to be gaussian; here C is the operator defined by the re-
lations (4.22). Let us explain in more detail this feature
of det C. The functions π ^ enter only into the coeffi-
cients CQJJ of the operator C, coefficients which do not
contain derivatives; moreover the dependence on the π ^
is linear. Thus, the operator C can be written in the
form

C = C, (ft) + C2 (ft, π),

where the operator C2 does not contain derivatives and
for each τι is determined by a matrix of rank 1. It is
known from linear algebra that the determinant of a ma-
trix A + B, where Β is one-dimensional, is linear in the
matrix elements of B. The analog of this assertion in
our case leads to the indicated linearity of det C with
respect to the wik·

The Gaussian integration over 17^ reduces to the sub-
stitution

"ill = "ift (h),

where ^ ( h ) i s an expression which follows from form-
ulas of the type (2.1), expressing the Christoffel symbols
in t e r m s of the m e t r i c . After such a substitution the a c -
tion corresponding to the Lagrangian (4.17) turns into the
initial covariant action (2.3). The determinant det C
turns into the product

det β f[ ft00 (χ), (5.8)
χ

where Β is the operator defined by the equations

(βη)1 = - η ^ 2 3

+ (-£
(βη) 2 = -r?-di.q»l

+ ( - £
(βη)3 = - η ^ λ ?

1 2

2q23der}' +

(£) -w. (£)) n»,
(5.9)

η·.
- 2 ?

1 2 d s T ) ' -f-

Finally, the local factors in the products of differentials
together with the local factor which appeared in the inte-
gration over JTjjj and the differentials themselves collect
into the expression

(5.10)

Here the factor in front of the differentials can be re-
duced to the form

(hm)-llrb"
1/2

a1'2.

and the last factor q can be omitted owing to the con-
straint q = exp Φ. As a result our functional integral
takes the form

\ exp(iS [h]) del B\\\ (5.11)

We now show that this integral is an integral over
classes of gravitational fields in the sense of Ch. 3, the
classes being parametrized by the condition (4.22), and
the invariant measure having the form

Π Λ1")- (5-12)

For this it is sufficient to verify that det Β coincides
h the

Chap.3
with the factor Δ [h] obtained according to the rules of

Λ

(5.13)

The integral in this expression can be calculated in
in the same way as the integral (3.16) in Chap. 3. This
yields

Δ, [ft] = dots',

where the operator B' is defined as follows:

(B'Q° = - ζλό>λ In q - idff + 4 ^ 3,ζ\

(β'ζ)ΐ = _ ξλ5λ

(β'ζ)2 -

h-30

 2> '

WO

(5.14)

it is easy to see that

det B' = det B.

Indeed, one can go over from one operator to the other
by means of the triangular substitution

ζ» = η» = η' + (ι = 1, 2, 3). (5.15)

Let us summarize. Starting from the obviously uni-
tary Hamiltonian formulation of the functional integral,
after formal changes of the integration variables we
have transcribed it in the form of an integral over
equivalence classes of fields with a concrete parame-
trization of the classes. The corresponding invariant
measure has the form (5.12). This justifies the Lorentz-
invariant expression for the functional integral in Chap.
3, which represents another writing of the same integral
with another parametrization of the classes. With these
considerations we conclude the derivation of the covar-
iant rules of perturbation theory for the quantization of
the gravitational field.

The next problem which appears here is considerably
more difficult. It consists in a consistent performance
of the renormalization procedure based on an invariant
regularization. The difficulties are caused by the un-
wieldiness of the theory as well as by the fact that from
a formal point of view the theory is non-renormalizable.
We hope that symmetry and general covariance consid-
erations will help in solving this problem.

"For instance, r = 2 for the diagram
2)The use of functional (path) integrals in various problems of quantum

mechanics and field theory is discussed in the recent review article of
Blokhintsev and Barbashov in Uspekhi [37b ].

3)Any measure № " Π d * | i v is invariant with respect to the group of

coordinate transformations. Indeed, under coordinate transformations

this expression acquires a factor of the type [][det (βΐ'μ/βΐμ)]ϊ· This

factor should be considered equal to one, since for infinitesimal trans-

formation it is equal to exp [γ Tr In (1 + ίμημ)1 = exp (γδ«> (0)$«μημ<ί4ζ) = 1.
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