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The review is devoted to a number of problems connected with the propagation of strongly nonlinear
periodic waves in the presence of various types of perturbing factors. The problems considered can be
divided into three groups. The first includes questions connected with the employed formalism. These
include the characteristic properties of nonlinear waves, perturbation-theory methods, canonical
variables, and the Hamiltonian formalism. The second group of questions is devoted to the propa-
gation of nonlinear waves in the presence of external perturbations. A description is given of the
resonant interaction between the wave and an external force, the stochastic instability of a nonlinear
wave, the change of the adiabatic invariant of a linear wave in a weakly-inhomogeneous medium, and
the propagation of a nonlinear wave in the presence of random perturbations, particularly in a
medium with random inhomogeneities. Finally, the third group of considered questions include prob-
lems connected with weak interaction of strongly nonlinear waves. The conditions under which the
interaction of the waves is weak are determined, and the interaction of two waves and resonant inter-
action of three waves is considered. This group includes an investigation of an ensemble of a large
number of nonlinear waves and its description with the aid of the kinetic equation. The Appendix
discusses problems connected with the energy-momentum tensor of the nonlinear wave equation.
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1. INTRODUCTION characteristic properties of the wave processes, but
also the research methods. Another "congregation"

Nonlinear wave processes are involved in phenomena region is analysis of the evolution of definite types of
that occur in a great variety of branches of physics. It nonlinear wave processes. Examples are shock-wave
suffices to mention elastic properties of media, surface formation, the onset of wave modulation, focusing, de-
oscillations of liquids, wave (and turbulent) motion of a cays, etc. The analysis of this type is based on the
plasma, nonlinear optics and electrodynamics, some study of the behavior of a definite class of nonlinear
problems of quantum theory, etc. Significant progress motions. The methods employed show if a new class of
in the investigation of this region has led in recent wave processes is produced as a result of the evolution
years not only to the understanding of many nonlinear of the motion. The two approaches have a region where
wave phenomena from a unified point of view, but also they overlap,
to the development of a number of general methods for
their investigation. Many of these results are covered f

 K *•***"* t h a t t h e simplest classification of methods
in the reviews['"6]. analyzing nonlinear wave processes is the following:

An attempt to classify the problems that arise in ^ 1} Construction of exact solutions. The simplest of
strongly nonlinear wave processes would entail many t h e m a r e n o n l i near stationary waves of the Riemann
difficulties and ambiguities. Nonetheless, one can point type. Significant progress in this direction resulted
to two large regions in which the interests in this field f r o m l n w h l c h a n e x a c t solution of the Korteweg-de
"congregate." One of them is connected with the V r l e s e<lu a t l 0 n was constructed for initial conditions of
analysis of some particular type of nonlinear equation, a d e f l n l t e tyt»· L a t e r on Lax^ °J proposed a regular
to which various physical problems reduce. Examples m e t h o d o f r e d u c i n g t h e Cauchy problem for a number of
are the Korteweg-de Vries equation, the self-focusing nonlinear wave equations to a linear eigenvalue problem,
equation, and the equation of a nonlinear string. Closely 2) The construction of approximate methods such as
linked with each of these equations are not only the perturbation theory or the WKB method.
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3) The determination of the limits of applicability of
the employed methods. This question, which is natural
in the second case, arises also in the case of exact
solutions, since the equations that they satisfy are ap-
proximate. What makes this method timely are the
distinguishing features of the nonlinear problems and
the methods for their analysis. Unlike in linear prob-
lems, in the nonlinear case the existing methods of the
theory usually employ not general solutions, but one or
several particular solutions. In this connection, some
physical processes can fall out of consideration, and,
conversely, some physical properties of motion, which
follow from the approximate analysis, may actually be
missing. Although these questions are discussed in part
in the literature, there is nevertheless a serious gap in
their understanding. The discussion of problems that
arise in this respect will be carried out in part in this
review and in the conclusion (Chap. 8).

The group of problems to which the present paper is
devoted is connected principally with the second aspect,
i.e., with approximate methods of analyzing the evolu-
tion of nonlinear wave processes. In different physical
problems, the evolution of waves arises as a result of
the nonstationary character (and, in particular, the in-
homogeneity) of the medium in which the waves propa-
gate, their interactions with the external field and with
one another, etc. For the results described below, the
following two limitations are of importance: we are
considering primarily the evolution of periodic non-
linear waves; the nonlinearity of the latter is not small.

A certain part of the review is only an adjunct to the
main material, and is described briefly only in the form
needed to understand the sequel. This includes the dis-
cussion of several properties of nonlinear stationary
waves and the cursory mention of approximate methods
that employ the Lagrangian formalism.

2. NONLINEAR TRAVELING WAVE

We consider here certain typical nonlinear wave
equations and the properties of their solutions in the
form of a traveling wave

y = y(x — ut), (2.1)

where the wave velocity u is a parameter of the prob-
lem. We shall dwell here only on those wave properties
which will be essentially employed later on.

a) Phase plane. If the solution sought in the form of
(2.1) is substituted in the initial partial differential
equation, then the latter becomes an ordinary differen-
tial equation. It is convenient to analyze the ensuing
properties of the solution on the phase plane.

By way of example, we turn to the nonlinear Klein-
Gordon equation

Vtt = c*yxx + F (JJ), .F(y) = dV (y)!dy. (2.2)

In this equation is a convenient model for the investiga-
tion of different nonlinear phenomena1 8'8 1". Equations
of similar type arise also for electromagnetic oscilla-
tions in nonlinear media [ u ) 2 ) . Substitution of (2.1) in
(2.2) yields

v" + 1^rF(y)=0, (2.3)

where the prime denotes differentiation with respect to
the argument ξ = χ - ut. Equation (2.3) is equivalent to
the equation of motion of a particle in a field with a po-
tential

and with the aid of the energy integral

4-?'2 + Trr7T^fo) = conSt = C (2.4)

its motion can be represented in the usual manner on
the phase plane (y', y).

For a more detailed description of a solution of type
(2.1) and its connection with the trajectories on the
phase plane, let us consider the equation of the oscilla-
tions of a nonlinear string

y« = ci(l + wl)fe + fiVx«x- (2.5)

Equation (2.5) arose in connection with the well known
Fermi-Pasta-Ulam problem1-12""1 and in certain prob-
lems of nonlinear acoustics^15'1*1. The quantity y in
this equation describes the displacement of the string,
and the term Υχχχχ takes into account the dispersion.
Seeking the solution in the form y = y(x - ut), we ob-
tain

The trajectories on the phase plane are shown in Fig. 1.
At C < 0 we have a periodic wave with ν > 0 or with
ν < 0. The case C = 0 describes a solitary wave (soli-
ton), and at C > 0 the periodic wave is of alternating
sign. Equation (2.6) is integrated in elliptic functions,
and, in particular, at C < 0 and ν > 0 we obtain (Fig. 2)

Tl/2
(2.7)

The spatial period of the solution (2.7) is determined by
the relation

λ = 2n/k = &F (π/2, κ). (2.8)

Relation (2.8) plays the role of a dispersion equation in
the nonlinear case, which is conveniently represented
in the form

fc = ft (it, C). (2.9)

It will be discussed in greater detail later on. We note
here merely that the transition to the linear case is ef-
fected in the limit

« = -£-, |C|—^.(-£—1)-*0. (2.9')

A trajectory corresponding to a so lit on passes through
the singular point of the hyperbolic type (point Ο on
Fig. 1).

b) Wave breaking. Another type of singularity, con-
nected with the loss of analyticity of the solution, is
best considered with the problem of nonlinear plasma
oscillations as an example:

oo
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ν, + cvx + υυχ + νχχχ = Ο, (2.15)

(2.10)

where p and v are the density and velocity of the elec-
trons, and p 0 is the constant velocity of the stationary
ions. As before, we obtain for traveling waves'·17'

ρ (u — u) = const = — u , ΥΦ SS U — v,

(2.11)
The phase trajectories (at C < 0) and the solution are
shown in Figs. 3 and 4 respectively. At C = 0 the tra-
jectory passes through the point Φ = 0, i.e., the ampli-
tude of the velocity ν reaches the value u, and the
density ρ becomes infinite. This phenomenon is called
wave breaking. The solution becomes multiply valued,
and the system (2.10) becomes meaningless. On ap-
proaching the wave breaking, the peaks on Fig. 4 be-
come sharper.

There is no solution in the form of a solitary wave
in this example, and the dispersion equation takes the
simple form[ 1 7 ]

k = ωο/«. (2.12)

Unlike (2.9), the connection between k and u does not
depend on C (i.e., on the amplitude). This leads to the
following interesting feature of the plasma oscillations:
the nonlinearity of the oscillations becomes manifest
only in their anharmonicity, whereas their frequency
(ω = ku = ωο) does not depend on the amplitude.

c) Critical velocity. We turn finally to a case that
contains simultaneously both types of singularities that
lead to the existence of a solution in the soliton type and
to the possibility of wave breaking. It is convenient to
consider as a model ion-acoustic oscillations of a
plasma[ 1'2 ]

fxx= —ine [p —poexp (-y-)~\ .

(2.13)

where M, p, and ν are the mass, density, and velocity
of the ions, and Τ is the electron temperature. The
energy integral of the system (2.13), for solutions of
the type (2.1), is equal to

i/2(u-!;)
2=;ii

2(l--jJ-)-i-exp ( « " - χ ) -(1 + U2) -2C, (2.14)

where for convenience the Debye radius r^ = ντ/4πε 2 ρ 0

and the ion-sound velocity c = VT/M are set equal to
unity. Figures 5 and 6 show two families of phase tra-
jectories: 1) at constant u and at variable C, and 2) at
constant C and variable u. In the former case we see
that a solution is possible in the form of a soliton at
C = 0 and any admissible u. From the second family it
follows that all C that admit of periodic solutions, wave
breaking occurs when the wave velocity reaches the
critical value uc [ 1 > 2 ] . UQ depends on C, and at small

6 3 >
C we have 1.6.3

d) The Korteweg-de Vries equation. An important
role in various applications is played by the Korteweg-
de Vries equation

which describes waves that travel only in one direction.
Different problems (waves on "shallow water," Eqs.
(2.5), (2.13), etc.) can be reduced to (2.15) in a suffic-
iently unified manner (see, e.g.,^20]). Usually Eq. (2.15)
is derived in the approximation of sufficiently small
nonlinearity and sufficiently small dispersion. It must
be emphasized, however, that a general requirement in
the derivation of (2.15) is

a = (ulc) — 1 < 1, (2.16)

where c is the characteristic velocity of the sound for
the given problem. Since nonlinear traveling waves ap-
pear in the examples considered here at u > c and, on
the other hand, u < uc £ c, the inequality (2.16) denotes
that the problem is considered far from the wave-
breaking region.

e) Spectrum of nonlinear periodic waves. Periodic
solutions of the type (2.1) can be expanded in a Fourier
series:

v(x-ut)= fl α,,^η^-uo. (2.17)
n = — oo

The dependence of a n on η will be called the spectrum
of the wave. In the case close to linear, a n decreases
rapidly with increasing n. This allows us to confine
ourselves to the first few terms in the expansion (2.17).

FIG. 5 FIG. 6

The next property of nonlinear periodic waves is
very important for the subsequent analysis: there
exists a number

Ν = Ν (fc, C), (2.18)

which determines the characteristic number of modes
in the spectrum (i.e., the degree of anharmonicity), and
at η > Ν the sum in (2.17) is effectively cut off. Thus,
for example, in the case of a nonlinear string it follows
from the series expansion of (2.7) that

Ν = F(nl2, κ), (2.19)

and it is seen from (2.8) that Ν is of the order of the
ratio of the wavelength to the width of the crest (see
Fig. 2). We emphasize that from (2.19) it follows in the
limit (2.9') that Ν ~ 1, and as C — 0 we have Ν » 1
and the spectrum has the following structure (Fig. 7):
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an « const yz/N, η < If,
/7V) V (2.20)

A similar shape is possessed by the spectrum in the
case (2.15)[21], with

Ν = Valk. (2.21)

A more complicated structure of the spectrum ap-
pears in the case of plasma oscillations[22] (Fig. 8): at
η < Ν the amplitudes a n have a power-law dependence
on n, and at η > Ν they decrease exponentially. The
value of Ν isC 2 2 ]

N = (l-e)-»P, (2.22)

where £ determines, in accordance with (1.15), the
degree of proximity to wave breaking. Near the latter
we have C — 0, e — 1, and N — « .

Finally, let us consider, with (2.15) as an example,
one more feature of the number N. In analogy with the
expression for the Reynolds number, we write down its
analog for the case (2.15) at Ν » 1 [ 2 3 ] :

R ~ wjvxxx ~ a/A» = N' > 1. (2.23)

Thus, Ν = R^2 determines the constant of the strong
coupling between the harmonics in a nonlinear periodic
wave.

3. PERTURBATION THEORY METHODS

The existing approximate analysis methods are based
on series that take into account both the smallness of
the perturbations and the slowness of the variation of
definite variables. Many features of these methods are,
to one degree or another, developments of the Krylov-
Bogolyubov method1·241 in the theory of nonlinear oscil-
lations4'. All these methods are asymptotic. This is
easiest to illustrate using as an example a solitary
wave v(x - ut) perturbed by a small force eF(x, t)
(Fig. 9). Since the edges of a soliton decrease exponen-
tially with respect to the coordinate, there always
exists a region in which perturbation theory is not
valid at arbitrarily small e. The same conclusion fol-
lows from an examination of the curves of the spectrum
(see Figs. 7 and 8). The exponential decrease of the
latter with increasing η means the existence (starting
with a certain n0 > N) of modes for which an « e. We
can therefore state that the existing approximate
methods are based on a certain cutoff or averaging over
the spectrum. This circumstance is particularly im-
portant when one considers strongly-nonlinear waves
(i.e., broad wave packets with Ν » 1).

Before we proceed to the exposition of the perturba-
tion theory, let us discuss first the variational princi-
ples employed in it.

Ο Ν

FIG. 7
Ο Ν

FIG. 8

FIG. 9
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a) Variational principles. The fundamental principle
is that of Lagrange, although it is not always possible
to find the Lagrangian (for details see[ 4 ' 2 e i . It can be
written in the form

X = f dx \ dt L, 6X = 0, (3.1)

where L is the Lagrangian density. In the case of a
continuous spectrum, the integral with respect to χ is
taken between infinite limits. If the spectrum is dis-
crete, then

=lim(-i- jdz J dtL) , (3.2)

A similar remark applies also to integration with re-
spect to t. The difference between the principles (3.1)
and (3.2) can be illustrated by the respective cases of
a soliton (the limits with respect to χ are infinite and
J Ldx is finite) and a nonlinear periodic wave (only the
average value of JLdt per unit length is finite). In the
last example, we can also write

=^r \d*\dtL, (3.3)

where «> is the phase of the wave.

In particular, for (2.2) we have

(3.4)

or for the equation of a nonlinear string (2.5) we have

^ τ ^ - τ ^ - τ < * ν ΐ + | δ 2 Λ * · (3.4')

Unlike the Lagrangian principle, the Hamiltonian
principle is not so unique and depends, in particular, on
the choice of the canonically-conjugate variables. We
turn for simplicity again to the Klein-Gordon equation
(2.2) with F(y) = y2. Putting

ϊ(ΐ.<) = Σ »»
η

we rewrite (2.2) in the form

(3.5)

(3.6)
ni, nj

The Hamiltonian for (3.6) is

= 0, (3.7)

and the canonical equations of motion, which are equiv-
alent to (3.6) are

.„ _ ase (3.8)d dyn

Ύι dT
ase

The transition to the case of a continuous spectrum is
carried out in accordance with (3.1). In analogy with
(3.5)—(3.8), we can write

ϊ (*,«) = Σ y*

and the canonical equations are

+τ Σ = 0,

G. M. Zaslavskii
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Although the variation of Jf and jt leads to the same
equations of motion (2.2), the quantities Jf and Jf (and
consequently the integrals of motions) are different.

The foregoing examples explain the following possi-
ble classification of problems, depending on the form of
the boundary conditions5':

1) Finding solutions that are periodic in the coordi-
nate, i.e.,

y(x, t) = y(x + 2nlk, t). (3.H)

In this case it is natural to use the principle (3.7), (3.8).
The character of the spectrum with respect to χ re-
mains unchanged, and the quantities yn and Jf vary in
time as a result of the perturbation. Conditions of the
type (3.11) arise, for example, in different annular
physical systems (cyclic accelerators, toroidal mag-
netic bottles, etc.).

2) Finding solutions that are periodic in time:

y (x, f) = y (x, t + 2π/ω). (3.12)

The variational principle takes in this case the form
(3.10). What is invariant to the perturbation is the
character of the spectrum with respect to t, and what
evolves in space is the profile of the wave. This prob-
lem, in analogy with quantum mechanics can be naturally
called the problem of determining the stationary states.
We encounter a similar situation, for example, in scat-
tering problems and in process-control problems.

3) This case is characterized by the absence of
hindrances of the type (3.11) and (3.12). A similar situ-
ation can be realized also in an unbounded medium, for
example when c-wave surfaces are perturbed by a wind.
There is no known Hamiltonian principle in this case
for the considered examples. A Lagrangian principle in
the form (3.1), however, can be used.

We note in conclusion that certain difficulties are
encountered when attempts are made to consider the
interaction of wave processes one of which has a con-
tinuous spectrum and the other a discrete spectrum
(for example, the interaction of a soliton with a periodic
wave). This is already seen in part from the physical
and formal differences between expressions (3.1) and
(3.2).

b) Whitham's methodr27>28]. The main features of
Whitham's method can be presented in the following
manner: Let, for example, y(x - ut) be the exact solu-
tion of the unperturbed problem in the form of a non-
linear wave. This solution can also be written in the
form

where the phase ,? satisfies the relations

#, = -ω, e l = fc,

(3.13)

(3.14)

and the quantity A determines, for example, the ampli-
tude of the wave. Let now some parameters of the
problem depend, as a result of the perturbation, adia-
batically on χ and t (i.e., slowly in comparison with
k"1 and ω"1). Then the Lagrangian (3.3) averaged over
the phase can be calculated approximately without pay-
ing attention to the variation of the slow parameters,
This yields

X = X(k, ω, A), (3.15)

and here k, ω, and A are already functions that vary

slowly in time and in space. The next step consists of
varying

δ Γ dxdtX = 0

with (3.14) and (3.15) taken into account. This leads im-
mediately to the equations

(3.16)

Equations (3.16) describe the slow evolution of a wave
packet in space and in time. They were used to consider
a large number of different physical problems[ 5 a ] e>.
The main shortcoming of the described method, as
noted by Whitham himself[4], is that it cannot be used
to construct the next higher approximations.

c) The Luke-Moser methodi8>9]. This method was
developed in1·81 and subsequently improved and verified
by Mosert e ] and is apparently the most rigorous one at
present. Following Moser, the solution is sought in the
form of the series

θ, A) (3.17)

Here A is the action, which is defined in the usual
manner for Eq. (2.3); e is a small parameter charac-
terizing the "slow" time and coordinate; the points in
the brackets denote dependence on all the remaining
"slow" variables (A, ct, ex, ^ x , #t, etc.)7 1.

Substitution of (3.17) in (2.5) yields the zeroth order

(3.18)

or, taking (3.14) and (2.1) into account

ϋ\ —οΗΙ = α>*-kV = k2[u* (A)—c^sla2 (A).

We emphasize that in this approximation the solution,
as a function of (A, ,»), has the same form as in the
absence of the perturbation. It is precisely because of
this circumstance that perturbation theory justifies the
qualitative physical considerations on which it is based.
A nonlinear wave, being an exact solution, is not a
general one. However, small perturbations lead to a
weak deformation of the exact solution, and this frees
us of the need for using the "complete set" of solutions
of the given problem8'.

In the next higher approximation, the condition that
the correction y l l ) be orthogonal to y( 0 ) leads to the
equation1-81

(Ρ,ΑΓω (Α)), - (φ,Λ/ω (Α))χ = 0. (3.19)

Moser[91 constructed a general scheme for the succes-
sive approximations and for deriving orthogonality con-
ditions of the type (3.19) in all orders in e. It is easy
to verify that Eq. (3.19) coincides with (3.18). The
first-approximation system (3.18) and (3.19) is analo-
gous to the system of equations in terms of the action
and angle variables for ordinary dynamic systems.
This statement, which is obvious for the phase equation
(3.18), will be verified for (3.19) in a particular case
in Sec. e below.

It is convenient to impart to Eqs. (3.16) and (3.19)
the following intuitive physical meaning. The zeroth
approximation (solution of the type (2.1))describes a
wave packet whose group velocity is equal to the phase
velocity. The condition that this property be preserved
also in the first-order approximation leads immediately
to (3.16). Indeed,
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dk \ 9t

(3.20)

where jf is the wave energy averaged over the period.
Recognizing that

I da \ _ age ia3e
\ dk ) <3if_const ~ dk l~da~'

we obtain from (3.20)

ooe , asm , „

-srdx+~srdt=0'
(3.21)

Expression (3.21) denotes that we can introduce a func-
tion Q for which

This means that

<=$em Qt

<ejdt— (3.22)

which is equivalent to (3.16), inasmuch as in our case
we have ajf/au = aL/aw and /

In concluding this section, we must call attention to
the analogy between the described method and the
method proposed by Bogolyubov for obtaining hydrody-
namic equations from the kinetic equation' ] .

Kruskal and Miura have recently developed a more
detailed method of the WKB-approximation type for the
Korteweg-de Vries equation134"1.

d) Generalized Lagrangian formalism. A Lagrangian
formulation of the successive approximations was de-
veloped in [ 3 3 > 3 5 a ] . It is based on the variational princi-
ple

(3.23)f dx f dt 6 (L +. W) = 0,

where W is the power connected with the presence of
an external perturbation acting on the wave packet (in
particular, W can contain dissipative terms). If we
substitute in (3.23) a series of the type (3.17), then
variation yields in first order

at
ax a ax _ dw ™ ι (3.24)

which coincides with (3.16) at W = 0.

The asymptotic series used in[ 3 3>3 5 a ] were subse-
quently generalized and verified i n 1 · 3 2 ' 1 . From the
formal point of view, they cover a rather wide circle of
applications and include, in particular, averaging over
arbitrary nonlinear stationary solutions. Difficulties
arise, however, with the determination of the conditions
under which the use of the formal series reflects cor-
rectly (or fully) the physical aspect of the problem.

e) Hamiltonian formalism[·21>23]. For simplicity we
consider again Eq. (2.5) with a right-hand side that
takes into account the external forces:

Vu = <?yx, + dV (y)ldy + εΦ {χ, t). (3.25)

We seek a solution that satisfies the boundary condi-
tions (3.11), and use the Hamiltonian

where Jf0 coincides with (3.7), and

(3.26)

(3.27)

Φ (χ, ί) = (ί)

By direct differentiation we can easily obtain

(3.28)

In the zeroth approximation ( e = 0) we have

<j»0 = 0, * = ω (<#?„) = fcu(<^o)· (3.29)

According to (3.14) and (2.1) we have in the zeroth ap-
proximation

yn (ί) = αη = ο , (3.30)

To obtain the next approximation, it suffices to substi-
tute (3.30) in the right-hand side of (3.28):

d&ejdt = - β (3.30')

We introduce, as in ordinary dynamics, the variable I,
which is equal to the action of the wave:

dS£ldI = ω (S60). (3.31)

This yields immediately in place of (3.30') the equation

/ = -ed&etW,. (3.32)

which has a canonical form. The variables I and £ are
canonically conjugate. We can write also analogously
the equation for &:

h = o>(/) + id&ejai. (3.30)

We note the connection between Eqs. (3.32) and (3.24).
The term with a-Sf/ak in (3.24) vanishes because k does
not change under the boundary conditions (3.11). For
the canonically conjugate quantities I and t? we have
the identity

which leads to equality of (3.24) and (3.32).

The subsequent exposition of different particular
problems will be carried out principally with the aid of
the Hamiltonian equations.

4. EXTERNAL RESONANT PERTURBATION

a) Isolated resonance. The canonical equations of
motion (3.32) and (3.33), obtained in first-order pertur-
bation theory in e, are of general character, since the
form of Eq. (3.25) was not used anywhere9'. In this ap-
proximation the nonlinear wave can be regarded as be-
fore as a nonlinear oscillator with variables I and $
acted upon by the perturbation jfi(I, .?, t) of the Hamil-
tonian[211. Let us examine the simplest case, when the
external force is given by

Φ (χ, t) = O m cos (mkx — vt -f φ) (4.1)

and the resonance

ηιω (/) (4.2)

is possible between the perturbation and the m-th har-
monic of the nonlinear wave. The system (3.32), (3.33)
can be approximately rewritten in the form10'

where

/ « ψ (/) cos Θ,

θ « mm (/) — ν + Ο (ε),

ψ = 2ε Ι am (I) | m<bm.

(4.3)

(4.4)

If the resonance condition (4.2) is satisfied exactly at
I = Io, then phase oscillations take place near the reso-
nance; these oscillations are described by the following
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approximate integral of motion:

m [da (I)ldl\ (I - /0)
2 - 2ψ (/„) sin θ = const. (4.5)

The amplitude of these oscillations is of the order of

6/ ~ [2ψ/ίΤίω' (/)]'/2 oc VI. (4.6)

Thus, the amplitude of the wave is modulated in time
(see Fig. 10, which shows the time evolution of one
crest of the nonlinear wave). In the linear approxima-
tion in e, as is well known, the resonance gives rise to
an instability, and modulation of the wave-packet pro-
file was observed for gravitational waves on water[37>38]

and in a number of other cases[ 3 9 ) . Expression (4.5)
yields more complete information, since it describes
the saturation of the instability. Simultaneously with
modulation of the amplitude, the wave velocity is also
modulated with an amplitude

6u (/) = (ilk) δω (/) = {ilk) (da (1)1 dl) 61. (4.7)

It is of interest to note that the width of the reso-
nance (4.6), (4.7) is determined essentially by the spa-
tial dependence of the external perturbation. This is
manifest in the dependence of 5l on a m , where the
number m is determined by the spatial period of the
external force. At m > N, the quantities a m become
exponentially small (see Sec. (e) of Chap. 2), and ac-
cordingly the width of the resonance decreases sharply.
Such perturbations have a smaller wavelength than the
width of the crest of the unperturbed wave.

A more rigorous investigation of an isolated reso-
nance, based on constructing and analyzing asymptotic
series, was described in [ 3 0 ] .

In those cases when the external perturbation con-
tains more than one harmonic which can be at reso-
nance with the modes of the wave, the situation becomes
much more complicated. If the widths of individual reso-
nances overlap, the result is a stochastic instability,
which will be discussed by us in the next section. How-
ever, if there is no overlap of the resonances, then the
question of the behavior of the system remains open.
The resultant difficulties are easier to understand by
turning to a simpler system, namely a nonlinear oscil-
lator acted upon by an external force1·36'401. Such a dy-
namic system has effectively one-and-a-half degrees
of freedom, and it can be described by using the
Kolmogorov-Arnold-Moser stability theorem. If the
resonances between the oscillator and the harmonics of
the external force do not overlap, then the oscillator
motion in the vicinity of some resonance is stable. We
cannot, however, formulate an analogous result for a
system in which the nonlinear wave is perturbed by an
external force. The reason is that the number of de-
grees of freedom of a nonlinear wave is in general
infinite.

b) Stochastic instability. In the general case of an
arbitrary dependence of an external perturbation on χ
and t, it is impossible to obtain the solution. However,
a certain limiting case corresponding to a very strong
stochastic instability[3β] lends itself to analysis. Differ-
ent cases of the onset of such an instability of a non-
linear wave were investigated in1-21'301. We confine our-

Τ Π Π Π Γ Τ Π Π Γ
FIG. 10

selves here to a qualitative consideration of one simple
case.

Let us assume that the spectrum Φ(χ, t) is charac-
terized as before by one frequency v, but is broad in
terms of k, i.e.,

Φ(χ, t) = ^(Dn cos (nkx — vi).
η

Assume, as before that a resonance condition of the
type (4.2) is satisfied:

roa>(JJ=v, (4.9)

where I m is the action of the nonlinear wave at which
exact resonance is obtained between the perturbation
and the m-th harmonic of the wave. The resonance
closest to the m-th is determined from the condition

(m + 1) ω (/„„) = ν. (4.10)

From (4.9) and (4.10) we can determine the distance be-
tween the closest resonances:

Ω = ω (/J - ω (/m+1) = vim (m + 1) « v/ro2 = ω«/ν. (4.11)

On the other hand, each isolated resonance has, in ac-
cordance with (4.6) and (4.7), a certain width δω. If

Κ = (δω/Ω)2 < (4.12)

stability obtains and the single-resonance approxima-
tion is valid. To the contrary, if

Κ = (δω/Ω)2 (4.13)

the wave cannot go out of resonance with the external
force for a long time, and the so-called stochastic insta-
bility develops[3β)40], wherein the phase of the wave j
varies randomly with time, and the wave itself behaves
like a Brownian particle[ 2 1 ] .

For an effective development of the stochastic insta-
bility it is obviously necessary to satisfy not only con-
ditions of type (4.13), but also necessary that the har-
monics a m a x and Φϊη in formulas (4.4) and (3.27) be
substantially different from zero. This determines the
condition for the "saturation" of the stochastic insta-
bility. Indeed, let I m a x be the maximum value of the
action which the wave can acquire as a result of the
instability. From the condition

Ma (/maI) = ν

and from (4.4) it follows that M m a x = min (Ν, Ν φ ),
where Νφ is the characteristic number of harmonics
in the perturbation spectrum.

It is interesting to note that the described instability
mechanism is possibly realized when waves are dis-
persed by wind over the sea surface[ 4 1 ]. Against the
background of the fundamental periodic component of
the wave profile, there travel randomly modulated
ripples, as a result of which the wave becomes acceler-
ated. With increasing wave amplitude, Ν increases.
The limitations on the instability development are
connected either with Νφ or with the critical velocity
(see Sec. (c) of Chap. 2), and when this velocity is
reached the wave breaks.

5. INTERACTION OF NONLINEAR WAVES

a) Weak-coupling parameter. Questions connected
with the interaction of nonlinear waves are not only
among the most interesting in the theory, but also among
the most difficult. As was shown in Chap. 3, under con-
ditions of sufficiently weak perturbation the nonlinear
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wave can be regarded as a certain quasiparticle, mean-
ing a sufficiently high stability of the wave packet as a
whole relative to spreading out as a result of the per-
turbation. It will be shown below that a similar concept
can be introduced in the theory of the interaction of non-
linear waves. Since the interaction is usually connected
with resonances between certain modes, we can point to
a simple example of the condition of weakness of the
interaction between nonlinear waves:

ε = if ΙΝ < 1, (5.1)

where Μ is the characteristic number of the packet
modes participating simultaneously in the resonant in-
teraction with other packets and Ν is the characteristic
number of the modes in the wave-packet spectrum.

The peculiarity of the introduced small parameter
lies in the fact that generally speaking it may not depend
on the amplitude of the wave. Moreover, the inequality
(5.1) can be realized only at Ν » 1, i.e., for strongly
nonlinear waves. In accordance with the remarks made
in Sec. (e) of Chap. 2, we can state that e is a small
parameter proportional to the reciprocal strong-coup-
ling constant.

b) Equations describing the interaction of nonlinear
waves. An analysis of wave interaction can be carried
out in general form, but it is more convenient to turn
to the model of ion-acoustic oscillations (Sec. (b) of
Chap. 3) in the non-one-dimensional case. In the ap-
proximation in which kr,j « 1 and the inequality (2.16)
is valid, we use the system of equations obtained

C««]

, + V(pVO)=0,
(5.2)

where Φ is the potential of the ion velocity, and we put
for convenience ρ ο = ο = Γ ^ = 1 (the notation here is the
same as in Sec. (c) of Chap. 21 1'). By means of a
Fourier expansion

=-' ' Σ - " ' ( q ) « - * (5·3)

the system (4.2) is reduced to a single equation

a(q) + io>ea(q) + -ig ^ 7,,,q, [a (q,) a (q2) δ (q — q, — q2)
qi.q«

+ 2a (q,) a · (q2) β (q - q, + q2) + a* foi) a* (q*) δ (q + q, + q2)] = 0, (5.4)

Fqdidu = (qqi'gsi) + (qq^Wi) + (qiq2/9i?2) — i ·

In the one-dimensional case, for a wave propagating in
one direction, we have Vqq^ = 2, and Eq. (5.4) takes,
in spatial variables, the form of the Korteweg-de Vries
equation

P« + Pr + PPr + (l/2)prrr = 0, (5.5)

where r is the coordinate in the direction of q.

The Hamiltonian for (5.4) is

ι r ι

qi.qi.qa

4~ a (qi) a (q2) a* (qs) δ (qi -|- q2 — qs) + c .C. Κ
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and (4.4) can be written in canonical form

ο (q) = —iqdSilda* (q). (5.7)

When wave interaction is considered, we start from
the fact that the solution in the zeroth approximation is
a superposition

p(r, i)»2p(r,-u,t), (5.8)

where r s n u s . By regrouping the terms in (4.6), we
represent Η in the form

se = 2 <$£*+<s£i< (5.9)

ι. ν ι;· t,

a (q,) a (?,") 6 (q, + q', + q's) -f a (?,) a (q\) a* (q",) δ (q, + q'. — ?,")] + C . C . ] ,

Wi= Σ β(ϊ»ΐ = 0)ο(ί, = 0)

+ 4" Σ Σ Κ'.,1Λ [ l " (ΊΊ) ° (ΐ«) " (
«i.»2.>aqsl,qS!. q,3

+ a (q,,) a (q,,) a· (q,,) δ (q,, + qS! - q,,) + c .C.] .

The different subscripts s point to different one-dimen-
sional nonlinear waves; q s , q s , and qs' pertain to one
and the same wave; the prime at the summation sign
means exclusion of the term with Si = s2 = S3, and the
direction of the vector qs coincides with the velocity
direction u s . The quantity Jfj describes the interaction
of the nonlinear waves. Naturally, it should be small
enough in order for the representation (5.8), and for
the concept of a nonlinear wave to be meaningful in
general.

c) Interaction of two waves. Let us see how the
small parameter comes into being when two waves
whose directions of motion are inclined at not too small
an angle interact. We note first that the first term in
Jfj does not depend on the time and can always be elim-
inated by a suitable renormalization of the Hamiltonian.
Further, the δ-functions in jfj select the terms with

According to (4.4) we have

V1l, 91. 0 = Vqi, <n. 0 = 2 c o s («1. u z) = 2 COS γ,

and we obtain for Jfj the expression

Sir * 2 , °"5 y , (a (q2 = 0) V I a (q<) I2

^ J I S i n γ | X V1^ ' iJ ' V ^ 1 ' I

0 cos γ die

(5.10)

(5.11)

where relations (2.20) and (2.21) are taken into account.
We see already that the selection rules (5.10) decrease
the number of terms in Jfj in comparison with the non-
linear term in Jfs by an approximate factor N s . Indeed,
an estimate of the latter yields Jfi(2 ~ α!,2/Νι;2. Thus,
the small parameter of the interaction is

ε = ctgy/iVC 1. (5.12)

Its physical meaning can be easily understood from
Fig. 11, which shows the plane in which the waves move
(top view), and the crests of the waves are hatched. At
large N, the region of intersection of the crest is rela-
tively small, and this leads to a weakening of the wave
interaction. This result was obtained int 4 4 ] . With the
aid of the Poisson brackets

dP [a, a'\ __
dt

dP
da' (q,) da (, \

,))
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υ,Ιχ-ui)

FIG. 11

(9)

M-3

FIG. 12

it is easy to obtain

$έ\ = SC2 = 0,

and from the equations of motion

FIG. 13

(5.14)

it follows that as a result of the interaction a shift takes
place in the wave velocity

and analogously

The condition for the smallness of the velocity shift
AUj « α ϊ is equivalent to (5.12).

The result is also a consequence of the fact that the
region of intersection of two periodic waves in Fig. 11,
with which the interaction is connected, does not depend
on the t ime, and this leads to a simple reorientation of
the wave velocities (in the case of three waves, this,
naturally, is not so).

The transition to the one-dimensional case (y —· 0)
in (5.11) and subsequently is impossible. This is due to
the two-dimensional normalization of the energy in
(5.9)1 2 : . Let us examine the interaction of two waves in
the one-dimensional case . The tr ivial case of weak in-
teraction between waves is a weak overlap of the spec-
t r a of the nonlinear waves (Fig. 12), which can be
written in the form

JVA =g k2. (5.18)

Actually, when the amplitudes of two waves differ little,
a weak coupling between the waves is reached already
under condition (5.1), where Μ is determined from the
condition of the overlap of the wave spectra

JVA = Mfc2, -'V/«JV2. (5.19)

We obtain the condition for the smallness of the reso-
nant t e r m s Μ in the following manner. From the selec-
tion rules imposed by the δ-functions in ,W\ (5.9) it
follows that n ik x = n 2 k 2 . The condition for periodicity
of the solution, with period λ0 = 2jr/k0, means

where m i ) 2 a r e integers . It follows therefore that Μ is
the number of roots of Eq. (5.20) relative to nL and n 2

FIG. 14

with integer coefficients subject to the limitation n 1 ; 2

i, N1 ; 2 . This means, in particular, that at N i ) 2 » m i ) 2

» 1 the ratio M/N1)2 is small (Fig. 13, where the coin-
ciding thick lines correspond to solutions of (5.20)).

Thus, the interaction of two nonlinear periodic waves
is connected with two kinds of effects. The first is re-
normalization of the velocities. It always exists and is
determined for each of the waves by the zeroth Fourier
harmonic of the other wave (i.e., by the averaged value
of the wave profile). The second effect is connected
with the resonances between the waves and is deter-
mined by a parameter of the type (5.1). Allowance for
the resonances leads to modulation oscillations of the
harmonics of the spectrum and was considered for non-
linear plasma oscillations in[ 2 2 > 2 3 ] . As a result of the
interaction of the two nonlinear waves, a bound state is
produced, which can be interpreted as a two-stream

?,)=----0 (5.15) solution1

Finally, let us point out one more parameter that
leads to weak interaction of the wave1-451. It results
from weak overlap of the crests of the waves in the
one-dimensional case, and its meaning is easily under-
stood from Fig. 14. With the aid of such a parameter,
for example, we can construct a two-stream solution in
which the wave are opposing'451, namely ui > c and
u2 < - c .

d) Interaction of three waves. This case differs sig-
nificantly from the interaction of two waves and it is
advantageous to consider it in detail.

We shall assume that conditions are satisfied under
which there are no resonant interactions between pairs
of waves, but resonance between three waves can be
realized. From the general expression (5.9) for the
Hamiltonian (s takes on the values 1, 2, 3) and from the
expression for the Poisson brackets (5.13) we obtain
the following equations:

- 1 V ( iau

Q1.iu.q3

" 2 2i I

Hq,— q2 — q3) + C . C .

'S(qt — q2 — q,) + c .C. .

δ(q, — q2 — q3)

(5.21)

where ai = a(qj). Each of the waves can be expanded in
a Fourier series

p s = ρ (rs — ust) = ", q, = n,k,.

(5.22)

where J»SQ is a certain initial phase. Since we shall in-
vestigate from now on the resonant phase, we can, just
as in Sec. (a) of Chap. IV, neglect in the equation

», = a>, + d$ei/dl,^k.u, (5.23)

the second term in the right-hand side. The action
variable I s is introduced here with the aid of the rela-
tion (3.31):

dffljdl, = a.(Se.). (5.24)
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It is seen from (5.22) and (5.23) that resonance is pos-
sible in the system (5.21) if the following conditions are
satisfied simultaneously:

qi — q2 — qs = ^ik, — m2k2 — m3k, = 0, (5.25)

?i«i — ?2"2 — № a = mifci«i — m2«2U2 — m3k3u3 = 0.

In this case the principal role is played by the variation
of the wave parameters as a result of the resonance be-
tween them, and we can write in place of (5.21), in terms
of the canonical variables (5.23) and (5.24)

/, = OT,rsin8, Λ»»— TO2rsin9, I, =» — m,T sin Θ, (5.26)

where

| a, (/,) a2 (/2) a, (/,) | = Γ (/„ /2, /,). (5.27)

The obtained system (5.26) is analogous to those that
occur in nonlinear optics1"1 and in plasma theory'471. It
can be integrated with the aid of relations of the Manley-
Rowe type, which follow from (5.26):

7,m2 + /2nti = const,

/1m3 + / 3 m 1 = const,

/2m3 — /3m2 = const.
(5.28)

The integrals (5.28), of which only two are independent,
enable us to express the answer in quadratures. The
described results were obtained in[ 2 2 ] . We confine our-
selves to an analysis of the motion of the waves in the
vicinity of the resonance. The resonance conditions
(5.25) are satisfied at the action values Ιι0, Ι20, and I30.
It follows from (5.26) that

Ί J | ' 3

f α>ι dlt + f <o2 dlt + [ ω3 dl3 + Γ ο cos θ = const,
Ίο I» ho

(5.29)

where Γ ο = Γ (Ιι0, Ι20, I30). Expanding r s ( I s ) in the
vicinity of ISQ and using relations (5.28), we obtain an
integral of motion analogous to (4.5), describing the
phase oscillations in a system of three nonlinear waves

2 %fc (/.-/.o)i+2r0cos9 = (5.30)

From this we determine the amplitude of the modulation
(the width of the resonance) with respect to the action

(5.31)Δ/.

and with respect to the frequency

Δω ~ (2Γ0 da/dl)1/1. (3.32)

In particular, for the system (5.2) we can easily esti-
mate

Ao>~(TW|sinY
(5.33)

The obtained formula shows that the small parameter
of the interaction is of the particular order Δω/k
oc N~\ It has the same cause here as in the case of the
interaction of two waves.

In essence, the described process is a nonlinear
analysis of decay-type instability. All three waves
participating in the resonance are generally speaking
strongly nonlinear (N s » 1). One could investigate the
stability near the resonance of one of the nonlinear
waves relative to the excitation of waves of small am-
plitude in an approximation that is linear with respect
to the perturbation. This method of investigation and
the analogous conclusions relative to the instability are
contained inC37>38] for gravitational waves on the surface
of a deep liquid, and for the non-one-dimensional
Korteweg-de Vries equation[48)49].

The interaction in question includes resonance be-
tween harmonics of nonlinear waves at only one mode.
In the more general case, the system (5.25) can admit
of several solutions with integer coefficients (mi, ra2)

013), subject to the limitation m s < N s . Perturbation
theory can still remain in force, provided the number
of such solutions is Μ « Ν. No investigation was car-
ried out in this case. It is not excluded that even in the
case of three nonlinear waves one can encounter phe-
nomena of the stochastic-instability type, which lead to
breakdown of the integrals (5.28) or (5.29) in certain
regions of wave-parameter values.

6. NONLINEAR WAVES IN AN INHOMOGENEOUS
MEDIUM

Equations (3.16), which were obtained by Whitham,
help consider the motion of a nonlinear wave in a
weakly-inhomogeneous medium in the simplest form.
This approximation is naturally called adiabatic. Its
equivalent is the use of series of the type (3.17). The
last method may turn out to be sometimes more pre-
ferable than the Whitham method, since it does not
presuppose knowledge of the Lagrangian. The adiabatic
representations make it possible to obtain, for example,
definite results in the problem of the run up of a soli-
tary wave on a smoothly sloping shore[ 5 0"5 2 ] 1 4 ) . Naturally,
when the adiabatic approximation is used, the principal
information is extracted from the conservation laws and
from the transport equations for the adiabatic invari-
ance[ 3 3 > 5 3 ]. The determination of the nonadiabatic cor-
rections for nonlinear waves is a problem of different
type. For nonlinear waves there is at present no
method so well developed as that of the theory of dy-
namic systems. A very important result in this direc-
tion is Moser's theorem1"1, that the adiabatic invariant
of a nonlinear wave is conserved in all orders of per-
turbation theory. The latter means that the change of
the adiabatic invariant should be regarded as exponen-
tially small.

For the case of the boundary-value problem (3.11)
and a weakly-inhomogeneous medium, the calculation
of the change of the adiabatic invariant can be carried
out directly[54]. Assume, for example, that in the Klein-
Gordon equation (2.2) the parameter c depends period-
ically on x:

and the adiabaticity condition is satisfied

(6.1)

(6.2)

For a nonlinear string, the function c(x) may be con-
nected either with the inhomogeneity of the elastic
forces moving along the string, or with the inhomogen-
eous distribution of the string mass. Instead of the
Hamiltonian in the form (3.7), we now must write

where

Χ δ (re, + η2 + n3) — -j 2 VniU

!)» = χ [ dxe-'"><*c2(x).

», (6.3)

From (6.1), (6.2), and (6.4) it follows that

(6.4)

(6.5)
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and consequently is exponentially small. Using (6.5),
we rewrite Jf in the form

ω = ω(ΐί,, C,) (i = 1, 2), (6.11)

• « (ΚΌ + S£ „ (6.6)

where jf0 is expression (6.3) in which (c 2 ) n 3 is re-
placed by

Λ/2

j
-Λ/2

(6.7)

The quantity

»i = - γ 2 ("i+«2+!)+(«2)-ιϊ»ΐ»».δ («ι+«2 - i

(6.8)
is exponentially small in accordance with (6.6) and can
be regarded as a perturbation for jf0 by the method de-
scribed in Sec. (e) of Chap. 3. The qualitative result is
already clear, however, since the change of Jf0 and the
change of the action will be proportional to ,#Ί.

Similar arguments can be advanced also in the
general case, when c = c(x, t) and the characteristic
scales of the variation of c with respect to χ and t are
large in comparison with the corresponding scales of
the wave. To this end it is necessary to use the
Lagrangian and represent it in the form

X [(c2)0 0] + Xoi Kc2)0 1] + Xia I(c2)iol. (6.9)

where the first subscript of c denotes the Fourier
harmonic with respect to x, and the second with respect
to t.

The calculation of the corrections to the energy and
to the action of the wave does not solve completely the
problem of propagation of a nonlinear wave in a weakly
inhomogeneous medium. What is left aside is the im-
portant problem of determining the reflected wave. The
formulation of such a problem, of course, is doubtful,
since there is no superposition principle in the nonlinear
case. In [ 4 s l an attempt was made to construct a solution
that takes into account the "reflected" waves with the
aid of the so-called two-stream solution considered in
Sec. (c) of Chap. 5. On the left and on the right of the
singular region, from which the reflections come, one
considers coupled pairs of nonlinear waves. In each
pair there are waves traveling in opposite directions.
The conditions for the matching of such two-stream
solutions at the boundary of the singular region deter-
mine the corresponding transmission and reflection
parameters. Scattering by the inhomogeneity changes
the wavelength and the phase discontinuity; the values
of the changes are calculated in t 4 5 ] .

These results seem to agree with Howe's experi-
mental data [ 5 5 a i .

In analogy with the definition of a reflected wave, one
can consider also the problem of transformation of non-
linear waves of different types in a weakly inhomogene-
ous medium[ 5 S"'.

Scattering or transformation problems entail basic-
ally the determination of the spatial characteristics of
the wave for a given periodic time variation with fre-
quency ω (see Sec. (c) of Chap. 1). In the homogeneous
case, the dispersion equations (2.9) for nonlinear sta-
tionary waves are replaced by the following:

ω = ω(«, C). (6.10)

Let now (6.10) have, for example, two "branches" of
solutions:

and let different branches of the oscillations correspond
to different (non-overlapping) regions of possible
values of u, at which a solution exists in the form of a
wave. In the linear case C — 0 and (6.11) leads to two
dispersion laws k̂  = kj(a)).

In the weakly-inhomogeneous case we have in the
adiabatic approximation in place of (6.11)

ω = ω («,(*)• Ct(x)). (6.12)

There can exist a region of values χ ~ x0 in which
Ui(x0) ~ u 2 (x 0 ) . This causes the wave numbers corre-
sponding to different branches to coincide:

k, {x0) = ω/«ΐ (x0) ~ k2 (x0) = alu2 (x0).

This region of the coordinates is singular. The adiabatic
approximation is violated in its vicinity. Just as in the
linear case, the wave of one of the oscillation modes can
"excite" in the vicinity of x0 a wave of another mode.
If the corresponding transformation coefficients (ratio
of the amplitude of the scattered or excited wave in the
amplitude of the incident wave) are sufficiently small,
then they can be determined by using the following cir-
cumstance[45' ] : the n-th harmonic of the new wave is
produced with a factor p n , where ρ is an exponentially
small quantity. It suffices therefore to confine oneself
in the scattered or excited wave to only one first har-
monic, i.e., to the linear approximation.

7. KINETICS OF NONLINEAR WAVES

Among the different factors that perturb the motion
of nonlinear waves one should separate those represent-
ing a certain accidental process. This applies to the
propagation of nonlinear waves in random inhomogene-
ous and nonstationary media, to the interaction of waves
representing a statistical ensemble, etc. There exists
an approximation in which the nonlinear equations of
motion can first be averaged over a certain random
process, and the nonlinear interaction between the
harmonics is taken into account only after equations of
motion are averaged^561. This approximation is realized
in those cases when the connection between the harmon-
ics is sufficiently weak. In this chapter we consider
certain cases in which there exists a strong connection
between the harmonics, i.e., the waves are essentially
nonlinear (the quantity Ν can be very large).

a) Random external forces. The well known problem
of Brownian motion of a particle under the influence of
an external random force can be considered to some
degree of approximation also for nonlinear waves[57].
Such random forces may be wind perturbations for
gravitational waves on the surface of a liquid, a turbu-
lent medium in which a nonlinear wave propagates, a
medium with random inhomogeneities, etc.

Let

se =
be the Hamiltonian of the problem, where .Jf0 corre-
sponds to the unperturbed motion, i.e., the nonlinear
wave y = y(x - ut), and 6#i is a perturbation in the
form (3.20), in which Φ(χ, t) is a random external
force. As to Φ(χ, t), we shall assume that it is a
Gaussian random process and

(Φ (χ, t)) = 0,

(Φ (χ, t) φ (χ + I, t + τ)> = R (ξ, τ).
(7.1)
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The correlation function introduces into the problem a
certain correlation, decrease time TC, which we shall
assume for simplicity to be shorter than all the times
of the problem. As TC — 0, we have R(£, r)
— ΙΜξ)δ (τ), i.e., white noise (with respect to time) is
obtained. It is convenient also to introduce the spectral
density

5 (κ, v)=

If the problem has periodic boundary conditions on
then the integration with respect to ξ in (7.2) must
carried out in the same manner as in (3.27).

We define the action I in the continuous case in
analogy with (3.32)

(7.2)

x,
be

and write down the change of the action in the form

Δ/= I dtt£-=-e j. di,
- 0 0 - 0 0

From this we can calculate the quantity

1 1 to oo
Λ ι» Λ Λ

> = e 2 1 dt, \ dtt\ dxt

(7.3)

.«. (7.4)

(7.5)

where the right-hand side contains the unperturbed
value y(x - ut), which describes the nonlinear wave. It
is now necessary to take into account the fact that
R(x, t) decreases rapidly at t > T C , SO that we can inte-
grate in (7.5) with respect to t at t » T C ' 5 7 ] :

(7.6)

As is well known, D is the diffusion coefficient of the
corresponding Fokker-Planck equation

(7.7)

Equation (7.7) determines the Brownian motion of a non-
linear wave with the aid of the distribution function f
and the diffusion coefficient (7.6). Equations (7.6) and
(7.7) can describe, in particular, the motion of a soliton
under the influence of random forces. If we consider a
nonlinear periodic wave, then expression (7.6) changes
into

D = 8πε2 2 *21 Vn ?S (kn, *ηω), (7.8)

and the action I in (7.7) differs, in accordance with the
definition (3.32), by a factor k from the preceding case.

Let us estimate the diffusion coefficient of the wave
for the particular case of white noise (TC = 0):

Λ (ξ, τ) = <Φ;>6(ξ)6(τ),

We have

f (7.9)

and the solution of (7.7) can be easily written. At TC

s* 0 it follows from (7.7) that the wave will be stochast-
ically accelerated and increase its energy.

Thus, the action of random forces can lead to the
breaking of a nonlinear wave after the wave reaches a
certain critical velocity or critical energy. The char-
acteristic time of acceleration of the wave prior to

breaking can be estimated with the aid of the diffusion
coefficient D.

b) Nonlinear waves in random media. The motion of
nonlinear waves in media with random inhomogeneities
is of interest in various branches of physics, and was
considered, in particular, for waves on water in[58>59].
If the parameter Λ(χ), which takes into account the
inhomogeneity of the medium, can be represented in the
form

Λ (χ) = Λο + Λ, (*),

where Λ ο does not depend on x and the random incre-
ment Aj is small (Ai « Ao), then the problem of the
propagation of the nonlinear wave can be reduced to the
already considered problem. Indeed, we write

ffl\h\ [A,],

where the perturbation Jfj is proportional, generally
speaking to Ai, dAi/dx,... We can use next the method
already described in Sec. a of Chap. 7, recognizing that
the correlator (7.1) is determined uniquely in terms of
the correlator of the random process Ai(x):

(Λ, (*)> = Ο, <Λ, (ζ) Λ, ( * + |)> = R (ξ).

It is now necessary to take into consideration the
fact that we are considering the problem of the scatter-
ing of a nonlinear wave. To this end it is necessary to
use the variational principle (3.10) and the condition
(3.12). This leads immediately to complications, inas-
much as reflected waves appear as a result of the per-
turbed part of the Hamiltonian Jfi[Ai]. Thus, for a
correct solution of the problem of damping of a non-
linear wave in a medium with random inhomogeneities
it is necessary to calculate first the matrix for scatter-
ing by the inhomogeneities, i.e., to introduce the re-
flected waves into consideration (see Sec. (a) of Chap.
7).

There exists one more circumstance that dis-
tinguishes in principle the nonlinear case from the
linear one. Owing to the random inhomogeneities, the
wave velocity fluctuates. At one of such fluctuations the
wave velocity can reach the critical value at which the
wave breaks. This process competes with the scattering
process. Its quantitative analysis reduces to a calcula-
tion of the probability of first reaching the critical
value of the velocity uc in a specified segment of
length /.

At present there is no rigorous analysis of the prob-
lem of propagation of a nonlinear wave in a random
medium. The arguments presented above may point to
one of the possible realizable ways.

c) Stochastic instability. A kinetic equation analogous
to (7.7) can be written in those cases when the external
action on the waves leads to its stochastic instability
(see Sec. (d) of Chap. 2)£ai'3°1. The kinetic equation is
obtained in this case as a result of averaging over the
randomly varying phase, and the time of decrease of
the correlation TC is estimated directly by starting
from an analysis of the stochastic instability.

In all the described cases, the random element of the
solution are the small increments due to the perturba-
tion. Therefore the general picture of the form of the
solution can be represented as a regular background
(unperturbed wave) modulated by a certain random set
of ripples. Since the perturbations can increase with
time, the presented analysis is naturally limited in
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time to the interval in which the distortions of the shape
of the nonlinear wave remains small.

d) Kinetic equation for an ensemble of nonlinear
waves. The notion that the periodic wave changes its
parameters little during the course of perturbation
makes it possible to consider a large number of non-
linear waves that interact weakly with one another, and
to describe their evolution with the aid of a kinetic equa-
tion. The parameter describing the weakness of the in-
teraction is determined directly, in a manner used in
Sees, (c) and (d) of Chap. 515). From the physical point
of view, importance attaches to the following aspect of
the investigation of the behavior of a large ensemble of
nonlinear waves. When considering problems involving
turbulence of a solid medium, groups of strongly cor-
related harmonics are produced. The limiting case,
when all the harmonics are not correlated, is called
weak turbulence. Wave packets within which the modes
are strongly correlated can be described by the methods
of weak-coupling theory if the interaction between the
packets is small (this situation is analogous to the pos-
sibility of describing weakly interacting systems by
individual wave functions in quantum mechanics). In the
zeroth approximation, the wave packets do not interact
with one another and consequently are exact solutions
of the initial equations of motion. We thus arrive at the
concept of a "gas" of weakly interacting nonlinear
waves. The derivation of the kinetic equation by pertur-
bation theory for an ensemble of weakly interacting non-
linear periodic waves was given in[ 2 2 ' 2 3 ] . The starting
point is the Liouville equation

s s
df ι V ί df f "V τ di η ίΠ Λί\\

~W+2: ®>W+ 2J/ SW" = 0 ' U.1U;

where f(t; tf 1( I i , . . . ,#s, I s ) is a distribution function
that depends on S » 1 pairs of canonically-conjugate
variables (<>j, Ii). These variables satisfy equations of
the type (3.25) and (3.26):

; aae

A ase a-3el
(7.U)

where the total Hamiltonian SC and that part of the
Hamiltonian S£\ which takes into account the wave in-
teraction take, e.g., for ion-acoustic oscillations, the
form (5.9). If the wave phases i»s are regarded as ran-
dom, then we can obtain for the distribution function
averaged over the phases

2π

F ({; Λ, . . . , is) = (2π)~ " j d*, . . . d&sf (f, /„ 0,, . · ·, h, #s)
ο

the following kinetic equation in the case of ion-acoustic
oscillations1β):

(7.12)a* (nm3) | 2 δ ( re m i o ) m i

X 6 (nmikmi + n m 2 k m , — nm3km3)

where the matrix element V and the amplitudes a(n)
have the same meaning as in (5.9).

Equation (7.12) has an equilibrium solution

(7.13)

As follows from (5.4), the kernel V m i m 2 m 3 is homo-
geneous with respect to its variables. Since the summa-
tion with respect to nj is carried out effectively from
zero to N ,̂ a similar homogeneity property is pos-
sessed (see (3.28)) by a kernel that depends on aia^a^.
It can be shown1-441 that in this case there exists a dis-
tribution function of a certain type

which satisfies for all i the equations
(7.14)

dt = 0. (7.15)

In our case we have ρ = -2. 1 7 ) The distribution (7.14)
has that remarkable property that it does not change
the average distribution of the energy over the spectrum
of the nonlinear waves, and consequently agrees with
the Kolmogorov concept of constancy of the energy flux.
Indeed, using the latter property, we can obtain from
dimensionality consideration the same value ρ = -2.
Thus, in this case it is possible to calculate the spec-
trum of the turbulent motion of the nonlinear waves:

{Sf ) = [ (d3t)F(3t)3e(ki) = k?·const. (7.16)

where the constant w is the macroscopic velocity and
can be excluded.

8. CONCLUSION

The results presented in the review show that in
many cases of physical interest the evolution of the
nonlinear waves can be regarded from a certain com-
mon point of view. The existing methods of such an in-
vestigation constitute different generalizations of the
Krylov-Bogolyubov method and presuppose smallness
of the deviations from the exact solutions. The most
convenient situation for the approximate methods con-
stitutes wave packets that are very narrow in the spec-
trum and spread out slowly, as well as very broad wave
packets. This review touched upon mainly the latter
case. The results connected with an investigation of
narrow wave packets can be found in1-3'61. Although the
described approximate methods do seem natural from
the physical point of view, they nevertheless require a
more rigorous corroboration and a more exact deter-
mination of the applicability limits.

The last remark raises problems that call for a
more detailed discussion. S. Ulam has carried out a
thorough analysis of "unpleasant" points that arise when
different approximate models of the solid medium are
used to describe the behavior of a large ensemble of
particles ([13), Chap. 7, Sees. 2 and 3). Since that time,
the situation not only failed to become clearer, but
owing to certain examples became apparently even more
serious.

It is convenient to start with the classical Fermi-
Pasta-Ulam problem'1 2'1 3 ': under what conditions do
stochasticity and relaxation to thermodynamic equili-
brium take place in a system consisting of a large
number of coupled nonlinear oscillators? These condi-
tions, which were obtained in [ s l ] , are connected also
with the conditions for the transition to turbulent mo-
tion in a medium[62]. In the longwave approximation, the
system of oscillators can be approximately described
by the equations of motion of the continuum. In this
case this is an equation of type (2.5) for a nonlinear
string'1 4 '. In the approximation of sufficiently weak
nonlinearity, the string equation becomes even simpler
and reduces to the Korteweg-de Vries equation (2.15)[14].
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In the course of simplifying the description, on going
from the system of oscillators to the strong and then to
the Korteweg-de Vries equation, it is natural for differ-
ent limitations to become imposed on the parameters of
the problem, in the form of inequalities. Is this suffic-
ient, and to what degree is the description during the
last stage of the simplifications equivalent to the de-
scription of the processes in the initial system? The
following example will demonstrate how far we are
still from the understanding of the answer to the ques-
tion. For a sufficiently arbitrary initial condition, the
Korteweg-de Vries can be exactly integrated and has a
solution that describes a perfectly regular profile that
evolves regularly in time. On the other hand, the same
initial condition for an initial system of oscillators
leads to the development of stochastic motion (B. V.
Chirikov First School on Nonlinear Oscillations and
Waves, Gor'kii, 1972), which does not follow from the
Korteweg-de Vries equations.

The presented hierarchy of the simplified systems
can be continued because of the use of approximate in-
tegration methods. Indeed, as was seen from Chaps.
3—5, the expansion of the sought solution into a Fourier
series and further study of the behavior of the individ-
ual harmonics is equivalent in essence to another
transition from the continuum to a certain discrete
system. In this case, therefore, the problem consists
of determining the extent to which the final approximate
discrete system is equivalent to the initial system of
particles1 8 ).

Finally, we can formulate a question of rather gen-
eral form. Following the work by Lax[ 7 b l it has become
clear that there exists an infinite class of nonlinear
equations of a continuous medium, which can be solved
exactly under rather acceptable limitations. On the
other hand, the motion of the system of particles gener-
ating these equations becomes stochastic under rather
arbitrary initial conditions. The resolution of this para-
dox should contain the answer to the following question:
how wide is the range of conditions under which we can
use the solutions of the equations of a continuous
medium, especially those of them that can be integrated
exactly and do not contain as a result any turbulent com-
ponents?

In conclusion, I am grateful to A. G. Litvak for use-
ful remarks.

APPENDIX

ENERGY-MOMENTUM TENSOR OF NONLINEAR
WAVE FIELD

The concept of energy-momentum tensor, which will
be introduced here, may be useful for the understanding
of a number of general problems that arise in the
theory of nonlinear waves19'.

We confine ourselves to a consideration of the sim-
plest example of the nonlinear Klein-Gordon equation
(2.2) in order to illustrate this statement. We represent
the Lagrangian (3.4) in the form

t = i . ( ^ . ) 2 _ v ( ! / ) (c=i), (A.I)

where rj = (x, it) and summation over repeated indices
is implied. The energy-momentum tensor is defined by
the expression1-681

We write out the components of

(A.3)

The conservation law

aTik/axh = ο

leads to the following two equations :

STXX , BTxt _ -

dx at
(A.4)

(A.5)

If, for example, we are considering a class of solutions
that are periodic in x, then the integration of (A.5) over
the period yields

ΤΓΐ&τί**»)—3Τ=°·

which coincides with (3.7) if we substitute the expres-
sion Ttt from (A.3).

In the case when the solution is periodic in t ime,
analogous integration of (A.4) yields

which coincides with (3.10).

Finally, we consider averaging over the phase ,>,
satisfying the equations (3.14)

•k, β«/βί=-ω. (Α.6)

From (A.4), (A.5) we have with allowance for (A.3)
2π 2π

(A.7)

If we retain the old notation for # and j f and introduce
the analog of the action

then we obtain from (A.7) the following generalization of
the equations dSf/dx = 0 and d^fdt = 0:

aoe
—

aSe

which now must be solved simultaneously with (A.6).

eWe note also attempts to employ it in nonlinear quantum field
theory I10"] and in the theory of the Josephson effect [ 1 0 b ] .

2)Equations of type (2.2) were obtained also in relativistic plasma by
A. G. Litvak (Communication at the First School on Nonlinear Oscil-
lations in Waves, Gor'kii, 1972).

3 )A similar picture is obtained for nonlinear magnetosonic waves [ 2 · " ] .
4>Seealso[2 S].
5)See also the Appendix.
6)A closely-related method of averaging without the use of the Lagran-

gian formalism was developed in ['].
''Analogous series for different cases and situations were investigated

in I 3 0 " 3 3 ] .
8)There are at present no rigorous criteria that determine the region of

applicability of this approach.
" A more general expression can be obtained for the right-hand side of

(3.28) in those cases when the force Φ depends also on y.
10>See, e.g., I36].
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"'These equations coincide also with the Boussinesq equations for the os-
cillations of a liquid surface.

1 2 )In general, the one-dimensional case has a number of unique features,
some of which are described below.

13)The use of the term "two-stream solution" is connected with the fact
that a superposition of two nonlinear waves moving with different
velocities can be interpreted as a superposition of two streams of parti-
cles, each of which executes its own motion. Formally, the coupled
pair of waves can be described by two coupled hydrodynamic equa-
tions analogous to the well-known equations of multistream hydro-
dynamics ['].

14'Some nonadiabatic cases are also considered in [sl ].
15)Under certain conditions the small wave-interaction parameter is de-

termined from the condition ["•23] c <* S/N < 1; S, Ν > 1, where Ν is
the characteristic parameter of the nonlinearity for the waves and S is
the characteristic number of the effectively interacting waves.

16)The structure of Eq. (7.12) is sufficiently general, and the difference
between the concrete physical cases consists in the form of the kernel
vmim2m3

 a n d i n t n e relations a (n, Ι), ω = ω (Ι).
1 7 ) Solutions of this type were first obtained in [60] for the case of weak

turbulence and under conditions when the momenta are separable.
l8'Attention should be called in this connection to one surprising model

of a chain of atoms with exponential interaction, observed by Toda
[6 3]. In this discrete (!) model there exist not only exact solutions in
the form of solitons, but also two-soliton solutions [64] analogous to
the corresponding solutions of the Korteweg-de Vries equation.

1 9 ) I am indebted for this remark to G. M. Fraiman (see also [6 5]).
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