1974 г. Июнь

Том 113, вып. 2

УСПЕХИ ФИЗИЧЕСКИХ НАУК

535.338.41

ВЕРОЯТНОСТИ ОПТИЧЕСКИХ ПЕРЕХОДОВ ЭЛЕКТРОННО-КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНЫХ СПЕКТРОВ ДВУХАТОМНЫХ МОЛЕКУЛ

Л. А. Кузнецова, Н. Е. Кузьменко, Ю. Я. Кузяков, Ю. А. Пластинин

СОДЕРЖАНИЕ

1.	Введение	j.
2.	Основные теоретические соотношения	j
	а) Общее рассмотрение (286). б) Молекулярные переходы (287).	
3,	Экспериментальное определение абсолютных вероятностей и сил переходов . 292	1
4.	Сводка данных по вероятностям переходов двухатомных молекул. Рекоменду-	
	емые значения $ R_e^{mn} ^2$	3
5.	Факторы Франка – Кондона)
Ц	итированная литература	3

1. ВВЕДЕНИЕ

В связи со многими вопросами, возникающими при решении ряда задач пауки и техники, большое значение приобрели сведения о вероятностях оптических переходов для атомов, двухатомных в простейших многоатомных молекул. Эти сведения необходимы для практически важных расчетов излучательной и поглощательной способности плазмы. образующейся, например, при электрических разрядах в газах, при вхождении космических аппаратов в плотные слои атмосферы, при работе квантовых генераторов, в МГД-установках, в плазмохимии и т. п. Если необходимые данные по вероятностям переходов для атомов можно найти в различных справочных изданиях ^{1, 18}, то аналогичных изданий по вероятностям переходов для молекул нет. Более того, несмотря на очевидную важность таких сведений, как абсолютные вероятности электронных переходов двухатомных молекул, отсутствует полная систематизация этих цанных, полученных за прошедшее десятилетие. Последней работой в отечественной литературе является обзор Сошникова², опубликованный в 1961 г. Следует, однако, отметить, что для большинства молекул панные по абсолютным вероятностям электронно-колебательных перехолов получены именно в последнее десятилетие. В этот период у нас в стране и за рубежом появилось несколько обобщающих работ 3, 4, 7, 105-107, но они в основном касаются компонент высоконагретого воздуха. Последняя сводка данных по относительным вероятностям электронно-колебательных переходов дана Ортенбергом и Антроповым⁹ в 1966 г.

В настоящем обзоре систематизированы данные по абсолютным вероятностям электронных переходов в двухатомных молекулах, опубликованные за период с начала 1961 по конец 1973 г., и по относительным вероят ностям переходов, опубликованные за период с начала 1966 по конец 1973 г. Фактический материал: значения абсолютных вероятностей электронных переходов, зависимости моментов.электронных переходов от межъядерных расстояний и сведения о факторах Франка— Кондона представлен ниже соответственно в табл. I, II и III с учетом всех известных авторам работ *).

Наряду с полной систематизацией данных по вероятностям нами предпринята попытка дать критический анализ результатов с целью выбора наиболее достоверных. Такой анализ вызван запросами практики и оказывается нетривиальным в связи с неоднозначностью приводимых данных. Среди различных авторов нет единой точки зрения на ряд вопросов — таких, как определение квадрата матричного элемента, нормировка факторов Ханле — Лондона и др. В связи с этим в настоящей работе кратко излагается теория вопроса и с единой точки зрения рассматриваются имеющиеся в литературе данные по вероятностям переходов. В статье кратко обсуждаются основные экспериментальные методы определения абсолютных вероятностей переходов, разновидности отдельных методов специально не описываются, однако интересующие детали можно найти в приводимой литературе. В последней части работы сравниваются результаты расчетов факторов Франка — Кондона, полученные с использованием различных молекулярных потенциалов.

2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СООТНОШЕНИЯ

а) Общее рассмотрение. Важнейшими квантовомеханическими характеристиками процессов испускания и поглощения являются вероятности переходов ^{5-7, 10}. Эти понятия впервые были использованы Эйнштейном, который для характеристики вероятностей переходов ввел коэффициенты, получившие название коэффициентов Эйнштейна: вероятность спонтанного перехода характеризуется коэффициентом A_{nm} , вероятность вынужденного излучения и поглощения характеризуется соответственно произведением коэффициентов B_{nm} и B_{mn} на плотность электромагнитной энергии. Коэффициенты Эйнштейна связаны между собой следующим образом:

$$g_n B_{nm} = g_m B_{mn}, \tag{1}$$

$$A_{nm} = 8\pi h c v_{nm}^3 \frac{g_m}{g_n} B_{mn}; \qquad (2)$$

здесь g_m и g_n — статистические веса уровней E_m и E_n , v_{nm} — волновое число перехода в cm^{-1} , h — постоянная Планка, c — скорость света. Согласно квантовой теории излучения коэффициент A_{nm} для дипольного перехода может быть определен как

$$A_{nm} = \frac{64\pi^4}{3h} v_{nm}^3 \frac{S_{nm}}{g_n} , \qquad (3)$$

^{*)} Просмотрены реферативный журнал «Физика» и оригинальные публикации в журналах «Оптика и спектроскопия», «Журнал прикладной спектроскопии», «Теплофизика высоких температур», «Труды ФИАН СССР», «Вестник МГУ», «Успехи физических наук», «Journal of Quantitative Spectroscopy and Radiative Transfer», «Journal of Chemical Physics», «Journal of Molecular Spectroscopy», «Journal of Physics (Proceedings of Physical Society of London)», «Indian Journal of Pure and Applied Physics», «Indian Journal of Physics», «Canadian Journal of Physics, «Canadian Journal of Chemistry», «Transactions of Faraday Society», «Chemical and Physical Letters», «Physical Review», «Journal of Research of National Bureau of Standards», «Astrophysical Journal», «Atomic Data», «Physical Review Letters», «Physica», «Combustion and Flame», «Physics Letters», «Zeitschrift für Physik», «Zeitschrift für Naturforschung».

где S_{nm} — сила перехода, равная

$$S_{nm} = \sum_{k, l} \left| \int \psi_{nk}^* \mathbf{P} \psi_{ml} \, d\tau \right|^2 = \sum_{k, l} |R_{nk, ml}|^2. \tag{4}$$

 $R_{nk,\ ml}$ — матричный элемент дипольного момента, взятый по волновым функциям комбинирующих состояний. Формула (4) записана для общего случая, когда комбинирующие состояния могут быть вырожденными, причем степени их вырождения соответственно равны g_n и g_m . Суммирование ведется по всем разрешенным переходам между состояниями как верхнего, так и нижнего вырожденных уровней. Поскольку коэффициенты Эйнштейна связаны между собой, то через

Поскольку коэффициенты Эйнштейна связаны между собой, то через силу перехода могут быть выражены также коэффициенты B_{nm} и B_{mn} :

$$B_{nm} = \frac{8\pi^3}{3h^{2c}} \frac{S_{nm}}{g_n} ,$$
 (5)

$$B_{mn} = \frac{8\pi^3}{3\hbar^2 c} \frac{S_{nm}}{g_m} \,. \tag{6}$$

Наряду с коэффициентами Эйнштейна для характеристики перехода часто используется безразмерная величина — сила осциллятора перехода в поглощении f_{mn} , которая с коэффициентом Эйнштейна A_{nm} и силой перехода S_{nm} связана следующим образом:

$$f_{mn} = \frac{mc}{8\pi^2 e^2} \, v_{nm}^{-2} \, \frac{g_n}{g_m} \, A_{nm}, \tag{7}$$

$$f_{mn} = \frac{8\pi^2 mc}{3\hbar e^2} \, \nu_{nm} \, \frac{S_{nm}}{g_m} \,. \tag{8}$$

Выражая в формулах (3) и (8) силу перехода в атомных единицах *), волновое число в cm^{-1} и подставляя значения постоянной Планка h, скорости света c, заряда e и массы m электрона, получим следующие соотношения для силы осциллятора в поглощении f_{mn} и для коэффициента излучения A_{nm} :

$$f_{mn} = \frac{8\pi^2 mc}{3he^2} v_{nm} \frac{S_{nm}}{g_m} = 3.04 \cdot 10^{-6} v_{nm} \frac{S_{nm}}{g_m} , \qquad (9)$$

$$A_{nm} = \frac{64\pi^4}{3h} v_{nm}^3 \frac{S_{nm}}{g_n} = 2,02 \cdot 10^{-6} v_{nm}^3 \frac{S_{nm}}{g_n} .$$
(10)

 f_{mn} — величина безразмерная, A_{nm} имеет размерность $ce\kappa^{-1}$.

С коэффициентом A_{nm} связана одна из важнейших характеристик возбужденных состояний — их время жизни τ_n :

$$\tau_n = \frac{1}{A_n} = \frac{1}{\sum\limits_m A_{nm}} \,. \tag{11}$$

Используя соотношения (10) и (11), величину τ_n также можно выразить через силу перехода (точнее, через силы переходов, поскольку в (11) суммируются вероятности всех переходов с уровня E_n па уровни E_m):

$$\frac{1}{\tau_n} = \frac{64\pi^4}{3h} \frac{1}{g_n} \sum_m v_{nm}^3 S_{nm}.$$
 (12)

б) Молекулярные переходы ^{10, 320}. Рассмотрим молекулярный переход между невырожденными уровнями $(e'\Lambda'\Sigma'v'J'M')$ и $(e''\Lambda''\Sigma''v''J''M'')$. Здесь Λ и Σ — квантовые числа, характеризующие

^{*)} Атомнан единица равна $(ea_0)^2 = 6,459 \cdot 10^{-36} \, c \cdot c m^5 \, ce \pi^{-2}$, где a_0 — радиус боровской орбиты в cm, e — заряд электрона в единицах CGSE.

проекции орбитального и спинового моментов электронов на межъядерную ось, v, J, M — колебательные, вращательные и магнитные квантовые числа, символы e' и e'' характеризуют отдельные состояния Λ -удвоения комбинирующих уровней. Параметры, отмеченные одним штрихом, относятся к верхнему уровню, двумя — к нижнему. Матричный элемент дипольного момента рассматриваемого перехода равен

$$R_{e'\Lambda'\Sigma'v'J'M'}^{e'\Lambda'\Sigma'v'J'M'} = \int \Psi_{e'\Lambda'\Sigma'vJ'M'} \mathbf{P} \Psi_{e''\Lambda'\Sigma''v'J''M''} d\tau, \qquad (13)$$

где $\mathbf{P} = \mathbf{P}_e + \mathbf{P}_{\pi}$ — электрический момент электронов \mathbf{P}_e и ядер \mathbf{P}_{π} , $d\mathbf{\tau} = d\mathbf{\tau}_e \ d\mathbf{\tau}_{\pi}$ — произведение элементов объемов электронного и ядерного конфигурационных пространств, Ψ — полная волновая функция молекулы.

В первом приближении, в приближении Борна — Оппенгеймера, полную волновую функцию молекулы (без учета ядерной волновой функции) можно представить в виде произведения электронной Ψ_e , колебательной Ψ_v и вращательной Ψ_J волновых функций:

$$\Psi_{e\Lambda\Sigma vJM} = \Psi_{e\Sigma\Lambda} (\mathbf{r}_s, r) \frac{1}{r} \Psi_{v} (r) \Psi_{JM} (\theta, \varphi); \qquad (14)$$

здесь $\overline{r_s}$ — координаты электронов относительно межъядерной оси молекулы, r — расстояние между ядрами, θ и ϕ — угловые координаты дипольного момента.

Подстановка (14) в (13) и суммирование квадратов матричных элементов по квантовым числам M' и M'' приводят к выражению для силы линии

$$S_{e'\Lambda'\Sigma''v'J'}^{e'\Lambda'\Sigma'v'J'} = \sum_{M'M''} \left| R_{e''\Lambda'\Sigma''v'J'M'}^{e'\Lambda'\Sigma'v'JM'} \right|^2 = S_{J'J} \bullet R_{v'v'}.$$
(15)

 $R_{v'v'}$ — радиальная часть силы линии, $S_{J'J'}$ — множитель Ханле — Лондона, зависящий в общем случае от квантовых чисел J, Σ и Λ .

$$S_{J'J''} = \sum_{M'M''} \left| \int \Psi_{J'M'}^* f\left(\theta, \, \varphi\right) \Psi_{J''M''} \sin \theta \, d\theta \, d\varphi \right|^2; \tag{16}$$

здесь функция $f(\theta, \phi)$ выражает зависимость дипольного момента от угловых координат θ и ϕ .

Выражение для $R_{v'v''}$ найдем, используя общее соотношение для коэффициента Эйнштейна (3).

Коэффициент Эйнштейна для вращательной линии электронно-колебательно-вращательного перехода при подстановке (15) в (3) равен

$$A_{J'J''} = \frac{64\pi^4}{3h} v^3 \frac{S_{J'J''}R_{v'v''}}{(2J'+1)} .$$
(17)

k,

Коэффициент Эйнштейна электронно-колебательного перехода получается суммированием (17) по всем возможным переходам и делением на статистический вес электронного состояния $g_n = g_{\Lambda'} (2S + 1)$:

$$A_{\sigma'\sigma'}^{nm} = \frac{\sum\limits_{e'e'} \sum\limits_{\Sigma'\Sigma''} \sum\limits_{J''} A_{J'J''}}{g_{\Lambda'}(2S+1)} = \frac{64\pi^4}{3h} v^3 \frac{R_{\sigma'\sigma''}}{g_{\Lambda'}(2S+1)(2J'+1)} \sum\limits_{(Z')} \sum\limits_{J''} S_{J'J''}}{g_{\Lambda'}(2S+1)(2J'+1)},$$
 (18)

где $g_{\Lambda'} = 1$, если: $\Lambda' = 0$, и $g_{\Lambda'} = 2$, если $\Lambda' \neq 0$; множитель (2S + 1) учитывает вырождение по электронному спину.

С другой стороны, значение $A_{v'v'}^{nm}$ можно определить, используя общие соотношения (3) и (4):

$$A_{v'v'}^{nm} = \frac{64\pi^4}{3h} v^3 \frac{\sum\limits_{e'e''} \sum\sum\limits_{\Sigma'\Sigma''} |R_{e'\Sigma'v',e''\Sigma'v''}^{nm}|^2}{g_{\Lambda'}(2S+1)} , \qquad (19)$$

где суммирование ведется по всем переходам между вырожденными по Λ и по Σ уровнями.

Матричный элемент $R^{nm}_{e'\Sigma'v',e''\Sigma''v''}$ равен

$$R_{e'\Sigma'v',e'}^{nm} = \int \Psi_{v'} R_{e'\Sigma',e''}^{nm} = \int \Psi_{v'} R_{e'\Sigma',e''}^{nm} e^{r\Sigma'} \Psi_{v''} dr; \qquad (20)$$

здесь используется электронный момент перехода

$$R_{e'\Sigma', e''\Sigma''}^{nm} = \int \Psi_{e'\Sigma'}^{*n} (\mathbf{r}_s, r) \mathbf{P}_e \Psi_{e''\Sigma''}^{m} (\mathbf{r}_s, r) d\tau_e.$$
(21)

Приравнивая (19) и (18), находим для $R_{v'v''}$:

$$R_{v'v''} = \frac{(2J'+1)\sum_{e'e''}\sum_{\Sigma'\Sigma''}|R_{e'\Sigma'v',e''\Sigma''v'}|^2}{\sum_{e'e''}\sum_{\Sigma'\Sigma''}\sum_{J''}S_{J'J''}}.$$
(22)

Факторы Ханле — Лондона должны удовлетворять следующему условию нормировки:

$$\sum_{\mathbf{e}',\mathbf{e}'} \sum_{\Sigma'\Sigma''} \sum_{J''} S_{J'J''} = g_{\Lambda'} (2S+1) (2J'+1).$$
⁽²³⁾

Таким образом, коэффициент Эйнштейна для вращательной линии при использовании (17), (22) и (23) может быть записан в виде

$$A_{J'J''}^{nm} = \frac{64\pi^4}{3h} v^3 \frac{S_{J'J''} \sum_{e'e''} \sum_{\Sigma'\Sigma''} |R_{e'\Sigma'v',e''\Sigma''v'}^{nm}|^2}{g_{\Lambda'}(2S+1)(2J'+1)} .$$
(24)

Выражение (24) получено для линии, соответствующей переходу между вращательными уровнями, вырожденными только по магнитному квантовому числу M. Статистический вес такого вращательного уровня равен (2J + 1). Если рассматриваются вращательные уровни, вырожденные по M и по Λ , то их статистический вес равен g_{Λ} (2J + 1). Если вращательные уровни вырождены по M, Λ и S, их статистический вес равен g_{Λ} (2S + 1) (2J + 1).

Следует подчеркнуть, что выражение (24) для коэффициента Эйнштейна линии электронно-колебательно-вращательного перехода формально имеет один и тот же вид независимо от статистического веса комбинирующих вращательных уровней. Однако факторы Ханле — Лондона в цервом случае относятся к единичной вращательной линии и нормировка их определяется выражением (23). Во втором случае факторы Ханле — Лондона относятся к А-дублету и должны быть нормированы следующим образом:

$$\sum_{\Sigma' \Sigma'} \sum_{J''} S_{J'J'} = (2S+1) (2J'+1).$$
(25)

В третьем случае факторы Ханле — Лондона, относящиеся к вращательному мультиплету, должны быть нормированы так:

$$\sum_{J''} S_{J'J''} = (2J'+1).$$
(26)

7 УФН, т. 113, вып. 2

Предполагая независимость электронного момента перехода (21) от межъядерного расстояния для матричного элемента, входящего в (24), получим следующее выражение:

$$|R_{e'\Sigma'v', e''\Sigma'v''}^{nm}|^{2} = q_{v'v''}|R_{e'\Sigma', e''\Sigma''}^{nm}|^{2};$$
(27)

здесь q_{v v"} — фактор Франка — Кондона, определяющий вероятность колебательного церехода:

$$q_{v'v''} = \left| \int \Psi_{v'} \Psi_{v''} dr \right|^2.$$
⁽²⁸⁾

В настоящее время величины матричных элементов в общем виде (20) не могут быть вычислены. Однако эмпирически Фразером ¹¹ показано, что и для случая зависимости электронной волновой функции от r электронную и колебательные части силы перехода можно разделить, используя метод r-центроид. Для произведения колебательных волновых функций типа Морзе приближенно можно записать

$$\Psi_{v'}\Psi_{v''} = \delta\left(r - r_{v'v''}\right) q_{v'v''}^{1/2},\tag{29}$$

где *r*_{v'v'} — *r*-центроида перехода, δ — дельта-функция,

Подставляя (29) в (20), получим при интегрировании по r:

без учета колебательно-вращательного взаимодействия

$$|R_{e'\Sigma'v', e''\Sigma'v''}^{nm}|^{2} = q_{v'v''}|R_{e'\Sigma', e''\Sigma''}^{nm}(r_{v'v''})|^{2},$$
(31)

с учетом колебательно-вращательного взаимодействия

$$|R_{e'\Sigma'v', e''\Sigma''v'}^{nm}|^{2} = q_{v'v''}^{J'J''} |R_{e'\Sigma', e''\Sigma''}^{nm}(r_{v'v''})|^{2};$$
(32)

здесь

$$q_{v'v''}^{J'J''} = \left| \int \Psi_{v'J'} \Psi_{v'J''} dr \right|^2.$$
(33)

Теоретическая оценка эффекта колебательно-вращательного взаимодействия была выполнена для молекул ОН ²⁹⁵, Mg₂ ³²⁵ и др. Влияние этого взаимодействия на величину q_{v'v"} оказалось значительным. Критерий для оценки в первом приближении величины колебательно-вращательного взаимодействия дается в работе ²⁹⁵:

$$\gamma \coloneqq \frac{2B_e}{\omega_e} , \qquad (34)$$

где B_e и ω_e — соответственно вращательная и колебательная постоянные молекулы. Для молекул, у которых $\gamma \leq 10^{-3}$, взаимодействие несущественно.

Окончательно при подстановке (27), (31) или (32) в уравнение (24) коэффициент Эйнштейна для линии выражается через фактор Франка — Кондона $q_{b'b''}$, множитель Ханле — Лондона $S_{J'J''}$ и силу электронного перехода S_e^{nm} :

$$A_{J'J''} = \frac{64\pi^4}{3h} v^3 \frac{S_e^{nm} q_{v'v''} S_{J'J''}}{g_{\Lambda'} (2S+1) (2J'+1)} , \qquad (35)$$

$$S_{e}^{nm} = \sum_{e'e''} \sum_{\Sigma'\Sigma''} |R_{e'\Sigma', e''\Sigma'}^{nm}|^{2}.$$
 (36)

В общем случае сила электронного перехода S_e^{nm} зависит от *r*-центроиды (см. (31)).

На практике часто для характеристики вероятностей электронных переходов используется не сила электронного перехода, а квадрат матричного элемента, который для поглощения равен

$$|R_e^{mn}|^2 = \frac{S_e^{m_n}}{g_{\Lambda''}(2S+1)} \,. \tag{37}$$

Для излучения аналогичная величина равна

$$|R_e^{nm}|^2 = \frac{S_e^{nm}}{g_{\Lambda'}(2S+1)} \,. \tag{38}$$

Входящие в (37) и (38) величины сил электронных переходов равны между собой: $S_e^{mn} = S_e^{nm}$, т. е. они являются симметричными относительно направления перехода.

Как правило, в оригинальных работах приводятся величины квадратов матричных элементов для поглощения, т. е. | R_e^{mn} |². При этом коэффициент Эйнштейна (35) определяется по следующей формуле:

$$A_{J'J''} = \frac{!64\pi^4}{3h} v_{mn}^3 |R_e^{mn}|^2 \frac{g_{\Lambda''}}{g_{\Lambda'}} \frac{q_{v'v''}S_{J'J''}}{(2J'+4)} .$$
(39)

Выше было показано (см. (9)), что сила осциллятора перехода f_{mn} связана с величиной силы перехода S^{nm} . Подставляя в (9) соответствующие значения силы перехода, получим силу осциллятора для линии электронно-колебательно-вращательного перехода f_{evJ} , силу осциллятора для полосы $f_{v'v''}$ и электронную силу осциллятора f_e :

$$f_{evJ} = \frac{8\pi^2 mc}{3he^2} v_{evJ} \frac{S_e}{g_m} q_{v'v''} \frac{S_{J'J''}}{(2J''+1)} , \qquad (40)$$

$$f_{\boldsymbol{v}'\boldsymbol{v}''} = \frac{8\pi^2 mc}{3he^2} \langle \boldsymbol{v}_{\boldsymbol{v}'\boldsymbol{v}''} \rangle \frac{S_{\boldsymbol{v}}}{g_m} q_{\boldsymbol{v}'\boldsymbol{v}''}, \tag{41}$$

$$f_e^{mn} = \frac{8\pi^2 mc}{3he^2} \langle \mathbf{v}_{emn} \rangle \frac{S_e}{g_m} , \qquad (42)$$

где f_{evJ} , $f_{v'v''}$, f_e^{mn} приведены для процессов поглощения, $\langle v_{v'v''} \rangle$ и $\langle v_{emn} \rangle$ — средние волновые числа колебательной полосы и электронного перехода.

Если принять, что $v_{evJ} \approx \langle v_{v'v''} \rangle$, то с учетом правила сумм (25) и правила сумм для факторов Франка — Кондона

$$\sum_{v'} q_{v'v''} = \sum_{v''} q_{v'v''} = 1$$
(43)

получим следующие соотношения между осцилляторными силами вращательной линии f_{evJ}, колебательной полосы f_{v'v"} и электронного перехода f^{mn}_e:

$$f_{v'v''} \approx \sum_{J'} f_{evJ}, \quad f_{v'v''} \approx f_e^{mn} q_{v'v''} \frac{\langle v_{v'v''} \rangle}{\langle v_{emn} \rangle} .$$

$$f_e^{mn} \approx \sum_{v'} f_{v'v''}, \quad \text{если} \frac{\langle v_{v'v''} \rangle}{\langle v_{emn} \rangle} \approx 1.$$
(44)

Для времени жизни колебательного уровня v', часто используемого для определения | R_e^{mn} |² из формулы (12) можно получить

$$\frac{1}{\tau_{v'}} = \frac{64\pi^4}{3h} \frac{g_m}{g_n} \sum_{v''} \langle v_{v'v''} \rangle^3 |R_e^{mn}|^2 q_{v'v''};$$
(45)

здесь $64\pi^4/3h = 2,02 \cdot 10^{-6}$, $v_{v'v''}$ — в см⁻¹, $|R_e^{mn}|^2$ — в атомных единицах. 7* Из приведенного выше рассмотрения вероятностей электронных переходов следует, что для вычисления их необходимо знание электронной силы перехода, факторов Франка — Кондона и факторов Ханле — Лондона. Факторы Ханле — Лондона для двухатомных молекул легко могут быть вычислены. В монографии Ковача⁸, например, приводятся соответствующие формулы для различных типов электронных переходов (вплоть до септетных). Разработаны различные методы расчета факторов Франка — Кондона (см. гл. 5). Теоретические методы расчета электронной силы перехода S_e не дают удовлетворительных результатов. Полученные с помощью расчетов значения иногда отличаются от экспериментальных даже по порядку величины. Поэтому до сих пор главным источником наших сведений об электронных силах переходов является эксперимент.

3. ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ АБСОЛЮТНЫХ ВЕРОЯТНОСТЕЙ И СИЛ ПЕРЕХОДОВ

Экспериментальные методы определения абсолютной величины $|R_e(r_{v'v''})|^2$ и $S_e(r_{v'v''})$ основаны на использовании соотношений, связывающих эти величины с другими, одни из которых определяются экспериментально (интегральные коэффициенты излучения, интегральные коэффициенты поглощения, времена жизни), а другие могут быть рассчитаны $(S_{J'J''}, q_{v'v''})$. Такими соотношениями являются следующие.

1) Для интегрального коэффициента излучения вращательной линии (в единичный телесный угол) имеем

$$\int_{\text{ЛИНИН}} j_{\nu} d\nu = \frac{h\nu c}{4\pi} A_{J'J''} N_{ne'\Sigma'\nu'J'}.$$
(46)

А_{J'J"} дается формулой (35), заселенность уровня в условиях локального термодинамического равновесия равна

$$N_{ne'\Sigma'v'J'} = N \frac{g_I^{a,s}(2J'+1)}{Q_{\rm BH}Q_{\rm AR}} \exp\Big(-\frac{E_n + E_{nv} + E_{J'}}{kT}\Big), \tag{47}$$

$$Q_{\rm BH} = \sum_{n} Q_n \sum_{v} Q_{nv} \sum_{J} Q_{nvJ}, \qquad (48)$$

$$Q_n = g_\Lambda \left(2S+1\right) \exp\left(-\frac{E_n}{kT}\right), \qquad (49)$$

$$Q_{nv} = \exp\left(-\frac{{}^{t}E_{nv}}{kT}\right), \qquad (50)$$

$$Q_{nvJ} = (2J+1) \exp\left(-\frac{E_{evJ}}{kT}\right) \approx \frac{kT}{hcB_{nv}}, \qquad (51)$$

$$Q_{\mathrm{H}\pi} = \frac{(2I_1 + 1)(2I_2 + 1)}{\sigma} \,. \tag{52}$$

Для гетероядерных молекул $g_I^{a_0 l_s} = Q_{\pi_{\Pi}}$. Для гомоядерных молекул $g_I^a = I (2I+1), \quad g_I^s = (I+1) (2I+1).$ (53)

В формулах (47) — (53) использованы обозначения E_n , E_{nv} , E_{nvJ} — энергии электронного, колебательного и вращательного уровней, $Q_{\rm BH}$ внутренняя статистическая сумма молекулы, $Q_{\pi\pi}$ — ядерная статистическая сумма, $g_I^{a,s}$ — ядерные статистические веса антисимметричного и симметричного вращательных уровней, σ — число симметрии, равное 1 для гетероядерных молекул и 2 — для гомоядерных, I_1 и I_2 — спины ядер, B_{np} — вращательная постоянная *n*-го электронного уровня.

Различие статистических весов симметричных и антисимметричных уровней приводит к чередованию интенсивностей линий в спектрах гомоядерных молекул в случаях $\Sigma - \Sigma$ -, $\Sigma - \Pi$ -, $\Pi - \Sigma$ -переходов. Для переходов $\Pi - \Pi$, $\Delta - \Delta$, $\Pi - \Delta$, $\Delta - \Pi$ чередование интенсивностей наблюдается в Λ -компонентах дублета в соответствии с их ядерными статистическими весами.

С учетом (35), (46) и (47) для интегрального коэффициента излучения вращательной линии окончательно получаем

$$\int_{\Pi A \to HAR} j_{\nu} \, d\nu = \frac{16\pi^3 c}{3} \, \nu^4 \, \frac{S_e q_{\nu'\nu'} S_{J'J''}}{g_{\Lambda'}(2S+1)} \frac{g_I^{a,s}}{Q_{BR} Q_{IIR}} \, N \exp\Big(-\frac{E_n + E_{n\nu'} + E_{n\nu'J'}}{kT}\Big) =$$

$$= \frac{16\pi^3}{3} v^4 |R_e^{mn}|^2 \frac{g_{\Lambda''}}{g_{\Lambda'}} q_{v'v''} S_{J'J^*} \frac{g_I^{a,s}}{Q_{BH} Q_{BH}} N \exp\left(-\frac{E_n + E_{nv'}^{i} + E_{nv'J'}}{kT}\right); \quad (54)$$

здесь $16\pi^3 c/3 = 3,22 \cdot 10^{-23}$, v выражено в см⁻¹, S_e и | R_e^{mn} |² — в атомных единицах.

2) Для интегрального коэффициента излучения колебательной полосы запищем

$$\int_{\text{HOLOGA}} j_{\nu} d\nu = \frac{hc\nu}{4\pi} A^{nm}_{\nu'\nu''} N_{n\nu'}.$$
(55)

Коэффициент Эйнштейна для колебательной полосы в соответствии с (19), (31) и (36) равен

$$A_{v'v''}^{nm} = \frac{64\pi^4}{3h} v^3 \frac{S_e q_{v'v''}}{g_{\Lambda'}(2S+1)} .$$
(56)

В условиях локального термодинамического равновесия населенность равна

$$N_{nv'} = N \frac{g_{\Lambda'}(2S+1)}{Q_{BH}} \exp\left(-\frac{E_n + E_{nv'}}{kT}\right) \sum_{J''} (2J'+1) \exp\left(-\frac{E_{J'}}{kT}\right) = N \frac{g_{\Lambda'}(2S+1)}{Q_{BH}} \frac{kT}{hcB_{nv'}} \exp\left(-\frac{E_n + E_{nv'}}{kT}\right).$$
(57)

С учетом (56) и (57) интегральный коэффициент излучения электронно-колебательной полосы равен

$$\int_{\text{полоса}} j_{\nu} d\nu = \frac{16\pi^3 c}{3} v_{\nu'\nu'}^4 \frac{S_e q_{\nu'\nu'}}{Q_{\text{BH}}} \frac{kT}{hcB_{n\nu'}} N \exp\left(-\frac{E_n + E_{n\nu'}}{kT}\right) = \frac{16\pi^3 c}{3} v_{\nu'\nu''}^4 |R_e^{mn}|^2 g_{\Lambda''} (2S+1) q_{\nu'\nu''} \frac{kT}{hcB_{n\nu'}} \frac{N}{Q_{\text{BH}}} \exp\left(-\frac{E_n + E_{n\nu'}}{kT}\right).$$
(58)

3) Аналогичное выражение может быть получено для электронноколебательной подполосы, соответствующей переходу между отдельными компонентами комбинирующих электронных уровней, каждая из которых характеризуется проекцией спинового момента:

$$\int_{\text{подполоса}} j_{\nu} d\nu = \frac{16\pi^{3}c}{3} \nu_{\nu'\nu'}^{4} \frac{S_{e}q_{\nu'\nu''}}{(2S+1)} \frac{N}{Q_{BH}} \frac{kT}{hcB_{n\nu'}} \exp\left(-\frac{E_{n}+E_{n\nu'}}{kT}\right) = \\ = \frac{16\pi^{3}c}{3} \nu_{\nu'\nu'}^{4} |R_{e}^{mn}|^{2} g_{\Lambda''}q_{\nu'\nu''} \frac{N}{Q_{BH}} \frac{kT}{hcB_{n\nu'}} \exp\left(-\frac{E_{n}+E_{n\nu'}}{kT}\right).$$
(59)

4) Для интегрального коэффициента поглощения вращательной линии и колебательной полосы имеем соответственно

$$\int_{\mathbf{M} \in \mathbf{H} \times \mathbf{M}} K_{\mathbf{v}} \, d\mathbf{v} = h \mathbf{v}_{J'J''} B_{J'J''}^{mn} N_{me'' \Sigma'' v'' J''},\tag{60}$$

$$\int_{\text{полосы}} K_{\mathbf{v}} \, d\mathbf{v} = h \mathbf{v}_{\mathbf{v}' \mathbf{v}''} B_{\mathbf{v}' \mathbf{v}''}^{mn} N_{mv''}; \tag{61}$$

здесь коэффициенты вынужденного поглощения $B_{j'j''}^{mn}$ и $B_{v'v''}^{mn}$ могут быть выражены через коэффициенты Эйнштейна $A_{j'j''}^{nm}$ и $A_{v'v''}^{nm}$ по общей формуле (2).

В соответствии с приведенными выше соотношениями электронные силы переходов двухатомных молекул в настоящее время измеряют, пользуясь, главным образом, следующими методами:

1) метод излучения,

2) метод поглощения,

3) метод измерения времени жизни возбужденного состояния.

В первых двух методах к источнику спектра предъявляется требование образования в нем плазмы в условиях полного или локального термодинамического равновесия, поскольку применяемые в этих методах соотношения (54), (58), (59), (60), (61) получены в предположении больцмановского распределения молекул по уровням энергии. Число источников с равновесными условиями возбуждения спектров невелико. Для экспериментального определения S_e были использованы следующие: ударная труба ^{11-14, 39-40, 177-181} и др., высокотемпературная печь Кинга ^{17, 25, 84}, дуга постоянного тока с охлаждаемыми электродами 45, 57, 265, пламя 49, ^{50, 102, 215}, сферическая бомба ^{101, 202}. При применении той или иной методики надежность полученных результатов определяется прежде всего тем, насколько правомерно рассматривать образующуюся в источнике плазму как равновесную. Как следует из (54) или (61), для определения электронной силы перехода необходимо знать состав и температуру плазмы. В ударной трубе, например, для этого проводится расчет состояния газа (состава, давления, температуры) за фронтом ударной волны по значениям начальных параметров и экспериментально измеряемой скорости ударной волны 294.

Не останавливаясь подробно на различных методиках, применяемых для определения электронной силы перехода по методу излучения или поглощения, подчеркнем лишь один существенный недостаток этих методов. При расчете состава плазмы, образующейся в источнике, концентрации молекул могут быть определены со значительными ошибками за счет погрешностей в термохимических величинах. Отсюда следует, что электронная сила перехода по методу излучения или поглощения может быть измерена с большой ошибкой. Величина этой ошибки, как правило, не анализируется авторами и не включается в значение погрешности, с которой рекомендуется электронная или осцилляторная сила перехода. В некоторых случаях, когда концентрация двухатомных молекул при комнатной температуре достаточна для получения спектров поглощения, необходимость расчета состава отпадает и тем самым исключается возможный источник существенных ошибок в величинах $S_e^{75, 85}$.

Если для определения вероятностей электронных переходов используется метод измерения времени жизни, то знания числа излучающих молекул не требуется. Этим и объясняется широкое применение этого метода (см. ниже табл. I). Сущность метода заключается в возбуждении молекулы потоком фотонов или потоком электронов с последующим ана-

294

лизом спектра излучения по времени. Возбуждение фотонами значительно меньше, чем поток электронов, вносит возмущение в исследуемую среду, может обеспечивать предельную селективность возбуждения. Одпако вследствие отсутствия достаточно мощных импульсных источников света в необходимом диапазоне длин волн до настоящего времени почти все работы по определению времен жизни были выполнены с использованием в качестве источника возбуждения пучка электронов. В последние годы появился целый ряд работ, в которых возбуждение молекул осуществляется с помощью лазерного луча, что особенно перспективно в связи с возможностью применения лазеров с перестраиваемой частотой ²¹⁷, ²³⁴, ²⁶⁶, ²⁶⁹. Возбуждение производится в газовой фазе при малых давлениях, которые обязательны для того, чтобы возбужденные молекулы не претерпевали значительных соударений (ударного тушения). Зависимость от давления обычно учитывается путем измереция времени жизни при различных давлениях с последующей экстраноляцией к нулевому давлению.

Используется несколько методик определения времени жизни. Сущность одной из них заключается в том, что после включения источника возбуждения и установления равновесия между числом возбужденных и числом излучающих молекул в определенный момент времени источник возбуждения отключается и измеряется длительность послесвечения (по изучению распределения интенсивности по времени). Таким образом измерены времена жизни молекул C₂¹⁵, CH^{21, 22}, N₂,NO^{22, 77}, BaO²⁶⁸, J₂²⁶⁴ и т. д. Наиболее широкое распространение получила методика измерения фазового сдвига. Известно, что если верхнее состояние возбуждается в момент времени t = 0 очень коротким импульсом, то интенсивность излучения потока фотонов пропорциональна ехр ($-t/\tau$) (где τ — среднее время жизни). В таком случае наблюдается запаздывание импульсов излучения по фазе на величину Θ , которая связана с временем жизни и частотой возбуждающих импульсов следующим соотношением:

$$\Theta = \mathfrak{t} \mathfrak{g}^{-1} \ \omega \tau. \tag{62}$$

Таким образом, измеряя запаздывание (сдвиг фазы) и зная ω , можно рассчитать т. Этим методом в основном и получены значения т для большинства двухатомных молекул (см., например, ^{23, 30, 46–48, 70, 71, 242, 243}). Зпая времена жизни электронно-возбужденных состояний, при необходимости можно рассчитать соответствующие значения сил электронных переходов или спл осцилляторов, используя выражения (41) и (45).

Необходимо, однако, огметить, что метод измерения времени жизни имест ряд специфических особенностей, ограничивающих область его применения. К ним относятся: 1) возможность влияния на т процессов ударного тушения, о чем уже было упомянуто выше; 2) возможность каскадных переходов с уровней, лежащих выше исследуемого; 3) неоднозначность результатов в случае, если исследуемый уровень является общим для нескольких переходов. В связи с этим, например, метод измерения времени жизни не может быть использован для определения вероятностей переходов молекул с предиссоциирующим верхним состоянием ^{28, 183}.

Выше были отмечены наиболее распространенные методы экспериментального определения электронных сил переходов двухатомных молекул, основанные на измерениях интенсивностей в спектрах и измерениях времен жизни возбужденных состояний.

Известно также несколько работ ^{76, 90, 230}, в которых для нахождения величины S_e используется интерференционный метод. Этот метод, разработанный Рождественским и названный им методом «крюков», широко применяется для определения сил осцилляторов спектральных линий атомов²⁹⁷. Для молекул метод «крюков» не нашел широкого распространения. Это, очевидно, обусловлено тем, что метод позволяет получать надежные результаты лишь при измерении осцилляторных сил разрешенных вращательных линий, расстояние между которы мибольше 0,5 Å. Названное условие далеко не всегда выполняется в спектрах молекул. Кроме того, методу «крюков» присущ основной недостаток методов излучения и поглощения — необходимость знания равновесной концентрации молекул.

4. СВОДКА ДАННЫХ ПО ВЕРОЯТНОСТЯМ ПЕРЕХОДОВ ДВУХАТОМНЫХ МОЛЕКУЛ. РЕКОМЕНДУЕМЫЕ ЗНАЧЕНИЯ | *Р*^{*mn*} |²

Все известные авторам результаты работ по экспериментальному определению и теоретическому расчету абсолютных вероятностей электронных переходов двухатомных молекул, опубликованные за период с 1961 по 1973 г., представлены в табл. І. Необходимо подчеркнуть, что в литературе отсутствует единое определение понятия матричного элемента дипольного момента электронного перехода. Некоторые авторы моментом перехода | R_o |² называют величину силы перехода и используют ее для характеристики вероятности либо всего электронного перехода (I). либо перехода с одной компоненты электронного мультиплета (II). В первом случае мультиплетное электронное состояние рассматривается как некое единое состояние, величинами Л-удвоения и спинового расщепления пренебрегают. При этом статистический вес вращательного уровня берется равным g_{Λ} (2S + 1) (2J + 1), и тогда нормировка факторов Ханле — Лондона определяется выражением (26). Второй случай обычно имеет место, когда, по крайней мере, одно из комбинирующих электронных состояний относится к «а»-или «с»-типу связи Гунда. При этом самостоятельно рассматриваются переходы с отдельных компонент электронного мультиплета. Статистический вес вращательного уровня равен в таком случае $g_{\Lambda}(2J+1)$, а нормировка факторов Ханле — Лондона дается выражением (25).

В большинстве работ и при принятом нами определении (см. гл. 2) квадратом матричного элемента дипольного момента электронного перехода называется величина $|R_e^{mn}|^2 = S_e^{mn}/g_{e''}$, где $g_{e''}$ — вырождение нижнего электронного уровня, которое равно g_{Λ} (2S + 1) или g_{Λ} в зависимости от того, какой переход — (I) или (II) — рассматривается. Необходимо также отметить работы ^{22, 48, 56, 110, 111, 243} и др., в кото-

Необходимо также отметить работы ^{22, 48, 56, 110, 111, 243} и др., в которых авторы придерживаются следующего определения вероятности электронного перехода:

$$A_{nm} = \frac{64\pi^4}{3h} \, \mathbf{v}^3 G_m D_{nm} = \frac{64\pi^4}{3h} \, \mathbf{v}^3 G_m \, | \, R_e^{nm} \, |^2, \tag{63}$$

$$B_{mn} = \frac{8\pi^3}{3h^2c} G_n D_{mn} = \frac{8\pi^3}{3h^2c} G_n |R_e^{mn}|^2, \tag{64}$$

$$f_e^{mn} = \frac{8\pi^2 mc}{3h} \, \mathbf{v} G_n D_{mn} = \frac{8\pi^2 mc}{3h} \, \mathbf{v} G_n \, | \, R_e^{mn} \, |^2. \tag{65}$$

В выражениях (63) — (65) G — коэффициент Малликена, показывающий число конечных волновых функций, принадлежащих одному энергетическому уровню, с которым может комбинировать одна из волновых функций начального состояния. Для различных типов электронных цереходов коэффициент Малликена G равен ³³⁶:

$$\begin{array}{c} \Sigma - \Sigma \\ \Pi - \Pi \end{array} \right\} G_n = G_m = 1, \quad \begin{array}{c} \Pi - \Delta \\ \Delta - \Pi \end{array} \right\} G_n = G_m = 1, \\ \Pi - \Sigma : G_n = 2, \quad G_m = 1; \quad \Sigma - \Pi : G_n = 1, \quad G_m = 2. \end{array}$$

Величины | R_e |², определяемые в соответствии с соотношением $|R_e|^2 = S_e/g_e$ и формулами (3) и (6), связаны с величинами $|R_e|^2$, входящими в выражения (63), (64), следующим образом:

$$|R_e^{nm}|^2_{\mathfrak{W}_3(3)} = |R_e^{nm}|^2_{\mathfrak{W}_3(63)} g_n G_m, \tag{66}$$

 $|R_e^{mn}|_{\mu_3(6)}^2 = |R_e^{mn}|_{\mu_3(64)}^2 g_m G_n.$ (67)

Все сказанное выше необходимо было иметь в виду, сравнивая величины моментов электронных переходов, определенные различными авторами. Нам казалось целесообразным представить значения квадратов матричных элементов дипольных моментов электронных переходов в единой системе в соответствии с принятым нами определением величины | Ren 12. Эти значения приведены в третьем столбце табл. I. Если в оригинальной работе авторы не приводят значения | $R_e^{mn}|^2$, но дают величины сил осцилляторов f, или времен жизни возбужденных состояний т, то эти значения приведены соответственно в столбцах 4 и 5 табл. І. Заметим, что в табл. І приведены значения и квадратов матричных элементов, и сил осцилляторов для поглощения, т. е. $|R_e^{mn}|^2$ и f_e^{mn} соответственно. В некоторых работах авторы приводят величину силы осциллятора не всего электронного перехода, а некоторой колебательной цолосы его в таком случае это отмечается в табл. I (например, по работе ²⁵⁰ для систе-мы Свана С₂ приводится значение $f_{0,0} = 1,6 \cdot 10^{-2}$). В том случае, если в цитируемой работе подчеркивается, по какой полосе получена величина f_e^{mn} или | R_e^{mn} |², в табл. І отмечается эта полоса. Например, для у-системы NO в третьем столбце приведено 0,018 по (0,0), что означает, что величина $|R_e^{mn}|^2$ определена по полосе (0, 0) ⁷⁸. Такие указания особенно часто встречаются для систем полос, характеризующихся сильной зависимостью величины $|R_e^{mn}|^2$ от r.

В пятом столбце табл. I представлены данные по временам жизни -цифры, стоящие в скобках рядом с величиной т, указывают номера колебательных уровней, для которых измерены времена жизни, если эти уровни приводятся в оригинальной работе.

В седьмом столбце указаны методы, с помощью которых были получены приводимые в табл. І значения $|R_e^{mn}|^2$, f_e^{mn} или τ . При этом были использованы следующие обозначения: а — поглощение в ударной трубе, d — поглощение в сферическом бомбе, b — испускание в ударной трубе, е, г — для возбуждения спектров использовались соответственно дуга постоянного тока или пламя. h — измерения выполнены по спектрам поглощения в печи Кинга, в кюветах и т. д., с — использовалась методика измерения времени жизни, с — и — измерения выполнены в матрицах инертного газа, к — применен метод «крюков», s — измерения выполнены по спектру Солнца, о - значения рекомендуются на основании измерения относительных интенсивностей, f - данные получены в результате теоретического расчета, 1 - рекомендуются величины на основании критического рассмотрения литературных данных.

Некоторые результаты, представленные в табл. І, требуют пояснений.

Молекула AlO. Переход В²Σ — X²Σ ранее интерпретвровался как A²Σ — X²Σ (см., например, ¹¹³⁻¹¹⁵, ²¹⁶), однако в работе ³¹⁵ показано, что А-состоянием является в действительности неизвестное ранее низколежащее ²П-состояние (см. также ²¹⁸). Молекула ВН. В работе ³⁷² при расчете | R_e^{mn} |² была допущена расчетная ошиб-ка, которая была исправлена в работе ¹⁶². В табл. I приведены исправленные значе-

ния | R_e^{mn} |² и f_e .

Молекула BaO. Известны две экспериментальные работы по определению τ для $A^{1}\Sigma - X^{1}\Sigma$ -перехода BaO ²⁶⁸, ²⁶⁹, сильно отличающиеся. В последней работе

Таблица I

Абсолютные вероятности электронных переходов в двухатомных молекулах (квадраты матричных элементов дипольных моментов $|R_e^{mn}|^2$, силы осцилляторов f_e^{mn} , времена жизни возбужденных состояний τ)

Моле- кула	Электронный переход	$ R_e^{mn} ^2$, at. eq.	t _e mn	т, нсек	Литера- тура	Метод
A10	$B^2\Sigma - X^2\Sigma$		$(2,7\pm2,2)\cdot10^{-3}$ 3,00\cdot10^{-2} 1,5·10^{-2} 1,42·10^{-3}	127±4	216 217 218 363	r c f f
BBr	$A^{\dagger}\Pi - X^{\dagger}\Sigma$		0,10	$25,6\pm 5,0$	242	c
BC1	$A^{i}\Pi - X^{i}\Sigma$	1,04	0,12	$19,1\pm2,0$ (0, 1, 2)	243	c
BF	$A^{\mathbf{i}}\Pi - X^{\mathbf{i}}\Sigma$	2,88	0,41	$2,8\pm0,3$ (0, 1, 2)	243	c
} }	· · · · · ·			$4,0\pm0,4$	244	C
BH	$A^{1}\Pi - X^{1}\Sigma$	$^{(5,8\pm1,4) imes}_{ imes10^{-2}}$	$(4,2\pm1,0)\cdot10^{-3}$		162, 372	a
			$\stackrel{f_{0,0}=}{=} (3, 5 \pm 0, 5) \cdot 10^{-2}$	$159{\pm}16$	245	с
BO	$A^2\Pi - X^2\Sigma$		2,94·10 ⁻²	12440	247	f
BaO	$A^{1}\Sigma - X^{1}\Sigma$	0 50		12000 ± 3000	268	c
D.D	421T. V2V	0,50	$J_{0,0} = 2, 6 \cdot 10^{-9}$	336 (U)	247	C F
Ber	$A^2\Pi_i - X^2\Sigma$ $A^2\Pi_r - X^2\Sigma$		$3,30.10^{-1}$ $3,71.10^{-1}$		247	f
BeO	$B^{1}\Sigma - X^{1}\Sigma$		$f_{0.0} = 1,94 \cdot 10^{-3}$		248	b
		1	$f_{0,0} = 3,35 \cdot 10^{-2}$	90 <u>±</u> 4 (0)	286	C
Br ₂	$\begin{bmatrix} B^3 \Pi_{0u}^+ - X^1 \Sigma_g^+ \end{bmatrix}$			1200 (27) 150 (14)		c
C ₂	$d^3\Pi - a^3\Pi$	$0,59{\pm}0,08$	$(3,5\pm0,5)\cdot10^{-2}$		249	b
	(система Свана)		$ \begin{vmatrix} f_{0,0} = \\ = (1, 6 \pm 0, 5) \cdot 10^{-2} \end{vmatrix} $	200 ± 50	250	с
		$0,49\pm0,16$	$(2,8\pm0,9) \cdot 10^{-2}$		292	b
		$0,44\pm0,08$	$(2,5\pm0,5)\cdot10^{-2}$		12	a
		$0,38\pm0,14$	$(2,2\pm0,8)\cdot10^{-2}$ $(2,8\pm0,2)\cdot40^{-2}$		13	a.h
		0,30±0,04	$f_{0,0} = (4, 3 \pm 0, 1) \cdot 10^{-3}$	778	15	c
		$0,57\pm0,19$	$(3,3\pm1,2)\cdot10^{-2}$		16 17	b
{ .		$0,50\pm0,08$	2.10 -		107	Î
	$f^3\Pi_g - a^3\Pi_u$ (система Фок-		0,011		12	a, o
C=	$A^2\Pi - X^2\Sigma$		2.11.10-2		247	f
1 ⁻²	$B^2\Sigma - X^2\Sigma$		2,24.10-1		247	f
	(9	$0,30\pm0,15$	$(1,7\pm0,8)\cdot10^{-2}$		243	d
GF	$A^{2}\Sigma - X^{2}\Pi$	0,21	$2,7\cdot10^{-2}$ 2,7\cdot10^{-2}	$19,0\pm 2,0$ (1)	20	c, 1
1	l]	$(2,55\pm0,75)\cdot10^{-2}$		292,293	b
1	$B2\Sigma - Y2\Pi$	0.14	1.67.10-2	$19\pm 2 (1)$ 19.0	20	$\begin{bmatrix} c \\ c, 1 \end{bmatrix}$
	424 V9TT	0,11	1,6.10-2	$18,8\pm2,0(0)$ 542 + 47	243 381	C
	$A^{2}\Delta - X^{2}\Pi$	ł	(5.9+0.6).10-3	476+50	245	C C
	1		5,2.10-3	540 ± 40	250	c
	ł	1	4,9.10-3	560 ± 60	21	C
1	}	1	1	1	1	1

Моле- кула	Электронный переход	R _e ^{mn} 2, ат. ед.	f_e^{mn}	т, нсек	Литера- тура	Метод
		$0,027\pm0,004$	$\begin{array}{c} 9,4\cdot10^{-3}\\ 6,0\cdot10^{-3}\\ (1,9\pm0,3)\cdot10^{-3}\\ 3,6\cdot10^{-3}\end{array}$	$300 \pm 30 \\ 470 \pm 75$	22 23 24 36	с с а f
-	$B^2\Sigma - X^2\Pi$		$2,8 \cdot 10^{-3} \\ 1,1 \cdot 10^{-3} \\ 3,2 \cdot 10^{-3} \\ 3,0 \cdot 10^{-3} \\ 2,7 \cdot 10^{-3} \\ 3,7 \cdot 10^{-3$	$\begin{array}{r} 800 \pm 100 \\ 400 \pm 60 \\ 1000 \pm 400 \\ 345 \pm 50 \end{array}$	378 250 21 23 25 36	c c c h, o
	$C^2\Sigma - X^2\Pi$	$(1.6\pm0.3)\times$	$\begin{array}{c} 2,7\cdot10^{-3} \\ 6,0\cdot10^{-3} \\ 4,8\cdot10^{-3} \\ (1,5+0,3)\cdot10^{-3} \end{array}$	$266 \pm 7 (0)$ (5-18)?	381 25 23 36 162, 361	1 c g, o c f a
CD CH+	$A^2\Delta - X^2\Pi$ $A^1\Pi - X^1\Sigma$	× 10 ⁻²	$(5,9\pm0,6)\cdot10^{-3}$ $f_{0,0}=$ $=(4,6\pm1,5)\cdot10^{-2}$ $f_{0,0}=6,45\cdot10^{-3}$	$60{\pm}12(0)$ $470{\pm}50$ $76{\pm}25$	381 245 245, 357 366	c c c f
CN	$B^{1}\Delta - A^{1}\Pi$ ($^{3}\Sigma - ^{3}\Pi$)? $A^{2}\Pi - X^{2}\Sigma$ (красная си- стема)	$\begin{array}{c} 0,10 \\ R_e _f^2 / R_e _k^2 = \\ -1,9 \end{array}$		$72\pm6210\pm25 (0)72\pm2$	381 23 381 31 31	C C A O
	$B^2\Sigma - X^2\Sigma$	$\begin{array}{c}$	$f_{0,0} = 3, 4 \cdot 10^{-3}$ $(4, 5 \pm 0, 9) \cdot 10^{-3}$ $3, 3 \cdot 10^{-3}$ $1, 61 \cdot 10^{-2}$ $(2, 0 \pm 0, 4) \cdot 10^{-2}$	8000 7290 (1) 137±45 (10)	32 106 107 109 110 278 291 267 324 326 247 83	l l c b c b c b f b
-	(фиолетовая система)	$0,45\pm0,07$ $0,38\pm0,05$ $0,35\pm0,08$	$(3,5\pm0,5)\cdot10^{-2}$ $(2,7\pm0,7)\cdot10^{-2}$ $(2,7\pm0,6)\cdot10^{-2}$	49 85±10 (0)	377 342 26 27 28	c b c a a, b
со	$b^3\Sigma = a^3\Pi$	$0,38 \pm 0,05$ $0,34 \pm 0,02$	2,7.10-2	$59,0 (0)39,4\pm9,3 (0)82\pm957,5 (0)$	30 324 314 37 107 33	c c a c l c
	(третья поло- жительная система) $C^{1}\Sigma - A^{1}\Pi$ $B^{1}\Sigma - X^{1}\Sigma$	$0,093{\pm}0,015$	(8,9±1,5)·10 ⁻³	$\begin{array}{c} 97 \pm 8 \ (0) \\ 86 \pm 9 \\ 40 \pm 4 \\ 800 \pm 200 \\ (53, 6 \pm 0, 3) \ (0) \\ 50 \pm 10 \ (0) \\ 25 \pm 4 \end{array}$	37 34 35 38 379 378 19	С С С С С С С С
1	_					

Таблица I (продолжение)

Таблица I (продолжение)

Моле- кула	Электронный переход] R _e ^{mn}] ² , ат. ед.	f _e ^{mn}	t, hcer	Литера- тура	Метод
C0+	$a^{3}\Pi - X^{1}\Sigma$ (система Камерона) $A^{4}\Pi - X^{1}\Sigma$ (четвертая по- ложительная система) $C^{1}\Sigma - X^{1}\Sigma$ $E^{4}\Pi - X^{1}\Sigma$ $d^{3}\Pi - a^{3}\Pi$ $a'^{3}\Sigma$ В ¹ $\Sigma - a^{4}\Pi$ $A^{2}\Pi - X^{2}\Sigma$ (кометная хво- стовая систе- ма) $B^{2}\Sigma - X^{2}\Sigma$ (первая отри- цательная си- стема)	0,60 0,72 0,58 0,67 0,45	$(1,5\pm0,1)\cdot10^{-2}$ $7,4\cdot10^{-3}$ $f_{0,0}=7,3\cdot10^{-3}$ $=(1,64\pm0,32)\cdot10^{-7}$ $f_{0,0}=1,5\cdot10^{-7}$ $f_{0,0}=1,62\cdot10^{-7}$ $f_{0,0}=1,63\cdot10^{-7}$ $f_{0,0}=1,63\cdot10^{-7}$ $f_{0,0}=1,63\cdot10^{-7}$ $f_{0,0}=1,63\cdot10^{-2}$ $f_{2,0}=4,5\cdot10^{-2}$ $1,95\cdot10^{-1}$ $1,5\cdot10^{-1}$ $1,5\cdot10^{-2}$ $1,77\cdot10^{-2}$ $1,66\cdot10^{-2}$ $1,54\cdot10^{-2}$	$\begin{array}{c} 26,3\ (0)\\ 75\pm8\\ 220\pm50\ (0)\\ 21,8\ (0)\\ 25\pm4\ (0)\\ 23,8\pm1,4\ (1)\\ (1000\pm400)\cdot10^3\\ (9510\pm630)\cdot10^3\\ (9510\pm630)\cdot10^3\\ (9510\pm630)\cdot10^3\\ (12000\cdot10^3\\ (4400\pm1100)\times\\ \times10^3\\ (4400\pm1100)\times\\ \times10^3\\ 10,5\pm1,0\ (2)\\ 9,0\pm1,0\ (2)\\ 15,9\pm0,5\ (0)\\ 1,4\pm0,2\ (0)\\ 31\pm4\\ 3,7\cdot10^3\ (5)\\ 90\\ 2600\ (1)\\ 3490\ (1)\\ 3770\pm120\ (1)\\ 2600\pm500\ (4)\\ 46\pm8\ (0)\\ 53,4\pm5,0\ (0)\\ 101\\ 43,8\\ 39,5\ (0)\\ \end{array}$	33 35 38 43 222 243 346 358 39 40 41 318 204 219 241 344 19, 243 42 43 44 45 107, 108 343 345 355 356 43 19, 243 43 345 355 356 43 19, 243 43 345 355 356 43 19, 243 43 345 355 356 43 19, 243 43 45 107, 108 345 355 356 43 19, 243 43 45 107, 108 345 355 356 43 19, 243 43 45 107, 108 345 355 356 43 19, 243 43 45 107, 108 345 355 356 43 19, 243 43 355 356 43 19, 243 43 345 355 356 43 19, 243 43 43 345 355 356 43 19, 243 43 43 345 355 356 43 19, 243 43 43 43 43 43 43 345 355 35	c c c c c c c h h a c c h c c c c h h a c c c h h c c c c
CP CS GeO	$\begin{array}{c} A^2\Pi - X^2\Sigma \\ B^2\Sigma - X^2\Sigma \\ B^2\Sigma - A^2\Pi \\ A^4\Pi - X^4\Sigma \end{array}$ $a^3\Pi - X^4\Sigma$		$f_{0,0} = 2,8 \cdot 10^{-4}$ $f_{0,0} = 8,1 \cdot 10^{-4}$ $f_{0,0} = 2,5 \cdot 10^{-3}$ $f_{0,0} = 5,91 \cdot 10^{-3}$	45 ± 5 (0) 255 ± 25 (0) 184 ± 14 (0) τ — зависит от природы мат-	221 117 117 117 48 263 51	c o o c c c m
GeS H ₂	а ³ П — Х ¹ Σ В ¹ ∑ — Х ¹ ∑ (система Лай- мана)	1,69	0,51 0,29	рицы То же 0,8±0,2(4,5,6)	51 243 52	$\begin{array}{c} \mathbf{c} - \mathbf{m} \\ \mathbf{c} \\ \mathbf{h} \end{array}$

Моле- кула	Электронный переход	R _e ^{mn} 2, ат. ед.	f ^{mn} _e	t, hcer	Литера- тура	Метод
			f _{0.0} =	0,81 (7)	287 53	f h
			$= (1,9\pm0,5)\cdot10^{-3} f_{0,0} = 1,69\cdot10^{-3} 0,26 0,27 0,26 0,27 0,27 0,27 0,26 0,26 0,27 0,26 0,27 0,26 0,26 0,27 00000000000000000000000000000000000$	0,53 (0)	54 251	f h
			0,28	1,0(8-11)	252 371	h C
	Стп — Хт2 (система Вер-		$t_{0,0} = 4,76 \cdot 10^{-2}$ 0,70	0,83(0) $0,6\pm0,2(0,1,2)$	243 251	I C h
}	нера)		0,31 0,29	0.88(0.4.9)	252 287	h f
	$a^{3}\Sigma - b^{3}\Sigma$			35 ± 8 26 ± 2	35	
l In	$R^{3}\Pi^{+}$ - $X^{1}\Sigma^{+}$	0.16		11,9 1800 (14)	371 182	C C h
	$D m_{0u} \sim D_g$	0,10		1500 (10-13)	183 257	c .
				2500 (10-14) 2500 (14) 720 (26)	258 259	h
				410(11) 880+40(20)	264 359	C C
K ₂	$B^{1}\Pi - X^{1}\Sigma$			12,4 9,7	55 260	c c
LiO	$A^2\Sigma - X^2\Pi$		$1,9\cdot10^{-6}$ $4\cdot10^{-7}$		363 364	f f
MgH MgC	$\begin{array}{c} A^2 \Pi - X^2 \Sigma \\ B^1 \Sigma - X^1 \Sigma \\ D^3 \Pi - A^3 \Sigma \end{array}$	0.45	$ \begin{vmatrix} \leqslant 2, 0 \cdot 10^{-3} \\ \sim 1, 3 \cdot 10^{-3} \end{vmatrix} $	0.00	49,50	r r
192		0,15	1,71.10-3	9100	44	c
}	система N_2 (1+))	0.11+0.045			56	 h
		0,08	$2,8\cdot10^{-3}$ no (0,0)		57 265	e
			$f_{0,0} = 2, 1 \cdot 10^{-3}$	8900 (0)	59 60	c f
		0,19		4000 ± 300	272 107	c l
		0,09	4 00 40-3	5000 × 100 (8)	105	
		$0,09\pm0,02$ 0,19\pm0,05	$1,92\cdot10^{-3}$ $2,8\cdot10^{-3}$	7000±400 (2)	111	b b
		$0,10\pm0,02$ $0,10\pm0,02$ 0,16			179	b
		0,16		7500+200 (2)	181 224	b
	$C^{3}\Pi - B^{3}\Pi$			7900 ± 500 48 ± 8	63 243	c c
	(вторая поло- жилельная		$f_{0,0} = 1,89 \cdot 10^{-2}$	$\begin{array}{c c} 47 \pm 8 \\ 72 \end{array}$	22,159 35	c c
	Система) $N_2 (2+)$	0,42±0,12	$6, 0.10^{-2}$	07.5	265	e e
		0,47±0,16	$\begin{array}{c} 6,3\cdot 10^{-2} \\ 4,3\cdot 10^{-2} \end{array}$	$\begin{bmatrix} 27\pm5\\ 44,4\pm0,6,40 \end{bmatrix}$	62 107 59	
				$\begin{vmatrix} 44, 4\pm 0, 6 (0) \\ 39, 7\pm 1, 6 (0) \\ 45, 4 (0) \end{vmatrix}$	221 255	C C
				37 ± 3 $39,0\pm 2,5$	227 272	C C
1	1	1	1		1	1

Таблица I (продолжение)

Таблица I (продолжение)

		, pmn is				<u> </u>
Моле- кула	Электронный переход	Н _е 2, ат. ед.	f ^{mn} _e	т, нсек	Литера- тура	Метод
	А ³ Σ— Х ¹ Σ (система Ве- гарда—Капла-			(12,6±4,3)·10 ⁹	63	c, 0
	$\begin{array}{c} \operatorname{Ha} \\ \operatorname{Ha} \\ A^{1}\Pi - X^{1}\Sigma \end{array}$			$2,5\cdot10^9$ (0) (115 ±20) $\cdot10^3$	64 41 65	c, h c
	(система лаи- мана – Берд- жа – Холфил-			140.103 120.103 80.103	228 270	C C
	$\begin{array}{c} \text{да} \\ B^{1}\Sigma - X^{1}\Sigma \end{array}$	0,6		150.103	271 107	с 1
	(система Берд- жа—Хопфил- да)					
	$B^{1}\Pi - X^{1}\Sigma$ (cucrema Bepg-	0,6			107	1
	Aa) $D^{3}\Sigma - B^{3}\Pi$			14,1±1,0 (0)	373	c
	$\begin{array}{c} P^{\perp 1}\Sigma - X^{1}\Sigma \\ E^{3}\Sigma \\ E^{3}\Sigma \\ \end{array}$			$0,9\pm0,2$ (190±30)·10 ³	243 41	C C
	$\left. \begin{array}{c} E^{3}\Sigma - A^{3}\Sigma \\ E^{3}\Sigma - B^{3}\Pi \\ E^{3}\Sigma - C^{3}\Pi \end{array} \right\}$			(270±100) · 10 ³	225,273	с
N_2^+	А2∏ — Х2∑ (система Май-, нела)	$0,30\pm0,03$ 0,18			58 106,107 105	
		0,16	5.10-3	7600 (0)	179 59	b c
				10700 (3) $13900 \pm 1000 (1)$ $13000 \pm 4000 (1)$	223 335 329	C C
				(12230) (3) (6200 ± 400) (10)	224 328,3 76	C C
	$B^2\Sigma - X^2\Sigma$		4,5•10-2	(9200 ± 2000) (2) 59,2 ± 6 70 + 45	226,349 243 35	C C
	(первая отри- цательная си- стема)	$0,49{\pm}0,11$		10 ± 13 65,4	57 62	e c
		0,55	3,43.10-2		66 105 67	b 1 b
		$0,37\pm0,13$ 0,50	$2,47 \cdot 10^{-2}$	71,5 <u>+</u> 5	68 159	e c
		$0,48{\pm}0,05$	3,8.10-2	$66, 6\pm 1, 3 (0)$ 58, 6 $\pm 5, 0 (0)$	106,107 221 327	l c
				$\begin{array}{c} 30,0\pm3,0(0)\\ 40\pm20\\ 61,3\pm1,6(0)\end{array}$	227 226	c c
			$3,48 \cdot 10^{-2}$	$65,8\pm 3,5$ 65 ± 2 $65,9\pm 1,0$	253 254 255	C C
				$59,2\pm4,0$ 30	272 352	c c
NH	$A^3\Pi - X^3\Sigma$		$(8,0\pm1,1)\cdot10^{-3}$	$65,8(0) \\ 425\pm60$	59 21 36	C C f
			$(8,3\pm2,0)\cdot10^{-3}$	460	62 69	c b
	$C^{1}\Pi - a^{1}\Delta$	i	$(7,45\pm1,5)\cdot10^{-3}$ 1,8\10^{-3}	$455 \pm 90 (0)$	70,71 36 70,71	c f
				400±90(0)	,	U

i.

Моле- кула	Электронный переход	{ <i>R</i> _e ^{mn} ² , ат. ед.	f ^{mn} _e	t, hcer	Литера- тура	Метод
	$C^{1}\Pi = b^{1}\Sigma$		$2,6 \cdot 10^{-3}$	i	36	f
i			, ,	485±90 (0)	70,71	с
	$d^{1}\Sigma - c^{1}\Pi$			18 ± 3 (0)	70,71	C
NH+	$(2\Sigma - 2\Pi)^{2}$		(1 0 0 1) 10-2	28 ± 5	70	C, 0
NO	$A^2\Sigma - X^2\Pi$		$(1,2\pm0,1)\cdot10^{-3}$	449±54 (0)	79	C I
	(ү-система)		2,4.10 5	275 (4)	38	I
				178-149	313	
				181 ± 22 (1)	331	c
		0.035 по	4.28.10 ⁻³ no 0.2	101 (1)	73	a
		(0,2)	$(3,4\pm0,8)\cdot10^{-3}$		72	a
í í			2,2.10-3		74	
		0,018 по	2,38.10 ⁻³ no 0,0		78	a
		(0,0)	10,0=		76	[к
]			$=(3,64\pm0,05)\cdot10^{-4}$	100 . 00]]
1		0,019	$f_{0,0} =$	196 ± 30 (0)	11	c
		0.019	$=(3,0\pm0,3)\cdot10^{-3}$		75	6
Į į			2,38.10 • 10 0,0		106.107	
{ }		0.038	2,4,10 -	108 ± 6	211	c
İ		0,000		215(1)	229	Ċ
1		1	$f_{0,0} =$		230	к
			$=(4,0\pm0,2)\cdot10^{-4}$			
1		ľ	$f_{0,0} =$		288	h
]	$R^{2}\Pi = Y^{2}\Pi$		$= (4,09\pm0,4) \cdot 10^{-4}$	3 46.403 (0)	22	
	(В-система)	0.039	$4.75 \cdot 10^{-3}$ no 2.4	0,10110 (0)	78	a
	(p one teme)	0,000	5.8.10 ⁻³ no 5.0		74	Ĩ
			$2,7.10^{-3}$		79	ī
		0,035	4,9.10-3		106,107	1
			$f_{0,0} = 2,46 \cdot 10^{-8}$		212	h
1		1	$f_{3,0} =$		231	к
	C2IT 428	-	$=(5,3\pm1,0)\cdot10^{-6}$		80	1
	$C^{-}M - A^{-}Z$		7.0.40-1		333	$\begin{bmatrix} 1, 0 \\ h \end{bmatrix}$
	$C^2\Pi - X^2\Pi$		9 0.10-3		10.334	ม ล
	(8-с и стема)		$9.7.10^{-2}$		74	
]	(0 0]	$1,70 \cdot 10^{-2}$		79	1 î
		0,10			105	l
		0,09			106,107	
	$D^2\Sigma - X^2\Pi$	0.00	$1,37.10^{-2}$		79	1
	(е-система)	0,08	4 20 40-2	19 1 1 0	105	
		0.08	1,20.10 -	$10, 4 \pm 4, 0$	106 107	
NO+	$A^{1}\Pi = X^{1}\Sigma$	0.062	$1.6.10^{-2}$	55 7 (0)	243	
Na,	$A^{1}\Sigma - X^{1}\Sigma$	0,00-	-,0 10	10000	262	č
	$B^{1}\Pi - X^{1}\Sigma$	· · · · · · · · · · · · · · · · · · ·		$6,4\pm0,4$ (10)	81	c
)		$6,7\pm0,3$ (9)	260	c
O_2	$A^3\Sigma - X^3\Sigma$		$f_{7,0} = 1,24 \cdot 10^{-10}$		89	h
	перехол сис-	{	~ 1.10-7		210	Ъ
	тема Герцбер-		1.10			
í l	га I)	1			ĺ	
	$C^{3}\Sigma - X^{3}\Sigma$	0,25-0,34			82	a
	(система Шу-	10(0,10)	$f_{5,1} = 1, 5 \cdot 10^{-5}$		84	
	мана — Рунге)	(0,15)	$I_{2,0} = 2,69 \cdot 10^{-8}$		80 80	h h
			$J_{0,0} = 5, 5 \cdot 10^{-10}$		87	н f
		}	4.0.10-2		88	
		0,75 по (0,0)	*, 0 * 0		105,152	1
		0,75 по (0,0)			106,107	l i l
t l		ļ]]

Таблица I (продолжение)

Таблица I (продолжение)

				Таблица	I (npo∂	олжение
Мо ку —	оле- ла Электронный переход	<i>R_e^{mn}</i> ² , ат. ед.	f ^{mn} _e	t, ncer	Литера- тура	Метод
0	b^{+} $b^{4}\Sigma - a^{4}\Pi$		$f_{0,0} =$	$\begin{vmatrix} 1200 \pm 400 & (0) \\ 20 - 170 & (0 - 7) \\ 1120 \pm 40 & (0) \end{vmatrix}$	38 104 351	C C C
0	$ \begin{array}{c c} A^2\Pi - X^2\Pi \\ H & A^2\Sigma - X^2\Pi \end{array} $	0,10	$ \begin{bmatrix} (1,02\pm0,08)\cdot10^{-1} \\ (0,50\pm0,03)\cdot10^{-2} \\ f_{0,0} = \\ = (1,48\pm0,13)\cdot10^{-2} \end{bmatrix} $	676 ± 56 (0)	351 90	с к
			$\begin{vmatrix} f_{0,0} = \\ = (7,7\pm1,1) \cdot 10^{-4} \end{vmatrix}$	850±130 (0)	91	с
			$\int_{1}^{1} f_{0,0} = (7, 1+1, 1) \cdot 10^{-4}$	660 ± 20	232 274	c h
			$ \begin{bmatrix} f_{0,0} - f_{0,0} \\ - f_{0,3\pm 1,0} \\ - f_{0,0} \\ $	770 ± 80	275	с
			$\begin{vmatrix} f_{0,0} = \\ = (8,0\pm0,8) \cdot 10^{-4} \end{vmatrix}$	1010 ± 50	276	с
			$f_{0,0} =$	775 (0)	360 187	c c
S ₂	$E^{3}\Sigma - X^{3}\Sigma$		$ \begin{bmatrix} = (8,4\pm0,8)\cdot10^{-4} \\ f_{0,0} = 9,6\cdot10^{-4} \end{bmatrix} $	$16,9\pm3,5 \\ 2, 3)$ (0, 1,	370 48	h c
			$\left \sum_{2}^{26} f_{v',0} = 6,17 \cdot 10^{-2}\right $		71	c
sc	$A^{3}\Pi - X^{3}\Sigma$ $B^{3}\Sigma - X^{3}\Sigma$ $(2\Pi - 2\Pi)^{2}$		$ \begin{vmatrix} 6 & 1,60 \cdot 10^{-1} \\ f_{0,0} = 9,0 \cdot 10^{-3} \end{vmatrix} $	$12,4\pm2,5$ 17,3 $\pm3,3$ (0)	92 280,281 48,71	b c c
Sil	$\begin{array}{c c} & (-1111) \\ \hline & A^2 \Sigma - X^2 \Pi \\ & (\alpha - C W C T e M a) \end{array}$	$5,9{\pm}0,6$	$(4,1\pm0,4)\cdot10^{-1}$	$10,2\pm 2,0$	48 93	c a
	$B^2\Sigma - X^2\Pi$ (β -система)	≪0,6	$\leqslant 4\cdot 10^{-2}$		94	0
Sil Sil SiH SiC	$\begin{array}{c c} H & \dot{A}^{2}\Delta - X^{2}\Pi' \\ \dot{A}^{4}\Delta - X^{2}\Pi \\ \dot{A}^{4}\Pi - X^{4}\Sigma \\ \dot{A}^{4}\Pi - X^{4}\Sigma \end{array}$	$0,048\pm0,009$	$\begin{array}{c} f_{0,0} = \\ = (3,7\pm0,6)\cdot10^{-3} \\ f_{0,0} = (8\pm4)\cdot10^{-4} \\ f_{0,0} = 2,4\cdot10^{-3} \\ f_{0,0} = 4,5\cdot10^{-3} \\ f_{0,0} = 3,3\cdot10^{-3} \\ f_{0,0} = 5,0\cdot10^{-4} \\ (2,3\pm1,3)\cdot10^{-2} \\ (2,3\pm1,3)\cdot10^{-2} \\ (6\pm1)\cdot10^{-3} \end{array}$	700±100 (0) 680±100 (0)	70,71 95 96 97 98 70 98 99 100 101	c s s s c s a a d
		$0,204\pm0,04$ no 0,0	1,0.10-1		102 202	r d
SiO Sn($ \begin{array}{c} + & 3022 \text{\AA} \ (?) \\ a^{3}\Pi - X^{1}\Sigma \end{array} $		1,3.10-1	9,6±1,0 8,3±0,8 т зависит от природы мат-	220 220 51	c c c—m
Sn8 TiC	$ \begin{array}{c} D^{1}\Pi - X^{1}\Sigma \\ a^{3}\Pi - X^{1}\Sigma \\ (C^{3}\Delta - X^{3}\Delta) \\ (\alpha - \text{система}) \end{array} $		$f_{0,0} = 2,02 \cdot 10^{-4}$ 0,030 $\pm 0,006$ no (0,0)	рицы То жө	200 51 103	e - m = b
	$\begin{vmatrix} A^{3}\Phi - X^{3}\Delta \\ (\gamma-система) \end{vmatrix}$		$0,089\pm0,036$ no (0,0)		103	b
 YO	$\begin{bmatrix} C^{1}\Psi - A^{1}\Delta \\ (\beta - CHCTEMA) \\ R^{2}\Sigma - X^{2}\Sigma \end{bmatrix}$	0,4146	$2,25 \cdot 10^{-2}$ 2,49,40-2	253 (0)	233	b
<u> </u>		0,000	2,45.10 2	140 (U)	203	e

Джонсона ²⁶⁹ (одного из авторов ²⁶⁸) показано, что результаты работы ²⁶⁸ являются ошибочными.

опибочными. Молекула СН. В таблице по работе ²³ приведены два значения времени жизни, соответствующие F_1 - и F_2 -уровням $C^2\Sigma$ -состояния. В работе ²³ высказано предположе-ние, что аномально малые значения τ_{F_1} и τ_{F_2} обусловлены предлиссоциацией молекулы СН в $C^2\Sigma$ -состоянии, а различие этих величин связано с различной вероятностью пред-диссоциации уровней F_1 и F_2 . Приведенное в таблице значение $|R_e^{mn}|^2 = (1, 6 \pm 0, 3) \times \times 10^{-2}$ ат. ед. для $C^2\Sigma - X^2\Pi$ -перехода получено из работи ³⁶¹ с поправкой на пра-вильную нормировку факторов Ханле — Лондона в работе ¹⁶². Молекула СN (красная система). Значение $|R_e^{mn}|^2$, определенное в работе ³¹, позже было уточнено авторами в ³², и в таблице по ³¹ приводится уточненное значение $|R_e^{mn}|^2 = 0,10$ ат. ед. Аналогично авторы ¹⁰⁹ получили τ ($A^2\Pi$) = 3,5 мксек, которое иозже было ими исправлено на τ ($A^2\Pi$) = 8,0 мксек, как указано в ²⁷⁸. Отметим также что значения $|R_1^{mn}|^2$. полученные методами излучения или поглощения, определены

новые онын исправлено на (А п) — 0,0 жилл, на учалы в – 0 листы на напла что значения $|R_{c}^{mn}|^2$, полученные методами излучения или поглоцения, определены с использованием различных значений энергии диссоциации молекулы СN. В работах ³¹, ²⁶⁷ значение D_{CN} принималось равным 7,5 эв, в ²⁷⁸ — $D_{CN} = 7,89$ эв, в ³²⁶ — $D_{\rm CN} = 7.6 \ s_{\theta}.$

Фиолетовая система. При определении $|\mathbb{R}_{e}^{mn}|^{2}$ фиолетовой системы также использовались различные значения D_{CN} : в 278—7,89 зе, в 27, 28, 314—7,5 зе. Молекулы GeO, GeS, SnO, SnS. Времена жизни возбужденных состояний интерком-бинационных переходов $a^3\Pi - X^1\Sigma$ этих молекул определены в работе ⁵¹ с использованием низкотемпературной матрицы. Полученные значения т не приводятся в табл. І, поскольку они зависят от температуры и природы матрицы. Молекулы NH⁺ и SCl. Отнесение наблюдаемых в ⁷⁰ и ⁴⁸ молекулярных систем,

по мнению самих авторов, является сомнительным.

Молекулы NO и O₂. Так как в у- и β -системах NO и системе Шумана — Рунге O₂ наблюдается сильная зависимость R_e (r) (см. табл. II), то в табл. I значения $|R_e^{mn}|^2$ и f_e^{mn} приводятся с указанием полос (если это было возможно), по которым они определялись.

Молекула SO. Значение $f_{0,0}$ $A^{3}\Pi - X^{3}\Sigma$ -перехода SO определено по времени жизни из работы ²⁸¹. Как показано в работе ²⁸⁰, измеренное в ²⁸¹ значение τ следует от-нести к $A^{3}\Pi$ -состоянию A - X-перехода молекулы SO, а не к SO₂, как считалось ранее в ²⁸¹.

Молекула S₂. В работе ⁷¹ для $B^{3}\Sigma - X^{3}\Sigma$ -системы приведена величина $\sum_{n'=-a}^{26} f_{погл} =$

 $= 6,17 \cdot 10^{-2}$ и $\sum_{n=1}^{16} f_{_{H3,\Pi}} = 0,14$. Несовпадение этих величин объясняется авторами сдви-

гом максимумов интенсивности в поглощении и испускании: для поглощения λ_{\max} 💳 = 2600 Å, для испускания $\lambda_{\max} = 4200$ Å. Значению $\Sigma f_{\text{погл}} = 0.062$ соответствует величина $|R_e^{mn}|^2 = 0.58$ ат. ед., усредненная по интервалу 2440—2930 Å.

В табл. И представлены результаты работ по изучению зависимости матричных элементов дипольных моментов электронных переходов от межъядерного расстояния, опубликованные за период с 1966 по 1973 г. Дапные, полученные до 1966 г., были систематизированы в работе Ортенберга и Антропова ⁹ *). В первом и втором столбцах табл. II указаны соответственно молекула и тип изученного электронного перехода. В третьем столбце приводятся аналитические выражения зависимостей матричных элементов дицольных моментов электронных переходов от значений r-центроид. В том случае, если в табл. II не приводится аналитическая зависимость $R_e(r)$, то это означает, что в соответствующей оригинальной работе дана графическая или табличная зависимость R_e(r). Во всех случаях указывается интервал г-центроид (четвертый столбец), для которого установлена зависимость $R_{e}(r)$.

Как уже указывалось, в табл. І представлены результаты всех известных авторам работ по определению абсолютных вероятностей электрон-

^{*)} В недавно опубликованной работе Клемсдаля 340 также приведены данные по зависимостям R_e (r) для некоторых молекул.

⁸ УФН, т. 113, вын. 2

Моле- кула	Электронный переход	$R_e(r)$	Пределы г, А	Литера- тура
A10	$B^{2}\Sigma - X^{2}\Sigma$		1.48-1.89	115
BF	$A^{\dagger}\Pi - X^{\dagger}\Sigma$	$const \cdot (1 - 0.46r)$	1,10 1,00 1.50-1.85	184
	{	$const \cdot exp (0,205r)$	1,20-1,45	118
BO	$A^2\Pi - X^2\Sigma$	$const \cdot (1 - 0, 3954r)$	1,24-1,33	121
	$\int \frac{D^2\Sigma - B^2\Sigma}{2}$	$\operatorname{const} \cdot (1 - 0,911r)$	1,415-1,528	122
BaF	C - X	$const \cdot (1 - 0,479r)$	2,176-2,225 1 98-2 13	123
BaU	$A^{T}\Sigma - X^{T}\Sigma$	$const \cdot (1 - 0.775r)$	1,972,19	215
		$[\text{const} \cdot [1,00 - 41,3 (r - 2,0268)^2]]$	1,88-2,12	362
BeO	$B^1\Sigma - X^1\Sigma$		1,101,70	248
BiCl	A - X	$const \cdot \{1 \pm 0, 325 \exp [-(r_{00} - r_{n'n''})]\}$		203
C.	$d^3\Pi - a^3\Pi$	0,15(1-5,07r)	1,28-1,40	249
-	(система Свана)		1.01 1.005	0.00
CN	$A^2\Pi - X^2\Sigma$	$a = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \frac{1}{6} \left(\frac{1}{2} - \frac{1}{2} \right) \right]$	1,04-1,205 1 05-1 25	278 291
	$B^2\Sigma - X^2\Sigma$	const. $(-1+1,7r)$	0,95-1,32	185
	2		1,05-1,36	342
CO	$A'\Pi - X'\Sigma$		1,38-1,55	186
		1,9(1,0-0,6r)	1,03-1,40 1,12-1,38	355
	$B^1\Sigma - X^1\Sigma$	$9,21 \cdot 10^{-18} (1 - 0,855 \cdot 10^{8}r)$	1,00-1,26	222
	$b^3\Sigma - a^3\Pi$		1,08-1,14	186 286
CO+	$a^{3}\Delta - a^{3}\Pi$ $a^{2}\Pi = V^{2}\Sigma$	const $(-1 \pm 1.7380r \pm 0.7454r^2)$	1,13-1,20 1.07-1.20	135
COF	A-11 A-2	$const \cdot (-1+1,7266r-0,7324r^2)$	1,10-1,20	206
Í		const	1,07-1,19	223 365
ļ	$B^2\Sigma - X^2\Sigma$	const	1,06-1,36	46
			1,05-1,42	47
		const	1,10-1,30 1,10-1,30	365
н.	$B^{1}\Sigma - X^{1}\Sigma$	$const \cdot [1+1,42 (r_{r'0}-0,76)]$	0,65-0,95	246
112	$C^{1}\Pi - X^{1}\Sigma$	const $\left[1+0,31(r_{p'0}-0,73)\right]$	0,60-0,90	246
LaO	$B^2\Sigma - X^2\Sigma$	const $\cdot \exp((1-1.98r))$	1,643-1,995	207
MgO	$B'\Sigma - X'\Sigma$	$const \cdot (-0.6405 + 0.9778r)$	1,63-2,02	148
MnO	4800—6700 Å	$const \cdot (1 - 3, 192r - 1, 99r^2)$	1,736—1,90	150
N ₂	$B^3\Pi - A^3\Sigma$	const $(1-1,278r+0,410r^2+0,020r^3)$	1.19-1.43	56
}	(первая положи-		1,10 1,10	
]	, , ,	$const \cdot (1 - 1, 186r + 0, 3278r^2)$	1,15-1,60	190
		const $\cdot [-2.25(r-1.414)+1]$	1,28-1,55	59
		const	1,20-1,60	178
	i i	$const \cdot (1 - 1,2550r + 0,4003r^2)$ $const \cdot (1 - 4,2677r - 0,4142r^2)$	1,16-1,61	348
	$C^3\Pi - B^3\Pi$		1,025-1,275	186
	(вторая положи- тельная система)	$const \cdot (-1 + 1,9669r - 0,8636r^2)$	1,031,30	190
	Constant Onerconta)	$const \cdot (-1 + 2,1047r - 0,9357r^2)$	1,03-1,30	348 192
	$A^{3\Sigma} - X^{1\Sigma}$	$const \cdot (-1, 200 + r)$ $const \cdot (-1 + 0.845r)$	1,200-1,413 1,23-1,43	191
	да — Каплана)		1.01.1.00	103
		$const \cdot (-1+0.837r)$	1,24-1,50 1,10-1.40	64

Зависимости $R_e(r)$

Моле- кула	Электронный переход	R _e (r)	Пределы r, Å	Литера- тура
N_2^+	$B^{2}\Sigma \longrightarrow X^{2}\Sigma$ (первая отрица- тельная система)	$0,45 \ [1+12,3 \ (r-1,16)^2]^2$	$_{0,90-1,28}^{0,90-1,28}_{0,97-1,28}$	68 194
(, ,	$const \cdot (r - 0, 72)^{-1/2}$	0,95-1,22	195
		const	$3400-5400 \mathrm{A}$ 0.974-1.153	330 380
	$A^2\Pi - X^2\Sigma$	$const \cdot (-1 + 1,820r - 0,814r^2)$	1,024-1,120	196 325
	(система маинела)	$const \cdot [1, 30 (r - 0, 677) + 1]$	0,90-1,40 1,02-1,12	59
NO	$A^2\Sigma - X^2\Pi$		1,11-1,20	77
	(ү-система)	$const \cdot (-1 + 2.1018i - 1.0597r^2)$	$\begin{bmatrix} 1,00-1,20 \\ 0.9981-1.1403 \end{bmatrix}$	78 157
			1,01-1,16	197
NO+	41TT X15		1,00-1,20	198 2.37
nov	A-11	4,7(1-0,68r)	1,12-1,28 1,10-1,30	347
O_2	$A^3\Sigma^+_u - X^3\Sigma^g$	$\operatorname{const} \cdot r^{-3,8\pm0,1}$	1,311,53	208
	$C^{3}\Sigma_{u}^{-} - X^{3}\Sigma_{g}^{-}$	const (4 0.70-)	1,359-1,374	86
,	на Рунге)	$const \cdot (1 - 0, 70r)$	1,325-1,355	140
0_{2}^{+}	$A^2\Pi - X^2\Pi$	$R_{0,0} [1 + 0.86 (r_{v'v''} - r_{0,0})]$	1,20-1,40	351
ОН	$A^2\Sigma - X^2\Pi$	$const \cdot exp [-(5,97\pm0,12) r]$	0,8-1,3	199
PbO	$B1 - X^{1}\Sigma$	$\operatorname{const} \cdot (1 - 0,5408r)$	2,020-2,148	163
SiBr	$B^2\Sigma - X^2\Pi$	$\cosh \frac{1}{2} \exp (4,11 - 1,92r)$	2,097-2,282	167
SICI	$B^{2}\Sigma \rightarrow X^{2}\Pi$	$const \cdot exp (6,31 - 3,05r)$ $const \cdot (1 - 0,3856r)$	1,924-2,075 1,903-2,06	168
	$A^2\Sigma - X^2\Pi$	const	1,626-1,735	169
SiF	$B^2\Sigma \rightarrow X^2\Pi$	$const \cdot exp (6,35 - 4,10r)$	1,454-1,635 1,43-1,62	167 94, 170
	$A^{\dagger}\Pi - X^{\dagger}\Sigma$		1,563 - 1.661	202
SiO	$A^{2}\Sigma - X^{2}\Pi_{1/2}$	$\operatorname{const} \cdot (1 - 0,5307r)$	1,9-2,2	168
SnF	$A^{2}\Sigma - X^{2}\Pi_{3/2}$	$const \cdot (1 - 0,5208r)$	1,9-2,2	168
SnO	$D^{4}\Pi - X^{4}\Sigma$	$const \cdot (1 - 1, 119r + 0, 356r^2)$	1,8-2,2	200
TiO	$C^{3}\Delta - X^{3}\Delta$			103
	$A^{3}\Phi - X^{3}\Delta$		1	103
vo	(у-система)			240
10	$B^{2}\Sigma - X^{2}\Sigma$	$const \cdot (1 - 0, 112r - 0, 028r^2)$	1,734-1,898	240
				1

Таблица II (продолжение)

ных переходов, опубликованных за период 1961—1973 гг., однако нужно подчеркнуть, что эти результаты часто значительно различаются между собой. В связи с этим авторы поставили перед собой задачу рекомендовать наиболее надежные значения квадратов матричных элементов дипольных моментов электронных переходов. При выборе рекомендуемых значений $|R_e^{mn}|^2$ критически анализировались данные всех работ, представленных в табл. 1, и наиболее надежные, по мнению авторов, работы использовались для выбора рекомендуемых значений $|R_e^{mn}|^2$. Эти значения представлены в табл. III; в седьмом столбце этой таблицы указаны работы, по данным которых рекомендуется $|R_e^{mn}|^2$. В том случае, если для выбора $|R_e^{mn}|^2$ использовалось песколько работ, значение $|R_e^{mn}|^2$ получалось как среднее арифметическое по данным этих работ.

Таблица III

Моле-	Электронный	$\left R_{e}^{mn} \right ^{2}$,	ат. ед.		Класс	
кула	переход	по полосе (0,0)	среднее	v'=0, ^{H/CEK}	точ- ности	Литература
AIO	$B^{2}\Sigma - X^{2}\Sigma$	0,48		127	В	217
BB.	$A^{1}\Pi - X^{1}\Sigma$	0,97		25.6	c	242
BCI	$A^{1}\Pi - X^{1}\Sigma$	1,04		19,1	В	243
BF	$A^{1}\Pi - X^{1}\Sigma$	2,88	1	2,8	В	243
BH	$A^{1}\Pi - X^{1}\Sigma$	0,50		159	В	245
BaO	$A^{1}\Sigma - X^{1}\Sigma$	0,50		356	C	269
BeO	$B^{1}\Sigma - X^{1}\Sigma$	0,58		90	в	266
C_2	$d^3\Pi = a^3\Pi$		0,50	150	C	14, 16, 249, 250, 292
C_2^-	$B^2\Sigma - X^2\Sigma$	0,30			D	353
CF	$A^2\Sigma - X^2\Pi$		0,20	40 0	C	243 293 243
	$D^2 \Sigma - \Lambda^2 \Pi$	0.076	0,11	10,0		21 23 245 250 381
CH	$A^2\Delta - X^2\Pi$ $B^2\Sigma - X^2\Pi$	0,070	0.042	346	B	23, 25, 250, 381
ł	$\tilde{C}^2 \tilde{\Sigma} - \tilde{X}^2 \Pi$	0,016	•,•==	480	õ	162,361
CD	$A^2\Delta - X^2\Pi$	0,083		470	В	245
CH+	$A^{1}\Pi - X^{1}\Sigma$		0,98	74	D	245, 357, 381
CN	$\begin{array}{c} A^2\Pi - X^2\Sigma \\ B^2\Sigma - X^2\Sigma \end{array}$	0,40	0,24	7680 74	B B	31, 109, 110, 267, 278, 326 26-28, 30, 37
CO	$A^{1}\Pi - X^{1}\Sigma$		0,59	7,8	B	44, 45, 243, 345, 355, 356
	$B^{1}\Sigma - X^{1}\Sigma$	0,031	0.52	$\frac{24,4}{1,2}$	B	55, 222, 245, 346 19, 43
	$E^{1}\Pi - X^{1}\Sigma$		0,34	1,2	B	43
	$b^3\Sigma - a^3\Pi$		0,14	67	B	33, 34, 35, 37, 379 39 40 204 358
001	$a_{3}\Pi - X^{1}\Sigma$		0.08	3700	D C	38, 221, 223, 283, 350
C0+	$ \begin{array}{c} A^2\Pi - X^2\Sigma \\ B^2\Sigma - X^2\Sigma \end{array} $		0,00	47	č	19, 38, 46, 127, 221, 243, 319
cs	$A^{1}\Pi - X^{1}\Sigma$	0.082		220	С	48, 263
H.	$B^{1}\Sigma - X^{1}\Sigma$	-,	1,0	0,5	C	52, 53, 251, 252
2	$C^{1}\Pi = X^{1}\Sigma$		1,0	1,4	С	251, 252
N_2	$B^3\Pi - A^3\Sigma$		0,15	9100	в	22, 56, 57, 59, 61, 63, 111, 177, 178, 180, 181, 224, 265,
	$C^{3}\Pi - B^{3}\Pi$		0,53	42	в	22, 35, 57, 59, 62, 159, 221, 227, 243, 255, 265, 272
	$A^3\Sigma - X^1\Sigma$		1.10-8	7,5.109	D	63, 64
[$a^{i}\Pi - X^{i}\Sigma$		3,4.10-5	121.103	B	41, 00, 228, 270, 271
Nz	$A^2\Pi - X^2\Sigma$		0,15	13 000	В	179, 223, 224, 226, 329, 335, 349
	$B^2\Sigma - X^2\Sigma$		0,51	66	В	35, 57, 59, 62, 66-68, 159, 221, 226, 227, 243, 253- 255, 272, 327
NH	43TT V3N	0.086		440	в	21, 62, 69, 70, 71
	$c^{1}\Pi - a^{1}\Delta$	0,000	0,043	480	C	70, 71
ļ	$d^{1}\Sigma - c^{1}\Pi$		0,23	18	C	70, 71
	$c^{1}\Pi - b^{1}\Sigma$	0.010	0,19	400	B I	76. 78. 230. 288
NO	$\begin{array}{c c} A^2\Sigma - X^2\Pi \\ B^2\Pi & Y^2\Pi \end{array}$	0,018			čl	212
ł	$C^2\Pi - X^2\Pi$	0,01	0,056		Č	10, 334
İ	$D^2\Sigma - X^2\Pi$		0,076	18,4	C	243 80, 333
	$(^{2}\Pi - A^{2}\Sigma)$		20,4	l	ч	

Рекомендуемые значения квадратов матричных элементов дипольных моментов электронных переходов и времен жизни возбужденных состояний соответствующих переходов для двухатомных молекул

моле-	Электронный	Электронный $\left \frac{R_e^{mn}}{R_e^{n}} \right ^2$, ат. ед.		- τ _{n'-0} , μ/ceκ	Класс	Turnene aun e
кула	переход	по полосе (0,0)	среднее	v'=0, ", con	точ- ности	литература
$\begin{array}{c} \mathrm{NO^{+}}\\ \mathrm{O}_{2} \end{array}$	$\begin{vmatrix} A^{1}\Pi - X^{1}\Sigma \\ C^{3}\Sigma - X^{3}\Sigma \\ A^{3}\Sigma - X^{3}\Sigma \end{vmatrix}$	0,75	0,062 8,3.10-7	55,7	C B D	243 10, 152 210
он	$A^2\Sigma - X^2\Pi$	0,010		780	В	91, 187, 232, 274–276, 360, 370
S ₂ SO SiF SiH SiH+ SiO SnO TiO	$B^{3}\Sigma - X^{3}\Sigma$ $A^{3}\Pi - X^{3}\Sigma$ $B^{3}\Sigma - X^{3}\Sigma$ $A^{2}\Sigma - X^{2}\Pi$ $A^{2}\Delta - X^{2}\Pi$ $A^{1}\Pi - X^{1}\Sigma$ $A^{1}\Pi - X^{1}\Sigma$ $D^{1}\Pi - X^{1}\Sigma$ $A^{3}\Phi - X^{3}\Delta$ $C^{3}\Delta - X^{3}\Delta$ $C^{1}\Phi - a^{1}\Delta$ $B^{2}\Sigma - X^{2}\Sigma$	$0,61 \\ 5,9 \\ 0,048 \\ 7,76 \cdot 10^{-2} \\ 0,012 \\ 2,1 \\ 0,50 \\ 0,41 \\ 0,40 \\ 0 \\ 40 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0,58 1,0 1,1	3,5 740 9,6 3800 253 140	C C C C B C C C B C C C C C C B C C C C	48, 71 280, 281 48, 71 93 71, 96–98 98 220 200 103 103 233 289
10	$D^{2}\Delta - \lambda^{2}\Delta$	0,40		140	G	200

Γ	a	б	л	И	n	a	III -	продолжение	Ì
		~	•••	_	_	~~			

Чтобы охарактеризовать надежность рекомендуемых значений, каждая вероятность относилась к определенному классу точности в соответствии с классификационной схемой, принятой в ³³⁷. При этом, если погрешность в определении $|R_e^{mn}|^2$ составляет менее 3%, величина относится к классу А, к классу В отнесены величины с погрешностью менее 10%, к классу С — менее 25%, к D — до 50%. Погрешность рекомендуемых величин определялась как случайная ошибка среднеарифметического значения ³³⁸, которая рассчитывалась с использованием среднеквадратичных ошибок отдельных измерений.

Принимая во внимание, что величина $|R_e^{mn}|^2$ в общем случае зависит от межъядерного расстояния (см. табл. II), авторы стремились рекомендовать значения $|R_e^{mn}|^2$ по определенной колебательной полосе (по полосе (0, 0), если это было возможно). В том случае, если соответствующих данных не было, рекомендовалось среднее значение $|\overline{R}_e^{mn}|^2$ для всего электронного перехода.

В иятом столбце табл. III приведены значения времен жизни нулевых колебательных уровней верхних электронных состояний в соответствующем переходе, определенные из рекомендуемых величин $|R_e^{mn}|^2$ по формуле (45). Как следует из (45), расчеты $\tau_{v'=0}$ проведены в предположении о независимости R_e от r, однако для ряда молекулярных систем указанное предположение оказывается весьма грубым. Такими системами являются, например, система Шумана — Рунге O_2 , β -система и γ -система NO, $B^3\Sigma$ — $X^3\Sigma$ -система S₂ и некоторые другие, для которых в табл. III значения $\tau_{v'=0}$ не приводятся.

В заключение кратко остановимся на некоторых результатах табл. III.

Молекула ВеО. Вероятность $B^{1}\Sigma - X^{1}\Sigma$ -перехода ВеО определена в двух работах ²⁴⁸, ²⁶⁶. Результаты этих работ значительно отличаются. Так как при определении концентрации молекул ВеО в ²⁴⁸ могли быть допущены значительные опибки, нам представляется более надежным значение $|R_{e}^{mn}|^{2}$, полученное в ²⁶⁶, которое и приведено в таблице.

Молекула СF. Вероятность $A^{2}\Sigma - X^{2}\Pi$ -перехода определялась по временам жизни ¹⁹, ²⁴³ и по излучению за фронтом ударной волны ²⁹², ²⁹³. Результаты этих работ хорошо согласуются, если при расчете состава и газодинамики за фронтом ударной волны использовались уточненные термодинамические данные по CF и CF₂, предложенные в ²⁹². Заметим также, что при определении $|R_e^{mn}|^2$ в ²⁹² авторами была допущена расчетная ошибка, которую они исправили в ²⁹³. В таблице рекомендуется усредненное значение $|R_e^{mn}|^2$ по ²⁴³, ²⁹³.

Молекула СN. Как уже отмечалось в комментариях к табл. І, значения $|R_e^{mn}|^2$ для красной и фиолетовой систем, полученные методом поглощения или излучения, определялись с использованием различных значений $D_{\rm CN}$. При выборе рекомендуемых значений все эти величины были пересчитаны к значению энергии диссоциации $D_{\rm CN} = 7,5$ зв, так как именно в этом случае они лучше всего коррелируются с результатами по временам жизни.

Молекула СО. Среднее значение $|R_e^{mn}|^2$ для третьей положительной системы $b^3\Sigma - a^3\Pi$ рекомендовано для диапазона длин волн 2980—3900 Å. Значение $|R_e^{mn}|^2$ для системы Камерона $a^3\Pi - X^1\Sigma$ дается по поглощению в кюветах и ударных трубах. Данные по временам жизни противоречивы и во внимание не принимались.

Молекула NO. Рекомендованное значение $|R_e^{mn}|^2$ для б-системы $C^2 \Pi - X^2 \Pi$ получено при обработке данных по поглощению воздуха за отраженной ударной волной ³³⁴.

Молекула SiO. Значение $|R_e^{mn}|^2$, $A^1\Pi - X^1\Sigma$ -перехода рекомендовано по временам жизни $A^1\Pi$ -состояния из работы ²²⁰ для интервала длин волн 2340—2820 Å. Значения $|R_e^{mn}|^2$, определенные с использованием термодинамических данных в работах ⁹⁹⁻¹⁰², ²⁰², различаются между собой по порядку величины. Это может быть связано с неопределенностью расчетных значений концентраций SiO из-за ненадежности данных по термодинамическим свойствам высоконагретых компонент газа (в частности, SiCl₃, SiCl и др.; см., например, ³³⁹).

5. ФАКТОРЫ ФРАНКА — КОНДОНА

Согласно (28) вероятность колебательного перехода определяется значением фактора Франка — Кондона $q_{v'v''}$, равного квадрату интеграла перекрывания колебательных волновых функций. Для расчета факторов $q_{v'v''}$ необходимо выбрать потенциал U(r), решить колебательное уравнение Шрёдингера

$$\frac{d^2\Psi_v}{dr^2} + \frac{2\mu}{\hbar^2} \left[E_v - U(r) \right] \Psi_v = 0,$$
(68)

найти значения колебательных волновых функций Ψ_v , удовлетворяющих уравнению (68), затем подставить полученные значения Ψ_v в выражение (28) и вычислить интеграл перекрывания.

Факторы Франка — Кондона будут вычислены тем точнее, чем точнее заданы колебательные волновые функции. Точность же колебательных волновых функций определяется соответствием используемой потенциальной функции истинному потенциалу молекулы и приближением, применяемым при решении уравнения Шрёдингера.

Исследования, посвященные применению различных потенциалов для расчета факторов Франка — Кондона, суммированы в обзорных статьях ^{9,382}, поэтому мы ограничимся простым перечислением этих молекулярных потенциалов: гармонический и некоторые его модификации, потенциал Ленарда — Джонса, потенциал Гульберта — Гиршфельдера, потенциал Морзе и, наконец, различные «истинные» потенциалы, полученные на основе спектроскопических данных. В последние годы расчеты $q_{v'v''}$ производятся в основном либо с помощью потенциала Морзе, либо с помощью истинных потенциалов, полученных методом Ридберга — Клейна — Рисса³⁰⁰, модифицированного затем Вандерслайсом ³⁰¹ и Жарменом ³⁰² (подробное обсуждение этих методов см. в ³⁰³). Потенциал Морзе приводит к точному решению уравнения Шрёдингера. При этом волновые функции Ψ_p выражаются через знакопеременные полиномы Лаггера и интегрирование (28) оказывается достаточно сложным. Благодаря применению ЭВМ трудности интегрирования (28) принципиально решены. Разработаны различные варианты программ численного интегрирования с использованием потенциала Морзе; описание алгоритмов этих программ можно найти как в зарубежной, так и в отечественной литературе. В настоящее время выполнено большое число работ по расчету факторов Франка — Кондона с использованием потенциала Морзе (табл. IV).

Отметим, что в связи с отмеченной выше трудностью численного интегрирования (28), в особенности при отсутствии ЭВМ, плодотворной оказалась идея использования различных приближенных методов расчета интеграла наложения для потенциала Морзе. Наибольшее распространение из таких приближенных методов получил известный метод «α-усреднения» ³⁰⁴ (подробности метода см. также в ¹⁶⁷). При использовании метода а-усреднения оказывается достаточно просто проинтегрировать выражение (28) аналитически и получить несложные рабочие формулы для расчетов факторов Франка — Кондона. Наравне с методом численного интегрирования потенциала Морзе метод а-усреднения широко используется до настоящего времени и дает хорошие результаты (см., например, серию работ за последние годы ¹¹⁸, ¹¹⁹, ¹⁴⁸, ¹⁶⁷, ¹⁶⁸).

Мы так подробно остановились на известных методах численного интегрирования потенциала Морзе и α -усреднения потому, что в последнее время сложилось почти общепринятое мнение, что только использование метода RKR дает надежные значения факторов Франка — Кондона. Так, в обзоре Ортенберга и Аптропова ⁹ по факторам $q_{v'v''}$ утверждается, что использование потенциала Морзе может приводить к значительным погрешностям в определении $q_{v'v''}$, и рекомендуется везде, где это возможно, использовать «истинные» потенциалы.

Мы тщательно проанализировали этот вопрос. Дело в том, что использование потенциалов RKR имеет свои существенные трудности: 1) уравнение Шрёдингера (68) точно не решается с использованием потенциалов RKR, и поэтому всегда применяются приближенные методы решения (например, $^{305, 306}$), что, естественно, вносит неточность в определяемые волновые функции — в литературе в настоящее время практически отсутствует анализ погрешностей в величинах $q_{b'v'}$ за счет приближенного решения уравнения (68); 2) не всегда существует достаточное количество надежно определенных спектроскопических данных для построения «истинных» потенциалов (особенно в области высоких v).

В последние годы для многих молекул на основе спектроскопических данных построены истинные потенциальные кривые и сравнены с кривыми Морзе (^{61, 285} и др). Практически во всех случаях отмечается хорошее согласие между формой истинной и морзевской потенциальных кривых (по поворотным точкам), хотя, разумеется, в некоторых случаях наблюдается несоответствие потенциала Морзе «истинным» потенциалам. Например, такое несоответствие наблюдается для $B^2\Sigma$ -состояния CH ³⁰² и для $B^2\Sigma$ -состояния AlO ¹¹⁴.

Меньшее количество работ известно по расчету факторов Франка — Кондона как по функции Морзе, так и по истинным RKR-функциям. Остановимся на некоторых из них подробнее. В работе Флипна и др. ³⁰⁷ рассчитаны факторы $q_{v'v''}$ для γ -системы NO на основе кривых RKR. Несмотря на то, что формы кривых RKR и Морзе хорошо совпадают в этом случае, особенно для малых v, Флинн нашел, что фактор $q_{v'v''}$ даже для (0,0)-полосы отличается примерно на 40% от морзовского значения $q_{0,0}$. Авторы объяснили это странное различие тем, что истинные волновые функции расположены на участках за классическими поворотными точками

т	a	б	л	и	ц	a	IV
---	---	---	---	---	---	---	----

					• • • • • • • • • • • • • • • • • • • •
Молекула	Электронный переход	vmax	v"max	Метод	Литера- тура
AgCl	RIN VIN	5	3		299
AUE		5	2		236
	$A^{+}\Pi = A^{+}Z$	J 1		m, n	112
AID	$A^{+}\Pi = A^{+}\Sigma$		4		149
	$A^*\Pi \rightarrow A^* \Delta$	4	4	n n	443
AIU	$B^{\mu}\mathcal{L} \rightarrow A^{\mu}\mathcal{L}$	Q	9	B	114
		11	11	M	115
		15	19	M, R	236
	$C^2\Sigma - X^2\Sigma$	5	5	α	282
		4	4	α	290
	$(?)^2\Sigma - X^2\Sigma$		6		279
1.0	4255 32917		1	¥¥ ص	116
ASU	$A^{2}\Sigma - A^{2}\Pi$ $B^{2}\Sigma - X^{2}\Pi$	3	3	n B	116
	$D^{2}\Sigma - X^{2}\Pi$	$\frac{3}{2}$	4	Ř	116
AsO+	$A^{\dagger}\Pi - X^{\dagger}\Sigma$	5	3	R	116
An	$40^{+}_{-} \times 0^{+}_{-}$	5	6	α B	235
AnBo	$A = -X^2 \Sigma$	5	5	<i>n</i> , 2	282
mube	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	3	4	â	298
A TT	$D_{1/2}$ A_2	4		~	208
	$B^{+}2 - A^{+}2$	4	4	M	117
DDr	$A^{4}\Pi = A^{4}\Sigma$	3 5	0	M	117
DCI DE	$A^{1}\Pi - A^{1}Z$		0	M	117
Dr	$A^{*}\Pi - A^{*}Z$	$\frac{4}{3}$	9	141	118
	$b^{3}\Sigma - a^{3}\Pi$	3	3	ã	119
BH	$B^1\Sigma - X^1\Sigma$	2	2	M, R	236
BD	$B^{1}\Sigma - X^{1}\Sigma$	2	2	M, R	236
BO	$A^2\Pi - X^2\Sigma$	13	22	R	120
	(а-система)	2	4	B	121
	$B^2\Sigma - X^2\Sigma$	13	14	К	120
	$D2\Sigma = B2\Sigma$	5	7	α	122
BaF	A _ X	3	3	α	123
Dui	B - X	4	5	α	123
	C - X	3	2	α	123
	D = X	4	4	α	494
BaO	$A^{1}\Sigma - X^{1}\Sigma$	10	4 94	M.B	215
DoF	42TI V25	2	24	- m, π α	125
Der	$A^{-11} - X^{-2}$	3	3	ã	126
BeO	$B^{1}\Sigma - X^{1}\Sigma$	4	4	М	248
		7	9	R	120
	$C^{1\Sigma} - X^{1\Sigma}$	15	22	R B	120
D:D	$C^{1}\Sigma = A^{1}\Pi$	10	19		171
DIF DiO	A-A 4211 V211	7	5		128
BIO	$A^{-11} - A^{-11}$ $b^{4\Sigma} - X^{2\Pi}$	5	5	ã	282
Bra	$B^{3}\Pi(\Omega^{\pm}) - X^{1}\Sigma$	44	27	R	238, 296
C_{0}	$d^3\Pi - a^3\Pi$	9	13	R	129
52	(система Свана)				100
	$^{1}\Sigma_{u}^{+}$ $^{-1}\Sigma_{g}^{+}$	4	4	α	130
C_2	$B^2\Sigma - X^2\Sigma$	4	4	М	353
		ι	ι	L	l

Факторы Франка-Кондона в двухатомных молекулах

$\begin{array}{c c} {\rm CF} & \begin{array}{c} A^2 \Sigma - X^2 \Pi \\ B^2 \Sigma - X^2 \Pi \\ CH & \begin{array}{c} A^2 \Lambda - X^2 \Pi \\ B^2 \Sigma - X^2 \Pi \\ C \\ CH & \begin{array}{c} A^2 \Lambda - X^2 \Pi \\ B^2 \Sigma - X^2 \Pi \\ C^2 \Sigma - X^2 \Pi \\ CH \\ CH \\ CH \\ CH \\ CH \\ CH \\ CH \\ $	Молекула	Электронный переход	v'nax	^v max	Метод	Литера- тура
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF	$A^2\Sigma - X^2\Pi$	2	13	R	129
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011	$B^2\Sigma - X^2 \Pi$		1 7	R	129
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH	$A^2\Delta - X^2\Pi$	$\frac{2}{2}$	$\frac{3}{2}$	M.R	236
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$B^2\Sigma - X^2\Pi$	1	2	R	236
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$C^2\Sigma - X^2\Pi$	4	4	α	132 236
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CU+	41TI V15	2	4 9	n P	236 357
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ើក	$A^{-}\mu = A^{-}2$	4	4	a	367
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4	4	Ń	368
$\begin{array}{c cccc} B^{2}\Sigma - X^{2}\Sigma & 5 & 5 & a & 346 \\ E^{2}\Sigma - X^{1}\Sigma & 0 & 6 & M & 37 \\ B^{1}\Sigma - A^{4}\Pi & 0 & 10 & M & 97 \\ (cncrema Ahrcrpema) & & & & & & & & & & & & & & & & & & &$	CN	$B^2\Sigma - X^2\Sigma$		7	M-j	205
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{B^2\Sigma}{F^2\Sigma} = \frac{A^2\Pi}{Y^2\Sigma}$	19	19 5	α	284 316
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	co	$B^{1}\Sigma - X^{1}\Sigma$	Ő	6	M	37
$ \begin{array}{c c} (cncrema Ahrcrepena) & 7 & 2 & M & 286 \\ d^3 \Lambda - a^{3} \Pi & 7 & 2 & M & 134 \\ B^2 \Sigma(C0^+) - X^{1}\Sigma(C0) & 10 & 24 & R & 134 \\ B^2 \Sigma(C0^+) - X^{1}\Sigma(C0) & 13 & 10 & R & 133 \\ C0^+ & A^{2}\Pi - X^{2}\Sigma & 11 & 13 & R & 135 \\ B^{2}\Sigma - X^{2}\Sigma & 11 & 13 & R & 135 \\ B^{2}\Sigma - X^{2}\Sigma & 10 & 13 & R & 135 \\ B^{2}\Sigma - A^{2}\Pi & 10 & 11 & R & 135 \\ B^{2}\Sigma - A^{2}\Pi & 5 & 5 & M & 117 \\ B^{2}\Sigma - X^{2}\Sigma & 5 & 5 & M & 117 \\ B^{2}\Sigma - X^{2}\Sigma & 5 & 5 & M & 117 \\ B^{2}\Sigma - X^{2}\Sigma & 5 & 5 & M & 117 \\ B^{2}\Sigma - A^{2}\Pi & 5 & 5 & M & 117 \\ B^{2}\Sigma - X^{2}\Sigma & 5 & 8 & M & 117 \\ B^{2}\Sigma - X^{2}\Sigma & 5 & 8 & M & 117 \\ B^{2}\Sigma - X^{2}\Sigma & 5 & 8 & M & 117 \\ B^{2}\Sigma - X^{2}\Sigma & 5 & 8 & M & 117 \\ B^{2}\Sigma - X^{1}\Sigma & 5 & M & 117 \\ B^{2}\Sigma - X^{1}\Sigma & 5 & M & 117 \\ B^{1}\Pi - X^{1}\Sigma & 13 & 3 & \alpha & 128 \\ CaO & 1\Sigma - 1\Sigma & 6 & 6 & W & 137 \\ B^{1}\Pi - X^{1}\Sigma & 13 & 16 & R & 120 \\ C1_2 & B^{3}\Pi(O_{\pi}^{1}) - X^{1}\Sigma & 29 & 27 & R & 138 \\ Cu_2 & B^{1}\Sigma - X^{1}\Sigma & 13 & 16 & R & 120 \\ C1_2 & B^{3}\Pi(O_{\pi}^{1}) - X^{1}\Sigma & 29 & 27 & R & 138 \\ CuF & B^{1}\Sigma - X^{1}\Sigma & 13 & 16 & R & 120 \\ C1_2 & B^{3}\Pi(O_{\pi}^{1}) - X^{1}\Sigma & 29 & 17 & R & 143 \\ (curcensa Jnämana) & 36 & 14 & R & 143 \\ CuI & F^{1}\Sigma - X^{1}\Sigma & 13 & 14 & R & 143 \\ e^{0}C & A^{1}\Pi - X^{1}\Sigma & 12 & 13 & 14 & R & 143 \\ (curcensa Bepnepa) & 13 & 14 & R & 143 \\ a^{2}\Sigma - a^{3}\Pi_{\mu} & 3 & 5 & R - j & 141 \\ (curcensa Oyxxepa) & 18 & 17 & M & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 13 & 36 & R & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 13 & 36 & R & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 13 & 36 & R & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 13 & 36 & R & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 13 & 36 & R & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 13 & 36 & R & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 13 & 36 & R & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 14 & 18 & 20 & M & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 13 & 36 & R & 143 \\ B^{1}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 14 & 18 & 20 & M & 143 \\ B^{2}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 14 & 18 & 20 & M & 143 \\ B^{2}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 14 & 18 & 20 & M & 143 \\ B^{2}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 14 & 18 & 20 & M & 143 \\ B^{2}\Sigma_{\pi} - B^{1}\Sigma_{\mu} & 14 & 18 & 20 & M & 143 \\ B^{2}\Sigma_{\pi} - B^$	40	$\tilde{B}^{1}\tilde{\Sigma} - \tilde{A}^{1}\tilde{\Pi}$	ŏ	1 0	M	37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(система Ангстрема)			м	286
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$a^{3}\Delta - a^{3}\Pi$ $A^{2}\Pi(CO^{+}) - X^{4}\Sigma(CO)$	10	24	B	134
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$B^{2}\Sigma(CO^{+}) - X^{1}\Sigma(CO)$	10	$\overline{24}$	R	134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$X^2\Sigma(CO^+) - X^4\Sigma(CO)$	13	10	R	133
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO+	$A^2\Pi - X^2\Sigma$		13	R	135
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$B^2\Sigma - X^2\Sigma$	10	13	R	135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	$B^2\Sigma - A^2\Pi$	10	11	R	135
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CP	$A^2\Pi - X^2\Sigma$	5	5	М	117
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{B^2\Sigma - X^2\Sigma}{B^2\Sigma - A^2\Pi}$	5	5	M M	117
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		D-2-A-II	2	3	a	136
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaF	<i>A X</i>	3	3	α	128
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	B - X	3	3	α	128
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaO	$1\Sigma - 1\Sigma$ $D \Pi V I \Sigma$	6	6	W	137
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} B^{1}\Pi \rightarrow X^{1}\Sigma \\ C^{1}\Sigma \rightarrow X^{1}\Sigma \end{array}$	$11 \\ 13$	16	R I	120
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cl ₂	$B^3\Pi(O_u^+) - X^1\Sigma$	29	27	R	138
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cu	$B^{1}\Sigma - X^{1}\Sigma$	3	3	в	139
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CuF	$B^{1}\Sigma - X^{1}\Sigma$	4	4	a	140
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CuI	$F^{1}\Sigma - X^{1}\Sigma$	4	4	α	140
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GeO	$A^{1}\Pi - X^{1}\Sigma$	3	3	α	375
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H ₂	$B^{1}\Sigma - X^{1}\Sigma$	29	14	R—j	141
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	}	(система Лаймана)	36	14	R	143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ļ	$C^{4}\Pi - X^{4}\Sigma$	12	3	R	145
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(система Вернера)	13	14	R	143
$ \begin{array}{ccccc} D_{1} & D_{1}^{1}\Pi - X^{4}\Sigma & 16 & 17 & M & 143 \\ D_{1}^{1}\Pi - X^{4}\Sigma & 15 & 14 & R & 143 \\ B_{1}^{1}\Sigma_{u} - X^{4}\Sigma & 8 & 14 & R & 143 \\ E_{1}^{4}\Sigma - B_{1}^{4}\Sigma & 9 & 36 & R & 143 \\ G_{1}^{4}\Sigma_{g} - B_{1}^{4}\Sigma_{u} & 13 & 36 & R & 143 \\ I^{4}\Pi_{g} - B_{1}^{4}\Sigma_{u} & 14 & 36 & R & 143 \\ h^{3}\Sigma_{g} - c^{3}\Pi_{u} & 18 & 20 & M & 143 \\ K^{3}\Pi_{u} - a^{3}\Sigma_{g} & 19 & 18 & M & 143 \\ G^{4}\Sigma_{g} - B^{4}\Sigma_{u} & 20 & 36 & M & 143 \\ X^{2}\Sigma_{g}(H_{2}^{4}) - X^{4}\Sigma_{g}(H_{2}) & 15 & 14 & R & 134 \\ B_{1}\Sigma - X^{4}\Sigma & 17 & 0 & R & 145 \\ G^{4}\Pi_{u} - X^{4}\Sigma & 17 & 0 & R & 145 \\ \end{array} $	Ì	$a^{3}\Sigma - d^{3}\Pi$	3	5	R—j	141
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ł	$D^{i}\Pi - X^{i}\Sigma$	15	14	R	143
$D_{2} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$B'^{1}\Sigma_{u} - X^{1}\Sigma_{u}$	8	14	R	143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$E^{1}\Sigma - B^{1}\Sigma$ $C^{1}\Sigma - B^{1}\Sigma$	9	36	R	143
$D_{2} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ h^{3}\Sigma_{g} - c^{3}\Pi_{u} & 1 \\ h^{3}\Sigma_{g} - c^{3}\Pi_{u} & 1 \\ k^{3}\Pi_{u} - a^{3}\Sigma_{g} & 1 \\ k^{3}\Pi_{u} - a^{3}\Sigma_{g} & 1 \\ k^{2}\Sigma_{g} - B^{4}\Sigma_{u} & 20 \\ k^{2}\Sigma_{g} - B^{4}\Sigma_{u} & 20 \\ k^{2}\Sigma_{g} (H_{2}^{+}) - X^{1}\Sigma_{g} (H_{2}) & 1 \\ k^{2}\Sigma_{g} (H_{2}^{+}) - X^{1}\Sigma_{g} (H_{2}) & 1 \\ k^{2}\Sigma_{u} & 1 \\ k^{2}\Sigma_{u} & 1 \\ k^{2}\Sigma_{u} & 1 \\ k^{2}\Sigma_{u} & k^{2}\Sigma_{u} & k^{2}\Sigma_{u} \\ k^{2}\Sigma_{u} & k^{2}\Sigma_{u} \\ k^{2}\Sigma_{$		$I_{2g} = B^{-} \Sigma_{u}$	13	36	Ц Ц	143
$D_{2} \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$h^3\Sigma_{\sigma} - c^3\Pi_{\nu}$	18	20	M	143
$D_{2} = \begin{bmatrix} G^{1}\Sigma_{g} - B^{1}\Sigma_{u} & 20 & 36 & M & 143 \\ X^{2}\Sigma_{g}(H_{2}^{+}) - X^{1}\Sigma_{g}(H_{2}) & 15 & 14 & R & 134 \\ B^{1}\Sigma - X^{1}\Sigma & 17 & 0 & R & 145 \\ G^{1}\Pi - X^{1}\Sigma & 42 & 3 & R & 145 \end{bmatrix}$		$K^3 \Pi_u - a^3 \Sigma_\sigma$	19	18	M	143
$D_{2} \qquad \begin{vmatrix} X^{2}\Sigma_{g}(H_{2}^{+}) - X^{4}\Sigma_{g}(H_{2}) & 15 & 14 & R & 134 \\ B^{4}\Sigma - X^{4}\Sigma & 17 & 0 & R & 145 \\ C^{4}\Pi - X^{4}\Sigma & 42 & 3 & R & 145 \\ \end{vmatrix}$		$G^{1}\Sigma_{g} - B^{1}\Sigma_{u}^{s}$	20	36	M	143
$ D_2 \qquad \begin{vmatrix} B^{1}\Sigma - X^{1}\Sigma \\ C^{1}\Pi - X^{1}\Sigma \end{vmatrix} \qquad \begin{vmatrix} 17 & 0 \\ 42 & 3 \end{vmatrix} = \begin{bmatrix} 145 \\ R \\ 145 \end{vmatrix} $		$X^2\Sigma_g(\mathrm{H}_2^+) - X^1\Sigma_g(\mathrm{H}_2)$	15	14	R	134
$1 C^{1}\Pi = X^{1}\Sigma$ 1 12 1 2 1 2 1 145 1	D ₂	$B^{1}\Sigma - X^{1}\Sigma$	17	0	R	145
		$C^1\Pi \rightarrow X^1\Sigma$	12	3	R	145

Таблица	IV	(продолжение)

Молекула	Электронный переход	vmax	v''max	Метод	Литера- тура
HfO	$\begin{array}{l} A^{4}\Sigma - X^{4}\Sigma \\ B^{4}\Pi_{c, d} - X^{4}\Sigma \\ D^{4}\Pi_{c, d} - X^{4}\Sigma \\ E^{4}\Pi_{c, d} - X^{4}\Sigma \end{array}$	ភេទទ	9 8 10 10	M M M M	285 285 285 285
_ {	$F^1\Sigma \rightarrow X^1\Sigma$	5	10	M	285
1 ₂	$B^{3}\Pi(O_{\mathcal{U}}^{*}) - X^{1}\Sigma_{g}$	26	24	М	144
InF	$B^{3}\Pi_{1} - X^{1}\Sigma$	5	С И	α M	207
	$B^{\mu}\Sigma - \Lambda^{\mu}\Sigma$	10		D NL	-01 145
1:0	$A^{+}\Delta \rightarrow A^{+}\Delta$	11	15	n M	369
LIU Ma	$\frac{A+2}{41} = \frac{X+1}{12}$	10 25	15	л В. – і	325
Mg2 MgF	$A - X^2 \Sigma$	20	3	n,	146
mgr	$C^2\Sigma - X^2\Sigma$	4	3	â	147
MgH+	$A^{1}\Sigma - X^{1}\Sigma$	8	8	R	317
MgO	$B^1\Sigma - X^1\Sigma$	5	5	α	148
	$C^{1\Sigma} - A^{1\Pi}$	3	4	α	149
			4	α	150
MnO	$\lambda 4800 - 6700 \text{ A}$		7	α	150
N_2	$B^{3}\Pi_{g} - A^{3}\Sigma_{u}$	12	12	M	454
1	(первая положительная система)		12	R D	131
			3	Mi	209
	$A^{3}\Sigma_{u} - X^{1}\Sigma_{\sigma}$	9	6	R	145
1	(система Вегарда-Кап-	13	20	R	153
	$B^3 \Pi_{\sigma} - X^1 \Sigma_{\sigma}$	17	20	R	153
	$B'^{3}\Sigma^{-} - X^{1}\Sigma_{g}$	18	20	R	153
	$a'^{1}\Sigma^{-} - X^{1}\Sigma_{g}$	19	20	R	153
	$a^{1}\Pi_{g} - X^{1}\Sigma_{g}$	15	20	R	153
	$w^{1}\Delta_{u} - X^{1}\Sigma_{g}$	6	20	R	153
	$C^3\Pi_u - X^1\Sigma_g$	4	20	R	153
	$D^3\Sigma_u - B^3\Pi_g$	0	13	M	154
N_2^+	В ² Σ — Х ² Σ (первая отрицательная система)	20	17	М	155
Na»	$B^{1}\Pi - X^{1}\Sigma$	10	23	R	261
NĤ	$A^3\Pi = X^3\Sigma$	2	2	R	71
	$c^{1}\Pi - a^{1}\Delta$		4	R	71
	$\begin{bmatrix} c^1 \Pi - b^1 \Sigma \\ d^1 \Sigma - c^1 \Pi \end{bmatrix}$		3	R	71
NO	$4^2\Sigma - X^2\Pi$	5	23	B	156
NO	(у-система)	5	23	B	157
	$B^2\Pi - X^2\Pi$	24	23	Ř	157
	(p-onorema)	18	16	R	158
	$X^{1}\Sigma(\mathrm{NO}^{+}) - X^{2}\Pi(\mathrm{NO})$	7	11	R	134
	$A^{1}\Pi(\mathrm{NO^{+}}) - X^{2}\Pi(\mathrm{NO})$	10	11	R	134
NO+	$A^{1}\Pi - X^{1}\Sigma$	5	17	I M B	117
NbO	$A^2\Delta - X^2\Delta$	5	5	a	142
		{			

Таблица IV (продолжение)

,

Молекула	Электронный переход	vmax	^v max	Метод	Литера- тура
02	$A^{3}\Sigma - X^{3}\Sigma$	11	24	R	239
	(Replan cheronal replace) ra) $C^{3}\Sigma - X^{3}\Sigma$ (cucreme III unate - Putro)	20	23	R	160
	$ \begin{array}{c} A^{2}\Pi(O_{2}^{+}) - X^{3}\Sigma(O_{2}) \\ a^{4}\Pi(O_{2}^{+}) - X^{3}\Sigma(O_{2}) \\ b^{4}\Sigma(O_{2}^{+}) - X^{3}\Sigma(O_{2}) \end{array} $	14 15 10 10	14 21 21 21	R R R R	145 134 134 134
O_2^+	$X^2\Pi(O_2^+) - X^3\Sigma(O_2)$ $A^2\Pi - X^2\Pi$	15 10 15	21 1 15	R M, R R	134 161 161
OH PN	$\begin{array}{c} A^2\Sigma - X^2\Pi \\ A^1\Pi - X^1\Sigma \end{array}$	4 2	5 4	M—j M	209 374
PbO RbH BbC	$B_1 - X^1 \Sigma$ $A^1 \Sigma - X^1 \Sigma$ $C^2 \Sigma - X^2 \Sigma$	4 11 3	5 3	α R—j B	163 165 164
So SO	$B^{3}\Sigma - X^{3}\Sigma$ $A^{3}\Pi - X^{3}\Sigma$	26 9	26 0	R R	71 280
SiBr	$B^3 \Sigma - X^3 \Sigma$ $B^2 \Sigma - X^2 \Pi$	$\begin{array}{c} 25\\ 10\\ 2\\ \end{array}$	22 10 4	M M	166 167
SiCl	$B^2\Sigma - X^2\Pi$	2 2 2	6 4 6	α M α	167 167 167
SiF	$A^2\Sigma - X^2\Pi$	1 2 3	4 3 8	α B M	168 169 117
	$B^2\Sigma - X^2\Pi$	$\frac{2}{2}$	4 4 3 4	Β Β α Μ	170 94 117 167 142
C:TI	$C^2\Sigma - X^2\Pi$ $B^2\Sigma - A^2\Sigma$ $A^2\Lambda - X^2\Pi$	4 4 3	14 4 11	α M P	172 117 117
SiH+	$A^{4}\Pi - X^{4}\Sigma$	$\begin{array}{c} 2\\ 2\\ 2\\ 2\\ \end{array}$	$\frac{1}{2}$	R R α	213 213 214
SiO	$A^{1}\Pi - X^{1}\Sigma$	$\frac{1}{5}$ 13	5 4 19	R M R	236 202 236
SnF SnO	$\begin{array}{c} A^{2}\Sigma - X^{2}\Pi \\ A - X^{1}\Sigma \\ D^{4}\Pi - X^{4}\Sigma \end{array}$	$egin{array}{c} 2 \\ 3 \\ 2 \end{array}$	4 3 6	a a	168 173 200
SrH SrO	$D^{2}\Sigma - X^{2}\Sigma$ $B^{4}\Pi - X^{4}\Sigma$ $C^{4}\Sigma - X^{4}\Sigma$	5 12 13	5 18 18	α R B	174 120 120
ThO	$A^{1}\Sigma - X^{1}\Sigma$ $B^{1}\Pi - X^{1}\Sigma$ $D^{1}\Pi - X^{1}\Sigma$ $D^{1}\Pi - X^{1}\Sigma$ $E^{1}\Sigma - X^{1}\Sigma$ $G^{1}\Delta - H^{1}\Phi$ $I^{1}\Pi - X^{1}\Sigma$	5 6 5 5 5 6 5	10 9 9 8 9 9 7	M M M M M M M	285 285 285 285 285 285 285 285
			Į	ļ	1

Таблица IV (продолжение)

Молекула	• Электронный переход	vmax	v"max	Метод	Литера- тура
TiO YO ZrO	$b^{4}\Pi - a^{4}\Delta$ $b^{4}\Pi - d^{4}\Sigma$ $c^{4}\Phi - a^{4}\Delta$ $B^{2}\Sigma - X^{2}\Sigma$ $B^{4}\Sigma - A^{4}\Sigma$ $C^{3}\Pi - X^{3}\Pi$	6 6 2 22 22 21	6 6 3 22 21	M M B R R	175 175 175 176 120 120

Таблица IV (продолжение)

данного колебательного уровня. В последующих работах, предпринятых с целью изучения зависимости R_e(r) для у-системы NO ^{77, 198}, результаты Флинна были взяты под сомнение. Наконец, в работе Джайна и Сани ¹⁵⁷ прямо указывается, что результаты Флинна неверны вследствие ошибок, допущенных в расчетах. В ¹⁵⁷ приведены большие таблицы значений $q_{v'v''}$ для γ (v' = 5, $v'' \leq 23$)- и β ($v' \leq 24$, $v'' \leq 23$)- систем NO. Сравнение этих значений со значениями q_{v'v"} Морзе ³⁰⁸ показывает, что согласие между ними вполне удовлетворительное. Заметим, что авторы обзора⁹, основываясь главным образом на сравнении результатов ³⁰⁸ и ошибочных данных Флинна и др. ⁸⁰⁷, приходят к спорному выводу о том, что совпадение приближенного и истинного потенциалов для данного колебательного уровня не может служить критерием точности расчета волновых функций и факторов q_{v'v"}. Результаты всех известных нам волновых функции и факторов $q_{v'v''}$. Результаты всех известных нам работ, в которых сравнивались данные по расчету $q_{v'v''}$ Морзе и RKR, говорят об обратном. Заре и др. $^{309-311}$ методом RKR рассчитали $q_{v'v''}$ для $B^3\Pi_{0u}^+ - X'\Sigma$ -перехода I_2 и $B^3\Pi - A^3\Sigma$ -перехода N_2 и показали их существенные отличия от $q_{v'v''}$ Морзе $^{312, 313}$. Однако после этого вновь были рассчитаны факторы $q_{v'v''}$ Морзе для B - X-системы I_2^{144} и первой положительной системы N_2^{61} , используя уточненные молекулярные постоянные для этих систем, так как в $^{61, 144}$ указывается, что ранее принятое колебательное отнесение в обеих молекулярных системах (и использованное в ³¹², ³¹⁵ при построении потенциала Морзе) было ошибочное. Рассчитанные таким образом $q_{v'v''}$ для B - X-системы I_2 ¹⁴⁴ оказываются в хорошем согласии с $q_{v'v''}$ дая $D = \Lambda^{\circ}$ системы 1_2° оказываются в хорошем согласии с $q_{v'v''}$, рассчитанными из потенциалов RKR³⁰⁹ (см. сравнительную табл. І в ¹⁴⁴). Факторы $q_{v'v''}$ Морзе, полученные в работе ⁶¹, также вполне удовлетворительно совпадают с факторами $q_{v'v''}$ RKR, рассчитанными Бенешем ¹⁵¹ и Заре ³¹¹ (см. табл. II в ⁶¹). Указанная таблица интересна тем, что из нее видно, что различия между факторами qo'v" RKR Бенеша 151 и Заре 311 почти такие же, как и различия между факторами Морзе и факторами RKR. Стоит отметить, что в 61 и 151 подчеркивается, что подобные различия могут быть вызваны не столько различием в потенциалах, сколько различиями, вызванными приближением, применяемым при решении уравнения Шрёдингера. Кроме того, здесь может сказываться неучет колебательно-вращательного взаимодействия, которое для J = 0 - 30 может достигать 10% ¹⁵¹.

Особенно редко встречаются сравнения $q_{v'v''}$ для электронных переходов с большой разницей в равновесных межъядерных расстояниях. Поэтому следует отметить работу Харриса и др. ¹⁶⁰, в которой приведены большие таблицы факторов $q_{v'v'}$ для системы Шумана — Рунге O_2 ($v' \leqslant \le 20$, $v'' \leqslant 23$). Результаты находятся в удовлетворительном согласии с факторами $q_{v'v''}$ Морзе ³²³.

Линтон и Николс¹¹⁵, получившие в ударной трубе спектр испускания AlO и исследовавшие зависимость $R_e(r)$ для $B^2\Sigma - X^2\Sigma$ -системы, рассчитали для этого вновь факторы $q_{v'v''}$ Морзе. Рассчитанная зависимость $R_e(r)$ с использованием как факторов $q_{v'v''}$ Морзе, так и $q_{v'v''}$ RKR ¹¹⁴ оказалась практически неизменной.

В недавней работе Вентинка и Спиндлера ²¹⁵ рассчитаны $q_{v'v''}$ RKR и Морзе (М) для $A'\Sigma - X'\Sigma$ -перехода ВаО и также показано очень хорошее согласие между ними даже для высоких v (например, $q_{0, 0}$ (М) = = 0,1038 · 10⁻¹, $q_{0, 0}$ (RKR) = 0,1014 · 10⁻¹; $q_{6, 17}$ (М) = 0,1182, $q_{6, 17}$ (RKR) = = 0,1178 и т. д.). В работе ²¹⁵ определена зависимость $R_e(r)$ вида const · (1 - k_2r), и авторы подчеркивают, что численное значение k_2 практически не зависит от того, применяются ли $q_{v'v''}$ Морзе или RKR. Заметим, что не только в этих работах, но и в других, где используются усреднение по колебательной структуре, часто успешно используются приближенные значения $q_{v'v''}$ (см., например, ²⁰¹).

Рассмотренное выше сопоставление результатов по расчету $q_{v'v''}$ RKR и Морзе показывает, по нашему мнению, практическую их равнозначность для большинства молекулярных систем. Это утверждение не означает, что потенциал Морзе «лучше» потенциалов RKR (или наоборот). Здесь как раз следует особенно подчеркнуть, что для того, чтобы сделать вывод о том, насколько хорошо определенный молекулярный потенциал соответствует истинному потенциалу молекулы, необходимо в каждом конкретном случае сравнивать результаты расчета с надежными экспериментальными данными. В качестве такого критерия предлагается, например, сравнивать вращательную постоянную B_v для каждого колебательного уровня ³⁰³:

$$B_v = \frac{h}{8\pi^2\mu c} \int_0^\infty \frac{\Psi_v(r)}{r} dr = \frac{h}{8\pi^2\mu c} \left(\frac{\bar{1}}{r^2}\right). \tag{69}$$

К сожалению, сравнения такого рода в литературе крайне малочисленны.

Все известные авторам результаты по расчетам факторов Франка — Кондона двухатомных молекул представлены в табл. IV *). Учитывая, что в обзоре⁹ рассмотрены работы по 1965 г. включительно, в табл. IV суммированы сведения по $q_{n'n''}$ с 1966 по конед 1973 г. Порядок расположения материала в табл. IV следующий: в первом столбце указана молекула, во втором — электронный переход, в третьем и четвертом молекула, во втором — электропили перелод, с трот, до которых (включительно) подсчитаны факторы qv'v", в пятом столбце указывается молекулярный потенциал, с помощью которого получены qv'v", и в последнем столбце — ссылка на оригинальный источник. Символ М в пятом столбце означает, что факторы q_{n'v}, рассчитаны с использованием потенциала Морзе методом прямого численного интегрирования, символ а означает, что факторы qv'v" рассчитаны с использованием усредненного потенциала Морзе (методом «α-усреднения»); R — факторы q_{v'v"} рассчитаны с использованием потенциала, определенного по спектроскопическим постоянным; В — использовались различные модификации гармонического осциллятора; W -факторы рассчитаны методом ВКБ; q -- квантовомеханический расчет; і — производился учет колебательно-вращательного взаимодействия.

Как видно из табл. IV, в настоящее время практически отсутствуют значения q_{v'v}-факторов с колебательными квантовыми числами

^{*)} Обширные данные по факторам $q_{v'v''}$, рассчитанные методом RKR в варианте Клейна — Данхема — Жармена с молекулярными константами, взятыми в основном из монографии Гердберга ⁵, приведены также в малодоступных изданиях Йорского университета в Канаде ³⁴¹. Данные приведены для ряда систем следующих молекул: AlCl, AlH, AlO, B₂, BaH, BaO, BeH, BN, Br₂, CH, CCl, CuH, GeO, HCl⁺. He₂, K₂, FeO и др.

v > 20-25. Однако уже сейчас для расчетов излучательной способности газов при высоких температурах (порядка 10 000 °K) и при больших оптических толщинах необходимы данные по q_{p'p"}-факторам и для переходов вблизи диссоционного предела. Теория расчетов факторов $q_{p'p''}$ для колебательных переходов между высоковозбужденными уровнями (v > 25) отсутствует.

Московский государственный университет им. М. В. Ломоносова

ПИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. Ч. Корлисс, У. Бозман, Вероятности переходов и силы осцилляторов: 70 элементов, М., «Мир», 1968.
 В. Н. Сошников, УФН 74, 61 (1961).
 R. W. Nicholls, Canad. J. Chem. 47, 1847 (1969).
 R. Anderson, Atomic Data 3, 227 (1971).

- 5. G. Herzberg, Molecular Spectra and Molecular Structure, v. 1, N.Y., 1950.
- 6. М. А. Е лья шевич, Атомная и молекулярная спектроскопия, М., Физматгиз, 1962.
- 7. С. С. П е и и е р, Количественная молекулярная спектроскопия и излучательная способность газов, М., ИЛ, 1963.
- 8. I. C o v ä c s, Rotational Structure in the Spectra of Diatomic Molecules, Budapest, Académic Kiadó, 1969.
- 9. Ф. С. Ортенберг, Е. Т. Антропов, УФН 90, 237 (1966).
- 10. В.А.Каменщиков,Ю.А.Пластинин, В.М.Николаев, Л.А.Нов и ц к и й, Радиационные свойства газов при высоких температурах, М., «Машиностроение», 1971.
- ностроение», 1974. 11. P. A. Fraser, Canad. J. Phys. 32, 515 (1954). 12. A. G. Sviridov, N. N. Sobolev, M. Z. Novgorodov, J. Quantit. Spectr. and Rad. Transfer 6, 337 (1966). 13. A. G. Sviridov, N. N. Sobolev, V. M. Sutovskii, ibid. 5, 525 (1965). 14. A. Г. Свиридов, Труды ФИАН 51, 124 (1970). 15. M. Jeunehomme, R. P. Schwenker, J. Chem. Phys. 42, 2406 (1965). 16. A. R. Farbrain, J. Quantit. Spectr. and Rad. Transfer 6, 325 (1966). 17. R. L. Barger, H. P. Broida, J. Chem. Phys. 37, 1159 (1962). 18. B. M. Mils, W. L. Wiese, Bibliography on Atomic Transition Probabilities, Washington, Gov. print. 1970.

- B. M. Mils, W. L. Wiese, Bibliography on Atomic Transition Probabilities, Washington, Gov. print, 1970.
 J. E. Hesser, K. Dressler, J. Chem. Phys. 45, 3149 (1966).
 T. Wentink, L. Isaakson, ibid. 46, 603 (1967).
 R. G. Bennet, F. W. Dalby, ibid. 32, 1716 (1960).
 J. E. Hesser, B. L. Lutz, Astrophys. J. 159, 703 (1970).
 H. E. Kyзьменко, Ю. Я. Кузяков, Л. А. Кузнецова, И. Н. Кур-дюмова, Б. Н. Чуев, ТВТ 9, 905 (1971).
 M. J. Linevsky, J. Chem. Phys. 47, 3485 (1967).
 R. G. Bennet, F. W. Dalby, ibid. 36, 399 (1962).
 E. M. Кудрявцев, Е. Ф. Гиппиус, А. Н. Печенов, Н. Н. Собо-лев, ТВТ 1, 73, 376 (1963).
 E. A. Амбарцумян, Н. В. Попов, А. А. Коньков, сборник «Иссле-

- 28. Е. А. Амбарцумян, Н. В. Попов, А. А. Коньков, сборник «Иссле-

- 28. Е. А. Амбарцумян, н. В. попов, А. А. Конбисов, сор. 20. дования по физической газодинамике», М., «Наука», 1966, стр. 72.
 29. Н. Ј. Н urtfuss, А. Schmiller, Zs. Naturforsch. 23a, 726 (1968).
 30. Н. S. Liszt, J. E. Hesser, Astrophys. J. 159, 1101 (1970).
 31. Е. Ф. Гиппиус, Е. М. Кудрявцев, А. Н. Печенов, Н. Н. Соболев В. П. Фокеев, ТВТ 2, 181 (1964).
 29. Е. Ф. Гелере, С. М. Кудрявцев, А. Н. Печенов, Н. Н. Соболев В. П. Фокеев, ТВТ 2, 181 (1964).
- Е. Ф. Гиппиус, Е. М. Кудрявцев, А. Н. Печенов, Н. Н. Собо-лев, ТВТ 5, 32 (1967).
- 33. J. Rogers, R. Anderson, J. Quantit. Spectr. and Rad. Transfer 10, 515 (1970).
- 34. R. P. Schwenker, J. Chem. Phys. 42, 1895 (1965).
 35. R. G. Fowler, T. M. Holzberlein, ibid. 45, 1123 (1966).
 36. W. M. Huo, ibid. 49, 1482 (1968).

- 37. J. H. Moore, W. W. Robinson, ibid. 48, 4870. 38. E. H. Fink, K. H. Welge, Zs. Naturforsch. 23a, 358 (1968).
- 39. A. R. Farbairn, J. Quantit. Spectr. and Rad. Transfer 10, 1321 (1970); 11, 1289 (1971).
- 40. V. Hasson, R. W. Nicholls, J. Phys. B4, 681 (1971).
- 41. W. L. Borst, E. Zipf, Phys. Rev. A3, 979 (1971).

- 42. V. D. Meyer, E. M. Lassettre, J. Chem. Phys. 54, 1608 (1971).
 43. E. M. Lasettre, A. Skerbele, ibid., p. 1597.
 44. W. C. Wells, R. C. Isler, Phys. Rev. Lett. 24, 705 (1970).

- 45. А. Н. Варгин, Л. М. Пасынкова, Е. С. Трехов, ЖПС 13, 662 (1970). 46. К. С. Ioshi, V. D. P. Sastri, S. Parthasarathi, J. Quantit. Spectr.

- 46. K. C. Ioshi, V. D. P. Sastri, S. Parthasarathi, J. Quantit. Spectrand Rad. Transfer 6, 205, 245 (1966).
 47. L. Isaacson, E. P. Marram, T. Wentank, ibid. 7, 691 (1967).
 48. W. H. Smith, ibid. 9, 1191 (1969).
 49. R. P. Main, D. J. Carlson, P. A. Du Puis, ibid. 7, 805 (1967).
 50. R. P. Main, A. Schadee, ibid. 9, 713 (1969).
 51. B. Meyer, J. J. Smith, K. Spitzer, J. Chem. Phys. 53, 3616 (1970).
 52. J. E. Hesser, N. H. Brooks, G. M. Lawrence, ibid. 49, 5388 (1968).
 53. G. N. Haddad, K. N. Lokan, A. J. D. Farmer, J. H. Carver, J. Quantit. Spectration of the sector of the sector of the sector.
- tit. Spectr. and Rad. Transfer 8, 1193 (1968).

- 54. А. С. Allison, A. Dalgarno, Atomic Data 1, 289 (1970). 55. W. J. Tango, R. N. Zare, J. Chem. Phys. 53, 3094 (1970). 56. В. Н. Егоров, Л. Н. Туницкий, Е. М. Черкасов, ЖПС 8, 479 (1968). 57. А. Н. Варгин, Л. М. Пасынкова, Е. С. Трехов, сборник «Физика газо-
- 5. П. П. Б. к. р. в.н., н. а. в.н. кова, Е. С. 1 рехов, соорник «Физика газо-разрядной плазмы», вып. 2, М., Атомиздат, 1969, стр. 77.
 58. Е. В. К. и ргіуа по va, V. N. Коlesnikov, N. N. Sobolev, J. Quantit. Spectr. and Rad. Transfer 9, 1025 (1969).
 59. D. E. Shemansky, A. L. Broadfoot, ibid. 11, 1385 (1971).
 60. В. С. Вкерара ibid. 2, 460.

- 60. R. G. Breene, ibid., p. 169.
 61. R. E. W. Jansson, B. E. Cunio, ibid. 8, 1747 (1968).
 62. E. H. Fink, K. H. Welge, Zs. Naturforsch. 19a, 1193 (1964).

- 63. T. Wentink, L. Isaacson, J. Chem. Phys. 46, 822 (1967).
 64. D. E. Shemansky, ibid. 51, 682, 689 (1969).
 65. D. E. Shemansky, ibid., p. 5487.
 66. K. L. Wray, T. J. Connolly, J. Quantit. Spectr. and Rad. Transfer 5, 633 (1965).

- 67. В. Н. Егоров, Л. Н. Туницкий, ЖПС 7, 227 (1967). 68. Л. И. Кисилевский, В. Д. Шиманович, Опт. и спектр. 24 506 (1968). 69. J. А. Harrington, А. Р. Modica, D. R. Libby, J. Quantit. Spectr. and Rad. Transfer 6, 799 (1966). 70. W. H. S m i t h, J. Chem. Phys. 51, 520 (1969).
- 71. W. H. S m i t h, H. S. L i s z t, J. Quantit. Spectr. and. Rad. Transfer 11, 45 (1971). 72. J. W. D r i b e r, M. J. W i l l i a m s, ibid. 1, 135 (1961).
- 73. Е. Т. Антропов, А. П. Дронов, Н. Н. Соболев, Опт. и спектр. 17, 654 (1964).
- 74. С. П. Еркович, Ф. С. Агешин, ibid. 18, 979 (1965).
- 75. Е. Т. Антропов, Н. Н. Соболев, В. П. Черемисинов, ibid. 16, 208 (1964).

- 76. А. Регу-Thorne, F. P. Banfield, J. Phys. B3, 1011 (1970).
 77. М. Jе и nehomme, J. Chem. Phys. 45, 4433 (1966).
 78. Е. Т. Антропов, Труды ФИАН СССР 35, 3 (1966).
 79. Н. А. Огу, J. Chem. Phys. 40, 562 (1964).
 80. W. Groth, D. Kley, U. Schurath, J. Quantit. Spectr. and Rad. Transfer 11, 457 (1975). 1475 (1971).
- 81. M. McClintock, W. Demtröder, R. N. Zare, J. Chem. Phys. 51, 5509 (1969).
- 82. Н. И. Криндач, Н. Н. Соболев, Л. Н. Туницкий, Опт. и спектр. 15, 298, 601 (1969).

- 83. V. H. Reis, J. Quantit. Spectr. and Rad. Transfer 5, 585 (1965).
 84. R. D. Hudson, V. L. Carter, J. Opt. Soc. Am. 58, 4621 (1968).
 85. A. J. Farmer, W. Fabion, D. K. Lewis, K. H. Lokan, G. H. Had-

- 85. А. J. Farmer, W. Fabion, D. К. Lewis, К. Н. Lokan, G. H. Had-dad, J. Quantit. Spectr. and Rad. Transfer 8, 1739 (1968).
 86. V. Hasson, G. R. Hebert, R. W. Nicholls, J. Phys. B3, 1188 (1970).
 87. R. G. Breene, J. Quantit. Spectr. and Rad. Transfer 11, 37 (1971).
 88. D. E. Buttrey, ibid. 9, 1527 (1969).
 89. V. Hasson, R. W. Nicholls, V. Degen, J. Phys. B3, 1492 (1970).
 90. J. Anketell, A. Pery-Thorne, Proc. Roy. Soc. A301, 343 (1967).
 91. W. H. Smith, J. Chem. Phys. 53, 792 (1970).
 92. J. F. Bott, T. A. Jacobs, J. Chem. Phys. 52, 3545 (1970).
 93. Ю. Я. Кузяков, И. Е. Овчаренко, Н. Е. Кузьменко, И. Н. Кур-дюмова, ЖПС 12, 555 (1970).
 94. Н. Е. Кузьменко, Ю. Я. Кузяков, А. Д. Смирнов ibid 13, 616
- 94. Н. Е. Кузьменко, Ю. Я. Кузяков, А. Д. Смирнов, ibid. 13, 616. 95. А. J. Sauval, Solar. Phys. 10, 319 (1969).
- 96. A. Schadee, Bull. Astron. Inst. Neth. 17, 311 (1964).
- 97. D. L. Lambert, E. A. Mallia, Mon. Not. RAS 148, 313 (1970).

- 98. N. Grevesse, A. J. Sauval, J. Quantit. Spectr. and Rad. Transfer 11, 65 (1971).
- 99. R. P. Main, A. L. Morsell, W. J. Hooker, ibid. 8, 1527 (1968).

- 100. W. J. Hooker, R. P. Main, Physica 41, 35 (1969). 101. А. Д. Русин, Вестн. МГУ, сер «Химия» 5, 526 (1970). 102. А. Сzernichowski, W. Zyrnicni, Acta Phys. Polon. A37, 865 (1970). 103. M. L. Price, K. G. P. Sulzmann, S. S. Penner, J. Quantit. Spectr. and
- Rad. Transfer 11, 427 (1971). 104. G. E. C o p e l a n d, J. Chem. Phys. 54, 3482 (1971)
- 105. Л. М. Биберман, А. Х. Мнацаканян, ТВТ 2, 148 (1966). 106. Ю. А. Пластинин, Г. Г. Баула, цит. в²⁸ сборник, стр. 41.
- 107. А. Коньков В. Я. Нейланд, В. М. Николаев, Ю. А. Пласти-нин, ТВТ 7, 140 (1969).
 108. В. Нехter, J. Chem. Phys. 37, 1347 (1962).
 109. Т. Wentink, L. Isaacson, J. Morreal, ibid. 41, 278 (1964).

- 110. M. Jeunehomme, ibid. 42, 4086 (1965).
- 111. M. Jeunehomme, ibid. 45, 1805 (1966).
- 112. B. Huron, Physica 41, 58 (1969). 113. D. V. A. Rao, K. P. Nair, D. K. Dai, Current Sci. (India) 36, 372 (1967).
- 114. A. Sharma, J. Quantit. Spectr. and Rad. Transfer 7, 289 (1967).

- 114. A. Binton, R. W. Nicholls, ibid. 9, 1 (1969).
 116. S. V. J. Laksman, T. V. Ramakrishna, J. Phys. B4, 269 (1971).
 117. T. Wentink, R. J. Spindler, J. Quantit. Spectr. and Rad. Transfer 10, 609 (1970).
- 118. R. K. Mishra, B. N. Khanna, ibid., p. 703. 119. A. N. Pathak, R. C. Maneshwari, Indian J. Pure and Appl. Phys. 5, 138 (1967)
- 120. H. S. Liszt, W. H. Smith, J. Quantit. Spectr. and Rad. Transfer 11, 1043 120. H. S. LISZI, W. H. Smittin, J. Quantit. Spect. and Rad. Transfer 11, 1043 (1971).
 121. A. P. Walvekar, Indian J. Phys. 43, 742 (1969).
 122. M. R. Katti, Indian J. Pure and Appl. Phys. 3, 499 (1965).
 123. H. Mohanty, J. C. Mohanty, B. S. Mohanty, ibid. 8, 423 (1970).
 124. A. P. Walvekar, V. M. Korwar, J. Phys. B2, 115 (1969).
 125. M. R. Katti, H. D. Sharma, Indian J. Pure and Appl. Phys. 6, 458 (1968).
 126. B. K. Michwa R. N. Khorpac, ibid. 7, 24 (4060).

- 126. R. K. Mishra, B. N. Khanna, ibid. 7, 63 (1969).
- 127. R. G. Fowler, P. R. Skwerski, R. A. Anderson, G. E. Copeland, T. M. Holzberlein, J. Chem. Phys. 50, 4133 (1969).
 128. T. V. R. Ramakrishna, S. V. Lakshman, CurrentSci. (India) 40, 316 (1971).
- 129. R. J. Spindler, J. Quantit. Spectr. and Rad. Transfer 5, 165 (1965).
- 130. J. D. Singh, R. C. Maneshwari, Indian J. Pure and Appl. Phys. 9, 296 (1971).
- 131. A. N. P a t h a k, P. D. S i n g h, ibid. 5, 139 (1967).

- 131. A. N. Fathak, F. D. Singh, Iblu. 3, 139 (1907).
 132. D. Sharma, P. D. Singh, A. N. Pathak, ibid. 6, 443 (1968).
 133. P. H. Krupenie, W. Benesh, J. Res. NBS A72, 495 (1968).
 134. R. W. Nicholls, J. Phys. B1, 1192 (1968).
 135. D. C. Jain, R. C. Sahni, J. Quantit. Spectr. and Rad. Transfer 6, 705 (1966).
 136. P. D. Singh, A. N. Pathak, Indian J. Pure and Appl. Phys. 7, 132 (1969).
- 136. Р. D. Singh, A. N. Раthak, Indian J. Pure and Appl. Phys. 7, 132 (1969).
 137. Н. И. Жирнов, Л. А. Кронрод, сборник «Вопросы радиофизики и спектроскопии», вып. 3, М., «Сов. радио», 1967, стр. 6.
 138. J. A. Coxon, J. Quantit. Spectr. and Rad. Transfer 11, 1355 (1971).
 139. R. T. V. Ramakrishna, S. V. J. Lakshman, ibid., p. 1157.
 140. T. Gulab, K. P. R. Nair, J. Scient. Res. Banaras Hindu Univ. 17, 260 (1966/67).
 141. Don Villarejo, R. Stockbaner, M. C. Inghram, J. Chem. Phys. 50, 4756 (1969).

- 50, 1754 (1969).
- 142. D. Singh, M. M. Shukla, J. Quantit. Spectr. and Rad. Transfer 12, 1249 (1972).
- 143. R. I. Spindler, ibid. 9, 597, 627, 1041 (1969). 144. M. Halmann, I. Laulicht, J. T. Steinfeld, J. Mol. Spectr. 21, 328 (1966).
- 145. M. Halmann, I. Laulicht, J. Chem. Phys. 46, 2684 (1967). 146. J. D. Singh, M. M. Shukla, R. C. Maneshwari, J. Quantit. Spectr. and Rad. Transfer 9, 533 (1969).
- 147. Т. V. R. Ramakrishna, S. V. J. Lakshman, ibid. 10, 945 (1970). 148. Н. А. Назимова, ЖПС 7, 169 (1967).

- 149. G. Gandare, J. Schamps, M. Bécart, C.R. Ac. Sci. **B270**, 1213 (1970). 150. P. S. Dube, A. V. Chandury, G. D. Baruah, D. U. Rai, Appl. Spectr. 25, 554 (1971). 151. W. Benesch, J. T. Vanderslice, S. G. Tilford, P. G. Wilkin-
- son, Astrophys. J. 144, 408 (1966).

- 152. А. Х. Мнацаканян, ТВТ 6, 236 (1968). 153. W. Benesch, J. T. Vanderslice, S. G. Tilford, P. G. Wilkin-son, Astrophys. J. 143, 236 (1966).
- 154. G. R. Hebert, R. W. Nicholls, J. Phys. **B2**, 626 (1969). 155. A. M. Jorns-Bony, F. Vincent, R. Grant-Montagen, C.R. Ac. Sci. B270, 491 (1970).
- 156. R. J. Spindler, T. Wentink, L. Isaacson, J. Quantit. Spectr. and Rad. Transfer 10, 621 (1970). 157. D. C. Jain, R. C. Sahni, Trans. Farad. Soc. 64, 3169 (1968).

- 157. D. C. Jarn, R. C. Sanni, Trans. Fanat. Soc. 505, 5165 (1969).
 158. J. I. Generosa, R. A. Harris, J. Chem. Phys. 53, 3147 (1970).
 159. M. Jeunehomme, ibid. 44, 2672 (1966).
 160. R. Harris, M. Blackledge, J. Generosa, J. Mol. Spectr. 30, 506 (1969).
 161. R. K. Asundi, C. V. S. Ramachandrarao, Chem. Phys. Lett. 4, 89 (1969).
- 162. Ф. Н. Путилин, Канд. диссертация (МГУ, 1973). 163. Р. S. Dube, K. N. Upadhya, D. K. Rai, J. Quantit. Spectr. and Rad. Transfer 10, 1191 (1970).

- 164. V. M. K or w ar, Proc. Phys. Soc. 92, 523 (1967). 165. D. C. Jain, R. S. Sahni, ibid. 88, 495 (1966). 166. W. M. Smith, J. Quantit. Spectr. and Rad. Transfer 8, 1437 (1968). 167. H. E. K узьменко, Ю. Я. К узяков, Н. Н. Кабанкова, Г. Е. Токерис, Л. З. Фридлянд, А. Б. Болотин, Литовский физ. сб. 11, 433 (1971).
- рис, Л. З. Фридлянд, А. Б. Волотин, линовский физ. со. 11, 455 (1971). 168. J. Singh, P. S. Dube, Indian J. Pure and Appl. Phys. 9, 164 (1971). 169. Н. Е. Кузьменко, А. Д. Смирнов, Ю. Я. Кузяко^{*}в, Вестн. МГУ, сер. «Химия» 11, 357 (1970). 170. Н. Е. Кузьменко, А. Д. Смирнов, Ю. Я. Кузяко^{*}в, Вестн. МГУ, 170. Н. Е. Кузьменко, А. Д. Смирнов, Ю. Я. Кузяков, ibid., стр. 478. 171. В. S. Mohanty, O. N. Singh, Indian J. Pure and Appl. Phys. 7, 109 (1969). 172. J. D. Singh, R. C. Maneshwari, ibid., p. 708.

- 173. Н. А. Назимова, Л. В. Жданова, Изв. вузов (Физика), № 8 (111), 146 (1971).
- 174. P. D. Singh, Y P. Srivastava, J. Quantit. Spectr. and Rad. Transfer 8, 1443 (1968).

- 175. С. Linton, R. W. Nicholls, J. Phys. B2, 490 (1969).
 176. N. S. Murthy, B. N. Murthy, Proc. Phys. Soc. A91, 489 (1967).
 177. А. П. Дронов, Н. Н. Соболев, Ф. С. Файзуллов, Опт. и спектр. 21, 267, 538 (1966).
- 178. Ю. А. Пластинин, сборник «Свойства газов при высоких температурах», М., «Наука», 1967, стр. 82.
 179. W. H. Wurster, J. Quantit. Spectr. and Rad. Transfer 3, 355 (1963).

- 179. W. H. Wurster, J. Quantit. Spectr. and Rad. Transfer 3, 355 (1963).
 180. J. C. Keck, P. A. Allen, R. L. Taylor, ibid., p. 335.
 181. P. A. Allen, J. C. Camm, J. C. Keck, ibid. 1, 269 (1961).
 182. A. Chutjian, T. C. James, J. Chem. Phys. 51, 1242 (1969).
 183. K. Sakuray, G. Capelle, H. P. Broida, ibid. 54, 1220 (1971).
 184. N. R. Tawde, V. M. Korwar, J. Phys. B2, 753 (1969).
 185. K. Prasad, S. S. Prasad, ibid., p. 725.
 186. A. H. Bapruh, E. C. Tpexob, цит. в⁵⁷ сборник, стр. 93.
 187. B. G. Elmergreen, W. H. Smith, Astrophys. J. 178, 557 (1972).
 188. И. В. Авилова, Л. М. Биберман, В. С. Воробьев, В. М. Замалин, Г. А. Кобзев, А. Х. Мнацаканян, Г. Э. Норман, ТВТ 8, 1 (1970).
 189. В. С. Афанасьев, А. Н. Варгин, Е. С. Трехов, цит. в⁵⁷ сборник, стр. 62. стр. 62.
- 190. B. E. Cunio, R. E. W. Jansson, J. Quantit. Spectr. and Rad. Transfer 8, 1763 (1968). 191. G. Chandraih, G. G. Shepherd, Canad. J. Phys. 46, 221 (1968). 192. A. L. Broadfoot, S. P. Maran, J. Chem. Phys. 51, 678 (1969).

- 193. D. C. Jain, R. C. Sahni, J. Quantit. Spectr. and Rad. Transfer 7, 475 (1967). 194. А. Н. Варгин, Л. М. Пасынкова, Е. С. Трехов, цит. в ⁵⁷ сборник,
- стр. 87. 195. W. A. Brown, R. K. Landshoff, J. Quantit. Spectr. and Rad. Transfer 11,
- 1143 (1971). 196. В. Т. Ко́ппе, А. Г. Коваль, В. В. Грицына, Я. М. Фогель, Опт.
- и спектр. 5, 821 (1968).
- 197. А. Н. Варгин, Р. И. Сериков, Е. С. Трехов, цит. в ⁵⁷ сборник, стр. 72. 198. А. В. Саllear, М. J. Pilling, J. W. M. Smith, Trans. Farad. Soc. 62,
- 2997 (1966).
- 199. J. Anketell, R. C. M. Icarner, Proc. Roy. Soc. A301, 355 (1967).

- 200. Р. S. D u b e, D. K. R a i, J. Phys. B4, 579 (1974). 201. А. Х. М нацаканян, Опт. и спектр. 30, 1015 (1971). 202. А. Д. Русин, Вестн. МГУ, сер. «Химия» 13, 196 (1972).
- 9 УФН, т. 113, вып. 2

- 203. J. C. Mohanty, B. S. Mohanty, Indian J. Pure and Appl. Phys. 9, 487 (1971).
 204. T. C. James, J. Mol. Spectr. 40, 545 (1971).
 205. B. Chakraborty, Y. K. Pan, J. Chem. Phys. 56, 3722 (1972).
 206. D. C. Jain, J. Phys. B5, 199 (1972).
 207. N. S. Murthy, B. N. Murthy, ibid., p. 714.
 208. V. Degen, R. W. Nicholls, ibid. B2, 1240 (1969).
 209. B. Chakraborty, Y. K. Pan, T. Chem. Phys. 55, 5447 (4074).

- 209. B. Chakraborty, Y. K. Pan, T. Y. Chang, J. Chem. Phys. 55, 5147 (1971). 210. V. Hasson, R. W. Nicholls, J. Phys. B4, 1778 (1971). 211. G. E. Copeland, J. Chem. Phys. 56, 689 (1972).

- 211. G. E. Coperand, J. Chem. Phys. 50, 665 (1972).
 212. V. Hasson, R. W. Nicholls, J. Phys. B4, 1769 (1971).
 213. T. V. R. Ramakrishna, S. V. J. Lakshman, Physica 56, 322 (1971).
 214. J. D. Singh, M. Prasad, Current Sci. (India) 40, 625 (1971).
 215. T. Wentink, R. J. Spindler, J. Quantit. Spectr. and Rad. Transfer 12, 129 (1970). (1972).
- 216. M. Van Pee, W. R. Kineyko, R. Caruso, Combustion and Flame 14, 381 (1970).
- 217. S. E. Johnson, G. Capelle, H. P. Broida, J. Chem. Phys. 56, 663 (1972).
- 218. H. H. Mishels, ibid., p. 665.
- 219. R. J. D on ov an, D. H us a in, Trans. Farad. Soc. 63, 2879 (1967).
 220. W. H. S m it h, H. S. L is z t, J. Quantit. Spectr. and Rad. Transfer 12, 505 (1972).
 221. J. D e s e q u e l l e s, M. D u F a y, M. C. P u l i z a c, Phys. Lett. A27, 96 (1968).
 222. R. E. I m h o l f, F. H. R e a d, S. T. B e c k e t t, J. Phys. B5, 896 (1972).

- 223. R. F. Holland, W. B. Maier, J. Chem. Phys. 56, 5229 (1972). 224. M. Hollstein, D. C. Lorents, J. R. Peterson, J. R. Sheridan, 224. M. Holltstern, D. C. Lorents, J. R. Peterson, J. R. Sheridan, Canad. J. Chem. 47, 1858 (1969).
 225. R. S. Freund, J. Chem. Phys. 51, 1979 (1969).
 226. D. Gray, J. L. Morack, T. D. Roberts, Phys. Lett. A37, 25 (1971).
 227. H. Anton, Ann. Phys. (N.Y.) 18, 178 (1966).
 228. J. Olmstead, A. S. Newton, K. Street, J. Chem. Phys. 42, 2321 (1965).
 220. H. Bubort F. W. Frach on Chem. Phys. Lett. 8 242 (4074).

- 229. H. Bubert, F. W. Froben, Chem. Phys. Lett. 8, 242 (1971).
 230. A. J. D. Former, V. Hasson, R. W. Nicholls, J. Quantit. Spectr. and Rad. Transfer 12, 627 (1972).
 231. A. J. D. Former, V. Hasson, R. W. Nicholls, ibid., p. 635.
 232. R. L. de Zafra, A. Marshall, H. Metcalf, Phys. Rev. A3, 1557 (1971).

- 233. P. S. Dube, Indian J. Pure and Appl. Phys. 10, 70 (1972). 234. G. Capelle, K. Sakurai, H. P. Broida, J. Chem. Phys. 54, 1728, (1971). 235. R. T. V. Ramakrishna, S. V. J. Lakshman, Indian J. Pure and Appl.
- Phys. 10, 69 (1972). 236. H. S. L i s z t, W. H. S m i t h, J. Quantit. Spectr. and Rad. Transfer. 12, 947[(1972). 237. J. F. M. A a r t s, F. J. D e H e e r, Physica 54, 609 (1971).
- 238. J. A. Coxon, J. Quantit. Spectr. and Rad. Transfer 12, 639 (1972).
- 239. W. R. Jarmain, ibid., p. 603. 240. P. S. Dube, D. K. Rai, N. L. Singh, Indian J. Pure and Appl. Phys. 10, 87 (1972)

- 241. T. C. J a m es, J. Chem. Phys. 55, 4118 (1971). 242. B. L. L u t z, J. E. H esser, ibid. 48, 3042 (1968). 243. J. E. H esser, ibid., p. 2518. 244. J. E. H esser, K. D r essler, ibid. 47, 3443 (1967).
- 245. W. H. Smith, ibid. 54, 1384 (1971).

- 246. J. Geiger, H. Schmoranzer, J. Mol. Spectr. 32, 39 (1969). 247. H. E. Porkie, N. H. Henneker, J. Chem. Phys. 55, 617 (1971). 248. G. W. F. Drake, D. C. Tyte, R. W. Nicholls, J. Quantit. Spectr. and Rad. Transfer 7, 639 (1967).
- 249. J. O. Arnold, ibid. 8, 1781 (1968). 250. E. H. Fink, K. H. Welge, J. Chem. Phys. 46, 4315 (1967).

- 250. E. H. Fink, K. H. Welge, J. Chem. Phys. 46, 4315 (1967).
 251. J. Geiger, Zs. Phys. 181, 413 (1964).
 252. J. Geiger, M. Topschowsky, Zs. Naturforsch. 21a, 626 (1966).
 253. R. G. Bennett, R. W. Dalby, J. Chem. Phys. 31, 434 (1959).
 254. D. J. Sebacher, ibid. 42, 1368 (1965).
 255. L. L. Nicholls, W. F. Wilson, Appl. Opt. 7, 167 (1968).
 256. K. H. Wagner, Zs. Naturforsch. 19a, 716 (1964).
 257. A. Chutjian, J. K. Link, L. Brewer, J. Chem. Phys. 46, 2666 (1967).
 258. R. L. Brown, W. Klemperer, ibid. 41, 3072 (1964).
 259. L. Brewer, R. A. Berg, G. M. Rosenblatt, ibid. 38, 1381 (1963).
 260. G. Baumgartner, W. Demtröder, M. Stock, Zs. Phys. 232, 462 (1970).
 261. W. Demtröder, M. McClintock, R. N. Zare, J. Chem. Phys. 51, 5495 (1969). (1969).
- 262. S. E. Johnson, K. Sakurai, H. P. Broida, ibid. 52, 6441 (1970). 263. S. J. Silvers, Chin Chi-Lian, ibid. 56, 5663 (1972).

- 264. K. C. Shotton, G. D. Chapman, ibid., p. 1012.
- 265. Е.Б.Брусянова, В.Н.Колесников, Н.Н.Соболев, Опт. и спектр. 19, 819 (1965).
- 266. G. A. Capelle, S. E. Johnson, H. P. Broida, J. Chem. Phys. 56, 6264 (1972).
- 267. А. П. Дронов, Н. Н. Соболев, Ф. С. Файзуллов, В. А. Бойко, Опт. и спектр. 21, 727 (1966). 268. К. Sakurai, S. E. Johnson, Н. Р. Вгоіda, J. Chem. Phys. 52, 1625
- (1970).
- 269. S. E. Johnson, ibid. 56, 149 (1972). 270. R. F. Holland, ibid. 51, 3940 (1969).
- 271. A. Skerbele, E. N. Lassettre, ibid. 53, 3806 (1970).
- 272. A. W. Johnson, R. G. Fowler, ibid., p. 65.
- 273. R. S. Freund, ibid. 50, 3734 (1969).

- 274. D. M. Golden, F. P. Del Greco, F. Kaufman, ibid. 39, 3034 (1963).
 275. K. R. German, R. N. Zare, Phys. Rev. Lett. 23, 1207 (1969).
 276. R. G. Bennett, F. W. Dalby, J. Chem. Phys. 40, 1414 (1964).
 277. R. T. Thompson, R. G. Fowler, J. Quantit. Spectr. and Rad. Transfer 12, 127 (197).
- 117 (1972).

- 117 (1972).
 278. J. O. Arnold, R. W. Nicholls, ibid., p. 1435.
 279. N. R. Tawde, V. G. Tułasigeri, J. Phys. B5, 1681 (1972).
 280. W. H. Smith, Astrophys. J. 176, 265 (1972).
 281. W. H. Smith, J. Chem. Phys. 54, 4169 (1971).
 282. G. C. Singh, J. Quantit. Spectr. and Rad. Transfer 12, 1343 (1972).
 283. B. Maier II, R. F Holland, J. Phys. B5, L118 (1972).
 284. L. Schoonveld, J. Quantit. Spectr. and Rad. Transfer 12, 1139 (1972).
 285. T. Wentink, R. L. Spindler, ibid., p. 1569.
 286. T. G. Slanger, Gr. Black, J. Phys. B5, 1988 (1972).
 287. T. L. Stephns. A. Dalgarno, J. Quantit. Spectr. and Rad. Transfer

- 287. T. L. Stephns, A. Dalgarno, J. Quantit. Spectr. and Rad. Transfer 12, 569 (1972).
- 288. V. Hasson, A. J. D. Farmer, R. W. Nicholls, J. Ankettel, J. Phys. B5, 1248 (1972). 289. P. S. D u b e, Indian J. Pure and Appl. Phys. 10, 167 (1972).

- 290. V. S. Kushwana, B. P. Asthana, ibid., p. 346. 291. D. Lambert, J. Quantit. Spectr. and Rad. Transfer 8, 1265 (1968).
- 292. J. A. Harrington, A. P. Modica, D. R. Libby, J. Chem. Phys. 44, 3380 (1966).
- 293. J. A. Harrington, A. P. Modica, D. R. Libby, ibid. 45, 2726.
- 294. Л. А. Кузнецова, Ю. Я. Кузяков, Труды Ин-та мех. МГУ, № 20, 68 (1973).
- 295. T. C. J a m e s, J. Chem. Phys. 32, 1770 (1960). 296. J. A. C o x o n, J. Mol. Spectr. 41, 566 (1972).
- 297. Н. П. П е н к и н, сборник «Спектроскопия газоразрядной плазмы», Л. «Наука». 1970, crp. 63.
- 298. S. P. Sinha, C. L. Chatterjee, Indian J. Pure and Appl. Phys. 10, 494 (1972).
- 299. B. P. Asthana, V. S. Kushawaha, J. S. Yadava, K. P. R. Nair, ibid., р. 463. 300. А. Гейдон, Энергия диссоциации и спектры двухатомных молекул, М., ИЛ,
- 1949.
- 304. J. T. Vanderslice, E. A. Mason, W. G. Maisch, J. Chem. Phys. 32, 515 (1960).
- 302. W. R. Jarmain, Canad. J. Phys. 38, 217 (1960). 303. W. R. Jarmain, J. Quantit. Spectr. and Rad. Transfer 11, 421 (1971). 304. P. A. Fraser, W. R. Jarmain, Proc. Phys. Soc. A69, 1145 (1953).

- 304. Р. А. Fraser, W. К. Jarmain, Proc. Phys. Soc. A09, 1145 (1955).
 305. J. W. Cooley, Math. Comp. 15, 363 (1961).
 306. Д. Р. Хартри, Расчеты атомных структур, М., ИЛ, 1960.
 307. D. J. Flinn, R. J. Spindler, S. Fifer, M. Kelly, J. Quantit. Spectr. and Rad. Transfer 4, 271 (1964).
 308. R. W. Nicholls, J. Res. NBS A68, 535 (1964).
 309. R. N. Zare, J. Chem. Phys. 40, 1934 (1964).
 310. J. T. Steinfeld, R. N. Zare, L. Lesk, W. Klemperer, ibid. 42, 25 (1966).

- (1966).
- 311. R. N. Zare, E. O. Larsson, P. A. Berg, J. Mol. Spectr. 15, 117 (1965).
- 312. Н. Н. Соболев, Экспериментальное определение сил электровных переходов двухатомных молекул М., ФИАН СССР, 1966 (ротапринт). 313. Е. М. Weinstock, R. N. Zare, J. Chem. Phys. 56, 3456 (1972). 314. Е. М. Кудрявцев, Труды ФИАН СССР 35, 74 (1966).

- 315. J. K. Mc Donald, K. K. Innes, J. Mol. Spectr. 32, 501 (1969).

- 316. T. V. Ramakrishna Rao, S. V. J. Lakshman, J. Quantit. Spectr. and Rad. Transfer 12, 1063 (1972).
 317. W. J. Balfour, Canad. J. Phys. 50, 1082 (1972).
- 318. T. S. Wanchop, H. P. Broida, J. Chem. Phys. 56, 330 (1972).
- 319. G. M. L a w r e n c e, J. Quantit. Spectr. and Rad. Transfer 5, 359 (1965). 320. A. S c h a d e e, ibid. 7, 169 (1967). 321. R. W. N i c h o l l s, J. Chem. Phys. 38, 1029 (1963).

- 321. R. W. Nicholls, J. Chem. Phys. 38, 1029 (1963).
 322. R. W. Nicholls, J. Res. NBS A65, 451 (1961).
 323. H. A. Ory, A. P. Gittleman, Astrophys. J. 139, 357 (1964).
 324. T. J. Cook, D. H. Levy, J. Chem. Phys. 57, 5059 (1972).
 325. W. J. Balfour, R. F. Whitlock, Canad. J. Phys. 50, 1648 (1972).
 326. A. R. Fairbairn, AIAA J. 2, 1004 (1964).
 327. C. E. Head, Phys. Lett. A34, 92 (1971).
 328. W. B. Maier, II, R. F. Holland, Bull. Am. Phys. Soc. 17, GE8, 695 (1972).
 329. J. R. Peterson, J. T. Moseley, J. Chem. Phys. 58, 172 (1973).
 330. A. A. Коньков, А. П. Разин, В. С. Руднев, J. Quantit. Spectr. and Rad. Transfer. 7. 345 (1967). Transfer, 7, 345 (1967).
- 331. K. R. German, R. N. Zare, D. R. Crosley, J. Chem. Phys. 54, 4039 (1971).

- 332. О. П. Шадрин, Н. И. Жирнов, Опт. и спектр. 34, 590 (1973). 333. К. L. Wray, J. Quantit. Spectr. and Rad. Transfer 9, 255 (1969). 334. И. И. Галактионов, Ю. Н. Колпаков, Труды III Всесоюзной теплофизической конференции по свойствам веществ при высоких температурах, Баку, 1968
- 335. D. C. Cartwright, J. Chem. Phys. 58, 178 (1973). 336. R. S. Mulliken, ibid. 7, 14, 20 (1939).
- 337. W. L. W i e s e, M. W. S m i t h, B. M. G l e n n o n, Atomic Transition Probabilities (a Critical Date Compilation), NBS4, 1966. 338. В. В. Налимов, Приложение математической статистики к анализу вещества,

- 339. А. Д. Русин, О. П. Яковлев, Вестн. МГУ, сер. «Химия» 13, 716 (1972).
 340. Н. К lemsdal, J. Quantit. Spectr. and Rad. Transfer 13, 517 (1973).
 341. J. C. McCallum, W. R. Jarmain, R. W. Nicholls, CRESS Spectroscopic Reports No. 1 (1970), No. 2 (1971), No. 3-5!(1972), York University, Toronto.
 342. J. O. Arno'ld, R. W. Nicholls, J. Quantit. Spectr. and Rad. Transfer 13, 45 (4072).
- 115 (1973). 343. J. G. Chervenak, R. A. Anderson, J. Opt. Soc. Am. 61, 952 (1971).
 344. T. G. Slanger, G. Black, J. Chem. Phys. 55, 2164 (1971).
 345. M. J. Mumma, J. E. Stone, E. C. Zipf, ibid. 54, 2627.
 346. J. Rogers, R. Anderson, J. Opt. Soc. Am. 60, 278 (1970).

- 347. J. E. Mentall, H. D. Morgan, J. Chen. Phys. 56, 2274 (1972).
 348. D. C. Jain, J. Quantit. Spectr. and Rad. Transfer 12, 759 (1972).
 349. D. D. Gray, T. D. Roberts, J. L. Morack, J. Chem. Phys. 57, 4190 (1972).
 350. R. Anderson, R. Sutherland, N. Frey, J. Opt. Soc. Am. 62, 1127 (1972).
- 351. M. Jeunehomme, J. Chem. Phys. 44, 4253 (1966).
- 352. J. Dufayrad, M. Lombard, O. Nedelec, C.R. Ac. Sci. **B276**, 474 (1973). 353. W. S. Cathro, J. C. Mackie, J. Chem. Soc. Farad. Trans., ser. II, 69, 237 (1973).

- 354. J. F. M. A arts, F. J. De Heer, Physica 49, 425 (1970). 355. J. C. Rich, Astrophys. J. 153, 327 (1968). 356. M. J. Pilling, A. M. Bass, W. Braun, J. Quantit. Spectr. and Rad. Transfer 11, 1593 (1971). 357. H. S. Liszt, W. H. Smith, ibid. 12, 1591 (1972). 358. G. M. Lawrence, S. C. Seitel, ibid. 13, 713 (1973). 359. G. A. Capella, H. P. Broida, J. Chem. Phys. 58, 4212 (1973).

- 362. G. T. Best, H. S. Hoffman, J. Quantit. Spectr. and Rad. Transfer 13, 69 (1973).
- 363. M. Yoshimine, A. D. McLean, B. Lin, J. Chem. Phys. 58, 4412 (1973).
- 364. M. Marchetti, P. S. Julienne, M. Krauss, J. Res. NBS A76, 665 (1972).
- D. L. J u d g e, L. G. L e e, J. Chem. Phys. 57, 455 (1972). 365.

- 366. M. Yoshimine, S. Green, P. Thad deus, Astrophys. J. 183, 899 (1973).
 367. S. Green, S. Hornstein, C. F. Bender, ibid. 179, 671 (1973).
 368. G. Herbig, Zs. Astrophys. 68, 243 (1968).
 369. T. Wentink, R. J. Spindler, J. Quantit. Spectr. and Rad. Transfer 13, 157 (1973). 595 (1973).

370. P. E. Rouse, R. Engleman, ibid., p. 297.

- 370. Р. Е. Rouse, R. Engleman, ibid., p. 297.
 371. W. H. Smith, R. Chevalier, Astrophys. J. 177, 835 (1972).
 372. Ф. Н. Путилин, О. Д. Храмова, Л. А. Кузнецова, Ю. Я. Кузя-ков, ЖФХ 47, 1339 (1973).
 373. L. Kurzweg, G. T. Egbert, D. J. Burns, J. Chem. Phys. 59, 2641 (1973).
 374. M. B. Moeller, S. J. Silver, Chem. Phys. Lett. 19, 78 (1973).
 375. P. N. Sinha, C. L. Chatter jee, Indian J. Pure and Appl. Phys. 11, 57 (1973).
 376. C. A. Van de Runstraat, T. R. Govers, W. B. Maier II, R. F. Hol-land, Chem. Phys. Lett. 18, 549 (1973).
 377. W. M. Jackson, J. Chem. Phys. 59, 960 (1973).
 378. J. LeCalve, M. Bourene, M. Schmidt, M. Clerc, J. de Phys. 30, 807 (1969).
- (1969).

- 379. A. J. Smith, R. E. Imholf, F. H. Read, J. Phys. B6, 1333 (1973).
 380. L. C. Lee, D. L. Judge, ibid., p. L121.
 381. R. Anderson, D. Wilcox, R. Sutherland, Nucl. Instrum. and Meth. 110, 167 (1973).

1

382. B. Chakraborthy, Y. K. Pan, Appl. Spectr. Rev. 7, 283 (1973).