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The propagation of high-power laser beams in media with the Kerr nonlinearity is discussed allowing
for various types of nonlinear absorption. A parabolic equation for the complex amplitude of the
electric field is derived from the Maxwell equations under conditions of greatest practical interest.
This equation is analyzed under steady-state conditions and for laser pulses of 10"8 sec or shorter
duration. A numerical solution of the steady-state problem shows that a multifocus structure appears
in a beam of supercritical power. It is shown that this multifocus structure is universal, i.e., it
appears irrespective of the nature of the nonlinear absorption in the medium and of other factors
allowed for in the theory. The structure of the foci is studied in detail. Within light beams such foci
usually move at velocities close to that of light. A theory of moving foci is presented: The
trajectories of the motion of the foci and their parameters are calculated and the broadening of the
laser pulse spectra due to the motion of the foci is evaluated. Explanations are given of various
experimental data on the stimulated scattering, optical breakdown, and broadening of the laser
radiation spectra.
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I. INTRODUCTION

The propagation of high-intensity light beams in
nonlinear media is attracting considerable attention.
The interest in this subject is primarily due to the fact
that the characteristics of the propagation of a light
beam in a medium have a considerable influence on
practically all the nonlinear optics phenomena investi-
gated at present, for example, the stimulated Raman
scattering, stimulated Mandel'shtam-Brillouin scatter-
ing, stimulated scattering in the wing of a Rayleigh line,
optical breakdown in gases and dielectrics, broadening
of the spectra of laser pulses, and so on. A correct
interpretation of these phenomena is frequently based
entirely on the features of the propagation of light.

Apart from these phenomena, the characteristics of
the propagation of high-intensity light beams are also of
basic importance. It is sufficient to compare the situa-
tion with that in linear optics whose development could
have hardly taken place without the knowledge of the
principal features governing the propagation of light in
linear media. An equally important role in the develop-
ment of nonlinear optics is played by the nature of the
propagation of light in nonlinear media. Light beams
generated by pulsed lasers are of greatest interest. For
these beams the main contribution to the nonlinearity of
a medium is made by the practically instantaneous Kerr
effect.1' Therefore, most of the investigations of the
propagation of light in the nonlinear media, following the
first paper of Chiao, Garmire, and Townes^2-1 published
in 1964, are concerned with the Kerr nonlinearity in

which the refractive index of a medium becomes a func-
tion of the intensity of light.

Chiao, Garmire, and Townes^2^ introduced the con-
cept of a critical beam power. In 1965 Kelley^3-1 showed
that the initial stages of the propagation of a light beam
of supercritical power in a medium with the Kerr non-
linearity are as follows: the intensity on the beam axis
rises without limit (within the framework of the para-
bolic equation employed) on approach to some point on
the axis known as the point of collapse. However, the
propagation of the beam beyond this point was not con-
sidered by Kelley. At that time the generally accepted
point of view was that beyond the point of collapse a
beam experiences self-trapping and travels in a wave-
guide manner[ 2 ] (Chiao, Garmire, and Townes m cal-
culated the intensity profile of a beam traveling in a
guided manner in a Kerr medium). The experimental
observations of thin light filaments in liquids, glasses,
and lately in gases have been regarded as a confirma-
tion of the waveguide propagation. It should be noted
that the possibility of self-trapping of an electromagnetic
beam in a waveguide manner was pointed out back in
1958 by Volkov,[4] who was the first to calculate the in-
tensity profile of a beam self-trapped in a plasma. Later
the possibility of self-trapping was mentioned in1 1 5 ' 6 3

(the intensity profile considered in1-6-1 was identical with
that obtained i-11*3

However, many experimental results cannot be ex-
plained on the assumption of self-trapping of a beam into
a waveguide regime beyond the point of collapse. First
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of all, this assumption does not explain the very short
"lifetime" of a filament which is typically of the order
of 1(T10 sec for giant laser pulses. Secondly, the length
of filaments in substances such as carbon disulfide,
toluene, nitrobenzene, and others has been found to ex-
ceed 5—10 cm. It is not clear how such filaments can
form under the conditions of strong stimulated Raman
scattering which develops in such media. In fact, accord-
ing to several experimental investigations up to 90% of
the energy at the end of a cuvette is pumped from a fila-
ment into the Stokes component of the scattering. Ac-
cording to calculations, such pumping should occur over
distances of the order of 0.1 cm, which is in conflict
with the observed lengths of 5—10 cm. Moreover, the
nature of the emission of the anti-Stokes components of
the stimulated Raman scatetring cannot be explained
satisfactorily. According to the waveguide theory the
vertex angles of the cones of the anti-Stokes components
should be governed by Cherenkov-type conditions
(see c ? ' 8 ] ) . In fact, the emission is not of the Cherenkov
type but intermediate between the Cherenkov and
"volume" mechanisms of the emission of these compon-
ents. Loy and Shen^9-1 observed ultrashort pulses in the
backward stimulated Raman scattering inside a cuvette
containing the investigated substance. The appearance
of these pulses could not be explained by the waveguide
theory of the propagation of a beam. Difficulties are
also encountered when this theory is used to explain the
discrete nature of the optical breakdown in transparent
media, some features of the broadening of the spectra of
laser pulses transmitted through matter, and other
phenomena.

In 1967 Dyshko, Lugovoi, and Prokhorovc i o ] solved
the problem numerically and suggested a new (multi-
focus) mechanism of the propagation of light beams in
media exhibiting the Kerr nonlinearity.

In 1968 Lugovofand Prokhorovc 1 1 ] explained thin
light filaments observed in earlier experiments as due
to the trajectories of moving foci and not due to the
waveguide propagation. This new point of view on the
principal features of the propagation of light beams in
nonlinear media removed all the contradictions and ex-
plained many experimental results.

The steady-state multifocus structure of a light beam
represents a finite row of foci on the beam axis formed
as a result of successive focusing of different ring zones
in the beam. The point of collapse is not the beginning
of a waveguide filament but the center of the first focus.
A detailed investigation'12-1 of the influence of various
types of nonlinear absorption in a medium,[ 1 1 ] i.e., of
the imaginary part of the refractive index, on the propa-
gation of a beam indicated that a multifocus structure
appears irrespective of the actual nature of such ab-
sorption. A study was also made of the influence of
possible deviations from the quadratic dependence of the
real part of the refractive index on the field which may
arise under real conditions due to the saturation of the
Kerr nonlinearity (seec 13~17^) or due to the nonlinear ab-
sorption in a medium. Numerical calculations were used
to show that the multifocus structure of a light beam is
not basically affected by such deviations and only small
corrections are needed to the parameters of the foci.
Thus, the multifocus propagation of light beams in media
with the Kerr nonlinearity is universal, i.e., it should
be observed in a great variety of physical situations.

with the laser pulse envelope. Since the positions of the
foci along the beam axis depend on the initial power and
the power itself varies with time, the foci move along
the beam axis. Typical velocities of the foci are of the
order of 10e cm/sec for giant laser pulses. S the propa-
gation pattern is recorded laterally on a photographic
film, the integrated result of the motion of the foci is a
thin filament, which is the trace of the foci. According
to the multifocus theory the transverse dimensions of
such filaments are governed by the transverse dimen-
sions of the foci and the lifetime of these filaments
represents simply the transit time of the foci across a
medium to its exit plane. The calculated value of the
transit time is typically 10"10 sec (see [ l i : i ) , in full agree-
ment with the experimental values of the filament "life-
times."

Thus, a consistent theory of the propagation of high-
power laser beams in media with the Kerr nonlinearity
predicts a multifocus pattern and moving foci. This
theory starts with the Maxwell equations and it is devel-
oped below.

I I. INVESTIGATION METHODS AND SOME RESULTS
OF STUDIES OF THE PROPAGATION OF HIGH-
POWER LASER PULSES IN MATTER

1. Initial equations

The propagation of light waves in a nonlinear medium
is described by the Maxwell equations

f = - ~ , divD = C (1)

and the constitutive equation describing the nonlinear
relationship between the electric induction vector D and
the electric field vector E, which can be written in the
form

6 = eg, (2)

where e is a nonlinear functional of E. The greatest in-
terest lies in linearly polarized high-power beams
generated in lasers operating under pulse conditions
(pulse durations are usually of the order of 10"8 sec or
less). Since laser pulses are very short, the striction or
thermal or associated nonlinearity mechanisms cannot
appear in beams of the usual diameter ( > 0.1—0.03 cm)
because of the relatively long times required for the re-
distribution of the density of matter by the striction
forces or by nonuniform heating,'-18"21-' The main con-
tribution to the nonlinearivy of a medium is then made
by theorientationalC 2'1 8"2 3 ] or electron[ 2 4"2 6 ] Kerr
effect.2' The characteristic time for the establishment
of the electron Kerr effect usually does not exceed
10"15 sec and, therefore, the electron nonlinearity mech-
anism cannot appear until we reach picosecond pulse
durations, i.e., durations of the order of ΙΟ'12 sec. For
the usual giant pulses, whose duration is of the order of
10"8 sec, the main contribution to the nonlinearity of the
medium can only be made by the orientational Kerr
effect for which the characteristic establishment time
is ΙΟ"10—10"12 sec. In those cases when the establish-
ment time of the Kerr effect TJ^ is much shorter than
the characteristic times of changes in the intensity of
light I of a given polarization, the refractive index of a
medium at any point r is a function of I :

(n, > 0). (3)

Under real conditions an incident beam is not station- This yields the following expression for the permittivity
ary. The beam power varies with time in accordance ε=ε(/) = εο + β;/+... {εα = ηξ, ej = 2rvQ. (4)
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Under the conditions specified in Eq. (9) the nature of
the polarization of the incident light pulses is practically
unaffected by the propagation in a medium. Therefore,
for the sake of simplicity, we may assume that Eqs. (3)
and (4) are independent of the nature of the initial polar-
ization.

Eliminating the magnetic field fl and the electric in-
duction D and using Eqs. (2) and (4), we obtain the fol-
lowing equation for the electric field E:

ε = ε ((£*»; (5)

here, (E z ) is the average value of E2 over one light-
wave period ((E 2 ) <» I). Selecting the system of coor-
dinates in which the ζ axis coincides with the central
direction of propagation of a light beam, assuming that

E = |-E(r, i)e«"-f«*4-C.C., (6)

where k = (w/c)V7o~ and u> is the central frequency of the
field oscillations in the beam, and bearing in mind that
(E2> 11 |E| 2, we obtain the following exact equation for a
new unknown function E:

dE \2 de

..., δε=ε-εο = | ε ϊ | Ε ρ + . . . (ε2>0);

(8)
here, the vector k has the magnitude k and is directed
along the ζ axis.

We shall assume that the following conditions, which
are most interesting from the practical point of view,
are satisfied for all values of r and t:

:ε0, (9a)

(9b)

%Γ«τ, (9C)

τκ < τ, (9d)

where AN and A L are the characteristic scales of the
variation of the amplitude Ε along the ζ axis and at right-
angles to this axis, respectively; τ is the scale of the
variation of Ε as a function of t; λ = 2ir/k is the wave-
length of light; Τ = 2 π/ω is the period of the light wave;
τ κ is the characteristic time for the establishment of
the Kerr effect in a medium. The condition (9d) allows us
to express the permittivity in the form given by Eq. (9).
If the conditions (9a)—(9c) are obeyed, some of the
terms in Eq. (7) are negligibly small. We shall first
consider the projection of the vector equation (7) onto
the (x, y) plane. In this case the first term vanishes. If
we then assume that

de de. 6ε

(and, similarly, de/dt ~ δε/τ), estimates of the remain-
ing terms give

6e

«^-'SMi)
a»2

•β) Ε χ , .

[ Ε χ = (Εχ, E y ) and Δ χ = θ'/βχ' + a 2 /ay 2 ] . Therefore, to
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within higher-order small terms, we obtain the following
equation for Ε χ:

+ | E 7 | a ) . The equation obtained byE f '
here, 6t =
the projection of the vector equation (7) onto the ζ axis
closes the system of equations for Eg, Ey, and E z . How-
ever, it is more convenient to derive the third equation
directly from div (εΕβ^-ΐω*) = 0 [see Eqs. (1), (2), and
(6)], which yields

£, = ̂ άίν(εΕ). (11)

It follows immediately from Eq. (11) that if the condi-
tions (9a) and (9b) are satisfied for all values of r and t,
we have

I & I « Ι Εχ |. (12)

Then, to within terms of higher orders of smallness, we
obtain

Ε -L(dE* +

 M M (13)

If we use Eq. (12), we can substitute 6e = δβ(|Εχ |
2) into

Eq. (10). Thus, the propagation of a light beam in a
nonlinear medium subject to the conditions (9) is des-
cribed by the parabolic equation (10) for the transverse
component Ε of the electric field in the beam.3 ) The
longitudinal component E_, can be found in the first ap-
proximation using Eq. (13) and the known solution of
Eq. (10).

It follows immediately from Eq. (10) for E± that if the
initial plane ζ = 0 the field has a definite and constant
polarization for all values of t. This polarization is re-
tained also in the space ζ > 0, i.e., it is retained during
the propagation of a beam in a nonlinear medium. In
particular, the propagation of linearly polarized light
beams generated by pulsed lasers is described by an
equation for one component of the field, for example the
component Εχ = Ε (we recall that the χ axis is selected
along the electric field vector in a beam):

£ = 0. (14)

The function oe(|E|2), which occurs in the above equa-
tion, has the following simple form for media exhibiting
a strong Kerr effect:

(15)

The above expression represents the first term in the
expansion of the quantity δ £ as a series in powers of
|E | 2 . The refractive index η is now given by

. " 2

• 2 e o
(16)

The nonlinearity of the medium expressed in the form of
Eq. (15) or Eq. (16) is usually called the Kerr nonlinear-
ity. The dependence n(|E|2) for large values of |E | 2 ,
when |E | 2 ^ l/n2, i.e., when Eq. (16) ceases to be valid,
has been discussed in detail in*1S^ and elsewhere1' and
it has been approximated in several papers E30>31^ by the
function

or by other functions^323 which do not differ basically
from Eq. (17). It follows from Eq. (17) that the depen-
dence of η or e on |E | 2 disappears for |E | 2 3> | E S | 2 . In
the latter case it is usual to speak of the growth of the
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Kerr nonlinearity. However, since | E S | 2 ~ l/n2 (and this
is due to the nonresonant nature of the Kerr effect), it
follows from the condition (9a) that Eq. (14) is valid only
for |E | 2 -C | E S | 2 when the saturation of the nonlinearity
is practically absent, i.e., when the Eqs. (15) and (16)
are valid. Therefore, in order to describe the propaga-
tion of light beams in the case of significant saturation
of the Kerr nonlinearity of a medium we must use
directly the Maxwell equations and not Eq. (14). In Sec. 1
of Chap. ΠΙ we shall show that this is true also under
steady-state conditions when aE/θί = 0.5)

In the case of very small values of |E | 2 Eqs. (15) and
(16) can be regarded as real. However, attention is
drawn in1 1 1· 1 to the point that in the case of propagation
of light beams in nonlinear media when the values of |E | 2

can be relatively high (in spite of |E | 2 < IES|2), it is
generally necessary to allow not only for the real part
of the permittivity δε' but also for the imaginary part
δε" associated with the nonlinear absorption in the med-
ium. In general, the quantity δε" is a nonlinear functional
of E. However, if the main nonlinear absorption mech-
anism is of the many-photon type, whose characteristic
establishment time usually does not exceed 10"15 sec,
we find that both the real part δε' and the imaginary
part δε" can be described, subject to the condition (9c),
in the simple form of a function of |E | 2 . In the case when
the main nonlinear absorption mechanism is due to, for
example, pumping of the energy from the beam under
consideration to the stimulated scattering components,
the dependence of δε" on Ε does not reduce to the func-
tion of |E | 2 (see Sec. 2b in Chap. ΠΙ). Thus, the quantity
δε occurring in Eq. (14) can be expressed in the form

6e = j ε21 £| 2 + ifie". (18)

In several cases of practical interest we find that

4s- « "' (19)

so that the term (l/v)3E/at in Eq. (14) is small compared
with the term 8E/9z. Ignoring the first of these terms,
we obtain an equation which does not contain time ex-
plicitly:

(20)

In this case the time dependence remains only in the
boundary condition

£ I i=o = φ θα, t). (21)

where φ(τχ, t) is a given function which is governed by
the electric field of a light pulse incident on the boundary
ζ = 0. Thus, the solution of the initial transient (non-
stationary) problem subject to the condition (19) reduces
to the solution of the stationary problem (20)—(21),
where the time t is simply a parameter in the boundary
condition. Therefore, we shall start by considering the
stationary (steady-state) problem. The conditions under
which the inequality (19) is valid will be called quasi-
stationary.

2. Analytic investigation

The case of an axially symmetric beam is of the
greatest practical interest. The deviation r± from the
axis of the beam will be denoted simply by r. For the
sake of simplicity we shall assume that

δε" = eom (| Ε |2) (m (0) = 0) (22)

and we shall discuss the specific case when a beam inci-

dent on the boundary of a nonlinear medium has a plane
phase front and a Gaussian distribution of the intensity.
Then, Eq. (20) becomes

^ + 1 4 | + 2ί*4£. + *·[»1|£|· + Μ £ | · ) ] £ = Ο (23)

(24)

subject to the boundary condition

here, the field Eo is a parameter and the quantity a0 is
the initial radius of the beam.

In the analytic investigation we shall represent the
field Ε in the form

(25)

Equation (23) yields the following equation for A:

(Ar = Re A). We shall assume that the quantity A is an
analytic function of χ and y. Then, the expansion of A as
a Taylor series consists solely of integral nonnegative
powers of the quantity q = x2 + y2:

A (q, z) = Ao (z) + qA, (z) + qU2 (z) + . . . (27)

Substituting Eq. (27) into Eq. (26), we obtain the following
system of equations for An(z):

2(4- k(n-k)AkAn-k]-
o

»-i) = 0 (n-

(28)

= 1,2, . . . ) ,

where the real coefficients Ljj(z) and Mjj(z) are given by

(29)
n?exp( — 2Ar

0)mlexp(2Al + 2qA',-

Introducing the notation

]=M0 + qMt-

» = 1 , 2,

(30)
we find that Eq. (28) yields

2b0 = n2a0 + 4a,. (31)

The relationship (31) gives the correction to the longi-
tudinal wave number on the axis of the beam. For the
other coefficients a^ and bjj. Eq. (28) reduces to an infin-
ite system of equations. The main properties of this
system will be determined by assuming that m(|E|2) = 0,
i.e., we shall ignore the absorption in the medium. In
this case the infinite system of equations becomes

oj+ 46,β(, = 0,

o; + 46,e,= — 862,

b[ + 2b\ = n2a0«i + 2a\ + 8a2,

-8a,b2—186,,

(32)

~ a\ + 2a,«2 + os) + 8 (a\ - b\) + 12α,α3 -

-3α263 + 3α362)—50ί>5 e t c . ;

6;+126,6,-,.2

aj + 16b,o4 = —

here a prime represents a derivative with respect to
u = kz.

We shall first consider the case when the medium is
linear, i.e., n2 = 0. In this case we can see that the sys-
tem (32) has a class of solutions such that a.2 = hz = a.3

= b3 = ... = 0, and the remaining quantities (a0, a.%, bx)
satisfy the following equations:

αό +46,αο = 0, a; + 46,a, = 0, t; + 26J = 8oJ. (33)

According to Eqs. (25), (27), and (30), this class of solu-
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tions corresponds to Gaussian beams and the existence
of this class means that the Gaussian form of such beams
is conserved during propagation in a linear homogene-
ous medium: such propagation changes only the width of
the intensity distribution in the transverse direction
(coefficient ai), intensity on the axis (coefficient a0), and
curvature of the phase front (coefficient b^ . The general
solution of the expressions in Eq. (33) yields the follow-
ing relationship for the amplitude E:

1 — ΜΒλΑ-ΙΙΐΙΙΛ y\ 1 — <z!R\-t-i ΙζΙΙΛ ' '• '

(kal

where

(35)

In the special case of 1/R = 0 the solution of Eq. (34)
satisfies the boundary condition (24). It is clear from
Eq. (34) that the nonzero values of 1/R correspond to
the more general boundary condition

(36)

which is applicable to a focused beam such that the rays
converge geometrically at a point ζ = R.

In the case of a nonlinear medium, when ru, ̂  0, the
situation is quite different: the class of solutions corre-
sponding to Gaussian beams no longer exists. Even when
the initial distribution is Gaussian, the propagation of a
beam in a nonlinear medium results in a change in the
form of this distribution i.e., it results in the appearance
of nonzero coefficients a2, b2, a3, b3, ... . We shall ex-
pand the coefficients ajj as a Taylor series in powers of
u: a k = Z/a^u 1 1 . Using Eqs. (28) and (32), we can show

that in order to determine the coefficient aj ' for 112 / 0
we need 2n — 1 relationships such as the first equation in
the system (32) and we need 2n + 1 such expressions for
the determination of the coefficient a(n). tt is shown
in'-33-' that this circumstance has a fundamental influence
on the nature of the solution subject to the condition

E0>Ea, (37)

where

Ύ Μ

The condition (37) can be written also in the form

where Ρ = (cno/8i7) J | E | 2 d r x is the beam power and

(38)

(39)

(40)

Thus, the condition obtained in1-2-1 for a significant influ-
ence of the nonlinearity of a medium agrees with the
condition (39) which corresponds to ihe case when a re-
distribution of the intensity of a beam in its transverse
cross section begins to play an important role in the
propagation process. This point has been ignored in1-34·1

(see also review1-1*·1) so that the correct description of
the propagation of a beam in a nonlinear medium has not
been provided. A similar objection applies also to a re-
cent paper1-35-1 in which a beam traveling in a nonlinear
medium is assumed to be Gaussian.

A correct analytic solution of the problem under con-
sideration is given in [ 3 3 : i but it is valid only if |N - 1|
<C 1, ζ <SC kio (N = E 0 / E c r ) , i.e., in a certain range of
values near the initial field Eo and only close to the
boundary of the medium. For r = 0 this solution is of
the form

If Eo > E2^, we find that Eq. (32) yields

(41)

(42)

which governs the characteristic length I of the initial
variation of the axial field |E | along the ζ axis:

i* = --^=. (43)

Equation (43) was first obtained in C 3 ] .

In view of their limited validity, the analytic results
do not predict several important features of the propa-
gation of a beam in a nonlinear medium (this will be
shown later). Therefore, we must consider a numerical
solution of the same problem.

3. Numerical solution of the parabolic equation in the
absence of absorption in a medium

We shall now consider the numerical solution of Eq.
(23) subject to the boundary condition (24) and we shall
assume initially, as in^, that m(]E|2) s 0, i.e., we shall
ignore the absorption in a nonlinear medium. For the
sake of convenience we shall introduce new variables:

where E c r and lx are described by Eqs. (38) and (43).
We thus obtained the following equation for the quantity
X:

dX

r=o (45)

and the boundary condition is now

X|I = o = e-f/ 2. (46)

According to c i o : l if | N - 1| < 1, Zi < 1, the numerical
solution of the problem (45)—(46) confirms the analytic
expression (41). We find that if Ν > Ni (where N x « 2),
the solutionC3>10>36] has an important singularity be-
cause the intensity |X|2 on the axis of a beam, i.e., for
Γι = 0, rises without limit as a function of Zi on approach
to a point z*. The expression for zjf obtained i n [ 3 ] on
the basis of approximate numerical results is of the
form

0.7iV

or, if we use Eqs. (44) and (38),

(47)

here, z* = z*lx, Ρ is the power of the incident beam, and
P c r is close1 to the value defined by Eq. (40).

We note that, strictly speaking, the numerical solu-
tion does not solve the problem of the existence of a
mathematical singularity at zi = z* because the approach
to ζ ί in the numerical calculations gives ever increasing
but always finite values of |X|2, which is limited by the
time spent in calculations and by the size of the computer
memory. In spite of that, it follows fromC 3 ) l o : l that the
steepness of the rise of |X|2 with ζ for r = 0 at values
of ζ close to ζ * is in any case sufficiently strong to
violate the condition Λ n 3> λ [see Eq. (9)] which is es-
sential for the validity of the parabolic equation (45) em-
ployed here. Consequently, the question of existence of
a mathematical singularity in our solution is of formal
nature and we shall not consider it any further. In the
next chapter we shall concentrate our attention on the
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factors which under real conditions can limit the rise of
|X|2 in the range Zi — z*.

III. STEADY-STATE MULTI FOCUS STRUCTURE OF A
LIGHT BEAM IN A NONLINEAR MEDIUM

1. Formulation of the problem in the presence of
absorption

A numerical solution of Eq. (45) subject to the boun-
dary condition (46) can be used to show1-10-1 that the
singularity at ζ — ζ* does not represent all the power
of the initial beam but only some part of magnitude close
to the critical power P c r . The scale A± of the spatial
variation of the field Ε in the transverse direction is
minimal near the beam axis and, in accordance with the
foregoing discussion, it is given by

which is equal to the diameter of the paraxial distribu-
tion of the beam intensity in a given transverse section.
Using Eqs. (48) and (40), we immediately find that

Λ, = - (49)
2 V n 2 | Ε Ρ

Therefore, if we satisfy the condition

Aj_ > λ, (50)

we automatically satisfy the first of the conditions (9)
for the validity of the parabolic equation.6' We shall see
later (see Sec. 3) that the inequality (50) guarantees that
the condition Λ.(/ 3> Λχ is also satisfied. Therefore, on
approach to the point z* the initial equation is valid as
long as the inequality (50) is satisfied.7J Ε the condition
(50) is not satisfied, i.e., if Λ^ ~ λ, the parabolic equa-
tion becomes invalid. If we now assume that Λ j_ ~ λ at
ζ — ζ*, we find from Eqs. (40) and (48) that the intensity
I on the beam axis is ~3 χ 10^-3 χ ΙΟ14 W/cm2 for typi-
cal media such as carbon disulfide, toluene, nitroben-
zene, some glasses, and so on (these media are charac-
terized by Π2 ~ 10"11—10"13 cgs esu). At these or (in
most cases) lower intensities the nonlinear absorption
of light may be strong. Such absorption can be due to
the many-photon mechanism, pumping of the energy to
the stimulated scattering components, breakdown of
matter, etc. These types of nonlinear absorption can
appear at intensities of the order of 1010—1011 w/cm2, as
reported in many experimental investigations (see, for
example, Ε20»37"44]), This means that the nonlinear ab-
sorption may be the main factor which limits the energy
density at ζ — ζ*. Then, the minimum value of Aĵ  is
much greater than the wavelength λ, which is again in
agreement with the experimental results. The relation-

ship A λ is obtained also from Eq. (49) if we bearχ
in mind that the experimentally determined values of
n 2 |E | 2 are of the order of 10"3 (see [ 4 5 ] ) .

Under these conditions the propagation of light beams
in media can be described by the parabolic equation
derived above provided the quantity δ e is introduced in
its complex form of Eq. (18). The imaginary part fie" in
Eq. (18) is governed by the main nonlinear absorption
mechanism. We shall consider in detail three types of
such absorption: a) three-photon absorption; b) absorp-
tion due to the pumping of energy to the first Stokes
component of the stimulated Raman scattering; c) two-
photon absorption.

2. Numerical solution of the parabolic equation in a
medium with the Kerr nonlinearity and nonlinear
absorption

a) Three-photon absorption. In the three-photon ab-
sorption the imaginary part of the permittivity of a
medium can be written in the form

δε" = e0m4 | Ε |4, ( 5 1 )

where m4 is a real coefficient. Introducing the notation
of Eq. (44) and also

μ. = ̂ ΛΤ'. (52)

we find that Eqs. (22)—(24) lead to the following equation
forX:

»*+±>χ.+2ΐΝ%-+{Ν·\χη'κ\χηχ=ο (53)

subject to the boundary condition (46). If μ4 = 0, Eq. (53)
reduces to Eq. (45). According to Eqs. (44) and (38), the
parameter Ν is related to the power P o of the incident
beam by

x-HivTH,, ( 5 4 )

(55)

where
>u> ... c " i " o .

We shall now give the results of a numerical solution
obtained in I-12-1 for Ν = 2—10, which corresponds to the
range from p£" to 27P^' and ΙΟ"3 < μ4 < 0.2. We note
that if μ4 > 0, ihe energy density at Zi — z* rises, as
expected, to finite values. The results of this numerical
solution show also that the process of propagation of a
light beam in a medium of this type can be regarded
qualitatively as the formation of a multifocus structure.
This structure represents a finite series of separate foci
on the axis, resulting from successive focusing of differ-
ent ring zones in the beam. The point Zi = ζ ί determines
the center of the focus in such a structure.

Figure 1 shows the longitudinal section of a beam
traveling in a medium of the kind considered here. It is
clear from this figure that there are several foci on the
axis of the beam. We can also see that only a certain
fraction P^J of the power passes through the first focus.
The energy reaching this focus is partly absorbed non-
linearly in the medium and partly emerges from the
focus in the form of a rapidly diverging ring wave which
escapes from the initial beam. Part of the beam which
bypasses the first focus forms the second focus. The
power reaching the second focus is close to the critical
value P '^ . As in the case of the first focus, some of the
energy is absorbed nonlinearly at the second focus and
some escapes in the form of a diverging ring wave.
The third, fourth, and other foci are formed in the same
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manner. The passage of a beam through each focus is
thus accompanied by a fall of its power by a certain
amount. Consequently, the foci are formed until all the
initial power is dissipated. When this happens, no fur-
ther foci are formed. Thus, the total number of the foci
is finite and it depends on the initial beam power. The
m-th focus appears for Ρ = p ( m ' or, which is equivalent,
for Ν = N m . It follows from Eqs. (54) and (55) that
and N m are related by

cN%,na

c r

pitny l

c r Ofi2/c<-

Numerical calculations show that if the value of the
coefficient μ, is sufficiently small, we can estimate
from

(56)

cr

P'S'^mP·». (57)

More detailed information on the nature of the solu-
tion is given in Fig. 2, which shows typical dependences
of |X|2 and of the ratio of the beam power Ρ at Zi > 0 to
the incident beam power P o on the value of Zi for Ν = 6
and μ4 = 0.05. The three lower curves in Fig. 2 repre-
sent the dependences of |X|2 on zx on the beam axis (i.e.,
for r i = 0) and on two cylinders close to the axis
(ri = 1/12 and ri = 1/6) in the range zx = 0.8-1.9 (this
range covers the first three foci). For the sake of con-
venience the curves are plotted on different scales (the
scale increases with increasing ri). The topmost curve
represents the dependence of the relative power P/Po on
Zj in the same range of values of ζχ. We can see that the
dependence |X|2 on ζχί0Γ rx = 0 has three sharp peaks
corresponding to three foci on the beam axis. The de-
pendences of |X|2 on zi for r t = 1/12 and ri = 1/6 show
how the foci are formed and how the ring waves men-
tioned earlier emerge from the foci (the process is
shown schematically by the dashed lines in the same
way as in Fig. 1).

The nature of the solution at large distances from the
beam axis (ri ^ 1) shows that the ring waves diverging
from the various foci generally interfere with the wave
bypassing the foci up to zx and form a complex ring
structure with several maxima and minima of |X|2 as a
function of rx. This ring structure appears beyond the
first focus, i.e., for zx > Zj^. The envelope of this
structure can be approximated satisfactorily by a cone
with a vertex angle governed by the angle of emergence
of the waves from the first focus.

We shall now consider the dependence of the relative
beam power P/P0on z 1 ; plotted at the top of Fig. 2. We
can see that the passage of the beam through each focus

FIG. 2
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is accompanied by a fall of its power Ρ by an amount of
the order of P'1 ' : in the case considered here we have
Ν = 6 and it follows from Eq. (55) that P^'/Po » 0.1.
This fall of the power is obviously due to the absorption
of a considerable fraction of the electromagnetic energy
reaching a focal region. Therefore, it is clear that the
energy flux P j m through the "central" section in this
region (i.e., the section zx = z^m, where Zj m is the po-
sition of the maximum of |X|2 in the m-th focal region)
should represent only some fraction of P ( 1 ) . It follows
from1-12-1 that P j m has practically the same value for all
Ν and μ4 and for all consecutive focal regions: this
value is P* « 2P'1'/3 (the absolute precision of this
value is 0.025P^).

The dependence of |Xfm|2 on μ4, in the range of
values of |Xjm | 2 considered here is close to the inverse
proportionality |Xfm|2 <*.1/μ«· The nature of this rela-
tionship is illustrated in Fig. 3 which shows the depen-
dence of iXfJ2 on ΐ/μ4 for Ν = 6.

The total number of foci in a beam and their positions
on the zx axis are generally functions of Ν and μ4. How-
ever, in the case of sufficiently small values of μ4 (this
corresponds to a well-re solved multifocus structure in
which the values of |Xfml2 are sufficiently large) the
positions of the foci Zfm depend weakly on μ4 and are
close to the positions derived in c i c : l . In this case the
positions of the foci along the zx axis depend strongly on
the parameter N. Figure 4 shows a family of curves
which represent the dependences of Zfm on N. In plotting
these curves the parameter μ4 was selected for each Ν
in such a way that |Xf jj2 was approximately 170, i.e., it
was sufficiently large (the corresponding values of the
ratio μ4/Ν2 are plotted as a function of Ν at the top of
Fig. 4). For the sake of comparison, Fig. 5 shows a
similar family of curves obtained in^10·1. We can see

01 i-
s m

Ν
FIG. 4
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that these families are of the same nature and the quan-
titative differences between them are slight (these dif-
ferences appear mainly for the foci with large values of
N). The differences arise because, for the assumed
values of μ4, the power absorbed in the intervals be-
tween neighboring foci is slight but comparable with the
power absorbed in the foci themselves (Fig. 2). If we
reduce the value of μ4, the power absorbed between the
neighboring foci decreases and the positions of all the
foci approach those given in Fig. 5. Thus, the positions
of the foci Z£m can be approximated by the analytic de-
pendence

Hm = N_Nm
(58a)

where the quantities x m and N m , which generally depend
on μ 4 and N, are practically constant for sufficiently
small values of μ4. For the dimensional positions of the
foci, £ f m = z f m / x , Eq. (58) yields

(58b)

Equations (58a) and (58b) with m = 1 are the more gen-
eral forms of Eqs. (47) and (48). In fact, it is clear from
Fig. 5 that

~ϋπιχι:=κ0.7, i.e., Hmzfl=zf. (59)
μ*-*0 U4-*0

The values of p( m ) and N m , wmm occur in Eqs. (58a)

and (58b), can easily be estimated using Eqs. (56) and
(57) or, more exactly, they can be found from Eqs. (4)
and (5). We shall consider the specific case correspond-
ing to the graphs in Fig. 4. In the m = 1—4 range these
graphs can be approximated satisfactorily by substitut-
ing the following values in Eqs. (58a) and (58b):

χ, = 0.72 χ2 = 0.76,
X3 = 0.79, χ, = 0.77,

TV, = 1.77, Ν2 = 2.48,
Ν3 = 3.24, 7V4 = 3.85.

Here, the values of N m are close to the exact values
(the differences are due to the actual method of approxi-
mation of the graphical dependences). We shall conclude
this subsection by noting that the type of propagation of
a light beam in a nonlinear medium discussed above is
encountered also in the case of beams with other
"smooth" initial intensity distributions in the transverse
direction.8'

b) Stimulated Raman scattering in the forward direc-
tion. A consistent description of the propagation of a
light beam in the presence of the stimulated Raman scat-
tering is generally quite difficult because of the need to
allow for the distribution of δ-correlated sources (nuclei)
of the scattered Stokes radiation (see[ 4 B ]). Therefore,
we shall consider only a model situation in which the
energy is pumped from the main beam solely to the first
Stokes component of the stimulated Raman scattering
and this component is initiated by a monochromatic
"nuclear" beam incident, like the main beam, from out-
side on the boundary ζ = 0. If the Kerr effect can occur
in the beam representing the first Stokes component, it
follows from the coherence of this beam that independent
focal regions can form in such a beam. However, we
shall not consider the possibility of such situations under
real conditions.9' Therefore, we shall consider the Kerr
effect in the main beam but ignore it in the beam repre-
senting the first Stokes component. We shall assume that
both beams are axially symmetric. In most cases of
practical interest we also can ignore the change in the

population of the vibrational ground state of the mole-
cules in the medium under consideration.10' In this case
the imaginary component of the permittivity of the med-
ium in the main beam is positive and equal to 4ττΓ|Ε-ι|2

whereas in the first Stokes component the permittivity
is negative and equal to —4JJT|E | 2 , where Ε is the com-
plex amplitude in the main beam [see Eq. (6)], Ε-! is the
complex amplitude in the first Stokes component, and Γ
is a coefficient discussed in [ 4 8 D . Thus, Eq. (20) for Ε
and the corresponding equation for E-i (obtained in the
same approximation) are

(60)

here, k-i = 2-π/λ-,.; λ-Χ = 2ττο/ω-1ηο; ω-ι = ω — ω0 is the
first Stokes frequency; ω0 is the frequency of a vibra-
tional transition in matter which is associated with the
stimulated Raman effect.

Following Eq. (24), we shall confine ourselves to the
specific case of Eq. (60) subject to the conditions

£|Z=O = J (61)

which correspond to an initial Gaussian distribution of
the intensities in both beams with the same radii of this
distribution and with plane phase fronts of the beams in
the initial transverse section. Introducing the notation of
Eq. (44) and supplementing this notation with

Η = ΰΰ y*g El, Υ = E.jEt, I = -ψ = *£• ,

we obtain the following system of equations for the
dimensionless quantities X and Y:

^ r + 7- ̂ - + 2iN ~ + (N" | X | 4 + iH21 Υ\*) X = 0,

which is subject to the boundary conditions

(62)

(63)

where a = E-i.o/Eo is the ratio of the initial field inten-
sity on the axis of the auxiliary ("nuclear") beam to the
initial intensity of the field on the axis of the main beam.
The numerical solution of the problem given in'-12-' for
a = 10~4, ξ = 0.9, and values of Ν and Η in the range
4—10, has shown that for each value of Ν there is a
critical value Η = Hc r(N) such that for Η < Η<.Γ the value
of |X|2 considered as a function of Zi on the beam axis
rises without limit on approach to the first focus.11' If
Η > H c r this solution is fully determined for all values
ζ > 0 within the range of validity of Eq. (60). If the value
of Η is only slightly greater than H c r , the solution is a
multifocus structure and the positions of the first few
foci differ only slightly from the positions shown in Fig.
5. The other foci may not exist at all because a strong
pumping of the energy from the main to the Stokes
beam occurs in the course of propagation. This reduces
the intensity of the main beam so that the tendency for
the rise of the intensity on the axis in further foci is
completely suppressed by the absorption.

Figure 6 shows typical dependences of |X|2 on zi for
Ν = 6, Η = 1.04Hcr (H c r ~ 7). The three continuous
curves in Fig. 6 give the dependences of |X|2 on Zi on
the beam axis (ri = 0) and on two cylindrical surfaces
r i = 1/12 and r,. = 1/6 in the range zL = 0.8-1.9. Each
of the curves is plotted on the same scale as the corre-
sponding curve in Fig. 2. The dashed lines in Fig. 6

665 Sov. Phys.-Usp., Vol. 16, No. 5, March-April 1974 V. N. Lugovoi and A. M. Prokhorov 665



r-0

S 0.S

FIG. 6

represent schematically the process of formation of the
foci and the emergence of ring waves (in this example
the total number of foci in the main beam is three and
all three foci lie in the range z t = 0.8—1.9). The power
P f m flowing through the central section of the m-th
focal region is practically the same, P f m » 0.7 P^ r

(with an absolute precision of O.OlPiV), for all the three
foci in this example. Bearing this point in mind and
using the values of |Xfml2 shown graphically in Fig. 6,
we can determine easily the dimensions of the three
focal regions. We can see that these dimensions in-
crease rapidly with the number of the focus because of
the strong fall of |Xfm|2 with increasing m. For this
reason experimental observations may result in record-
ing of only the first focus because a detector may be
insufficiently sensitive for the low energy density in the
second and third foci.

c) Two-photon absorption. If the main form of ab-
sorption in a medium is the two-photon process, the
imaginary part of the permittivity of this medium is
proportional to |E | 2 :

δε" = e0m2 \E \\

Here, m2 is a real coefficient. Introducing

(64)

(65)

and using Eqs. (22)—(24), (44), we obtain the following
equation for X:

between the neighboring foci should be finite (it should
also be finite between the initial planes Zi = 0 and the
first focus). Consequently, the total number of the foci
is considerably less than in the absence of two-photon
absorption in the medium. Nevertheless, the mechanism
of the formation of the foci and the beam structure are
the same as in the two preceding cases.

Figure 7 shows three dependences of |X|2 on zx for
r ! = 0, r ! = 1/12, r x = 1/6, Ν = 6, μ2 = 2.6. Each of these
curves is plotted on the same scale as the corresponding
curves in Fig. 2. The range 1 < ζ < 2.1 used in Fig. 7
includes the first two foci. Comparing Figs. 2 and 7, we
can see that the qualitative features of the formation of
the foci and the emergence of ring waves from these
foci are the same for the two- and three-photon absorp-
tion cases. The dependence of the relative beam power
P/Po on Zi, plotted at the top of Fig. 7, also shows that
at each focus the absorbed power is of the order of Pc

1^.
Moreover, a considerable fraction of the beam power is
absorbed in the interval between the initial plane Zi = 0
and the first focal region as well as between the neigh-
boring foci. The power P j m passing through the central
section of the m-th focal region is P* ̂  s» 0.61P*1' and
P f 2 « 0.66P^ for m = 1, 2.

The positions of the foci Zfm along the ζ y axis depend
on the parameters Ν and μ2. Figure 8 shows a family of
curves which give the dependences of Zj m on Ν for cer-
tain values of μ2. The values of μ8 are selected for each
Ν in such a way that the quantity IXfjJ2 remains constant
and amounts to about 110. The dependence of the ratio
μυ/Ν2 on Ν is also included in Fig. 8. Comparing Figs.
4 and 8 (or Figs. 2, 6, and 7) we see that in the two-
photon absorption case the distances between the foci

(66)

subject to the boundary condition (46).

A number of numerical calculations concerned with
this problem1112] has shown that, in the (Ν, βζ) plane,
there is a curve μ2 = μ2(·Γ(Ν) s u c n t n a t > a № ̂  μ2οΓ
the value of |X|2 considered as a function of Zi on the
beam axis rises without limit on approach to the first
focus (as in the case Η < H c r considered in the preced-
ing subsection); if μ2 > μ20Γ> the solution is fully de-
termined for all values zi > 0. In the latter case, if the
value of μ2 does not exceed greatly μ2 (,Γ (for example,
if μ 2 0 Γ < Ma < ^ c r ) , this solution represents a multi-
focus structure. A characteristic feature of this struc-
ture is that the positions of the foci differ considerably
from the positions shown in Fig. 5. This difference is
due to the fact that the two-photon absorption outside the
foci is negligibly weak only for sufficiently small values
of the coefficient μ2, whereas for μ2 > μ 2 0 Γ such ab-
sorption should always be finite, i.e., the power absorbed

FIG. 7
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FIG. 8
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may be considerably greater than for the other forms of
nonlinear absorption.

Thus, the results given in the preceding subsections
(a, b, c) show that the propagation of a high-power light
beam in a wide range of media exhibiting the Kerr non-
linearity gives rise to a multifocus structure of the
beam. It follows from1011-1 that the actual nature of the
nonlinear absorption in a medium governs only some
quantitative characteristics (values of the energy density
in the focal regions, dimensions of these regions, the
number of foci, and their relative positions), whereas
the basic nature of the propagation of a beam is indepen-
dent of the type of absorption.

A multifocus structure definitely appears in a beam
if the nonlinear absorption in a medium occurs only in
the focal regions, but has no significant influence on the
other parts of the beam and—particularly—does not pre-
vent the formation of the focal regions themselves.
These conditions are satisfied by the three-photon ab-
sorption (subsection a) for sufficiently small values of
the coefficient m4 [see Eq. (51)]. The same conditions
are also satisfied by the four-photon, five-photon, and
stronger absorption provided the coefficients m6, m8,
and so on are sufficiently small. The other types of
nonlinear absorption (considered in subsections b and c)
also allow the appearance of a multifocus structure of a
beam even when the absorption is strong outside the focal
regions. In the last case the total number of the foci and
their positions on the beam axis depend strongly on the
power absorbed outside the foci.

3. Structure of foci

The longitudinal structure of focal regions is charac-
terized by the dependence of |X|2 on Zj on the beam axis
(ri = 0) in the vicinity of the maxima of this quantity.
This dependence is shown in Figs. 2, 6, and 7 for all
three types of nonlinear absorption discussed above. It
is clear from these figures that the foci with different
numbers are similar and are characterized by a depen-
dence of |X|2 on Zi which is asymmetric with respect to
the maxima of this quantity (the rear slopes of the curves
are steeper than the front slopes). The values of |X|2 on
the beam axis (ri = 0) near the m-th focal region can be
approximated by

(67)

where a ~ 1/2 and the value of β is generally indepen-
dent of the nature and magnitude of the nonlinear ab-
sorption (it usually lies in the range β - 1—2).

The transverse structure of the focal regions (gov-
erned by the dependence of |X|2 on Γι in the transverse
sections zx = Z£m) is illustrated in Fig. 9 for the first
three foci in the three-photon absorption case (N = 6,
μ4 = 0.05). We can see that the transverse structures
of different focal regions are similar. This similarity
is understandable if we bear in mind that the mechanism
of formation of all the foci is the same. This similarity
of the transverse structure of the focal regions is ob-
served also for the other types of nonlinear absorption
discussed above. We shall use r j m to denote the radius
of the distribution of the intensity along rx in the m-th
focal region, i.e., we shall use it to denote the value of
r ! at which |X|2 = (l/2)|Xfm|V It is clear from Fig. 9

0 OMZ

that if ΐχ < rfm, the radial distribution of the intensity in
the focal region is very nearly Gaussian

(68)

We can conveniently express Eqs. (67) and (68) in the
dimensional form:

z>?fm (69)

here, E f m = EoXfm; d j m = 2r f m ao is the diameter of the
focal region; Af,- = M m i x is the scale of the longitudinal
variation of the field Ε in the focal region (Λ£~ Ξ Λ||)
related (for β ~ 1—2) to the total length Z f m of the focal
region by

lim « 2.5 A f m . (70)

The power flowing through the central section of any
focal region is Ρ » 2Ρ'^/3 irrespective of the condi-
tions and of the nature of nonlinear absorption (Sec. 2 in
Chap. ΠΙ). It follows from Eq. (69) that

32 In 2 JVf In 2

Therefore, the values of the maximum intensity |E£ml2

and of the diameter dfm are related by

ί 0 . 1 8 - .
«2

(72)

We have allowed here for the fact that N2.In2 « 2.7. The
values of d j m are governed by the nonlinear absorption
in the medium. The results plotted in Fig. 3 and 4 (see
Sec. 2a in Chap. ΙΠ) allow us to find the relationship be-
tween dfj and the three-photon absorption coefficient mt

for the most interesting conditions. We can easily see
that if μ4/Ν2 ~ 2 χ 10-3-2 χ 10"4 (i.e., if lE^I2

~ ΙΟΟΕο-ΙΟΟΟΕο), and Ν > 4 (i.e., P o > 4P<i>), the en-
ergy density I E Q I 2 at the center of the first focus is
practically independent of the initial beam power and the

2
corresponding value of |Ef j | is

(73a)

i.e., it is governed only by the constants of the medium
n2 and nu. Consequently, the diameter dj^ of the first
focal region is also governed solely by these constants:12'

rffl«i.n^. (73b)

Similar relationships apply to the other foci. It should be
noted that, according to the reported experimental re-
sults, the measured diameters of the foci in any given
substance vary only slightly with the observational con-
ditions and amount to 5 χ 10"1 cm for carbon disulfide,
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1.2 χ ΙΟ"3 cm for nitrobenzene, and 10 3 cm for
toluene. [ Ι 5 ' 5 1 ] It should also be noted that these values
are obtained for ruby laser radiation (λ = 0.5 χ 10"4 cm)
and that they exceed greatly the value of λ.

We shall now estimate the fraction of the power ab-
sorbed in the focal regions in the case of, for example,
the three-photon absorption in a medium. It follows from
Eq. (51) that the ratio of the power absorbed in a focus
to the power entering a focus is of the order of
kmtlE.fjjJ^fjj, or, if we take into account Eqs. (72) and
(73a), it is of the order of i f m / k d | m . If we postulate
that, in accordance with the results presented in Sec. 2,
this ratio should be of the order of unity, we find that
'fm ~ k d fm· Thus, the length of a focal region is rela-
ted to its diameter in the same way as in a linear med-
ium.1 3' More accurate values of the numerical coefficient
in this relationship can be obtained directly from Figs.
2, 6, and 7 and from the values of the power flowing
through the central sections of the focal regions. It fol-
lows from these figures and the relevant parameters
that the expressions for the three types of nonlinear ab-
sorption are

ifm « 3faftm, (74a)

l(m*2kd\m, (74b)

ifm«4Km· (?4C)

It follows from these expressions that the condition
Λ|| 3> A^ (or Zfm 3> dfm) necessary for the validity of
the parabolic equation [see Eq. (9)] is satisfied because
A± > λ (or d f m > λ).

We shall now consider a numerical example corre-
sponding to typical experimental conditions. The initial
radius of a beam a0 is 0.15 mm.1142 'Sil Wavelength λ in
matter is 0.5 χ 10""4 cm, which corresponds to the ruby
laser radiation in a substance whose refractive index is
n0 « 1.5. We shall consider the specific case of carbon
disulfide for which n2 ~ 0.5 χ 10~u cgs esu. Therefore,
it follows from Eqs. (55) and (40) that for this substance
p c r ~ 2 0 k w · " ' B t h e incident beam power is Po

~v200 kW ~ lOP^, we find from Eq. (54) that Ν = 6.
It follows from Eqs. (48) and (59) or directly from Figs.
4, 5, and 8 that the distances £ f m of the first few foci
measured from the entry plane are 5—10 cm. It then
follows from Eq. (71) that

Since in the case of carbon disulfide we have <L, « 5
χ 10"4 cm, it follows that |Xf jj2 * 180 or, which is
equivalent, | E Q 1 2 » 180E?> Thus, the example consid-
ered here lies within the range of the parameters used
in the numerical calculations and those used in the
corresponding analytic approximations. An estimate of
the length of the focal region made using Eq. (74) gives
l^l ~ 1 mm.

Let us now consider somewhat different example. We
shall assume the initial beam radius a0 is 0.5 mm. We
shall consider a cuvette I = 10 cm long filled with a non-
linear substance. Then, it follows from Eq. (58) that the
first focus appears inside the cuvette only if the initial
beam power exceeds the critical value by a factor of at
least 150. Clearly, for this excess of the initial power
over the critical value the deviations from axial sym-
metry in the initial distribution in a real beam may
themselves be supercritical and thus, independent multi-
focus structures may appear in some parts of the beam.

In this case the initial radius and power for each of the
structures will be considerably smaller than 0.5 mm
and 150Pc

1^. This splitting of the initial beam into sev-
eral independent beams has been observed experimen-
tally for a very high supercritical powers. In this case
the initial radius a0 of the independent beams is of the
order of 0.1 mm (see[ 4 i : l ) which gives l O P ^ for the
initial power. It should be noted that the theoretical
possibility of such splitting of a strongly supercritical
beam was pointed out i n [ 1 6 ' 5 5 ' 5 6 ] . 1 5 )

We shall now estimate the longitudinal component E z

of the electric field in the focal regions. It follows from
Eqs. (13) and (69) that

^1βτρ(-^-1η2), (75)

where φ is the polar angle in a cylindrical system of
coordinates r, φ . According to Eq. (75) the maximum
value of | E Z | corresponds to<p = Oor<p=ir and r = r m a x ,
where

(76)

The corresponding maximum value is

(77)

The amplitude of the transverse component of the elec-
tric field |Efml can easily be estimated from Eq. (72).
If iu = 0.5 χ 10"11 cgs esu, d£m = 5 χ 10"* cm, λ = 0.5
χ 10"4 cm, we find that |Efm| » 1.9 χ 10* cgs esu and it
then follows from Eq. (77) that | E z | m a x « 1.9 χ 102

cgs esu.

We shall conclude this chapter by pointing out the
propagation of light beams in media with the Kerr non-
linearity is sometimes described using geometrical op-
tics (see1-58'59·1). However, this approximation is clearly
inapplicable to a multifocus structure. In fact, the power
reaching the first focus is P ^ » P£^ and hence we ob-
tain lnl ~ la, where lnl = d ^ /2Vn^|E{1|

2 is the charac-
teristic length of the variation of the field in the focal
region due to the nonlinearity of the substance (obtained
in the geometrical optics approximation); 1,11 kd2,, is
the characteristic length of the diffraction divergence in
the corresponding linear medium. Since the values of
lnl and Zjj are of the same order of magnitude, the be-
havior of a beam in a focal region is governed equally
well by the geometrical-optics refraction due to the
nonlinearity of the medium and by diffraction. There-
fore, the geometrical-optics approximation loses its
validity in the region of the first focus and everywhere
beyond it.

IV. PROPAGATION OF HIGH-POWER LIGHT PULSES
IN A NONLINEAR MEDIUM. THEORY OF MOVING
FOCI

1. Quasistationary beams

According to Eqs. (20) and (21), we can analyze the
propagation of a light beam in a nonlinear medium under
quasistationary conditions by regarding the time t as a
parameter in the boundary condition. We shall consider
the specific boundary condition

EWff-£o(«)e—Λ (78)

i.e., we shall assume that for all values of t the incident
beam has a Gaussian distribution of the intensity with a
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constant radius a 0 and a plane phase front. The function
Eo(T) in Eq. (78) is governed by the envelope of the
laser pulse, i.e., by the time dependence of the initial
beam power P o .

We shall now analyze the solutions obtained in the
preceding chapter allowing for the time dependence of
the initial beam power. Since the longitudinal positions
of all the foci depend strongly on this power, we can im-
mediately see that the foci must move along the beam
axis with the envelope of the laser pulse. '-11-' It follows
from Eq. (58b) that the time dependence of the position
of a focus ffm is

r, (f\- *"> *"•" (79)

here Xm/N™ is a numerical coefficient [see Eq. (59)];
Po(t) = (cno/8)ai£;o(t). The total number m of the foci in
the region ζ > 0 at a moment t is given by the condition
Po(t) > P£ m ' · Ε the maximum laser pulse power ex-
ceeds only slightly the critical value P ( 1 ) , only one mov-
ing focus is formed. Then, other foci appear and their
number increases with the maximum initial power.

Under real conditions we are always dealing with a
layer of finite thickness / which is governed, for exam-
ple, by the length of a cuvette containing the substance
under investigation. The moments tjjj at which each
focal region traverses the exit plane of the medium or
any other fixed plane in the medium are different and
the corresponding characteristic transit times Atm are
given by the formula

(80)
IVfra| '

where Vfm are the velocities of the foci:

(81)

We shall consider the specific case of a pulse whose
envelope is of the following type:

I (82)

Here, τ is the pulse duration measured at the P m a x /2

level. The time is measured from the moment when the
maximum of the incident power passes through ζ = 0
(pulses with different envelopes can be considered in
exactly the same way and the results are basically the
same). Then, it follows from Eq. (79) that the positions
of the foci £fm(t) are given by

t m ,- , 1 + (1.3ί/τρ)2

W /."· ο JVmai-JVm-JVm(1.3i/Tp)2 '

w h e r e N m a x = N l V P m a x / P c r · The moment t m at which

(84)

We can see that the condition for the appearance of this
focus in the layer under consideration (0 < ζ < !) re-
duces to the inequality N m a x — N m — xm(ka|/7) > 0.
Then, it follows from Eqs. (83) and (84) that the m-th
focus appears initially in the ζ = I section at a moment
t m < 0 [this corresponds to the minus sign in Eq. (84)]
and moves back into the investigated layer. At t = 0 this
focus is located at ζ = £ ( m ) , where

mm

(85)

and then it again moves toward the boundary ζ = /. The
moment ^ at which this focus leaves the layer corre-
sponds to the plus sign in Eq. (84).

We shall now calculate the velocities of foci in a sec-
tion z. It follows from Eq. (83) that

2_£
τ Ρ

= ±-

v f m = - (86)
2.6

We can see that the absolute values of the velocities
|Vfml increase monotonically with increasing |t| or z.
The maximum velocities in the layer under investigation
are reached at the boundary ζ = I. We shall estimate the
velocities of the foci |Vf m| under typical conditions and
we shall find the time intervals Atm during which they
remain at a given point in a medium. We shall assume
that the parameters of a light beam and its maximum
power are the same as in the first numerical example in
Sec. 3 of Chap. ΠΙ, i.e., we shall assume that N J J J ^ = 6
(i.e., P m a x « 10Pcy), a0 = 0.15 mm, λ = 0.5 χ lO^cm,
Z f m = 0.1 cm (i.e., df 1 » 5 χ 10~4 cm), I = 10 cm. We

shall assume that the duration of the laser pulse is τ
= 2 χ 10~8 sec. Then, at a distance ζ = I = 10 cm from
the entry plane it follows from Eqs. (86) and (59) that

I v,. ' 1.2-10" cm/sec, | V f 3 | 0.9 -109 cm/sec.

Hence, we find from Eq. (80) that Δ ^ « 10"10 sec. It is
clear from these estimates that the characteristic times
Atm which determine the scale of τ [see Eq. (9)] are
considerably longer than the establishment time of the
orientational Kerr effect. For example, in the case of
carbon disulfide the establishment time of the orienta-
tional Kerr effect is τ κ < 2 x 10"12 sec. [ 1 5 ] Therefore,
the condition (9d) of the validity of the initial equation is
known to be satisfied even for the orientational mechan-
ism of the Kerr effect. In such situations this condition
is satisfied also for the orientational Kerr effect in
other substances. The same condition is satisfied by a
large margin in the case of the electron Kerr effect. We
can easily see that the condition (9c) is also satisfied.
We shall now consider the last of the conditions of the
validity of Eq. (20), represented by the inequality (19).
This inequality can be rewritten in the form

\<v, (87)

the m-th focus passes through the plane ζ = I is obviously
given by the condition £fm = I, which gives

where ν is the velocity of light in a medium [see Eq.
(14)]. We can see that this relationship is satisfied in
the example considered here. However, in the case of
pulses of shorter duration τρ and longer cuvettes, we
may find that the inequality (87) is not obeyed. In this
case it is necessary to start from Eq. (14) [see next
section].

It should be noted that Eq. (80) for the characteristic
times Atm representing the time spent by a focal region
at a given point in a medium, is valid only if the true
velocity of foci v j m is practically constant during the
interval Atm. This condition is known to be violated at
the turning point of the focal region, i.e., at t = 0. At
these points the characteristic times Δί^' are found
from the condition Zf m/2 = £fm(At^>/2) - £f m(0), which
gives

\C « τρ (AV,« -JVm) ] / 'fro

 k- . (88)

For the numerical example considered above Eq. (88)
gives Δί^> « 2 χ 10~9 sec. We can see that the value of

representing the time spent by a focus at the turn-
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ing point, is much shorter than the corresponding value
of Atm in the exit plane of the medium ζ = I. Therefore,
we may expect the processes occurring in matter at
high energy densities and characterized by fairly long
development times (for example, breakdown in a liquid)
would appear first at the turning points of foci or close
to them.E11] This explains the discrete nature of the
optical breakdown in transparent dielectrics observed
in C 4 1 ] during the propagation of laser pulses.

We shall now estimate the total energy W ĵ* absorbed
in a focal region during the characteristic turning time
Δΐ{£* and the total energy Wm absorbed in the same reg-
ion during the time Atm needed to cross the plane ζ = I.
In general, we find that W<£' ~ P ^ Δί<£' and Wm

20 kW we find that under theseP c r M m · F o r P crc
conditions 4 χ 10"5 J and Wr

2 χ ΚΓ6 J.
Depending on the actual absorption mechanism, some
fraction of this energy may be used to heat the medium.
If, for example, the stimulated Raman scattering is the
main type of absorption, it follows that for ω-ι/ω
= 0.9—0.95 a considerable part (90—95%) of the energy
is transformed to the Stokes component and 5—10% is
dissipated in the medium. We shall assume that 5% of
the energy absorbed in a focal region is dissipated in
heating the medium. Therefore, the temperature rise
at a fixed point in carbon disulfide after the passage of a
focal region should be ΔΤ<0) ~ 100 deg Κ at the turning
point and ΔΤ ~ 5 deg Κ at ζ = 1. For other substances
(toluene, nitrobenzene) the corresponding values of ΔΤ<0)

and ΔΤ are about one order of magnitude lower, for the
same general conditions. Such local heating generates
an acoustic wave, which results in the expansion of mat-
ter and a corresponding change (ΔΠρ) of the refractive
index.16> We can easily show that at the turning point of
a focal region the calculated value of |Δη_| may exceed
considerably Δη = (l/2)non2|Ejm|2, obtained without
allowance for the heating of the medium. This means
that a multifocus structure cannot appear at all during
the turning time of a focus or on approach to a turning
point. On the other hand, in the case of rapidly moving
foci (for example, in the ζ » I plane) the influence of
heating on a multifocus structure (or at least on the first
foci) is unimportant (|Δη | -C Δη) because the tempera-
ture rise is much lower and the time intervals Δ ^ are
much shorter. It should be noted that experimental ob-
servations of bright points on the end of a cuvette have
established acoustic expansion of the substance after the
appearance of these points.

A multifocus structure may disappear also because
of the stimulated Raman scattering.17' In fact, a station-
ary theory calculation of the gain experienced by the
first Stokes component in the length of a focal region in
the case of, for example, three-photon absorption (i.e.,
the calculation of the quantity
βχρ[(4πΓ/εο)(2π/λ-1)|Είΐη|2Ζί^] or-if Eqs. (72) and (74a)
are used—of the quantity βχρ[(857ΓΓ/€Ο)(ω-1/ω)/η2]), gives
~ e8 0 0for carbon disulf ide, ~e l s o for toluene, and ~e'°
for nitrobenzene (the values of Γ [ 4 8 ] are calculated using
the absolute values of the Raman cross section and line
width taken f rom c e i > e a ] ; the values of n2 used for these
substances are given in Footnote 14). These high calcu-
lated values of the gain indicate that such foci (their
dimensions are governed by the instantaneous type of
absorption) should not appear under stationary (steady-
state) conditions because the energy of the beam would
be transformed into the first Stokes component of the
stimulated Raman scattering as a result of amplifica-

tion of this spontaneously scatttered light.18' This situa-
tion is possible at the calculated turning points of the
foci or close to them. However, far from these points
the stimulated Raman scattering becomes nonstationary
(and therefore much less effective) if the foci move
rapidly so that this type of scattering does not prevent
the appearance of the foci. The stimulated Raman effect
becomes nonstationary because in the case cf large
values of the gain the time needed for the establishment
of steady-state conditions is much greater than the
corresponding time for the establishment of the spon-
taneous Raman scattering as a result of the frequency
dependence of the gain in the stimulated effect and
anomalous dispersion of matter in the vicinity of the
first Stokes frequency.t63' 64-i For example, the estab-
lishment time of the spontaneous Raman scattering in
carbon disulfide is 2 χ 10"11 sec.C 6 z : l For Atm ~ 10'10sec
and a gain of the order of 800, it is clear that the stimu-
lated Raman scattering in a focal region is far from
stationary. Thus, the stimulated Raman effect may re-
sult in the disappearance (or a considerable increase in
the dimensions) of a focus traveling between the exit
plane of the medium and the calculated turning point.
The moment at which such disappearance takes place is
obviously governed by the condition that the absorption
in the focal region due to the stimulated Raman effect
becomes comparable with the instantaneous absorption
such as that due to the three-photon mechanism. It is
clear that at this moment an ultrashort pulse of the
first Stokes component of the stimulated Raman effect
will be excitedC65] (for details see Sec. 3 in Chap. IV).

It should be noted that the disappearance of a multi-
focus structure as a result of turning of foci in nitro-
benzene and carbon disulfide has been observed experi-
mentally. '-42·1 The disappearance of a moving focus on
its approach to a calculated turning point in carbon
disulfide and toluene has been observed i n [ 5 1 ] . The in-
fluence of the stimulated Raman and Mandel'shtam-
Brillouin scattering on the propagation of a beam be-
tween the entry plane of a nonlinear medium and the first
focus has been considered in1·44-1.

2 Propagation of short pulses

We shall now consider the propagation of laser pulses
which are so short that the condition (87) is not satisfied.
In this case we must start with Eq. (14) subject to the
boundary condition (21). The introduction of a variable
t = ξ + (z/v) in Eq. (14) yields the following equation
for E:

A,E- •.StL + n,k*\E\*E = 0

subject to the boundary condition

Ε I *_„ = φ (r±, ξ).

(89)

(90)

This problem is again stationary and the variable ξ is
simply a parameter in the boundary condition. There-
fore, if we know the family of solutions of the problem
(89)—(90) corresponding to all possible values of ξ, we
can obtain the solution of the problem (14), (21) of inter-
est to us by substituting ξ = t — (z/v). In this way we ob-
tain immediately a general conclusion that a multifocus
structure of a light beam whose maximum power exceeds
Pc

Xp appears also in those cases when the condition (87)
is not satisfied. In such cases the general nature of the
propagation of a beam is as follows. As under quasi-
stationary conditions, the main feature of the propaga-
tion process is the appearance of moving foci on the
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beam axis. In the case considered these foci appear at
definite moments of time within a layer of a medium
(0 < ζ < /), they split into pairs after appearance, and
move along the ζ axis parallel and antiparallel to the
direction of propagation of the incident beam.

a) Trajectories of foci. t51>66>673 we shall consider
the specific case of an incident beam governed by the
boundary condition (78). According to the above dis-
cussion, the positions of the foci £fm along the ζ axis
can be found by replacing t in Eq. (79) with ξ = t
- (ffm/v). This yields the following equation for £ f m

at a given moment t:

g f m = ^ - - 7 = = * _ - . (91)

However, it is more convenient to start discussion from
a graphical method for the determination of the trajec-
tories of the foci, which is equivalent to Eq. (91). In the
graphical approach the coordinates z/ka| and Ν are used
to plot the dependences Ν = N(z/kal) represented by con-
tinuous curves in Fig. 10. This can be done using the
curves given in Fig. 5 for weak absorption (Fig. 5 gives
the converse dependence of Nz/ka? on N). The same
coordinates are used to plot the function

N = -

represented by the dashed curve in Fig. 10. The values
of z/kal corresponding to the points of intersection of
the continuous and dashed curves give the positions (on
a suitable scale) of the foci along the beam axis at a
moment t. Η we bear in mind that the dashed curv£ de-
pends on time (thte curve travels at a velocity v/kaj
along the axis z/kap, remaining self-similar), we can
easily determine the moments of appearance and the
time dependences of the positions of the foci. The ap-
propriate dependences are plotted in Fig. 11. We can
see that the appearance of each focus is accompanied by
its splitting into the pair. In this way, two groups of foci
appear in the system. The group which travels parallel
to the direction of propagation of the incident pulse is
characterized by velocities which are always greater
than the velocity of light ν in the medium (they may
even exceed the velocity of light in vacuum). This group
of foci has no analog under quasistationary conditions.
Each focus in the second group moves in the same way
as under quasistationary conditions and its motion is
first antiparallel to the incident beam and then such foci
stop and turn back so that they finally travel parallel to
the incident beam. The results of a quasistationary
analysis are then obtained in the limit l^ /l —• «, where
l^ = TpV is the length of a light train corresponding to
the pulse duration τ and 1 is the thickness of the med-
ium under investigation.

0.2 0Λ

FIG. 10

D.B 0

FIG. 11
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We shall now consider in greater detail an incident
pulse whose envelope is given by Eq. (82). It then follows
from Eq. (91) that

l~ u ± 1.3 V iVm + Xm(K/Cfm) ' l '

and hence the velocity of a focus Vfm = d£f m /dt is given
by

"Cm — -,

where

(93)

, 3 / 2
2.6

is the corresponding value of the velocity of a focus
under quasistationary conditions [see Eq. (86)]. For
brevity, we shall call V f m the quasistationary velocity.19'
It is clear from Fig. 11 that the points of appearance of
the foci are found from the condition dt/dS£m = 0, which
in combination with Eq. (93), yields

|Vfm I =«,. (94)

The solution £^m of this equation can easily be obtained
for several limiting cases. For example, if

:Ά • (95)

(96)

the solution of this equation is

bfm — № '
(2.6)2

It is also clear from Eq. (92) that the turning points
of the foci ζ = ί ^ Ι are described by the same expres-
sion as in the quasistationary case:

(97)Xm*«2

The only difference is that now the turning moments t ( m )
of various foci are different:

(98)

According to Eq. (93), in the case of short pulses we
may find that when a focus is sufficiently far from the
boundary ζ = 0, its quasistationary velocity V^m may ex-
ceed considerably the velocity of light in the medium:

Vfm » v. (99)

In this case it follows from Eq. (93) that the true velocity
of a focus Vfm is close to the velocity of light v.

b) Structure of moving foci. Since the variable t = ξ
+ (z/v) substituted in Eq. (14) does not contain the trans-
verse coordinate r^, the transverse structure of focal
regions is the same as in the quasistationary case. On
the other hand, the longitudinal structure is generally
different. If we ignore the vicinities of the points where
the foci appear £fm and the turning points of the foci
ζ ( m ) , these changes reduce to a change in the longi-
tudinal scale, i.e., in the length of the focal regions. In
this case we can use Eq. (69) and substituting £fm

= Fm{[P0[t - (z/v)]]}, we find that in the vicinity of the
foci

>o,

where At = t — t 0 , Δζ = ζ — Zo, and t0 is the moment at
which a focus crosses the plane Zo. It is clear from Eq.
(100) as well as Eqs. (70) and (69) that in this case the
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focal length Zfm at a moment t 0 is related to the corre-
sponding quasistationary value Zfm [see Eq. (74)] by

Ttm= i_Jl|» ; t m. (101)

The corresponding characteristic time Atm during which
a focal region remains at a given point z 0 is

Δ Γ lfni
1 — "fm

I »{m I
(102)

We shall now consider the vicinity of the turning
points of the foci. Using Eqs. (69), (83), and (98), we ob-
tain by analogy with Eq. (100),

f I « fm I2

where

|£|?-

Δ = Δζ-

l«fm

A<0,

A>0,

1,3 \2

Δί = ί—t

(103)

(104)

It is clear from Eqs. (103) and (104) that the character-
istic time At^' during which a focal region remains at a
turning point is given by the same expression as under
quasistationary conditions

AC = AC « τρ(iVmax-Nm) Λΐ ' [" . (105)

The longitudinal structure of focal regions considered
at a fixed moment t ( m ) generally changes quite consider-
ably. It follows from Eqs. (103) and (104) that this
structure and the lengths of the focal regions remain
the same as under quasistationary conditions (J | m =
only if

v\C> > !f m. (106)

It follows directly from Eqs. (96) and (105) that if this
condition is satisfied the turning point ζ (m) and the point

nun
of appearance ζ. of the m-th focus are separated quite

clearly fm mm • I, ). In the opposite case

(107)

these points merge in the sense that £*_ — ζ (m) < lfn..
" " ηιιη ίίη

In this case Eq. (103) describes the vicinity of both
points. It follows from Eqs. (103) and (104) that if the
condition (107) is satisfied the dependence of | E | r = Q on
ζ at a moment t ( m ) has in this vicinity two maxima
corresponding to the splitting of a focus into two com-
ponents immediately after its appearance. The separa-tion 5 m between these maxima is

(108)

i.e., it is four times as large as the distance £. — £Vm)
fm min

between the point of appearance to the turning point of a
focus. If vAtm* <C lim, the minimum between these two
maxima becomes very "shallow," i.e., at the moment
t m ' the focus has not yet split into two components. In
this case the total length of a focal region is

Tgi=»Ae. (109)

We shall now consider a numerical example. We
shall assume that the parameters of the beam are the
same as in the first numerical example in Sec. _3 of
Chap. ΙΠ, i.e., we shall assume that N m a x = 6, a0

= 0.15 mm, λ = 0.5 χ 10"* cm, lim = 0.1 cm. We shall
assume that the laser pulse duration is T_ = 3 χ 10"11 sec

and we shall consider a layer of medium I = 10 cm thick.
It follows from Eqs. (93) and (59) that at ζ = / the veloci-
ties of the foci are vf j « v f 2

 K v(l ± 2.6 χ 10"2) and v f 3

» (1 ± 3.3 χ 10"4). We can see that in this plane the
velocities of the foci are very close to the velocity of
light ν in the^ medium. In this case the longitudinal
dimensions I^ m of the moving foci are very small,
Tfm » 3 χ 10-3 cm [Eq. (101)], and the times Atm during
which focal regions remain in this plane are Ktm «1 .5
χ 10"u gee [Eq. (102)]. Thejralues of the corresponding
times AtJ£> and dimensions Z | m at the turning points of
the foci, given by Eqs. (105), (107)-(109), are St m '
» 3 χ 10' u sec and l^ ~ 0.1 cm (since v£t£> « 0.06 cm
~ Zfm, the points of appearance of the foci merge with
the turning points). It is interesting to note that in con-
trast to the quasistationary conditions, the length of each
of the focal regions varies with time during the propa-
gation of the light beam in the medium. It should also be
noted that the times Atl

m and At m are so short that the
heating of the medium in the focal regions and its subse-
quent expansion during the passage of a pulse do not give
rise to significant corrections in the refractive index.
The corresponding expansion of matter and the associa-
ted change in the refractive index in the paths of the foci
appear only after the end of the pulse.20' tt should also
be noted that in the electron mechanism of the Kerr
effect, when τ κ ^ 10"15 sec, the conditions (9) of the
validity of Eq. (14) are satisfied in the case considered
above.

3. Excitation of ultrashort stimulated Raman scattering
pulses

So far we have not considered specially the stimula-
ted Raman scattering in the backward direction. How-
ever, attention has been drawn inC9:i to the fact that
under some conditions the backward effect may influence
significantly some parts of the trajectories of moving
foci. This influence appears in those cases when the
point ?fm of appearance of a focus lies inside (or near
the boundary) of a given layer of the medium and at the
same time this point is well separated from the turning
point ?(™^. These conditions occur, for example, for
the following parameters of the incident beam and the
medium: a0 = 0.15 mm, Nmav = 3.5, λ = 0.5 χ 10"*1 cm,
lim = 0.1 cm, T P = 0.5 χ lO'^sec, I = 30 cm. It follows
from Eqs. (85) and (59) that under these conditions there
are only two foci (m = 1, 2) in the medium. Then, £™\η

as 12 cm, ££>ίη « 21 cm. It also follows from Eq. (94)
that the point of appearance of the first focus £*j « 2 6
cm lies within the layer under consideration. Since ?f ^
- £(m< /l*y ss 140, the point of appearance of the first
focus is well separated from its turning point. Between
the point of appearance and the turning point the velocity
of the first focus vf ^ changes formally from -°° to 0 and
at ζ = z l y * 19 cm this velocity becomes equal to v, i.e.,
to the velocity of light in the medium. At this point the
light flux initially scattered spontaneously in the back-
ward direction out of the focal region travels together
with this region over a path Δζ^ν which is generally
given by the condition

•tm t f l

which, in combination with Eq. (92), gives

Δ ζ , ,-/i (110)

672 Sov. Phys.-Usp., Vol. 16, No. 5, March-April 1974

It follows from Eq. (110) that in the case under consider-
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ation we have Δζ^ν « 1.5 cm. Since Δζ-^/Τ^ « 8, the
total time of interaction of the focal region with the light
flux scattered earlier has a sharp peak at the ζ « ζ^ν.
Consequently, at ζ « z^y the energy of the focal region
may be converted efficiently into the first Stokes com-
ponent of the stimulated Raman scattering. The length
of a light train of the first Stokes pulse should obviously
be of the order of the length of the focal region T^m and,
therefore, the duration of a pulse given by its transit
across a fixed plane in the medium is of the order of
/f m/v. In the case considered we have ?fm/v « 10"11 sec.

An ultrashort stimulated Raman scattering pulse excited
in this way still travels in the backward direction at the
velocity of light in the medium. This pulse interacts with
the remaining part of the light beam traveling in the
opposite direction and the interaction amplifies further
the Raman effect pulse and makes it highly directional.
Such an interaction between two oppositely directed
fluxes is described in C e e ' 6 9 ] . The part of the original
light beam which experiences this interaction may be so
strongly suppressed that no further foci can appear. In
this case the whole of that part of the trajectory of a
focus which corresponds to |vfm | < ν does not appear
because of the backward stimulated Raman scattering.
In Fig. 11 this region lies above the straight line t = t m y

+ [(z — z m v )/v], where t j ^ is the moment when the focus
crosses the plane z m v .

Ultrashort pulses of the backward stimulated Raman
scattering were observed experimentally for the first
time in1-68-1. Attention was concentrated in^68'69-1 on the
correlation between the appearance of these pulses and
the formation of bright spots on the end of a cuvette con-
taining the investigated substance. The above mechanism
of the excitation inside a cuvette was proposed in'-9-'. An
experimental confirmation of this mechanism of the ex-
citation of ultrashort stimulated Raman effect pulses was
confirmed experimentally inC 9 ] on the basis of a corre-
lation between these pulses and moving foci in the inves-
tigated medium. Ultrashort light pulses (of duration of
the order of 10"11 sec) were also observed experimen-
tally in the backward stimulated scattering in the wing
of the Rayleigh line.[ T O > 7 1 ] Clearly, the process of exci-
tation and subsequent development of these pulses in the
stimulated scattering in the wing of the Rayleigh line is
analogous to the corresponding process in the stimulated
Raman scattering.

We shall conclude this section by noting that if the
excitation of ultrashort stimulated Raman effect pulses
at ζ = z m v is not very effective because of the transient
nature of the stimulated Raman effect, it follows from
Eq. (5) that there is another possibility of formation of
such pulses, which may be generated when the focal reg-
ions approach the turning points. As pointed out in Sec.
1 of Chap. IV, when a focus approaches a turning point
the stimulated Raman scattering may at some time be-
come sufficiently efficient for the total conversion of the
energy in the focal region into the first Stokes component
and this may produce ultrashort pulses of this compon-
ent. If such conversion occurs in the immediate vicinity
of a turning point, i.e., if Vfm <C v, it is clear that the
pulses of the first Stokes component should appear
equally readily in the backward and forward directions.
If the conversion time is sufficiently short, the duration
of such pulses is of the order of 2fm/v. However, if the
disappearance time of a focal region is longer than
L·m /v, the duration of a pulse governs the disappearance
time of a focal region. The moment of disappearance of

a focal region will be denoted by t0 and the plane ζ in
which this happens will be called z0. In this case the
interaction between the stimulated Raman effect pulses
and the original light beam may suppress the parts of the
trajectories of all the foci lying above the line t = t0

+ [(z-zo)/v] (see Fig. 11).21)

Ultrashort pulses of the first Stokes component were
observed experimentally in^65^ in a cuvette containing the
investigated substance and they were found to travel in
the forward and backward directions.

4. Broadening of the spectrum of pulses in a nonlinear
medium

In the foregoing analysis we have been interested only
in the distribution of the intensity |E | 2 of a light beam in
a nonlinear medium. We shall now consider the total
complex amplitude Ε = |Ε|β*<". This will allow us to
study the spectral characteristics of a beam which has
traversed a layer of the investigated medium. As be-
fore, we shall assume that the incident beam has a
Gaussian distribution of the intensity in the transverse
direction and an initially plane phase front, i.e., we
shall assume that boundary condition at ζ = 0 is in the
form of Eq. (78). We shall start from Eq. (14), i.e., we
shall consider short pulses right from the beginning.
According to the analysis in Sec. 2 of Chap. IV we must
first write down the solution Ε = E(r, z, Eo) of the corre-
sponding stationary problem (21), (25). Then, the solu-
tion of the nonstationary problem of interest to us is
given by the expression

f(r, z, i) = £[r,i, £„(«-—•)]

For the sake of simplicity we shall consider only the
field on the beam axis, i.e., we shall consider the region
defined by r = 0, ζ > 0. It follows from Eqs. (25), (27),
(30), and (31) that the solution E(0, z, Eo) of the station-
ary problem is of the form

Ε (0, ζ, Eo) = \E (0, ζ, Εa) | exp [i φ (0, ζ, £„)],

where

φ(0, ζ, £„)= j | 1 « 2 | £ ( 0 , ζ', £0)|»-[*<φ', . • dz\

(111)

(112)
Ε (r, ζ', ε0)

Εφ, ζ', Εα) |Γ=Ο

is the "radius" of the beam defined for r —- 0. Equations
(111) and (112) give the total complex amplitude Ε on
the beam axis if we know the axial intensity (|E|2) and
the radius a of the intensity distribution in the paraxial
region. We shall now employ Eqs. (Ill) and (112) in the
analysis of the spectral properties of the beam.

a) Phase modulation of pulses. We shall begin with
the case

z«K' °^_, (113)

where Er j m a ^ is the maximum value of Ε ο during a pulse.
In this case me solution of the stationary problem (21),
(25) for |E| 2 gives [see, for example, Eqs. (42) and (43)]

\E(r, z', SoJpwtfJe-'-'/S?, (114)

and hence it follows from Eq. (112) that

<p(O,z,Eo)*ikz[±:n2El-(ka0y*'] , (115)

and_Eqs. (Ill) and (115) give the following expressions
for E(r, z, t) = \E\e*<P:
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λα.

φ (Ο, (116b)

We can see that if the condition (113) is obeyed, the
envelope of a pulse is propagated in the investigated
nonlinear medium in the same way as in a linear med-
ium. However, this is not true of the phase φ . It follows
from Eq. (116b) that in a nonlinear medium (n2 ^ 0) the
phase φ depends on time. It is modulated by the time
dependence of the power of the incident beam in the entry
plane of the medium. The depth of modulation of the
phase is proportional to z, i.e., to the thickness of the
nonlinear medium traversed by the pulse. The phase
modulation alters the spectrum of the pulse traveling in
the medium. The change in the spectrum can be deter-
mined by calculating directly the Fourier transform of
the function Ε exp (—iwrit); here, the exponential factor
can be taken from Eq. (6) and for the sake of conven-
ience we shall replace ω of Eq. (6) with ωο· Such calcu-
lations are reported i n t 7 2 ] for pulses of different shapes.
However, for the sake of brevity we shall consider only
the calculation of the instantaneous frequency a>(t) of os-
cillations of the field in a given section z. It follows
from Eq. (6) that we generally have w(t) = «ο + Δω(ΐ),
where

*»№=-§. (117)

For example, in the case of an envelope of a pulse given
by Eq. (82), we find from Eqs. (116b) and (117) that

3. (118)

The corresponding curve Δω(ΐ) is plotted in Fig. 12. We
can see that Δω(ί) is an odd function of t relative to the
point z/v and that it varies within the limits

from AtOniax ' ; (0.66/τρ) fcz«2£5max JJmln = — Λ ω , η

The function |E(0, z, t) | is even with respect to the
same point. Therefore, the spectral distribution of the
intensity_of oscillations of the electric field on the beam
axis I = |E(0, z, OJ)|2/V8F, where

£(0, ζ, ω)= f £(0,!,l)e-i("'"""<ii, (119)

is symmetric relative to the frequency ω0 and if Ao>m a x

3> l/jp the limiting frequencies are obviously ω = Δ ω Ι η 3 χ

and Au)min. Consequently, the total width Δω = Au>max

— Δ ω ^ υ of the frequency distribution of the intensity I
is given by1173-1

1^πψΐπηζΕΙ^. (120)

Η we bear in mind that the width of the spectral dis-
tribution of the intensity of the incident beam is of the
order of 1/τ , we find that Eq. (120) gives directly the
broadening Δωτ of the spectrum during the propagation
of the beam in a nonlinear medium. We can see that in
the case of phase modulation the broadening of the spec-
trum is proportional to the path ζ traversed by the beam.
We can also see that the broadening is proportional to
the rate of change of the refractive index of the investi-
gated substance (ikJtftnax./'Tn) and is thus of the Doppler
type. The possibility of the Doppler broadening of the
spectrum of a pulse which is traversed by a layer of a
nonlinear medium was pointed out in^18-1. Subse-
quently, C73-1 it was also mentioned that the same value
of the instantaneous velocity co(t) is obtained at two dif-
ferent moments t [see Eq. (118)]. If at these moments

FIG. 12

the phase ~φ differs by (2k + 1)π, where k is an integer,
the distribution I clearly has a minimum near this in-
stantaneous frequency. Similarly, if the phase difference
is 2kn, the distribution I has a maximum, i.e., the fre-
quency distribution of the intensity I has a structure
consisting of an oscillatory dependence of this quantity
on ω with a large number of maxima and minima^733

(Fig. 12). We shall estimate the number of such ex-
trema. According to Eq. (116b) the change in the phase
φ during the time t from 0 to °° is Αφ = — kzrteE2

 m a v ·
Therefore, if Δω > ΐ/τ ρ , we have \Δφ\ ^> 1. Thelotal

ρ
(for — <*> < ω < °°) number of oscillations (for example,
minima) is of the order of Δφ/2π ^$> 1 and the "average
period" ΔΩ of these oscillations is ΔΩ = 2ιτΔω/|Δ<ρ|
w 8 / v

If the broadening of the pulse spectrum is sufficiently
strong, the dispersion of the linear part of the refractive
index no may play an important role. This dispersion
may disturb the phase relationships between the fre-
quency components, i.e., a phase modulation may lead
to an amplitude modulation. Beats between different fre-
quency components may result in further broadening of
the spectrum and this broadening can be described in the
same way as in the case of beats between different com-
ponents of a multimode laser beam. For example, the
frequencies ω^ and ω^ — ωΓ may give rise to an anti-
Stokes component ω^ + ωΓ and so on. This type of broad-
broadening of the spectra of laser beams is discussed

inC23,453_ I t s h o u l d a l s o b e n o t e d t h a t ; a s u s u a i ; the re-
sults given above are valid if the conditions (9) are
satisfied. However, if for example, the condition (9b) is
not obeyed, the spectral distribution of the intensity Ι(ω)
becomes asymmetric with respect to the frequency
ci>0.

t71] If the conditions (9b) or (9c) are violated, the en-
velope of a pulse may change considerably during its
propagation across a medium.'-75'1 This also gives rise
to an asymmetry in the spectrum Ι(ω) relative to the
value of ω0 with a stronger broadening on the energy
scale in the Stokes region.1-76·1

b) Spectrum of a field of moving foci. We shall now
consider the^spectrum of a field E(t) in a fixed plane
ζ = Zo (zo ^ ? f , ζ№ ). This field is due to the passage
of one of the moving focal regions across this plane
[in this case Eq. (113) is not obeyed but the conditions
(9) are satisfied]. The solution of the corresponding
stationary problem for | E | 1 _ Q is now given by Eq. (69).
The quantity a(z', Eo) which appears in Eq. (112) can be
estimated as follows. The power which flows through a
section ζ in the vicinity of a focal region is KP'1^. The
coefficient Κ is of the order of unity and it decreases
with increasing z: for example, if £ f m - ζ <C l i m we

have Κ « 1 but if ζ = £ f m we have Κ » 2/3. Bearing in
mind that the transverse distribution of the intensity in
the vicinity of a focus is nearly Gaussian [see Eq. (69)],
we find that (l/2)na |E(0, z', Eo) | 2 = 2K(z')[ka(z', Eo)]~2.
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In order to explain the main features of the spectrum of
a field of moving foci, we shall assume for simplicity
that K(z') = 1 and that a = β = 1 in Eq. (69), i.e., we
shall confine ourselves to the approximate dependence
of |Ε | 2 in the vicinity of a focus, which is symmetric
with respect to the point £ f m . It then follows from Eqs.
(Ill) and (112) that

I £ f m Ι Θ * Ρ (>Xo)
£(0, z, £0) = :

xexp \±k:\(mn2\ . I2 arctg I
-Cfm(fio)

Afm

(121)

where χ0 is a constant and the value of Ε at the time
close to the moment to when a focal region crosses the
plane z0 is given by

I E { m I A l » e x P ( 'Xo) r A l x + i(t — t0) l a / 2

/(AfJ 2 +(f — in)2 L Δ ί * ~ ' ( ' — Ό) J '
E(O,zo,t)--

V(Ai,

where
Afm

,- = 0, l). (123)

where Vjm is the quasistationary velocity of a focus in
the plane z0; s = 0 for Vf m < 0 and s = 1 for Vfm > 0.

The Fourier transform (119) of the function (112)
i s

£(0,zo,o>) =

F exp[i(oj — ω0)<0| Wa

Fexp[i (ω — ω0) ίο|
,,/Ι-αΗ

ο —«)]

ι> — ω 0 )]
(124)

where F = f E f m ^ 2 A t x e x P (ϊχο); Γ(ζ) is the gamma func-
tion; W^ μ ( ζ ) is the Whittaier function. The value of a
in the above expression can easily be estimated using
Eqs. (70), (72), and (74). For example, in the three-
photon absorption case we have | a | « 2. It follows from
Eq. (124) with | a | = 2 that the spectral distribution of the
intensity is asymmetric with respect to the point ω = ωο·
If Vfm < 0, a great proportion of the energy is located
on the ω < wo side, i.e., the spectrum broadens preferen-
tially into the Stokes region. In the opposite case, when
V- > 0, the greater proportion of the energy is located
on the ω > ω0 side, i.e., in the anti-Stokes region. In
both cases the total width of the spectrum Δω of a moving
focus is 2 2 )

Δω « i f — Anfm, (125a)

where Δ,α^ = (l/2)non2 Ι Ε ^ Ι 2 is the increase in the re-
fractive index at the point where the energy density has
its highest value in a given focal region. Eqs. (125a) and
(72) can be written in the form

A«>«0.3|Vfn,|-^-. (125b)

It should be noted that the quasistationary velocity of a
focus Vfm which occurs in Eq. (125a) and (125b) is equal
to the true velocity of a focus Vfm only under quasi-
stationary conditions. In the general case of short pulses
we can use Eq. (93) to express the quasistationary veloc-
ity in terms of Vfm:

Vtm=^~- (125c)

The expression (125a) was obtained inC 7 7 ] and it is
equivalent to the expression given in1-78-1 subject to the
condition (125c).

It follows from Eqs. (123)-(125) that in the part of
the trajectory of a focus corresponding to — °° < Vfm < 0
the broadening of the spectrum is mainly in the direction

of the Stokes region. If 0 < v f m < v, the spectrum
broadens mainly into the anti-Stokes region. Finally, if
vfm ^ v t h e sPectrum broadens more strongly, as pointed
pointed out in^78-1, into the Stokes region. It is also clear
from Eqs. (125a)—(125c) that under quasistationary con-
ditions the width of the spectrum Δω is proportional to
the velocity of a focus Vfm and, therefore, for constant
values of l%ml2, this width increases monotonically with
increasing distance from the turning point of this focus
to the plane under consideration (zo).23) In the case of
short pulses the width Δω resulting from the motion of a
focus also increases with the distance z0from the entry
plane of the medium because (Vfm — v)/v tends to zero
for zo —* °°. It is clear that under real conditions this
rise occurs as long as IEfml2 remains constant. In gen-
eral, we must bear in mind that in the corresponding
stationary case of the first (and any other) focus we have
Ν — Ni for z0 — °°; on the other hand, in the case of
Ν — Ni and a fixed value of the nonlinear (for example
three-photon) absorption coefficient nu the value of
'Efm'2 * s Pr a ctically constant only in a restricted range
of values of z0 whereas over a wide range of z0 measured
from the entry plane of the medium this quantity de-
creases rapidly with increasing distance. This implies
the disappearance of the foci.24> In the experimental in-
vestigations'-39'52-' carried out on giant pulses it has been
established that the disappearance of the bright points on
the end of a cuvette occurs if the cuvette length is of the
order of 50—100 cm.

We shall now estimate the width of the spectrum Δω
of moving foci in a number of cases. In the numerical
example considered in Sec. 1 of Chap. IV (τρ = 2 χ 10"8

sec) we obtain Δω « 0.3 cm"1. This value is in agree-
ment with an estimate of Δω obtained by direct measure-
ments i n [ 5 1 ] under similar conditions (the value of Δω
found experimentally in1-51-1 does not exceed 1 cm"1). In
the numerical example considered in Sec. 2b of Chap. IV
(rp = 3 χ 10"11 sec) we find that Δω » 200 cm"1. If in the
same example we assume that the laser pulse duration
is 3 χ 10"12 sec, we find that T*m « 3 χ 10^ cm ~ dim,
i.e., strictly speaking one of the conditions of Eq. (9b)
is violated. However, this does not affect the estimate
of the value of Δω which is » 2000 cm"1. These values
are in agreement with the widths found experimentally

in[29,so,si] f Q r ] a a e r p u l s e s o f 1 0 - " _ 3 χ 10"12 sec dura-
tion. Finally, if d j m = 10~4 cm (this is of the order of
magnitude of the transverse size of bright spots in sev-
eral glasses) and τρ = 3 χ 10"12 sec, it follows from Eq.
(125) that Δω ~ 5 χ 104 cm"1. This value is greater than
the laser frequency ω0 « 14 000 cm"1, i.e., we may ex-
pect superbroadening of the spectrum of the incident
pulse. Such superbroadening has been observed experi-
mentally1-82-1 in glasses for laser pulses of about
3 χ 10"12 sec duration.

It should be pointed out that for values of Δω as large
as 103—104 cm"1 a detailed description of the spectrum
of the field of moving focal regions may have to include
an allowance for the dispersion of the linear part of the
refractive index. However, this problem has not yet been
tackled.

It should be noted also that the interference between
the spectra of two (or a larger number) of focal regions
may give rise to a quasiperiodic structure in the overall
frequency distribution of the intensity. The period Δ Ω
of this structure is ΔΩ « ττ/Δί where At = t m - t n is the
interval between the moments when a given section z0
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is crossed by the focal regions under investigation.
Depending on the experimental conditions, the spectral
distribution may be of the continuous type^83'84-1 or it
may have a quasiperiodic structure.1 1 7 3 ' 7 4 ' 8 3 >84:l

V. CONCLUSIONS

We have considered the characteristic features of
the propagation of high-power light beams in media with
the Kerr nonlinearity when the conditions (9) are satis-
fied (these conditions are of greatest practical interest).
One of the consequences of the theory developed above is
that under typical conditions the diameters of the foci
are practically independent of the incident beam power
and of the duration of laser pulses. This is the situation
observed experimentally for giant and ultrashort (pico-
second) laser pulses. This allows us to assume that the
conditions (9) are satisfied under real conditions not
only by giant but also by picosecond pulses and, there-
fore, the Kerr effect, like the nonlinear absorption of the
medium, is governed by some rapid-response mechan-
ism.

1. Generalizations of the theory

We shall now consider the question of the propagation
of light beams in a medium when the conditions (9) are
not satisfied. We shall start by noting that recently
several workers (see, for example,[ 4 S ' 5 2 ]) have consid-
ered the case when the condition (9d) is not satisfied,
i.e., when the inertia of the Kerr effect is considerable.
This may occur, for example, in the case of picosecond
laser pulses if the main nonlinearity mechanism is the
orientational Kerr effect. In general, we must distin-
guish two possible variants. In the first variant the
inertia of the Kerr effect does not influence the forma-
tion of foci and is manifested only in a focal region.
Then, the dimensions of a focal region are governed by
the finite establishment time of the Kerr effect. Since
the process under consideration is more sensitive to the
change in the imaginary part of the refractive index than
to the real part, the direct cause of the limitation of the
intensity in a focus may be the nonlinear absorption as-
sociated with the delay (inertia) of the polarization
response of the medium to an electric field. Therefore,
under these conditions we may expect a multifocus
structure of a light beam similar to that considered in
Sec. 2 of Chap. ΠΙ. In the second variant the inertia of
the Kerr effect has a strong influence on all parts of a
beam in a medium. The relevant solution can be obtained
numerically (the published attempts to solve problems
analytically are based on the assumption of retention of
a Gaussian distribution of the intensity in a beam and,
therefore, are not sufficiently reliable; see Sec. 2 in
Chap. II). The results of a numerical solution of this
problem are given in1-8S-1 but a complete solution of all
aspects of the propagation of the beam has yet to be ob-
tained. It is simply concluded in1-85-1 that the waveguide
regime is not predicted by their solution.

It should be noted from the theoretical point of view
that the diameters of filaments (trajectories of foci)
should depend in both variants on the observational con-
ditions (power of the beam, duration and shape of laser
pulses) but this has yet to be confirmed experimentally
and, therefore, we may assume that the inertia of the
Kerr effect is absent under the conditions considered.
Therefore, we shall not discuss this point in greater de-
tail.

We shall now consider the case when the nonlinear
absorption in a medium is very weak so that the condi-
tions (9a)—(9c) are not satisfied in a focal region. Ac-
cording to the theory presented above, under typical
conditions these inequalities contain only one indepen-
dent small parameter, for example, λ/Λ^ and their viola-
tion means that Λ L ~ λ. In this case the propagation of
a beam can be described directly by the Maxwell equa-
tions which predict the appearance of a wave reflected
from the point of collapse z* (see Sec. 3 of Chap. Π and
Sec. 2 of Chap. ΙΠ) backward or at a large angle with
respect to the beam axis. In the case of a wave which
travels forward across the point of collapse, this re-
flection is equivalent to a nonlinear absorption which
appears only if the transverse dimensions are of the
order of λ. Therefore, we may expect a multifocus
structure in a light beam similar to that considered in
Sec. 2 of Chap. ΠΙ and the absence of the true nonlinear
absorption in the medium.

Under some special conditions (for example, in the
case of significant ionization of matter in a focal region)
the main intensity-limitation mechanism may be a weak-
ening of the nonlinearity of the real part of the refrac-
tive index η because of the appearance of free electrons.
Strictly speaking, under such conditions the dependence
of the real part of the refractive index on the intensity
of light (|E|2) can be represented only in the form of a
functional. Numerical calculations on a computer (for
the existing memory access times and computation rates)
present a daunting problem even when the parabolic
equation can be used. Therefore, as a rough model it
would be interesting to discuss a medium with a refrac-
tive index η depending on |Ej2 in the form of a suitable
function such as Eq. (17), in the form of a saturable
Kerr nonlinearity (it is understood that the value of | E S | 2

is artificially reduced). Numerical calculations1-86-'
based on the parabolic equation show that the model of
a saturable Kerr nonlinearity leads to a multifocus
structure in a light beam even without allowance for the
nonlinear absorption if Ρ > P ^ , lEfjl2 > 100 (see Sec.
3 in Chap. m). In this case the structure of the foci can
be described by Eqs. (67)—(69) in which we have to
simply substitute β « a.

2. Experimental results

We shall now consider briefly the results of experi-
mental investigations of the propagation of high-power
laser beams in matter. The formulation of the moving
foci theory'-11-' was followed by several experimental
investigations intended to determine whether moving
foci or waveguide filaments are actually observed (the
waveguide filaments are discussed in the Introduction in
Chap. I). It was established ίη£

51>42>13>κ> 9>87>88] that
moving foci are observed in the propagation of giant
laser pulses. Direct photographs of the trajectories of
foci in a multifocus structure were obtained in1-42-' by
high-speed time scanning. A stationary (steady-state)
multifocus structure was observed int43-1. Foci moving
at a velocity higher than that of light were reported
in1-52-1 (the relevant theory is presented in Sec. 2 of
Chap. IV). A good quantitative agreement between the
theoretical and experimental values of the distance be-
tween a moving focus and an ultrashort backward stimu-
lated Raman scattering pulse was obtained inC9:i at dif-
ferent moments and for a wide range of incident pulse
powers. The diameters of focal regions in benzene solu-
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tions were investigated in C 8 7 ] and comparison of the
theoretical and experimental values indicated that the
main energy-density-limiting mechanism in the focal
regions was the stimulated Raman scattering in the for-
ward direction (in agreement with the theory given in
Sec. 2b of Chap. ΙΠ). A good quantitative agreement was
established inC 8 8 ] between the experimentally obtained
values of the broadening of the spectrum and the corre-
sponding theoretical values [see Eq. (125)] and this
agreement was obtained for different cuvette lengths
and incident pulse powers.

A recent attempt^893 to detect a waveguide filament
failed to give positive results. An earlier report [ 9 0 ] of
waveguide filaments was in error because the length
(-10 cm) of a "filament" observed in[ 9°3 did not exceed
the length lf = 0.7kd2 = lAnd2A (see Footnote 13) of a
focal region in a Gaussian beam in a linear medium; this
length was deduced from the "filament" diameter
d = (1-1.5) χ ΚΓ2 cm (λ » 0.5 χ 10"4 cm) determined
experimentally inc ao^.

According to the theory given above (see Sec. 2 in
Chap. IV) a multifocus structure should also appear in
picosecond laser pulses at least if the Kerr effect mech-
anism is sufficiently fast (for example, in the case of the
electron mechanism). It should be noted that for bright
spots of d ~ 10"3 cm typical diameter the corresponding
length of a focal region in a linear medium If is 10"1 cm
even in the case of a Gaussian beam, i.e., it is of the
order of the total length of a light train corresponding to
a typical pulse duration τ ~ 3 χ 10~12 sec. Therefore,
waveguide filaments cannot form under these conditions.

We shall now consider briefly the experimental in-
vestigations of the propagation of picosecond laser
pulses in matter. Bright spots on the end of a cuvette
during the propagation of such pulses were first repor-
ted in^24-1. Later, the results obtained in the study of the
broadening of the spectra were used to draw the conclu-
sion1-80-1 that a thin core with a high energy density
formed in a light train and this core had a smooth longi-
tudinal intensity distribution and its length was of the
order of the total light train. A similar pattern was des-
cribed as a model in earlier papers. C13'14^ However, it
seems to us that the results reported in1-80-1 can be ex-
plained by assuming the appearance of a multifocus
structure. In a later paper L81-1 the same authors come
round to the conclusion that a moving focus is formed
under these conditions.

Recently Korobkint91] and others observed bright
spots on the sides of a cuvette filled with a liquid di-
electric and illuminated with picosecond pulses. The
positions of these spots were in good agreement with the
theoretically predicted turning (stopping) points of foci
in a multifocus structure [see Eq. (97)]. The discrete
nature of the observed pattern can be explained by the
fact that the focal regions spend the longest time at the
turning points and, therefore, these points are the
brightest (see Sec. 1 in Chap. IV). It is concluded in [ 9 i : i

that a multifocus structure is observed.

Thus, in the case of giant laser pulses the theory of
multifocus structure and moving foci has been fully
confirmed in experimental investigations. In the case of
picosecond laser pulses the first experimental data sup-
port the theory.

"We must make the stipulation that generally speaking the Kerr effect is
governed by the nature of the nonlinearity of the medium in the case of
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nonresonant interactions of light with matter. A different type of non-
linearity appears in the special case of resonant interactions such as
those which occur in gases when the frequency of light is close to one
of the frequencies of molecular or atomic transitions. The propagation
of light pulses under such resonant conditions is outside the scope of
the present review. Such a review is given in [' ] ·

2^It is pointed out also in [27>28] that the Kerr effect may also arise as a
result of a fast-response mechanism associated with "librational" molecu-
lar vibrations. A fast-respnse mechanism representing "microscopic
grouping" of molecules is discussed in [ 2 9 ] .

3'This parabolic equation has been used for a long time in descriptions of
wave processes in linear media. In a linear weakly inhomogeneous medi-
um it has the form of Eq. (10), where δε = 6e(r, t).

4)The dependence of the refractive index of a medium on the intensity of
light in the transient case when the condition (9b) is not satisfied is al-
so discussed in [1 7J.

s)However, this point is ignored in several papers (see, for example,
[30-32 j j w n i c n deal with the propagation of light beams on the basis of
the parabolic equation in the case when the Kerr nonlinearity of the
medium is saturated significantly.

6)In the opposite case n21 Ε | 2 > 1, it follows from Eq. (9) that Λ < λ/2.
Therefore, the description of the propagation of light beams in nonlinear
media allowing only for the saturation of the Kerr effect (when
n2 | Ε | 2 > 1) would have required—even in the stationary case—the di-
rect use of the Maxwell equations rather than the parabolic equation.

7>The conditions (9c), (9d), and (19) of the validity of Eq. (20), associ-
ated with the variation of alight beam with time, will be considered later
(see Sec. 1 of Chap. IV).

"This also applies to a beam which has been focused by an ordinary lens
and obeys the boundary condition of Eq. (36). The numerical solution
of this case is given in [ 4 6 ] . It should also be noted that a similar prob-
lem has been considered in [ 4 7 ] . However, the transformation of vari-
ables used in the latter paper gives rise to a discontinuity in the solution
at ζ = R, i.e., in the focal plane of the lens. Therefore, the propagation
of a beam predicted in [47] for the ζ > R range is incorrect.

9 )It is only worth noting that there is an experimental investigation ["' ]
which suggest that the process is possible.

10^The role of the excited vibrational states of molecules is considered in
[39,50]

n )As in Sec. 3 in Chap. II, we shall not consider the existence of a mathe-
matical singularity in this solution but we shall simply assume that the
steepness of the rise of | X | 2 with ζ on approach to the first focus is
sufficiently high to violate the condition of validity of the initial equa-
tion (60) given by Λ|| > λ [see Eq. (9)].

1 2 )It should be noted that according to Eq. (73a), the inequality δε" < δε'
is satisfied in the focal region and, consequently, throughout the medi-
um. As mentioned in Sec. 1 of Chap. II, this allows us to ignore the cor-
rections to the real part of ε associated with the presence of δε". Direct
numerical calculations including these corrections [δε is expressed in the
form δε = (1 /2)ε2 Ι Ε | 2 - eon41 Ε | 4 + ίεοΐη4 | Ε | 4 , where n4 << m4 ] show
that the beam propagation is basically unchanged. Quantitative changes
in the propagation process are small. For example, the changes in the
diameter of the focal regions do not exceed 15%.

13*For example, it follows from Eq. (34) that in the case of focusing of a
Gaussian beam in a linear medium the corresponding length of If «0.7
X kd2-. The expressions for beams with non-Gaussian distributions of
the intensity the expression is the same except for the numerical
coefficient.

14)The value of P c r for carbon disulfide was determined experimentally in
[ 5 3 [. The experimental values of P c r for toluene and nitrobenzene were
found in [54] to be 55 and 19 kW, respectively, and the values of n2 for
these substances were approximately 0.2 X 10~" and 0.5 X 10"" cgs
esu.

1S*A.theoretical discussion of two-dimensional beams in nonlinear media
of the type considered here [s 7[ is of formal nature because under real
conditions such beams split into three-dimensional components which
may be close to axial symmetry.

1 6 )It should be noted that because under normal conditions the velocity
of foci is supersonic, the perturbations of the density in the medium
are concentrated in an acoustic cone. In general, these perturbations in-
clude a contribution not only of heating but also of electrostriction in a
focal region.

17)A similar influence may sometimes be exerted by the stimulated Man-
del'shtam-Brillouin scattering, stimulated scattering in the wing of the
Rayleigh line, and so on.

'"According to the results given in Sec. 2b of Chap. Ill, the gain from
which the stationary (quasistationary) stimulated Raman scattering be-
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gins to suppress the foci (starting from the first) can be found from the
condition H c r « Ν (or, which is equivalent, 4irr/e0 * n2). We can see
that for the conditions assumed in Sec. 2 b of Chap. Ill this amounts to
only ~ e20, i.e., gain is now much smaller than the values given above. It
should be noted that in the case of carbon disulfide the gain in a focal
region under stationary conditions is in fact much less than e8 0 0 as a re-
sult of strong excitation of the upper vibrational states of molecules in
the stimulated Raman scattering. However, this reduction in the gain is
relatively small and does not play the dominant role in the effect dis-
cussed here.

"'We can easily show the relationship (93) between the true velocity of a
focus Vfm and the corresponding quasistationary velocity Vfm applies
for any approximation of the position of the foci as a function of the
initial power ffm = F m (P 0 ) [see, for example, Eq. (58)] in the corres-
ponding stationary problem and for any envelope of a laser pulse Po (t)
[see, for example Eq. (82)]. Obviously, under quasistationary conditions
we have v f m « Vfm.

2o'This is easily demonstrated if we bear in mind that the total energy Wm

absorbed in the volume occupied by a focal region during the transit of
this region across a fixed section ζ Φ JmJn, ?fm is of the order of
Pakm~&<m/ltm . and, similarly, for ζ = f (m) the corresponding energy
W»> is of the order of J>ci'Tfm^»/zfm . m i n

21*We must point out that this conclusion applies only to sufficiently short
laser pulses. In the opposite case of quasistationary light beams the stimu-
lated Raman scattering pulses escape from the nonlinear layer in a time
much shorter than the duration of a laser pulse and this means that new
parts of this pulse may be focused subsequently. The slope of the leading
edge of a new part of a laser pulse obviously corresponds to the duration
of an ultrashort stimulated Raman scattering pulse. Thus, the time scale
of the change in the intensity of the incident beam may be equal to the
duration of ultrashort pulses even in the case of giant laser pulses. This
may have a considerable influence on the spectral properties of the
field of moving foci (see Sec. 4 in Chap. IV).

22'We can easily show that this expression represents the total integral of
the variation of the instantaneous frequency co(t) of the field Ε at the
point z0.

23'These results are not in agreement with the theoretical conclusions
reached in [ 7 9 ] , where it is assumed that the width of the spectrum Δω
of a moving focal region has a maximum located between a turning point
and the exit plane of the medium at a distance equal to the longitudin-
al size /fm of the focal region measured from the turning point.

M ) In contrast to the disappearance of the foci discussed in Sees. 1 and 3
in Chap. IV. which is due to the expansion of the substance or to the
stimulated scattering, in the present case the disappearance is due to the
fastest and spatially local nonlinear absorption mechanism.
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