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A survey is presented of the application of the dual model to the description of inelastic scattering
of hadrons (β 5 phenomenology). The properties of a five-point dual amplitudes are considered for
the scattering of scalar particles. These amplitudes are generalized first to include mesons, and then
to include the case of meson-baryon scattering. A number of examples of the application of the
model to reactions of the type MB-+MMB are considered (M and Β stand for mesons and baryons,
respectively). The predictions of the model are compared with experiment as well as with the
predictions of earlier models. The advantages and shortcomings of Β 5 phenomenology are discussed,
particularly those connected with pion and vacuum exchange, and also with allowance for spin and
unitarity. Further prospects for the development of the model, connected with its application to
processes with larger multiplicity, and also connected with the use of a dual amplitude with
Mandelstam analyticity, are considered. A table gives a complete summary of the results obtained by
different workers within the framework of the Β 5 phenomenology.
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1. INTRODUCTION

The experimental study and theoretical description
of particle-production processes is one of the most
timely fields in high-energy physics. Two methods are
used in the investigation of these processes, inclusive
and exclusive. In the former case one registers only a
separated number of particles that participate in the
reaction, and averaging is carried out over the remain-
ing particles. This method is used in those cases when
the total description of the process becomes impossible
in view of the large multiplicity. In the latter method
one registers all the particles that take part in the re-
action .

The large number of variables on which the exclusive
description of the production processes depends makes
it difficult to study processes with large multiplicity.

Among the various models used to describe processes
of the type 2 — 3, a special place is occupied by dual
models (B5 phenomenology). Within the framework of B5

phenomenology it has become possible to describe for
the first time, in a unified manner, different processes
in a wide range of scattering energies and angles. The
success of the model indicates that, in spite of the large
number of approximations used in the calculations, it is
at present the most consistent dynamic scheme for the
exclusive description of inelastic scattering processes.

The results obtained by now are based on the use of

the five-point dual amplitude B5 as the invariant am-
plitude , which strictly speaking is valid only in the
narrow-resonance approximation, in the idealized case
of scattering of spinless particles. The fact that even
approximate allowance for spin and unitarity makes it
possible to obtain nontrivial predictions is evidence of
the extensive capabilities of the model. Further theoret-
ical investigations and experimental verification will
undoubtedly lead to the construction of a more perfect
dual model for the description of inelastic processes.

The purpose of this review is to acquaint the experi-
menters with the accomplishments, problems, and
further prospects of B5 phenomenology. Readers wish-
ing to become better acquainted with the principles of
duality and the consequences of dual models are re-
ferred to the reviews'11 and to the references cited
therein.

2. DUAL MODELS

The concept of duality connects the region of high and
low energies and denotes equivalence of the description
of processes in terms of resonances in the direct s
channel and in the crossing t channel (Fig. 1).

We recall that it is convenient to use resonance
models in the region of low energies, where the scatter-
ing amplitude has a rich resonance structure. The

630 Sov. Phys.-Usp., Vol. 16, No. 5, March-April 1974 Copyright © 1974 American Institute of Physics 630



•a
I"

io~' 2 * $ s ta° ζ ι s a to' ζ
Laboratory momentrum, GeV/c

FIG. 1. Typical curve of total cross section of hadron-hadron
interaction.
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FIG. 2. Graphic illustration of resonance model.
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FIG. 3. Resonance model and quarks.

amplitude is approximated by the expression

where s and t are the Mandelstam variables (Fig. 2).

If the s-channel resonances are nonexotic1', then in
the language of the quark model the resonance domi-
nance is expressed by the diagrams shown in Fig. 3.

In exchange models it is assumed that the scattering
amplitude can be described with the aid of objects that
are exchanged in the crossing t channel. For example,
in the Regge-pole model which is used in the region of
high energies, the scattering amplitude is given by

where <*i(t) is the Regge pole trajectory and /3j(t) is the
residue of the pole (Fig. 4).

If the particles exchanged in the t-channel have non-
exotic quantum numbers, then we can construct in the
quark model the diagrams shown in Fig. 5.

Many attempts were made to unify the two models.
Thus, in the interference model it is assumed that the
scattering amplitude is a sum of two terms

and in the resonance region A r e s operates well while
A R e g g e "fades out," and vice versa. An essential
shortcoming of the interference model is that at inter-
mediate energies both terms operate equally well, and

FIG. 4 FIG. 5

FIG. 4. Graphic illustration of exchange model.
FIG. 5. Exchange model and quarks.
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FIG. 6. Total cross sections for K~p and K+p scattering. In the K~p
system, at low energies, one observes a resonance structure, and an
asymptotic decrease is observed at high energies. In the K+p system
there are no resonances at low energies (exotic channel); the cross
section is constant at high energies.

FIG. 7. In the construction of dual diagrams it is assumed that the
quark lines enter and leave at different points and do not intersect.

this leads to the so-called double allowances. This
shortcoming is not possessed by in dual models, which
are based on the deep connection between the s and
t-channel resonances, between the low- and high-energy
behavior of the scattering amplitude. The presence of
such a connection is evidenced by the experimental data,
(Fig. 6).

A convenient "laboratory" for the study of the con-
nection between the scattering amplitude at low energies
(resonance region) and high energies (Regge region) are
the dispersion sum rules at finite energy . The sum
rules have played a fundamental role in the investigation
of the dual properties of the theory and in the construc-
tion of dual amplitudes. It was demonstrated with their
aid that in some cases the resonance and exchange
models describe equally well the imaginary part of the
amplitude; consequently, we can write the symbolic
equality

Assuming that there are no exotic states in nature,
we can represent the vertices BBM and MMM in the
manner shown in Fig. 7. Then the dual properties of the
amplitude are lucidly represented with the aid of the
so-called dual diagrams1·41 (Fig. 8).

The explicit form of an amplitude having a Regge
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FIG. 8. Dual diagram for meson-baryon and meson-meson scattering.

asymptotic form and a pole structure at low energies
(in other words, having simultaneously poles in the s and
t channels) was obtained essentially131 by using the sum
rules at finite energy[2].

Historically, the development of dual models is
connected with the narrow-resonance approximation,
i.e., the use of linear real infinitely growing Regge
trajectories (we shall return in Chap. 3 to a discussion
of the trajectories in the model; a detailed analysis of
the properties of Regge trajectories can be found in the
review*3).

The simplest of the many different narrow-resonance
dual models is the model developed int e ] and based on
the use of Euler Β function as the invariant amplitude

V(s,-t, u) = Bl-a(s), -<z(t)] + fl[-a(s), - a (u)]
+ B [—a (it), — α(ί)1Λ2·1)

where

a(s) is the Regge trajectory, and s, t, and u are the
invariant Mandelstam variables.

We list the main properties of the amplitude (2.1).

a) Crossing symmetry (obvious from the construc-
tion).

b) Pole structure. When linear real Regge tra-
jectories are used, the amplitude has an infinite number
of poles located on the real axis and corresponding to
infinitely narrow resonances. Under the principal tra-
jectory there are located daughter levels. The residues
at the poles with respect to one variable are polynomials
with respect to the other. Deviation from linearity in
the trajectories implies a nonpolynomial character of
the residues, and consequently, the appearance of an in-
finite sequence of poles—"ancestors," corresponding
to particles with arbitrarily large spins at a fixed mass
(this contradicts unitarity).

c) Asymptotic behavior. The amplitude (2.1) has a
Regge asymptotic form (for linear trajectories) in all
directions with the exception of the physical one, i.e.,
the positive real axis. Here, however, the asymptotic
behavior of the amplitude in the case of large-scattering
angle is in gross contradiction with the limitations that
follow from the unitarity condition.

The Regge asymptotic form can be preserved1·71 by
means of a certain special choice of Im α. In certain
cases, the amplitude has also the correct behavior in
large-angle scattering.

d) The model is unitary and has no Mandelstam
analyticity.

Thus, the amplitude (2.1), while claiming to be quite

general, has a number of significant shortcomings.From
the point of view of the theory it can, however, be re-
garded as the starting term of a certain iteration pro-
cedure that is needed to improve its analytic and unitary
properties. The similarity between the representation
(2.1) and the Born term of the perturbation-theory
series has stimulated the use of field methods for the
construction of the iteration series. Many brilliant re-
sults were obtained in this direction (called dual field
theory), but the principal difficulties in its path (con-
nected in particular with the exponential divergence of
the loop diagrams) cast doubts on the effectiveness of
field methods in strong-interaction theory.

Another approach to the dual theory of strong inter-
action has been developing recently, based on methods
of the analytic theory of the S matrix using the so-
called dual amplitudes with Mandelstam analyticity
(DAMA) as the starting term. A discussion of this ap-
proach, however, is beyond the scope of the present
review (see1-81 and the literature cited therein).

In spite of the rather arbitrary character of most of
the properties of the representation (2.1), and in spite
of the fact that this representation can be regarded
strictly speaking only as an approximation to the true
amplitude, its simplicity and appreciable generality
make it attractive as a phenomenological amplitude for
hadron scattering.

The extensive possibilities of the use of the Euler Β
function as a physical scattering amplitude were first
demonstrated by Love lace i e i with ΙΓΤΓ scattering as an
example. The scattering amplitude for this process is
(for simplicity we confine ourselves to the (s, t) term
of the amplitude)

A (s, t) = λ [α (s) + a (()] Β [1 - α (s), I - α («)], (2.2)

where a(s)(a(t)) is the p-meson trajectory. The argu-
ments of the Β function are shifted here by unity, so as
to avoid the appearance of unphysical poles in the
amplitude at negative values of s. The shift of the argu-
ments violates the Regge-asymptotic B(s, t), but the
"kinematic factor [ot(s) + a(t)] ensures the correct
asymptotic behavior of the amplitude A(s, t).

One of the brightest applications of the model (2.2) is
the description of the process pn — π*ν~ιΓ. The fact that
the pn system has the quantum numbers of the τΓ meson
makes it possible to consider formally the process with-
in the framework of the four-point amplitude (2.2).
Attention is called immediately to the similarity between
the structure of the amplitude (2.2) (Fig. 9) and the hole
structure of the Dalitz diagram (Fig. 10). A discussion
of the quantitative predictions of the model (2.2) is,
however, outside the scope of the present review (see,

[1]

3. FIVE-POINT DUAL AMPLITUDE

The use of duality ideas has made it possible for the
first time to write down for the amplitude of the pro-
cesses of many-particle hadron scattering an analytic
expression that is valid in the entire region of energies
and scattering angles. The possibility of such a general-
ization has played an important role in the subsequent
development of the dual approach. The five-point
narrow-resonance dual amplitude for spinless particles
is given by[9]
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B5(z)=

1 1

= J j1

where

Ss,- fixed

(3.1)

+i) = — a (0) — j.i+i = —(Pi

The representation (3.1) has properties analogous to
the properties (Fig. 11) of the four-particle dual am-
plitude (2.2). We consider the pole structure and the
asymptotic behavior of the amplitude (3.1).

a) Pole structure. To study the pole structure of the
amplitude it is convenient to use the series expansion
proposed int l Ql We introduce the variables

and write

(1 - 245*12)""" = Σ i"' "Ή). (3.2)

where P(n, w51) is a polynomial of n-th degree in w51.

Substituting (3.2) in (3.1) we obtain after integrating
term by term

(3.3)

= 2 P(n,u>n)B, (z12 + n, z23) B, (z45 + re, z34).

The series (3.3) is very useful in the study of the prop-
erties and consequences of the amplitude (3.1). First,
it is possible to continue the amplitude analytically with
its aid into the entire region of variation of the argu-
ments (the integral representation (3.1) is valid only at

t.GeV
el

FIG. 9

J-'-..τ-τ-'. (GeV/c1)1

FIG. 10

FIG. 9. Structure of the s, t plane of the Veneziano-Lovelace ampli-
tude. The solid lines marked a(s) = 1,2,... and a(t) = 1,2,... indicate
the position of the poles of the amplitude with respect to s and t. The
dashed lines a(s) + a(t) = 1, 2, . . . correspond to the zeroes of the ampli-
tude. The curve in the region s > 0 and t > 0 is the boundary of the
Dalitz diagram for the process pn ->• π*π~π~.

FIG. 10. Experimental distributions of events on the Dalitz plot for
the process pn -> π+π~π~.

FIG. 11. Reaction with participation of five
particles. The momenta of the particles are regarded

s
as incoming, i.e., Σ pj = 0.

fixed

S23~ fixed

FIG. 12. Simple Regge limit of a five-point diagram.

ss1- fixed

FIG. 13. Double Regge limit of a five-point diagram.

positive values of the arguments); second, it is con-
venient in the calculations (B5 phenomenology); finally
as will be shown below, it is convenient also in the study
of the pole structure of the amplitude B5(z).

Using the series expansion of the amplitude B4(z),
we obtain

+ k, z3t) (3.4)

= 2 l^+
0

From this we obtain the residues at the poles

Res S 5 (z) = B 4 (2 4 5, z3 1),
111=0

Res B5(z) = ( l - 2 2 3 ) f i 1 ( 2 i s , 23 4)(l-u>6,)S1(24 5 + l, z
2 1

k, zu).

etc.

It follows from (3.4) that Res B5(z) at z1 2 =-n is a
polynomial of degree η in terms of the angle variable in
the s1 2 channel. Thus, as in the case of B4(z), the am-
plitude B5(z) contains at the pole point a set of particles
("parent" and "daughter" levels) and is free of
"ancestors" (see Chap. 1).

b) Asymptotic behavior of B,(z). We recall that in
the simple Regge limit one fixes one of the two-particle
invariant masses in the final state (Fig. 12). In the
double Regge limit, all three two-particle invariant
masses of the final state tend to infinity (Fig. 13). In
the Regge-pole model, the amplitude of the scattering
behaves in the simple Regge limit like Τ ~ (s12)

a(s5i7,
s i 2 — ">, and in the double limit like

3) (s 4 5 ) a ( s 5 i ) , s1 2 — » (without allowanceΤ ~ ( s 3 4 ) a ( s ^
for the signature factor).

We shall show that the representation (3.1) has the
correct asymptotic behavior. We consider the simple
Regge limit z1 2 - «°, z4 5 - »; Η = z4 5/z1 2, z2 3, z3 4, and
z51 are fixed. After substituting in (3.1) the expressions

we obtain
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B5(z) = (z 1 2 z i 5 r l j J>

exp(
ο

X [1 — exp( — y

e-lmg-l/46 χ

f l - e x p ( -
\ 1 — exp[( — ynlzt

Expanding in a series all the exponentials containing the
variable y12 in the arguments, and retaining only the
first terms of the expansion, we obtain

fl5 (z) « (ZI2ZU)-1 (Ζη)-"*1 ( 2 1 2 ) - ' " + Z a S + 1

(3.5)

Since the factors preceding the integral reduce to
H~lz~^51, and the integral itself does not depend on var-
iables that tend to infinity, formula (3.5) corresponds
to the Regge asymptotic form of the amplitude.

The presence of a double Regge limit of the am-
plitude is proved in similar fashion.

The properties discussed above hold only if linear
real infinitely-growing Regge trajectories are used.
This approximation, as in the case of a four-point dia-
gram, is naturally in gross contradiction to unitarity.

We note, finally, that the amplitude B5 (z12, z2 3, z34,
Z45, z51) has the property of cyclic and anticyclic sym-
metry with respect to permutations of the arguments.

4. B5 PHENOMENOLOGY

Many problems are encountered on the way to a direct
application of the model discussed in the preceding
section, namely:

1) The vacuum trajectory cannot be included in the
model together with the ordinary Regge trajectories2'.

2) Linear real trajectories are used in the model,
corresponding to infinitesimally narrow resonances.

3) The trajectories in the model contain a particle
with zero spin (actually, the first to appear on the lead-
ing boson trajectories are vector particles).

4) The spin and isospin of the external particles are
not taken into account in the model.

There exists as yet no consistent method of including
the vacuum trajectory in the dual narrow-resonance
models (some of the possibilities will be discussed be-
low), so that the best way out in this case is to describe
reactions in which the vacuum exchange is negligibly
small (we note that inclusion of a vacuum trajectory in
dual models with Mandelstam analyticity does not en-
counter any fundamental difficulties[12]).

The second problem is solved by the so-called
phenomenological unitarization of the amplitude, i.e., by
introducing into the trajectory an imaginary part Im (s)
corresponding to the width of the resonances:

ο («) = α (0) -1- a's + ίθ (s - »„) I m α (s).

The solution of the third problem is connected with
the so-called kinematic factor E(l, 2, 3, 4, 5) (the
analog of [a(s) + a(t)] in the case of elastic scattering
(see Chap. 1)), which we shall discuss below. Just as
in the Veneziano—Lovelace model, the arguments of the
B5 function must be shifted by unity, i.e., we must re-
place - a (s) by 1 - a(s). This shift calls for the intro-
duction of a kinematic factor that must be:

a) cyclically symmetrical;

b) linear in the angle variables (at a fixed energy
variable (in order that the first energy pole appear in
the Ρ wave (vector meson));

c) linear in the energy variable when the latter tends
to infinity at a fixed momentum transfer (to "correct"
the asymptotic behavior of the amplitude, which is
violated by the shift of the argument).

The only factor having the above-listed properties is

£ ( 1 , 2 , 3 , 4 , 5) = ε μ ν ρ ο ( ρ 1 ) μ ( ρ 2 ) ν ( Ρ 3 ) Ρ ( ρ 1 ) 0 ,

d Re g (5)
as u

where M r e s and r r e s are the mass and total width of the
resonance. To avoid the appearance of "ancestors"
(i.e., poles corresponding to particles with spin exceed-
ing the value of the trajectory at the point of the pole),
it is assumed that the imaginary part is equal to zero
below the threshold s n of the two-particle state with
which this resonance is connected. Thus,

where €μ1/ρΤ is a completely antisymmetrical tensor.
We recall that the choice of this factor is connected with
the assumption of vector exchange in the intermediate
channels.

We have already touched upon the last problem in
part, since the entire information on the spin is con-
tained in the kinematic factor.

The spin of the external particles is usually neglected
(the spin of the external bosons can be taken into ac-
count by introducing several invariant amplitudes, which
would greatly complicate the calculations); allowance
for the spin of fermions is a complicated problem, which
has not been solved within the framework of the narrow-
resonance dual models (which encounters no difficulty,
however, within the framework of the DAM A). A half-
integer fermion spin in the intermediate channels is
taken into account by shifting the corresponding argu-
ments of the Β functions by 1/2 or 3/2. For simplicity,
only one of all the possible isospin states is chosen in
the model.

There exists a certain leeway in the choice of par-
ticles that are exchanged in the intermediate channels.
This choice can nevertheless be made reasonable by
making use of experimental data.

In analogy with the case of elastic scattering, the
amplitude is a sum of three terms (see Chap. 1)

V(s,t s,t) + Β (s,u)+B(t,u),

for a reaction in which five particles take part we have
(N - 1)1/2 = 12 diagrams (Fig. 14) which are not con-
nected by cyclic or anticyclic permutation. The pres-
ence of channels in which exotic particles are exchanged
greatly simplifies the calculations, since the corre-
sponding diagrams make no contribution to the am-
plitude .

The total cross section of the process is calculated
from the formula

V (ΡοΡ6)2-">α"Ί J

- ft) 6 (pi - m\) δ (p\ - m\) δ (ρ* - m\) d*Pi c ! 4 P 3 ,

where ρ and m are respectively the momenta and
masses of the external particles and A is the amplitude
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FIG. 14. Twelve "non-
equivalent" permutations for
a five-point diagram.

FIG. 15. Reaction with participation of
πΚΚΝΝ.

of the process. The only arbitrary constant c in the
model is determined by fitting to the experimental data.

To calculate the functions B5 ) we use the series ex-
pansion t l 0 ]

where z3 = xt - x3 + x5, and the coefficients A and Β are
determined with the aid of the recurrence formulas

") (X

BM = An n) ( xt+n

where z1 = x4 - x; + x3; the remaining relations are con-
nected by cyclic permutation of the indices.

The calculations are carried out by the Monte Carlo
statistical method with a computer. They make it
possible to obtain the statistical distributions of physical
quantities measured in experiment (the differential
cross section, the angular distribution, the effective-
mass spectrum, etc.). By summing the distributions it
is possible to obtain the cross sections of processes
accurate to a normalization constant, and the mass
spectra make it possible to calculate the resonant-pro-
duction cross sections.

5. EXAMPLES

a) Description of the system ττΚΚΝΝ. A class of re-
action that can be conveniently investigated is shown in
the diagram of Fig. 15.

The class of reactions is convenient for two reasons:
first, the presence of exotic channels simplifies the
calculation; second, in view of the absence of identical
external lines there is a large number of different re-
actions connected by crossing symmetry.

Figure 15 shows 14 charge configurations. Using
isotopic invariance, we can separate five groups of
reactions

(Ι) παΚ+Κ-ρρ,

(II) n-K*K"pp,

(III) π-Κ+Κ-ρη.

(IV) π°Κ'Κ-ρη,

(V) n'K'Rop'p.

Of greatest interest among them are groups (I) — (III),
in each of which there are contained several reactions
that have been experimentally investigated:

(1) Κ+ρ-+Κ+τι°ρ, (5.1)

P^

pp-+I

(II) if+p_^

K-p-+

n+p-+

π-ρ-»

K+n->-

K-n-+

PP-+1

(III) K+p-»

K-p-+

n-p-+

n-p-*-

π+η->-

K+n-+

~p~n-+l·

Using reactions (5.4), (5.5),

K'n p,

OK~n«;

K°ji+p,

K°n-p,

K+ROp,

K«K-n,

K°K~p,

Κ"Κ*η,

K«Ji*n,

Κ°π-η,

L Λ Jl ,

K+n+n,

Κ-π+η,

K+K-p,

K"K"n,

K+K-p,

K°K°p,

K+7Cp,

Κ-π-ρ,

and (5.7)
for which good experimental data are

(5.2)
(5.3)

(5.4)

(5.5)

(5.6)
(5.6')

(5.7)
(5.7')
(5.8)
(5.9)

(5.10)
(5.11)
(5.12)
(5.13)

(5.13')
(5.14)

(5.14')
(5.15)
(5.16)
(5.17)

as an example,
available, let us

illustrate the symmetry properties of the model31 which
were mentioned at the beginning of the chapter.

It is assumed that the reactions
K+p ->- Κ"π*ρ,

K-p-*K"n-p,

π'ρ -c K"K-p

are described by one amplitude that is a combination of
12 terms corresponding to the 12 nonequivalent per-
mutations of the external lines. It is easy to note that
only four diagrams do not contain exotic channels (Fig.
16). The choice of the trajectories in the intermediate
states is based on the following considerations:

1) In the pp channel, the choice of ω is based on ex-
perimental data on K* meson production1^3·1.

2) Y*(1386) is the only resonance of the Yf family
which is strongly coupled to the system K°p.

3) Y*° in the K+p channel can be either the Λ reso-
nance or the Y*(1385) resonance (the experimental data
favor Λ).

4) The quantum numbers admit of a great leeway in
the choice of the N*° trajectories in the π~ρ channel;
there are some grounds for giving preference to the N«
trajectory. Thus, the scattering amplitude takes the
form
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A = ce^e (ρπ)μ (ps)
v (pt)

p (ρ'Ε)
σ (Ρ + <? + Β + S),

where

P = B t ( l - a K , , 1-αΑ 2, 4~°Ά, 1—a«, Τ " α " ) ·

Q = BS ( l — α κ « , -y — α Λ , 1—αω, -^—α γ », 1—<ζκ.) ,

Λ = £ . ( ΐ — α κ « , 1—αΑ,, γ — α γ . , 1 — α ω , - | — α Δ ) ,

ο ο / 3 * J 3 1 \

where, for example,

<*Λ (») = -0.71 + 0.9s + ίθ (s - s0) -0.09 (s - s0), s, = (ηιΣ + mn)\

Different charge configurations of this system were in-
vestigated in detail in a wide range of energies by var-
ious groups of workers (see the table).

b) Description of the system K*KVpii. It is known[53ί

that pion exchange predominates in the reaction K"p
—• K~ir*n. We consider below the crossing-symmetrical
descriptions of the reactions

K+p-+K*n+n, (5.H)

Κ-ρ-+Κ-π+η, (5.12)

Κ*η-+Κ+π-ρ, (5.15)

K-n-^K-n-p, (5.16)

π-ρ->-Κ;/5> (5.13)

and discuss the role of the pion exchange. We consider
reactions in that phase-space region where the contri-
bution from the exchange of the vacuum pole and the
baryon exchange can be neglected. Following[26], we can
assume that the amplitude with pion exchange describes
the reactions (5.11)—(5.16) at small momentum transfers
ltpnl. To this amplitude we add an amplitude that con-
tains vector-meson exchange, the contribution from
which is appreciable at large momentum transfer. The
scattering amplitude with pion exchange (Fig. 17) is
expressed in the form

A% = βη"(Ρί) Ys« (Pp) {af + aK, — 1) B4 (1 — a0, 1 — α χ . ) - ^ - ,

(u(pjj) is the spinor function of the nucleon), i.e., we
consider the amplitude in the pion pole. We note that
the kinematic factor in this case differs from the kine-

FIG. 16. Diagrams that
contribute to the scattering
amplitude.

pole.
FIG. 17. Five-point amplitude in pion

FIG. 18. Inclusion of pion exchange in
the dual scheme.

AC V

FIG. 19. Vacuum exchange.

matic factor in vector-meson exchange.

The amplitude with exchange of vector mesons is
written in the form

This amplitude can be added to Απ.

We can attempt to include the pion in the common
dual scheme of the resonances, by expressing the
amplitude in the form

X ( l — a p , 1—a*., \—a4, 1—απ, - i — α Λ ) ,

which corresponds to the diagram shown in Fig. 18,
(at small momentum transfers ltpn| this amplitude re-
duces to AJJ).

The results of the calculations show, however, that
the assumption of duality of the π meson leads to the
prediction of baryon resonances with large widths, which
do not exist in nature.

c) Vacuum exchange. In diffraction dissociation pro-
cesses , for example in processes like

Ν Ν ->- Ν (ηΝ),\
KN^K (jtiV),
KN -* (K2n) N,
nN^-n (nN),
nN -- (3π) Ν,
yN -<- (2π) Ν,

vacuum-pole exchange predominates. To describe such
processes, an amplitude was proposed in the following
(Fig. 19)

h
[42]

Τ ~ f (tAA)

where f (t^) is the form factor of the hadron-pomeron
vertex, determined by factorization from the elastic
scattering, and s = (p^ + Ρβ); finally, VpB _ CD de-
notes the Veneziano-Lovelace amplitude for a certain
fictitious process Ρ +Β -~ C +D.

Of particular interest to experimentors is the study
of the process yp — ριτ*π". In the τι*τι' mass spectrum,
the peak of the ρ meson predominates, so that this
reaction has been customarily investigated within the
framework of the vector-dominance model. The pres-
ence of a background, however, and also the asymmetry
of the p-meson peak, indicates that in this reaction one
cannot neglect the three-particle final states.

The model of ̂ ^ makes it possible to take full ac-
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Reactions of type 2 -> 3, investigated within the framework of the

Bs phenomenology

Reaction

K-p —> Λπ+π~

(a)

(b)

(0

K+p —*• ρΚ'π

(d)

K-p —> ρΚ°π~

(e)
K+p — * ρΑ'+π»
K~p —> pK~n+
K-p —> πΚ~ΐί+

K~n —> pK~jt~

K+n —*• pK+ir

K+p — * « P J I »

K-n —»· Λ Α -
ΙΟ

X+p -» Λΐ·+ί-ϋΤ+π-

A'+p —> App
K~p —> App
K-p —> ηΚ*~π+
K+p •—*• ρΚ+ίύ

K-p —» ΛΧ+Χ-

X-/i —> ρΚ*-χ-
K+n —» nA"Oji+

K-P-+ Δ++Κ·-η-

π-ρ-+ρΚ°Κ-

n-p —> ««"A5»

π + / > - ^ pK+A»
ττ-rt —^5ΛΛΓ+π"
n-p ^ j ΛΧΟπ»

n-p —» Σ»Χ+π"·
n-p —> ηπ°π°

π~/? —> ηπ+7ΐ~1
π+ρ -+ N*++n+n-i

ρρ —^ ρηπ +

ρη —> Δ—ρπ°

ρη —> η+η~η-

ΡΡ —*ΚϊΚ±π*

ρρ —*• ρΑ Κ+

"Ub

ι.
3-10

3—10

10

3-10

2.5-13

1-20

12

2,5-13

3—10
3.3
1—20

10

5—16

3—10
1.33-11.2

3—10

3-12,6
3—10

3
3
3

5—16
5-15

6—10
4.6; 9.0

2.24-5.5

4.5

2—4.5

4.25; 10

2

1.5—10
8
8

2.5—1.3

_2—8

2 - 8

12

3—12

8

2 - 8
3 - 6

2 - 8
2-10

5—16

Calculated values and
degree of agreement with

experiment

KN interactions

(01, 01P, 11, 13P, 21,
21P, 22, 23, 33)+

01J-, (11, 2 3 ) - , (21,
22)+

(11, 13, 23, 33)+

(01P, 11)+

01+ ( + for laige

i'lab)
(OIP; 11, 13, 13P, 23,

31P, 32P)+
014-

11+
(11, 13, 31P, 32P)±

(01, 01P, 11, 13P, 3-1P,
32P) +

(01,11.23)4-, (13,13P)±
(11, 13, 21, 31P, 32P) +
014-, 1 1 -
01+, (11, 13)+
(01, 01P) —(13, 13P, 23,

25, 33)4-
1 1 ^
(13P, 21P)+
(01P, 13P, 31P, 32P) +
(0,1, 01P)+
(11, 12, 13, 13P, 21,

21P, 31P, 32P)+
(H, 13, 32P)+
(11. 13, 31P, 32P)+
(01P)?
(11, 13P, 32P) +
(11, 32P)+
u±

(11, 13P, 21P, 31P)+
(01, 11, 12, 21)+

(12, 13)+
(11, 13)+

01±
(11, 21, 31P, 32P)+
« + , 21±
(11, 51)+

(11, 21)+

πΝ interactions

•(01P, 11, 13P, 32P) +
((11, 13, 23) +

(̂OIP, 23) +
01—
11 +
(31P, 32P)T for3.1Gev

and for 4 Gev
0 1 + ( + for large P)ab>

(11, 13, 21) +
01+ ( + for large

Plab>
1 1 -
(13, 21) +
11—
(12, 13, 31P)±

(OIP, 31P, 32P) +

11 +

(01, 11, 13, 21)+
(01, H) +
(21P, 31P, 32P)±
(01, 11)+
(01, 13, 21) +
01P±

(OIP, 11, 13, 21P, 41) +

3. ΝΝ and NN interactions

28.5

7

1.0—1.6

1.1—5.7

6.6

(11, 13) +

(11, 13, 23, 31P, 32P) +

(11, 51) +

(0,1, 11, 21)±

(12, 13, 21) +

Remark

Pioneer work on Bs

phenomenology
Attempt to take the spin

into account
Free parameters intro-

duced (coefficients in
the diagrams)

Unified description of a
group of reactions con-
nected by crossing
symmetry

Ditto

Exchange of vacuum tra- -
jectory taken into account

Amplitude contains free
parameters

See (c)

See(b)
Pion exchange taken into

account
See (d)
See (b), (d), (e)

See (d), (e)

See (c), (e)
See(e)

See (c), (e)
Ditto
Ditto
Ditto
Ditto
Unified description of

group of reactions con-
nected by isospin sym-

metry
See (d), (e)
See (d)

See (a), (d)
Study of double Regge

limit without allowance
for vacuum exchange

Unified description of
crossing and charge-
symmetrical reactions

See (c)
See (b)
See (c)
Ditto

Neglect of baryon
exchange

Ditto

Region of multiregge
limit separated

Region of resonances
separated

See (c)

See (c), (e)

See (d), (e)

Exchange of vacuum tra-
jectory taken into ac-
count

Estimate of role of
kinematic factor, com-

parison with double
Regge limit

See (a)
Modified kinematic

factor
See (c)

-
Refer-

ence

1 4

15

1β

17

13

18

1 9

20,21

13

2 2

23

1 9

24

23

26

27

2e
28

2e,29
28

28

17

25

3 0

31

3?.

33

34

3 5

3«

3 7

I S

17

13

38,39

38,39

40

2 6

13

17

38

4 1

25

42

43

44

3 υ *

637 Sov. Phys.-Usp., Vol. 16, No. 5, March-April 1974 L. L. EnkovskiTand V. P. Shelest 637



Reaction

γ/5 —> ρ π + π ~

yp — * pK*K-

K-p —»• ηΧΟ

Λ+η—*·ρΚ»

π~ρ — * Λ&°
A'-n — * Λπ-
η"ρ —> ηρ<>

ρρ —*· ηΔ + +

π+ρ — * Δ++ρ»
Κ-ρ —» Κ·-ρ

/>ρ—»4π

ep — * βρπ + π"
Α'-ρ - ηΧΟπ+π-

01 σ (ρtab)

\{dlldMefs

12 do/is
13 do/dt
21 lio/i cos θ·
22 da/dp'
23 da/dp^
24 do/dp^
25 (p±> (ω)

31 άσίάφγγ
32 cio/iiej
33 do/Ao

34 da/dx

"lab

Calculated values and
degree of agreement with

experiment
Remark Refer-

ence

4. Photopioduction

2,5-5.8

2.5-17.8

(11, 13, 31, 32)+
42'
(li, 13) +

See (d)

Ditto

46

46

5. Processes of type 2 -* 2

2,5-13

1.6-16

(01, 13) +

13+

Amplitude for 2 -+ 3
processes at pole

B·,—»-BiXBi (See(e))

47

48

6. Processes to type 2-• 4

4.6; - 5

(11, 21, 34)+

11 +
(11, 31, 32) +

B,—*-B, at pole
<~rin\
\PP)

See(d)
Ββ-*Βδ. See(e)

49

60
51

&2

Notation

—dependence of total cross section on piab
-effective-mass spectra
-spectra of squares of effective masses
-spectra of squares of momentum transfer
-distributions with respect to production angle in c.m.s.
-distribution with respect to the modulus of the momentum in the c.m.s.
-distributions with respect to the longitudinal momentum in the cm.s.
-distributions with respect to the transverse momentum in the c.m.s.
—ω is the Van-Hove angle
-distribution with respect to the Treiman-Yang angle
-distribution with respect to the Jackson angle
-distribution with respect to the radial angle w on the Van-Hove diagram

-distribution with respect to the Goldhaber angle
41 (f — fi)/(f + B) -asymmetry parameter
42!)
51

-diffraction-cone slope parameter
-Dalitz plots

The letter Ρ following a symbol denotes that this quantity is calculated for the quasi-two-
particle process of resonance production. The sign that follows shows the degree of agreement
of the predicted model with experiment; "+"-good, "t"-satisfactory, "-"-poor.

count of the three-particle final state, including multi-
peripherism, resonant production, and also the presence
of a background, in a wide interval of energies.

6. DISCUSSION OF RESULTS OF Bs

PHENOMENOLOGY

In this chapter we present and discuss some of the
most characteristic results obtained within the frame-
work of B5 phenomenology.

Figure 20 shows plots of the total cross section as a
function of the momenta of the incident particles. The
normalization constant was fitted to the experimental
point of the total cross section of the reaction K*p
— KVp at 5 GeV/c. The theoretical predictions agree
with the experimental data both with respect to the
energy dependence and in absolute magnitude. Analyzing
the predictions of the model for the total cross sections,
we can draw the following conclusions:

a) At momentum values less than 3 GeV/c, the cal-
culated curves lie much lower than the experimental
points. This discrepancy can be due to an increase in
the contribution of the pion exchange at low energies,
a contribution not accounted for in the model.

b) For the reaction if ρ — K°K"p, the predictions of
the theory disagree with the experimental data by al-
most a factor of 2 (the theory predicts the correct
energy dependence of the cross section). It should be
noted that even such a rough agreement between theory
and experiment should be regarded as a success of the
theory; if we take into account the large (20-fold) differ-
ence between the cross sections of this reaction and
the corresponding values for the reaction to which the
amplitude was normalized.

10

FIG. 20. Plots of total cross section

for the reactions K+p -»· K V p (1), K"p -

Κ V p (2) and ir'p -* K°K"p (3) (solid

lines).

I 5 5 9 11 13

•Tab-GeV/c

c) The predictions of the scattering cross sections
for the processes (5.5) and (5.7) with the aid of the
reaction (5.4) make it possible to analyze the crossing-
symmetry properties of the amplitude.

Plots of the distribution with respect to the effective
masses are shown in Fig. 21. The advantage of the dual
models over the Regge-pole model, due to the allow-
ance for the resonance effects, is obvious here. Be-
cause of this property, the dual models, as seen from
the figure, reproduce the main features of the experi-
mental data with distributions with respect to the
effective masses.

Figures 22 and 23 show plots of the cross sections
for the production of the dominant Resonances in the
reactions K+p — KVp and K"p — KVp.

Figure 24 shows the angular distributions for the
decay of the resonances. In this model, these angular
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FIG. 21. Distribution with respect to the effective masses in the
reaction π~ρ -» K°K"p.

5 10 Α № , GeV/c

FIG. 22

"> P^.GeV/c

FIG. 23

FIG. 22. Cross sections for resonance production in the reaction
K+p -* Κ V p .

FIG. 23. Cross sections for resonance production in the reaction
K"p -* KVp.

distributions for the principal resonances on each tra-
jectory depend on the kinematic factor and can thus
serve as a criterion for verifying the correctness of
the assumptions made concerning the particles ex-
changed in the intermediate channels (vector, pseudo-
scalar, etc. exchange).

We note that the predictions of the model of Chan et
al . t l 3 j deviate from the experimental data on the total
cross sections of the reactions K°p — Κ*τΓρ and K°p
— Κ 7τ+ρ. This discrepancy is due apparently to an
incorrect choice of the amplitudes and (or) the kine-
matic factort54].

The examples presented here constitute a negligible
fraction of all the results obtained within the framework
of the B5 phenomenology. A complete summary of the
results, with references to the original papers, is given
in the table.

7. CONCLUSION

The predictions obtained within the framework of the
B5 phenomenology have a qualitative rather than quan-
titative character, although in many cases there is
agreement with the experimental data. It must be borne
in mind here that within the framework of this model
it was possible, for the first time, to describe in a
unified manner different features of inelastic scattering
processes (double peripherism, resonance production,
background, etc.), which previously were regarded as
unconnected. Using an amplitude containing a single

FIG. 24. Angular distri-
butions for the resonance №

decays.

0 +1 Β Ο π 2πψ

arbitrary constant, it is possible to describe many pro-
cesses (which are interconnected by crossing sym-
metry) in a wide interval of energies and scattering
angles.

Further development of this trend will depend appar-
ently on the solution of the following problems. The non-
unitarity of the model is its main shortcoming (in par-
ticular, according to this model the contribution of the
daughter resonances is equal to the contribution of the
resonances on the principal trajectory, and this distorts
strongly the scattering picture). The construction of an
invariant amplitude having good unitary properties and
suitable for calculations would constitute the solution of
the main problem of B5 phenomenology.

The remaining problems are more technical in char-
acter, and their solution depends to a considerable de-
gree on the progress made in the unitarization of the
dual model. This includes the problem of including the
fermion spin and diffraction (vacuum exchange). An
important role in the solution of the foregoing problems
can be played by dual amplitudes with Mandelstam
analyticity (DAMA) . This class of amplitudes does not
contradict the postulates of the analytic of the S-matrix
theory, and has at the same time attractive unitary and
analytic properties which are not possessed by the
narrow-resonance dual models4'.An essential factor on
these models is the use of nonlinear trajectories, which
make it possible to include in natural fashion fermion
trajectories'551 and vacuum exchange[12j.

The use of a maximum number of B5 functions in the
amplitude (i.e., neglect of the minimal number of dia-
grams) should lead in principle to a more correct de-
scription of the processes, but is accompanied by cum-
bersome calculations, which affect adversely the ac-
curacy of the results.

We note finally that the possibilities of Be phenom-
enology are now under investigation. At present time,
however, it is impossible to obtain results with reason-
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able accuracy using a reasonable amount of computer
time.

On the whole we can state that the B5 phenomenology,
owing to its generality and further development pos-
sibilities, is a highly promising approach in the ex-
clusive description of inelastic hadron-scattering pro-
cesses.

''Resonances are defined as nonexotic if they can be constructed from
a quark-antiquark pair (mesons) or three quarks (baryons).

2*This trajectory differs from the usual ones, in particular, in the fact
that no resonances are observed on it [ " ] , so that it cannot be a dual
trajectory with an infinite number of resonances.

3)The crossing-symmetry properties, naturally, obtain only in the ap-
proximation of infinitesimally narrow resonances.
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