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The review deals with different external fields, the sources of which are contained in the matter of
collapsing systems. An analysis is presented of papers, according to which scalar, meson, and
neutrino fields vanish outside the black holes. In this connection, a number of questions are
formulated, to which there is still no definite answer. It is assumed that exhaustive answers to these
questions will be obtained when matchable external and internal solutions can be found for all these
cases. At the present time the analysis of this problem is based mainly on considering the external
solution and the hypothesis that a horizon exists and perturbation theory is applicable.
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T. INTRODUCTION

In light of recent theoretical investigations, an im-
pression is gained that matter in the process of collapse
and in the process of gravitational closure tends to mini-
mize the variety of its global properties, and the variety
of parameters characterizing the system as a whole.

Indeed, many global characteristics vanish during the
collapse process, when the matter goes under the sur-
face of the "event horizon," forming a "black hole."
Thus, outside the "black hole" (collapsar) the magnetic
dipole moment is lost, the higher gravitational multi-
poles vanish, and it is possible that the ability to excite
certain external fields is lost, etc.

This situation was picturesquely characterized by
Wheeler ^ by the phrase: "black holes have no hair."
It is of considerable interest to understand what proper-
ties of the systems are characterized by this code term
"hair." How does this "hair" disappear in the space
around the "black hole," and under which situation does
this hair, if we use this terminology, drop out, i.e.,
something is lost by the system during the process of
the radiation prior to the instant of gravitational closure,
and in which cases does this "hair" arrange itself into
some, say, hairdo under the Schwarzschild sphere and
becomes inaccessible to the external observer.

A macroscopic material system, for example a celes-
tial body, can have various global characteristics.

We have in mind here such characteristics as the
total mass of the system, its total electric charge, the
total angular momentum, etc. A celestial body consist-
ing, for example, of hydrogen gas, has tremendous
baryon and lepton charges. The system can have
strangeness.

If we have in mind electron-neutrino weak interac-
tions, then the celestial body can be a source of
neutrino-antineutrino field, that decreases like l/r5. A
macroscopic material system can in principle be a
source of a scalar field. The system can have a mag-
netic dipole moment, higher gravitational moments, etc.

The discarding of such global characteristics, this
unique "gravitational strip tease," can reach quite far.

There are also final states of material systems that

are rid of all the global characteristics. We have in
mind here systems with closed metrics, for which, in
particular, the total mass2', the total angular momen-
tum, and the total electric charge are equal to zero.
"Black holes" and systems with closed metrics are two
limiting states, which do not go over into each other (at
least in classical physics), of systems with minimized
global characteristics. A discussion of global charac-
teristics that violate the metrics of closed systems and
contradict the metrics'-2-' is very valuable, as we shall
show, for the understanding of the gravitational strip
tease in the formation of black holes. We recall that the
investigations by Ginzburgt3-1 (1964) and by Ginzburg and
Ozernoi't43 (1964) have shown that the magnetic dipole
moment measured at a certain distance from a collapsar
tends to zero in the course of time to the extent that the
matter of the collapsar goes under the horizon of events
in the course of the gravitational closure, i.e., as the
surface of the star approaches the Schwarzschild sur-
face3'.

Doroshkevich, Zel'dovich and Novikov'-5·1 (1965) have
shown that collapsars do not have higher gravitational
multipoles—they are radiated during the process of the
collapse. (In this case the "hair" also falls out.)

Price C 6 ] (1971) et al . C 7 ] reached the conclusion that
matter that carries sources of a long-range scalar field,
on going under the Schwarzschild surface, do not excite
a scalar field outside the black hole. This case is not
connected with any radiation of the sources—the sources
of the scalar field are buried in the black hole.

HartleC 8 ] arrives at the conclusion that the collapsar
also fails to excite neutrino forces in the outer space.
Thus, Hartle gives the following expression for the po-
tential of neutrino forces from sources localized at a
point a near a black hole I-sa-1:

"Λ Γ 1 — — Χ ( i )

If the place of the localization of the sources of the
neutrino field (the electrons) approaches the Schwarz-
schild surface (a — M), then expression (1) vanishes:
the black hole has no "neutrino hair." An interpretation
of this case is more complicated and raises certain
questions. There are statements in the literature that
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the black holes have no vector meson (baryon) field1-7·1.

The question arises, what global properties of black
holes are preserved?

There is a statement in the literature, according to
which black holes can have only mass (M), electric
charge (e), and angular momentum (J). These quantities
obey the conservation laws. The question is, however,
what is the situation with the tremendous baryon charge
of a collapsing star or with its lepton charge, which are
also conserved?

Ruffini and Wheeler1193 attempt to explain the situa-
tion as follows:

"Electric charge is a distinguishable quantity be-
cause it carries a long-range force (conservation of
flux, Gauss's law). Baryon number and strangeness
carry no such long-range force. They have no Gauss's ._
law . . . . [No one has] ever been able to give a con-
vincing reason to expect a direct and spontaneous
violation of the principle of conservation of baryon
number. In gravitational collapse, however, that prin-
ciple is not directly violated; it is transcended. It is
transcended because in collapse one loses the possi-
bility of measuring baryon number, and therefore
this quantity can not be well defined for a collapsed
object. Similarly, strangeness is no longer conserved."
In exactly the same manner, Hartle et al. treat the
impossibility of establishing experimentally, outside
the black hole, the presence of a neutrino charge in
the black hole. In a recent book by Zel'dovich and
Novikovc101, the situation is formulated by the follow-
ing phrase:

"The vanishing of the signals from the particles buried
during the collapse does not mean that the particles
are lost: after all, we do not suppose that a man is
lost if he is hiding behind the corner of a building."

We wish to discuss subsequently in greater detail the
extent to which the interpretation given by Ruffini and
Wheeler is germane to the discussed situation in collap-
sing systems.

It is of interest to discuss the arguments that lead to
the proof that black holes have no external scalar,
massive vector and neutrino fields. But it is advisable
first to consider one statement (a lemma, if you please)
concerning systems described by a closed metric. The
results of this analysis, as will be explained later on,
are of great significance in the discussion of problems.
The statement we have in mind is formulated in the fol-
lowing manner:

If a system containing sources (specific charges) of
some field turns out to be incompatible with a closed
metric, then the corresponding black hole has on its out-
side a field of the given sources.

It is assumed that the characteristics of the system
(the critical density of matter etc.) are such that the
metric becomes closed when the values of the discussed
charges tend to zero.

As is well known, the Friedmann linear element1-1

ds* = α2 (η) dif — α» (η) άχ* — o s (η) sin2 χ (ίΖΘ2 + sin2 θ dtp2) (2)

describes one of the models of a closed world.

The variable TJ is connected with the time t by the sim-
ple relation cdt = a?). The same form (2) describes the
internal metric of a black hole, if the matter in the sys-
tem is distributed in such a way that it fills the region
of χ only to χ ο £ ir/2. Next, the external solution, which
is Euclidean at infinity, should be "joined together" in
some appropriate manner with this internal solution.
The metric on the whole is nonstatic, but in a certain
approximation the external metric can be a Schwarzs-
child metric.

Finally, if the matter fills the region π/2 < χ0 < π,
then a system with a semiclosed metric is produced.
If we draw around the point χ = 0 spheres with certain
values of χ, then the corresponding surface of any
sphere is given by the expression

S = 4πα2 (η) sin5 ; (4)

When χ increases to χ = π/2, the surface area S of the
sphere increases. But at values χ > π/2 the dimensions
of the sphere decrease, and at χ = π the sphere contracts
to a point—the world becomes closed.

At χο < π/2 ("black hole")11123 the surface of the
sphere at a given instant of time (η) increases mono-
tonically with increasing radius: the quantity a sin χ
= r likewise assumes in the external metric the meaning
of a monotonically increasing radius.

A semiclosed metric (the case π/2 < χ0 < π) is char-
acterized by the existence of a minimal value of
r(9r/ax = 0, θ2Γ/θχ2 > 0), in other words, by the pres-
ence in the metric of a specific throat ("molehill" in
Wheeler's terminology), which connects the internal and
external metrics.

The density of matter μ (t), integrated over the entire
space of the closed world, yields the "bare" mass of the
system, i.e., the total mass without allowance for the
gravitational defect:

2π2μ (t) a? (t). (5)

This value of the bare mass determines the radius of
the closed world (a0) at the instant of its maximal expan-
sion:

(6)

The range of the variable χ is here

(3)

The last expression follows directly from Einstein's
equation which a(t) satisfies11113

I o\ 2 __ 2πχμ fi ιη\

if we put in (7) a = da/dt = 0 and in accordance with (5)
μο = Μο/2Λ».

The total mass of that part of the closed world which
is localized in the region from χ = 0 to χ0 (i.e., the bare
mass minus its gravitational defect) is given by the ex-
pression C 2 ' 1 0 3

M t o t = -^-aosin1JC0. (8)

Thus, the total mass of the closed system (χ0 = π) is
equal to zero.

The total electric charge of the closed world is also
equal to zero, owing to the conservation of the electric
charge, and if an attempt is made to place an electric
charge in a closed world, a contradiction arises between
the Gauss theorem ( j E n dS = 4πβ) and the metric of the
closed world1-113; this contradiction illustrates the
lemma formulated above. The character of the deforma-
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tion of the metric of the closed world by a small electric
charge has been considered i n [ 1 3 ' 1 4 ] . For an arbitrarily
small electric charge, an appreciable deviation from the
metric of the closed world sets in only when χ is arbi-
trarily close to -n. In other words, if we draw spheres
with χ > 0 around a small charge e localized in the
region χ = 0, then these spheres will be characterized
by expression (4) if the charge e is small. When χ in-
creases to χ = τι/2, the spheres increase. When χ > ir/2,
if the charge is very small, the spheres will corre-
spondingly decrease. But in the region χ > π/2 the force
lines of the electric vector (En) (the "hair" of the elec-
tromagnetic field) begin to condense. At χ > π/2 the
spheres play the role of converging lenses of sorts for
the force lines of the electrostatic field.

A detailed analysis shows'- that when the density of
the force lines reaches a level such that the correspond-
ing value for the electrostatic potential reaches a value

then the described spheres begin again to increase with
further increase of χ, and the metric goes over into the
well known Nordstrom-Reissner metric, which in this
case is characterized by the value of the Schwarzschild
mass

and the metric
ώ-2

ds* = Oc2 dt - - ^ — r* (ώθ2 + sin2 θ dtp2),

(10)

(11)

where

(12)

The minimal sphere radius admitted by the electric
charge e is proportional to the value of the charge

^min = " (13)

The metric ceases to be closed at an arbitrary small
electric charge. Figuratively speaking, the electric
force lines ("hair") condense in the region of χ close to
π, to such a degree that they "punch through" a "mole-
hill" (throat) into the metric, into which the flux of the
electric vector tends to flow, forming a Nordstrom-
Reissner metric outside the given material system. On
the whole, the metric, at arbitrarily small electric
charge, has the character of the metric of a semiclosed
(r' = 0, r" 3> 0) world4'. In beauty shop language, a
"pony tail" hairdo is produced from without.

If the charge e is large enough, however, then the
minimal sphere may not exist. In this case a significant
violation of the closed-world metric can occur already
at χ s π/2. The given metric describes a black hole,
but with an external electrostatic field.

We can "test" the proposed lemma without construct-
ing a self-consistent solution that takes into account the
effect of the sources of the considered field on the me-
tric. It is possible, for example, for methodological pur-
poses, to find and discuss solutions of Maxwell's equa-
tions for the electrostatic case e έ 0 under conditions of
a strictly closed metric, assume for simplicity in a
Friedmann metric at the instant of maximal expansion
of the world (a = 0).

Under these conditions, the contradictions of the re-
quirement e Φ- 0 with closed metric become manifest in

the appearance of a divergence for the potential as
X — π.

Indeed, as can be easily verified, in this case the
solution for the electrostatic potential takes the form

_ coast
α sin χ '

For the energy density, naturally,

(14)

(15)

As χ —• π, expressions (14) and (15) diverge even in the
case when the source (charge e) is smeared out in the
region χ « 0 over a certain finite sphere. In other
words, a singularity characteristic of a pointlike source,
the presence of which in this place was not assumed by
us, appears at χ = π. The contradiction with the closed
metric takes this form.

Let us apply the proposed test to a massive vector
field. The question is, what situation arises in a closed
world if, say, one extra neutron appears in the baryon-
neutral matter of this system at the point χ = 0. And let
this neutron be a source, say, of a p-meson vector field.

The equations of a massive vector field (with mass
aip) in an arbitrary curved space take the form (c = 1)

η ν -">5φ μ =-4πΛ (16)

We consider a centrally-symmetrical solution of this
equation in the absence of free waves.

We shall solve the problem under the same conditions
as the preceding one, for the instant of maximal expan-
sion of the Friedmann world (a = a0, a = 0).

Let aomp > 1, and let the metric be specified in the
form (2) in such a way that V—go = a4 sin2 χ sin Θ. In this
case the system (16) reduces to one equation

± (sin2 χ-^ φ») - 0 = ~ 4παο7>. (17)

At small χο, the charge go and the charge density ρ are
connected by the relation g0 = 4/3πρι^3χο; j° = Po/ao, if
χ < χ 0 ; j ' =0, if χ >x«.

Proceeding in the standard manner, we can easily ob-
tain for φ 0 , outside the location of the charge go, an ex-
pression of the type

Φ ο ~
sin χ

which can be naturally regarded as the analog of the
usual expression φ ~ exp (— nipr)/r in Euclidean space.

On the basis of (18) we could conclude that the poten-
tial φ 0 diverges as χ — π just as in the case of electro-
dynamics, and that the presence of sources of a massive
vector field with total charge different from zero is in-
compatible with a closed metric.

But this reasoning is wrong—it is based on an error
made by us: the point is that without thinking, we used in
the solution, through force of habit, conditions that are
usual for Euclidean space. These conditions that the so-
lution be finite naturally pick out solutions that attenuate
exponentially with increasing χ.

In the case of a closed world, there is no spatial in-
finity, so that a more general type of solution is possi-
hie11153

,,-λχ
r + V- (19)τ " Γ - 8 ί η χ ' ' s i n χ

The requirement that the solution be finite and continu-
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ous outside the source is satisfied by the condition im-
posed on the coefficients β and γ:

Thus, outside a pointlike source we obtain a solution
in the form

(20)
sh λπδΐη)

— η, and the field (θφο/θχ) van-Now ψ0 is finite as
ishes as χ — π.

We arrive at the conclusion that the presence of
sources of a massive vector field is compatible with a
closed metric; that a closed world can contain a total
baryon charge (a source of a massive vector field) dif-
ferent from zero. In [ 1 5 : i , a closed metric was construc-
ted with allowance for the influences exerted on the me-
tric by a massive vector field. This analysis establishes
the essential difference between a massless vector field
and a massive one. Our result does not contradict the
statement that there is no massive field outside black
holes. Nor is it, however, a proof of this statement.

The point is that a lemma inverse to the lemma pro-
posed above certainly does not hold; it suffices to recall
that a mass, which is a source of a gravitational field,
admits of a closed metric, and that a black hole excites
a gravitational field in outer space.

As shown by Asanov t16-1, sources of a massless
scalar field are also compatible with a closed Friedmann

metric. In the metric dS2 = e y ^ d t 2 - e a ( r t W 2

- e0(r t)dn2 the equation for the scalar field

(21)= - 4 π ;

takes the form

Attention is called to the fact that the expression for
the density of the sources of the scalar field is obtained
in the form

[l7.+ (_«. + p . + ^) P ']_,-t[V + (^ + p_|)]
(22)

where J is the invariant density of the sources of the
scalar field.

In this metric, the Bianchi identity ν σ Τ^ = 0, using
(22), yields the relation

v'p + 2/t/' = o (P is the mass density); (23)

where the prime and the dot denote derivatives with
respect to r and τ, respectively.

If it is possible to introduce co-moving synchronous
coordinates (i.e., where γ does not depend on r), we ob-
tain as a consequence

jU' = o. (24)

Under these conditions, the scalar field should be either
free (j = 0) or

w = o. (25)

In the Friedmann metric, the condition (25) is a direct
consequence of the homogeneity of the world. In
Friedmann's world, only derivatives with respect to
time remain in the equation for the scalar field (22).

Asanov'-16-1 considered a closed-world model in which

' 2T/κ ' (26)

where e№ = a o ( l - cos 7j)2, 0 < TJ < 2π. Thus, he had in
mind the synchronous form (ds2) of the dustlike model of
Friedmann's worldt11-1.

7 =
2 sin' (η/2) — 1

32π V i a\ sin» (η/2) '
(27)

The density of the sources of the scalar field varies in
a specific manner with time (cdt = a άτ\). The quantity j
vanishes when sin4 (77/2) = 1/2, and even reverses sign
at certain instants of time. This behavior of the scalar-
field sources can be attributed to the fact that, unlike the
electric charge, the scalar-field charge is not subject to
a conservation law.

Thus, a closed world can have a total nonzero scalar-
field charge.

The situation is much more complicated with the neu-
trino field (B).

A preliminary analysis (by Berezin) shows that
placement of a pointlike source of a neutrino field at a
point χ = 0 leads to the formation of a neutrino-field
source (with the sign reversed) at χ = π:

If this result can withstand subsequent analysis, this
will mean that a nonzero lepton charge is incompatible
with the metric of a closed world. An external continua-
tion of the metric is in this case inevitable and neutrino
"hairs" outside the black holes must exist. In other
words, this contradicts the previously cited papers by
Hart le [ 8 ] .

We turn now to consider the published proofs of the
absence of scalar (U), massive-vector (φ), and neutrino
(B) fields outside black holes.

All the published proofs of this type1 1 6 ' 7 ' 8 8 · 3 are
based on a number of assumptions, the most significant
of which are the following:

a) The considered system has an event horizon

gn -» 00 and r -» rg r.

β) The potential of the considered field has a finite
value on the surface of the event horizon.

γ) The influence of the considered field on the metric
can be neglected (in the case of an arbitrarily weak
field).

Let us examine in detail the situations of interest to
us in the case of the different particular fields.

2. SCALAR LONG-RANGE FIELD

It should be recalled that a scalar field has a large
number of very unique properties, which were noted, in
particular, by Dicke. Some of these properties will also
be discussed by us later on. We note first that in addi-
tion to the equation of the scalar field in the form (21)

VOVU = — 4π/,

there exists also another form
1
-

17
'

18
^

r-t n " . , 1 • "- u = — 4π;; (28)

R is the scalar curvature.

The last equation is conformally invariant and has a
number of advantages over the equation in the form (21).

A problem similar to the Nordstrom-Reissner prob-
lem was solved by Fisher1-19·1 (for an equation in the
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form (21)) more than 20 years ago (1948). The metric
obtained in that paper differs radically from the
Nordstrom-Reissner metric and the Schwarzschild
metric, in that in the case of a scalar field there is a
striking absence of an event horizon. More accurately,
the corresponding Schwarzschild sphere contracts to a
point, and this occurs at an arbitrarily small charge of
the scalar-field source.

This result in itself is so surprising and unlikely,
that one seeks voluntarily some computational errors in
the work or some natural limitations of the region of
applicability of the static metric, just for the scalar
field. We present first the particular results ofCie].
The metric obtained by Fisher is

(29)

here

and

z0 , s (κ2 m2 + xG2)V* τ xm, G i s the scalar charge, (30)

2 (r)= re(v-*)/2 -Η* r npH r-<-oo, £ 0 0 = ev, gu = — e>- (32)

(z - Zo)1-" (z + zty*> = r2. ( 3 3 )

According to (29), gu never becomes infinite and, just
like goo, tends to zero as ζ — z 0 . According to (33), g u

and goo vanish at the point r = 0.

The potential obtained at this point at the point r = 0
has a logarithmic singularity

G
U-- r ln ι (34)

Fisher's calculations were independently repeated
more than 20 years later by Janis, Newman, and
Winicour'-20-'. They obtained a metric in the form

where
(35)

(36)

This metric can be transformed in simple fashion
into the metric (20), which is more convenient for analy-
sis (since gu in the latter is a coefficient of dr2 and not
of dR2 as in (36)).

In both1-19-1 and1-20-1 there are certain errors in the
analysis of the asymptotic behaviors of the metric5', but
these errors do not concern the form of the linear ele-
ment (29), which was calculated correctly. Thus, for a
scalar field described by Eq. (21), there is no condition
for the applicability of theorems that prove the absence
of an external scalar field for black holes (if it is agreed
that the metric (29) is correct in the case of a scalar
field).

Indeed, in this case a system with scalar-field sour-
ces has no event horizon (the condition a is not satis-
fied) for the applicability of the theorems. More likely,
there is no black hole in this case, and there is some-
thing in the nature of a "bare" singularity, into which
the Schwarzschild sphere degenerates. But the potential
becomes infinite on this degenerate Schwarzschild
sphere (the condition β is not satisfied). The last re-
marks concern the criticism of proofs of the type given
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in'-7'8 a-1, which are based on consideration of a static
metric.

An analysis of the problem, as a problem of a non-
stationary and co-moving system of coordinates, treated
for example in the substantial paper by Price , will be
given somewhat later.

Of course, the metric (29) has many unexpected
properties, which are difficult to reconcile with physical
intuition. Foremost among them is the destruction of the
Schwarzschild horizon in the case of an arbitrarily weak
scalar field.

This raises the natural question: Can this property
of the metric (29) be reconciled with the transition to the
limit as G •— 0, which of necessity must lead to the
Schwarzschild metric? It turns out that this requirement
is satisfied.

Indeed, as G — 0 we have (according to (30)) z 0 = 0
and ζ = 2/cm. According to (31) ρ = 1, and according to
(33)

ζ + 2«m = r, (31)

Consequently, as G — 0 the metric (29) takes the
form

*pa). (38)

On the other hand, goo and gu tend monotonically to zero
as ζ — 0 at arbitrarily small G. A formal analysis
shows that the metric does not have an analytic behavior
as r — 0 and G — 0, namely ζ (r — 0) — 0, but at the
limit itself (r = 0) it assumes jumpwise, according to
(37), the value

ζ = —2xm. (39)

One can advance the hypothesis that the static metric
(29) is applicable only up to certain values r c r · It is per-
fectly possible that there exist physical not-yet analyzed
causes which enable us to limit the internal solution in
this metric (29) to arbitrarily small r.

It is possible that the basis for this should be sought
in the following unique properties of the scalar field.

Consider, for example, in a certain Newtonian ap-
proximation, the total mass of a system distributed over
a spherical region of radius r 0 . Let the "bare" mass of
the matter (mass without allowance for its gravitational
defect) equal Mo, and let the total scalar charge distri-
buted over this region be G.

Generalizing the well known Arnowitt-Deser-Misner
relation'-22-' for the total mass of the system, we obtain

Mtol = Ma-x^h G— (40)

2r0c
2

—
4rjc*

«2 "> X x~) (41)

According to (41), the total mass of the system vanishes
at

^ (42)

The considered system cannot be localized in the region
r < r 0 . In the case r > r 0 , a negative value of the total
mass is obtained: the gravitational attraction is re-
placed, as it were, by gravitational repulsion and the
system retains its minimal dimensions.

The last considerations can offer evidence in favor of
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the fact that it is apparently not legitimate to continue
the external metric (29), a metric in vacuum, to arbi-
trarily small distances (like the static metric).

If we analyze the structure of the metric (29) in light
of the last considerations, then we can state the follow-
ing. As r — * we get ζ — r and also

to the total electric charge (e):

On the other hand, using (33), we can rewrite β λ in the
form

Alternately, expanding the values of z0 and Zi,

(44)

(45)

At large but finite r, and consequently z, we have
β λ > 1, just as in the case of the Schwarzschild and
Nordstrom-Reissner metrics.

Starting with certain r or z, however, ελ begins to
decrease again and tends to zero monotonically as
r — 0. But in the course of this change (and this is most
unexpected) e^ never becomes infinite; in other words,
in this case we do not encounter an event horizon6'.
Attention is called, however, to the fact that when r is
varied β λ assumes a value unity twice: a s z - « (i.e.,
as r — «), and as

•-£-*· (46)

In accordance with the meaning of (42), relation (46) can
be interpreted in the following manner: if matter
charged by a scalar charge is localized in a region z c

= G2/2m, then the total mass of the system in the region
from ζ = 0 to ζ = z c is equal to zero. In other words, if
the Schwarzschild mass measured at r — » turns out to
be equal to m, then it is all localized only in the region
ζ >zc.

From everything stated above concerning the metric
(29) and the specific properties of the scalar field, it
follows that the problem of the scalar field in the case
of a collapsing system still (let us be cautious) awaits
its solution. This situation arises when an internal solu-
tion of a collapsing system is obtained (with allowance
for the influence of the scalar field on the metric) and
the external solution can be made continuous with it.
This, most importantly, should be obtained outside the
framework of perturbation theory. This problem is es-
sentially nonstatic. It is made complicated by the fact
that, unlike electrodynamics, centr.ally-symmetrical
motion of matter can be accompanied by monopole radia-
tion of a scalar field, which changes the mass (and the
gravitational radius of the system).

We have considered above a scalar field that satis-
fies Eq. (21).

Another form of a scalar equation, besides (28),
leads to a metric that contains an event horizon in a
particular case1·24-1. This particular case is character-
ized by a definite connection between the total mass (m)
and the total charge (G) of the system

G* = 3xm8. (47)

In this case there arises an external metric which is
perfectly analogous to the Nordstrom-Reissner metric
in its particular case, when the total mass (m) is equal

—«· -/τ·

(48)

(49)

However, unlike the electrostatic case, in this metric
the scalar potential becomes infinite on the surface of
the horizon event:

i/= £_. (50)
r — a

In this case we have in explicit form a counter-exam-
ple, where the corresponding black hole has an external
scalar field.

Since the potential U vanishes at infinity on the event
horizon, the theorem according to which the field van-
ishes outside the black hole is not applicable to this case
(the condition which we designated before by β is viola-
ted).

On the other hand, the fact that no external field can
exist is corroborated in this case by the general analy-
sis of Chase1-25-1, according to which the potential on the
event horizon must have infinitely large values in this
case.

Generally speaking, Chase's result1-25-1 is obtained
by the following elementary procedure.

If in the case of electrostatics, when the potential
transforms like the fourth component of a vector, the
first integral of the equation yields a derivative of the
electrostatic potential with respect to the coordinate
("afield") in the form

then we have when the field U is scalart19-'

In the Nordstrom-Reissner metric we have

(52)

In a similar metric or in a more general one, but
also with a horizon event, when β λ - « as r - r g and
goo is bounded, the field U' should inevitably acquire
infinitely large values on the event horizon. This is the
peculiarity of U and the peculiarity of its scalar nature.

Generally speaking, certain similar cases, which are
characterized by infinite values of certain physical quan-
tities on the Schwarzschild surface, can be "disquali-
fied" as unphysical. They cannot, for example, be limit-
ing cases of a physical collapse. In the course of col-
lapse, there should be no singularity that cannot be
eliminated by a coordinate transformation in the metric
on the event horizon: the known invariants should not
have singularities on the horizon.

From this point of view, the metric (49), is perfectly
correct, since it coincides formally with the Nordstrom-
Reissner metric. No singularities of the invariants (for
example, ^•agy^-a^^^) occur on the event horizon.

Moreover, even though the potential U diverges as
r —• a, the energy density (TS) vanishes at r = a. This
occurs because of a unique1-2* dependence of the tensor
T ^ o n U and its derivatives.
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In addition, the peculiarity of the scalar field lies in
the fact that in the expression for the Lagrangian the
scalar potential is added to the mass^6'2 7-1.

This means that, from the point of view of an obser-
ver of a system that moves with velocity7' v, the scalar
potential U is given by

(53)U':

li it is recognized that, in accordance with (49),

and the potential (50) is given by

(54)

U=
r I—(φ) '

then the potential of the scalar charge localized on the
surface of the horizon remains finite everywhere for an
observer crossing the horizon in a freely falling system
of coordinates.

Leaving aside the particular case (48), the general
solution (for which ν' + λ V 0) contains, in analogy with
(29), a singularity only at r — 0.

In light of the foregoing, it is advantageous to con-
sider the very process of collapse of matter charged by
sources of a scalar field. This means that it is neces-
sary to consider a nonstatic problem: find a nonstatic
internal solution (in a region occupied by matter), and
the solution joined with it in vacuum, for example in a
falling system of coordinates.

A program of this type is carried out in Price's
paper, but within the framework of perturbation theory.

Price1-6-' believes that it is possible, assuming the
scalar field to be weak, to disregard the influence of the
scalar field on the metric. He considered the model of
dustlike matter. The internal metric of the star is des-
cribed by a linear Friedmann element (2). The external
(vacuum) solution is given by a spherically symmetrical
linear element in a co-moving (synchronous) coordinate
system[ 1 1 ] .

ds* = dT2 — i ^2^)L dR2 — r* (άθ2 + sin2 θ d<p2) -

The system begins to collapse from a distance
r.t = W.

At this initial instant, the scalar field (Φ) is assumed
static ((ΙΦ/dT = 0; dWdr2 = 0). The internal initial form
of the potential is chosen, for convenience in the solu-
tion of the problem, with a definite dependence on χ.
Indeed, the particular solution that depends on χ is as-
sumed in the form

Φ* = -ητ- cos χ ( - 1 1 + sin2 2χ). (55)

The author shows that at the instant the potential of
the scalar field and its derivatives remain finite and do
not vanish when the surface of the star crosses the
horizon of events.

Thus, it is proved that the scalar field perturbs the
metric little.

Price116-1 ignores completely the discussion of the
static metric (29), which seemingly does not admit of
application of perturbation theory to Price's problem.

Thus, all that can be stated so far is that there is a
contradiction between the two approaches to the prob-
lem. In addition, however, there is also, as we have

seen above, a direct counter-example to Price's result,
an example in the form of the metric (49), where there
is a horizon but the scalar potential on the horizon be-
comes infinite. In the particular case of (49) we have G2

= 3/cm2. This means that the scalar and gravitational
forces are of the same order. Moreover, the zeroth ap-
proximation (there exists an event horizon, there is no
scalar field) has no meaning (G = 0 implies m = 0). The
particular Price model also is subject to doubt.

The point is that in the synchronous coordinate sys-
tem we have, on the basis of the Bianchi identity U' = 0,
and consequently the potential should not depend on χ
(see relations (23), (24), and (25)). In general, Eq. (22)
for the potential in the system used by Price should not
contain derivatives with respect to the spatial coordin-
ate. We do not know the extent to which this particular
dependence on χ in the given model is a permissible ap-
proximation and whether the initial conditions # t = 0 and
Φ^ = 0 are permissible, bearing in mind Eq. (22), which
should contain in the synchronous system, strictly speak-
ing, only derivatives with respect to time.

Price's analysis of the role of the effective potential
in the suppression of the higher multipoles of different
fields is very convincing. It seems, however, that the
simplest case of monopole radiation of a scalar field
still is not free of objections.

The scalar field has one more surprising property:
the mass of the particle of the source of the scalar field
should be a function of the scalar potential. The time
variation of the scalar potential changes the mass of the
system, and vice versa. This property of the scalar
field was also indicated by Dicke^26^, namely

^(wj -\-~u. (ί=0), (56)

where vj are the components of the velocity vector

m = m(u), (57)

From this point of view it is not clear whether it is
sufficiently convincing to treat the scalar field in col-
lapse as only a "free" field of long waves reflected from
an effective barrier.

But the main and possibly greatest interest attaches
to the short-range scalar field, the field of scalar me-
sons with rest mass different from zero. And Price's
arguments concerning the role of the effective potential
in the reflection of monopole radiation cannot have any
bearing on this case of "short-range" fields.

In the case of scalar mesons, with relatively large
masses, it appears that the monopole radiation in col-
lapse can be neglected.

Thus, an investigation of a scalar field under condi-
tions of a collapsing system is much more complicated
than the electrodynamic problem. In our opinion, it has
not yet been exhaustively solved.

The study of the behavior of massive scalar fields in
the course of collapse is also very important. Such
fields have been discussed of late in the theory of ele-
mentary particles and play a fundamental role in
attempts to construct unified theory of weak and electro-
magnetic interactions'-28-1.

3. MASSIVE VECTOR FIELD

Unfortunately, no solution of the Nordstrom-Reissner
type has been obtained as yet for a massive vector field.
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The example of the scalar field shows how important
it is to have the concrete form of the metric in order to
analyze the state of the external field of collapsing sys-
tems. Having no concrete form of the metric, it is diffi-
cult to guarantee the absence of some unexpected sur-
prises in this case.

Let us examine the example of a massive vector field
in the form of a p-meson field. The sources of the
p-meson field are nucleons, say for simplicity neutrons.
The field Έ"μν = dμφι)-^νφμ and the potential φ μ

satisfy the equation

where m p is the p-meson mass and j ̂  is the baryon-
current vector.

In this case, unlike the case of a scalar field, the
baryon charge ρ satisfies a conservation law. However,
unlike electrodynamics, there is no Gauss theorem in
vector mesodynamics.

It is assumed that it is precisely this difference from
electrodynamics which leads to the absence of an ex-
ternal mass of vector field for black holes.

It should be pointed out that in the case of a massive
vector field there is a certain unique analog of the Gauss
theorem, more accurately, its unique generalization. Λ
more detailed examination of the relations given here
allows us to suggest that also in the case of a massive
vector field the question of the external metric of a black
hole is still, cautiously speaking, awaiting its solution.

Let us examine the mesodynamic analog of the elec-
trodynamic Gauss theorem, for simplicity in a Euclidean
metric.

Let the baryon charge ρ be localized in a certain reg-
ion such that

- ρ φ 0, r <ra;
ρ = 0, r > r0.

For the flux of the mesodynamic vector E n through a
closed surface surrounding the charge we obtain, on the
basis of Eq. (51), the following expression:

\ EndS = ml\ ψ'άν- \ pdv. (58)

Drawing a circle of radius r > r 0 around the charge,
we obtain the flux of the vector E n through the sphere in
the form

\ EndS — imnl Ι tp^^dr—4ng;

if φ°(Γ) = g e m p r / r , then

= 4ng[mJ \ e-Vdr-l] .

(59)

(60)

In electrodynamics, the flux of the vector E n has the
same value on a sphere of arbitrary radius surrounding
the charge. But in mesodynamics the total flux of the
vector E n decreases with increasing radius of the
sphere. At a sphere radius tending to infinity, the right-
hand side of (60) vanishes: the flux E n is completely ex-
tinguished.

If it is appropriate to use the term "force lines" in
mesodynamics, then in the case of a massive vector field
the force lines do not terminate, as in the case of elec-
trodynamics, at charges of opposite sign. Instead they
are extinguished, figuratively speaking, by a specific
"field charge" which is effected by the field potential

which is always continuously distributed over all of
space. We have in mind the integral in the right-hand
side of (60).

A nonzero flux of the vector E n passes through a
sphere of finite radius r—this is the "hair" of the baryon
field. The statement that the flux of the vector E n van-
ishes outside the black hole, means that the flux of the
vector E n vanishes inside the black hole on approaching
the surface of the event horizon. This means that in
some manner the "charge of the field," integrated over
the internal space of the black hole, increases to such a
degree that it is capable to compensate for that vanishing
of the potential which has occurred outside the black
hole. Without a corresponding increase of the potential
in the internal space, it is impossible to annihilate the
flux through the Schwarzschild sphere.

If we turn to the situation with the discussed flux in a
closed world, then it is easy to verify that a potential in
the form (20) ensures the vanishing of the flux on the
boundary of the world at χ = π.

This possibility arises because inside a closed world
a term with an increasing exponential is added to the ex-
pression of the potential. Because of this, the density of
the "field charge" increases enough to compensate for
the baryon charge. In this arbitrary sense, the total
"baryon charge" (the right-hand side of (58)) is equal to
zero in a closed world. Owing to the change of the poten-
tial, the "hair" of the p-meson field is located inside the
closed world.

This raises the question of what makes it possible for
the integral of the massive vector field potential to in-
crease inside the black hole, for after all the boundary
conditions at Euclidean infinity do not change for a col-
lapsing system. In other words, it is impossible to cause
the external field of the black hole simply to disappear,
it must, figuratively speaking, to be "driven inside" the
black hole, precisely in such a way as to increase the
integral mp J φ°άν inside the black hole to a value that
compensates for the total baryon charge (G).

At any rate it is still not clear how the generalized
Gauss theorem is satisfied in the collapsed process, and
it cannot be stated that black holes have no external
baryon fields.

4. NEUTRINO FIELD

The situation is much more complicated with neu-
trino forces. Indeed, if the ((ev)(eu)) interaction exists,
then a system consisting, say, of hydrogen should excite
in the surrounding space a neutrino-antineutrino field
with a potential

π 1
β~"ΗΓ·

We have in mind the vector variant of the interaction,
for which there is a conservation law for the sources of
this field—the lepton charge conservation law. The
forces here are repulsion forces.

The quantity not subject to annihilation is

L = ln (e-) - η (e+)l + [n (ve) - η (ν.)].

If the corresponding spinors are designated by

Ψ. and tvt

then the lepton-charge conservation law is given by the
equation
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where

9α (ψΓαψ) = Ο,

0 Vc

and γα are the corresponding Dirac matrices.

For the considered case, the situation is made com-
plicated by the fact that there is a frequently cited paper
by Hartlet 8 ^, where it is stated that the potential of the
neutrino forces vanishes outside a black hole.

Within the framework of the approximations assumed
in that paper, this is seemingly correct. If all of the
matter of the black hole becomes neutronized during the
course of gravitational closure, then the questions of in-
terest to us no longer arise, for in this case the lepton
charge is emitted.

In principle, however, situations are possible in which
the density of matter is very small at a large mass.

This raises the question whether a metric (for exam-
ple the metric of our universe) can be closed if the total
lepton charge is not equal to zero'-2-'.

Unfortunately, the field referred to here is not a solu-
tion of any equation of the Maxwell type, and the lepton
conservation law is not connected here explicitly with
any analog of the Gauss theorem. We can attempt, how-
ever, to construct formally a certain generalized
Maxwell field for the case of electrostatic forces, with a
dependence 1/r5 and higher. Such a generalization was
obtained by Berezin and the author[ 2 9 ]. In such a consis-
tent formalism, a Gauss theorem is automatically
formulated for a certain tensor. The formalism includes
static potentials of the type

v~lL·- (61)
Just as in the case of an electrostatic field, the general-
ized vector field does not vanish outside the black hole.
The outer metric of such a collapsar is a generalization
of the Nordstrom-Reissner metric. This example is in-
structive because the potential with such a high depen-
dence on r does not exclude the corresponding Gauss
theorem8'.

One could assume that the absence of neutrino "hair"
outside the black holes is connected in some manner
with the rapid decrease of the potential with distance.
An example with a suitably generalized Maxwell field,
however, demonstrates that this situation here is more
complicated.

Although the generalized Maxwell field referred to
above is a vector field, like the neutrino-antineutrino
field, the static potentials in both cases have one and the
same power-law dependence; the analogy between these
fields is so far limited to this fact only. The theorems
proved for the generalized Maxwell field cannot be
simply transferred to Hartle's case.

An attempt to arrive in Hartle's case, by analogy with
the electrostatic field, at a contradiction (or an agree-
ment) with a closed metric by a direct calculation of the
values of the neutrino-antineutrino field as χ — η,
seems to lead actually to singularities just as in the
case of electrostatics (Berezin).

For a pointlike source of neutrino forces, localized
at the point χ = 0 of a closed world, a mirror image of
the source is produced at χ = τι:

Β (χ) = —Β (π - χ).

In other words, it would seem that the corresponding
neutrino "hair" should not disappear. A more thorough
verification of this result is necessary. To be sure, if
the lepton-charge conservation law is not violated in
strong gravitational fields, then it seems that it is diffi-
cult to conceive of a "mechanism" with the aid of which
it would be possible to locate the neutrino "hair" in the
space of a closed world or under the Schwarzschild
sphere. A neutrino vector field has in a certain sense
properties close to those of a Maxwellian field, and re-
quires unlike scalar fields but like the Maxwellian field,
the inevitable existence of particles and antiparticles as
its sources. Unlike the mesodynamic field, the neutrino
field (as in electrostatics) cannot be made to vanish on
a surface surrounding its source by using some boundary
condition.

Yet this vanishing of the neutrino field inside the
black hole as the horizon is approached from the interior
of the black hole should be realized in some manner, if
the neutrino field is cut off outside the black hole. In
other words, in the case of a neutrino field, just as in
the preceding cases of the scalar and vector meson
fields, the final answer concerning the behavior of these
fields outside black holes will also be given after join-
able internal and external solutions of the considered
systems are obtained.

As a result of such an analysis of these problems,
which are not static in nature (collapse), the entire
situation with the presence of horizons, "bare" singu-
larities (if they exist), and the behavior of fields outside
and (of necessity) inside black holes becomes clear.

Leaving open for the time being the question of the
existence of scalar and baryon fields for black holes,
we can state more definitely that there can exist a world
with a closed metric and with sources of a neutral scalar
field. There can exist a closed world with an unequal
number of nucleons and antinucleons.

We must emphasize the circumstance that the closed
world can exist in principle with very small dimensions
(small a0 = a m a x ) and can contain matter with very small
masses Mo. But the necessary homogeneous density of
matter at the instant of maximal expansion of the system
should satisfy the relation

μ.~τπτ· (62)

Thus, for a mass on the order of the solar mass
(MQ~ ~ 1033 g), the maximum dimension of the closed

world is

and the density is

«ο ~ ι km,

Mo~lOls g/cm3

The limit of applicability of classical (non-quantum)
theory for the formation of systems with a closed metric
lies in the mass region

Mo ~ 10-* g

and in the closed-world dimension region

- i~ a o ~10-«cm.

Were we able in our world to construct artificially
such a system out of matter surrounding us, or could
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such systems arise spontaneously under some conditions,
then unique situations would arise. These systems with
closed metric would be characterized on the outside by
a complete absence of any type of "hair." All the proper-
ties of matter would be "buried" in such systems without
any external traces ("hair") and irrevocably. Since a
closed system, as we- have verified above, can in prin-
ciple consist of neutrons only (i.e., without an equal
number of antineutrons), it follows that the formation of
such systems would denote the vanishing of some number
of neutrons from our experiment. This would be a direct
violation of the baryon-number conservation. In this
situation, it would not be appropriate to use the term
"transcended" introduced by Wheeler. This situation is
fully equivalent to the term "violated." Following the
text of the book by Zel'dovich and Novikov, it is impos-
sible to apply to this example the picturesque compar-
ison with a man "hiding around the corner." No such
corner would remain in this case.91 However, as is well
known, the formation of systems with closed metric
from the matter surrounding us is impossible.

A black hole, the semi-closed system, and a closed
world—all these objects can be described by one and the
same linear element (2). A semi-closed system in a
closed world comprises lower energy states of systems
that consist, in principle, of one and the same number of
say, neutrons. However, transitions of black holes into
a state of a semi-closed system are nevertheless for-
bidden.

The point is that the surface of the event horizon (the
Schwarzschild sphere, for example) is, as it were, a
surface of a unilaterally transmitting membrane, which
can only absorb matter, and after absorbing it, can only
increase in size. A system that is formed under the
gravitational radius cannot decrease its total mass and
cannot radiate energy.

The transition of a black hole into the state of a sys-
tem with a semi-closed metric is impossible10'. For the
same reason, the transition of a semi-closed system
into a closed system is also impossible. The impossi-
bility of these transitions is apparently a unique mani-
festation of the law of baryon-charge conservation.

From the methodological point of view, it is very
instructive, in the development of many of the concepts
referred to above, to discuss the example of a collapse
of very small masses, the possibility of which was illus-
trated by Zel'dovich^30-1. In this example it is shown how
it is possible to arrange a specified and furthermore
arbitrarily small number of baryons (N) in such a way
that the total mass, measured by an external observer,
is arbitrarily small. Indeed, the total mass Μ for matter
of density μ at rest is given by the expression

(63)

and the total number of particles Ν is given by the in-
tegral

Ν = 4n jn( (64)

where n(r) is the particle-number density and β λ ' ^
= VgiT.

If we choose for the distribution of μ the expression

and the expression for the total mass is

Μ = const iV2'3»"2' at r < S , λ = const. (65)

According to (65), the mass Μ tends to zero for any
specified Ν if a — c!/8w.

Zel'dovich notes that it would be possible in principle
to construct a machine capable, by realizing tremendous
compressions, of bringing the system to the required
configuration with an extremely large gravitational mass
defect, such that an energy close to the total self-energy
of the system is released. In nuclear reactions, approxi-
mately only 1% of the system mass is released. In this
case we are interested not in Zel'dovich's fantastic
machine itself, but only in an instructive occasion for
discussing the limiting case of a system with zero total
mass.

Assume that we have made up a system of this type of
Ν neutrons, or that Zel'dovich has succeeded in con-
structing such a machine which, by realizing the case
a = C2/8TT/C, brings the system to a state with zero total
mass. If such a case were to be realized, then such a
system would completely vanish from our experimental
setup. The realization of such a machine would lead to a
decrease in the number (i.e., to annihilation) of baryons
in the universe. In this sense the result is perfectly
equivalent to the formation of the closed systems which
were discussed above.

It is appropriate to continue here, using this concrete
example, the discussion of the generalized Gauss
theorem for a massive vector field. The neutrons are
sources, say, of ρ-meson forces which are completely
neglected in Zel'dovich's formulas.

In the context of attempts to "organize" a collapse,
say, of one gram of neutrons, then when the neutrons
are localized in a region of dimensions much smaller
thanfi/nipC, the numerical value of the second term in
formula (60) ("of the field" or "charge") becomes
negligibly small. When the localization region is still
many orders of magnitude larger than the gravitational
radius of the system (r ~ 1CT28 cm), when the gravita-
tional forces can still be neglected, the generalized
Gauss theorem takes in practice the form

j £„ dS = -ing. (66)

then we have in the case of an ultrarelativistic gas

In other words, a pure electrodynamic analog of the
Gauss theorem is obtained, with all its characteristic
properties, particularly with respect to the baryon
"hair."

If the collapse of such a system were to be realized,
then by virtue of the applicability of relation (66), the
corresponding black hole would have baryon "hair" and
consequently a nonzero mass. We have used here once
more the opportunity to return to the illustration of the
importance of the analog of the Gauss theorem in meso-
dynamics. As to the discussed machine, although the
corresponding calculations within the framework of the
idealization assumed by the author are perfectly correct,
it must be noted that such a machine is in principle im-
possible when applied to real neutron matter. Indeed, if
the system is compressed to dimensions so much
smaller than ft /mpc, the potential of the repulsion forces
of this system of Ν neutrons reaches values
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where m n is the neutron mass.

Since gVhc a 1, the energy or mass localized in this
field at distances larger than aVmnc, a < 1 turns out to
be larger than the total rest mass of the neutrons mak-
ing up the given system11'. Further localization of the
system of Ν neutrons (i.e., their packing into a smaller
region) only increases the energy of the meson field of
the given system on the outside. The total mass of the
system of Ν neutrons, localized in the field when the
machine operates, is always larger than Nmn and never
vanishes. From this point of view, the machine des-
cribed by Zel'dovich, one that annihilates baryons, is
impossible.

The Zel'dovich machine is impossible precisely by
virtue of the "hair," the source of which is the conserved
charge12'. When discussing the work of the machine no
account was taken also of the fact that the tremendous
meson fields produced upon compression lead to the
production of neutron-antineutron pairs. The antineu-
trons of the produced pairs will be attracted by this
system, decreasing its baryon charge, and the produced
neutrons will be removed from the system by the repul-
sion forces. When the system is fully neutralized upon
further compression with respect to the baryon charge,
the system can become in principle gravitationally
closed with a zero mass.

In this case the system will actually not have any
baryon "hair" (a meson field), but this circumstance is
in agreement with the baryon-number conservation law.
Unfortunately, in this case the machine does not give
the expected energy release from matter, and owing to
the work of the machine the same number of neutrons
will remain in the surrounding space. Roughly speaking,
all the neutrons will turn out to be "driven out" of the
system.

It is perhaps appropriate to note at this point that
owing to the vector meson repulsion forces, it appears
that the collapse of a star cannot develop without limit.

The role of the short-range nuclear forces in the de-
velopment, gravitational collapse has been discussed
many times. Usually, however, the situation considered
was one in which the dimension of the collapsing system
(R) is much larger than the range of action of the
nuclear forces ("fi/mnc).

In this case (R ^-n/mnc) one can introduce the con-
cept of pressure, since the considered nuclear energy
enters additively in the summation of the smaller vol-
umes of which this system consists. A general thermo-
dynamic analysis shows that during this stage of develop-
ment of the collapse (R 3> hmnc) the nuclear forces do
not stop the gravitational compression of the system.

At R <fi/mnc, the phenomenon lies outside the
framework of the thermodynamic analysis, and the
subsequent course of the collapse must be considered
dynamically, just as in the case of the presence of elec-
trostatic forces. As noted by Novikov1-31-1, electrostatic
forces, being long-range, are capable of stopping the
gravitational collapse. When the system is localized in a
region R < h/mnc, the considered field become prac-
tically long-range and a complete analogy with electro-
static forces arises in the treatment of the possible
stopping of the collapse1-32-1. The density of matter be-

comes in this case, of course, tremendous. Indeed, the
critical mass with which a collapse of a star is possible,
is Μ ~ ΜΘ

1033 g.

In a sphere of radius h/mnc, the density of such a
mass is

^ - T / S r g/cm3~1074

 g / c n l

3 .

It is curious that this density of matter, at which it is
assumed that the collapse of a star stops, is smaller by
almost 20 orders of magnitude than the so-called criti-
cal (quantum) density

with which the possible stopping of collapse of a star is
associated in certain hypotheses13'.

It appears that a real problem of unlimited develop-
ment of the collapse of a star to its pointlike limit
simply does not exist.

To be sure, the problem of expansion of the star after
the stopping of the collapse arises in a co-moving coor-
dinate system. This expansion, considered classically,
cannot be an expansion in the same space'-31-'.

We have discussed above the impossibility of forma-
tion of closed and semiclosed systems within the frame-
work of classical physics. It is not excluded, however,
that in quantum theory there are situations in which the
analogs of such systems can be realized. We have in
mind the possibilities, for example, of rare quantum
fluctuations of systems with small numbers of nucleons.
We can refer here, of course, to our ignorance of the
laws in this region of physical phenomena. Apparently,
however, fluctuation formation of closed systems would
be violation of the law of baryon conservation. Fluctua-
tion (spontaneous) appearance of microscopic semi-
closed systems or of microscopic black holes does not
contradict any conservation laws in principle, but at
small dimensions of these systems only extremely small
(single-charges (electric, baryon) are energywise profit-
able, i.e., systems such as Friedmann's1-2-1. Such small
systems with large charges are unstable as a result of
pair production and vacuum polarization in strong fields
near practically pointlike field sources.

However, in modern elementary-particle theory there
exists a situation where the discussion of the possible
formation of microscopic black holes and perhaps also
of microscopic semiclosed systems, can be significant.
We have in mind the so-called intermediate states in
modern quantum perturbation theory as applied to ele-
mentary particles.

The state of semiclosed systems or the states of
black holes should seemingly be "listed" in the complete
set of sets that can arise spontaneously in these cases.
Moreover, these states are energy wise the lowest ones
and this, as follows from the sequel, is essential.

Indeed, if a particle in the intermediate states emits
a quantum of mass m = Hu/c2, then this mass, according
to the Heisenberg principle14' is localized in a region

A and (67)

A complete set of intermediate states includes states
with arbitrarily high energies, and consequently masses.
A surprising violation of logic has been historically
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legitimized in modern theory of elementary particles,
namely, states have been introduced with arbitrarily
large masses, and at the same time their gravitational
effects have been completely neglected.

If the necessary mass of order

appears in an intermediate state, then the gravitational
radius of this mass is

(68)

On the other hand, the size of the region where the
mass is localized (according to (67))

η
me

coincide for this mass with the gravitational radius of
the object in this state. With further increase of the
intermediate-state energy, the gravitational radius
should accordingly increase.

On the other hand, however, the region of localization
of the energy of the intermediate state, according to the
Heisenberg relation, should correspondingly decrease,
and at m > Vhc/Vir it would become smaller than the
gravitational radius. If such a situation were to arise
in the region where classical physics is applicable, we
would say that we are dealing with a system whose mass
is under the Schwarzschild gravitational sphere. In
other words, we would be dealing with a system in a
collapsed state. This could be either a black-hole state,
or more readily the state of a system with a semiclosed
metric, if the "bare" mass of the intermediate state de-
creases strongly as a result of the gravitational defect.
At the present time we do not know the extent to which
the concepts concerning the metric remain in force in
this state. We do know, however, that the region of
localization of the mass decreases with increasing en-
ergy of the intermediate state, in accordance with the
Heisenberg relation; consequently, owing to the large
mass concentration the gravitational mass defect should
increase, and should accordingly decrease the total
mass of the intermediate state. It appears that only as
a result of taking the gravitational mass defect into ac-
count is it impossible for the gravitational radius of the
system to exceed the dimensions allowed by the Heisen-
berg relation, i.e., the discussed contradiction can be
resolved in this manner.

If it were permissible to use here for the total mass
of the intermediate-state estimates of the type given
above by relation (40) then, according to this estimate,
the total mass of the intermediate state would be ob-
tained from the relation

where mp is the particle mass and η/τ,β is the mass of
the emitted energy quantum in the intermediate state.
Hence

roc
2 , -, / rjc* , he

As r 0 — 0 we have

where the last expression for the mass is the maximum
of the possible values of the total masses (energies) of
the intermediate states.

Of course, an adequate quantum description of collap-
sing systems can introduce significant corrections, but
apparently only with respect to their space-time des-
cription. It can hardly change significantly the energy
picture of these states, or more accurately, it hardly
influences significantly such an effect as the gravita-
tional mass defect localized in this region. Yet it is only
this effect which was discussed above. If the advanced
considerations actually turn out to be significant in
elementary particle theory, this will be one of the rare
cases where the discussion of properties of collapsing
cosmic bodies initiates a discussion of fundamental
problems in the theory of elementary particles.

In conclusion I consider it my duty to express grati-
tude to my co-workers R. A. Asanov, V. A. Berezin, and
V. P. Frolov for numerous discussions as a result many
factors became clear or, to the contrary, lost a previ-
ously seeming clarity.

''Reported at the Third AU-Union Gravitational Conference, October
14, 1972 (Erevan).

2 )It is assumed that the so-called Λ term in Einstein's equations is equal
to zero.

3)When the star surface approaches the Schwarzschild surface (the
"event horizon") during the course of the gravitational collapse a
discarding of free electrons are also discarded, and their number
reaches a minimum value n: KMme/rgr ~ ne2/rg r, i.e., for a critical
mass Μ ~ Mg: we have n m ax ~ κ Mo me/e2 ~ 10'8. In other words,
there remains one electron for 1016 g ~ 1010 tons of matter. The
density of matter in this case is μ ~ 1018 g/cm3.

4)If our universe were to have a density μ ~ 10~29 g/cm3, which in the
case of electric neutrality of matter could lead to a closed metric,
then the presence of but one single extra electron in the universe
would make the universe open with a throat of radius r m m ~
e^/H/c2 ~ 10~33 cm, and the total mass as seen by an external ob-
server would be Mtot ~ βι/κ ~ lCT'g. A system that turns into a
system with a closed Friedmann metric when the electric charge
tends to zero, was called an electrostatic "fridmon" [2], and an
external metric of the type (11) with φ in the form (12) was called
a fridmon metric. It should be noted, however, that an external
metric of this type has also another internal continuation, which
describes the Papapetrou model with the same ratio Μ = e/y/κ. But
in this case the external solution describes a static system, in which
the gravitational and electrostatic forces balance each other. The
dimensions of the material system must then be larger than its
gravitational radius [1 S]. The fridmon metric is the limiting case of a
metric of a semiclosed world (Mtot > e/v/it) as Mtot ""*• e/V^-

s)As noted by Asanov [2 1], the gravitational constant was omitted
from the symbol r o = 2m used in the formulas of [2 0]. This raised dif-
ficulties in the interpretation of the asymptotic form of the metric
as κ ->·0. Indeed, Fisher has l/p= [1 + (G2//cm2)]1/2 -* °°, ρ -» 0.
In [20] they have 1/p = [1 + ( K G 2 / ^ ) ] 1 ' 2 = [1 + (KG2/m2)]1/2->· 1.

X--0
In the former case the metric (29) becomes Euclidean as κ -* 0.

6 Ί η a recent paper, Asanov [23] constructed a model with sources of a
scalar and electrostatic field for a Schwarzschild mass m, requiring
Euclidean behavior at the pint r = 0. A numerical solution shows
that there is no event horizon, in any case down to r ~ 0.9 icm,
where e > 1 and where there is no advantage in joining the internal
and external solutions.

7)In the equation VQVOU = — 4KJ, both U and the charge density are
invariant, but the total scalar charge G = /j dv is not invariant and
transforms like a volume: G = [1 - (v2/c2)]1 / 2G0.

8)The classical equation of motion for a given charge is written, as was
done by Hartle I8*]

where B" is the vector potential and u** is the velocity vectc . Like
Hartle, we choose an interaction Lagrangian

l
=t ti? " Βμ, L is the current

But the interaction Lagrangian of the free field is now written in the
form
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'Xf = — α (—/-μν?μν)'1, α is a constant,

and the generalized Maxwell equation takes the form

The Gauss theorem is satisfied for the tensor

At k = 1, the formalism leads to Maxwell's theory.
9'lf any analogies in human terms are possible here at all, we are

dealing more readily with Lieutenant Kije, who, as is well known,
"has no figure."

IO)A different situation arises in the case of anticollapse, when radiation
from the system is possible.

1 '*The gravitational mass defect during this stage of compression
(distances h/mnc ~ 10"1 4cm) is still negligibly small.

l 2 ) I t must be emphasized that we are dealing with systems that are far
from microscopic in their initial state, albeit far from the critical
masses of celestial bodies. A gravitational radius hmnc is possessed
by a mass Mo ~ h/mnc)(c72K) ~ 101 4g ~ 10s tons.

l3)These considerations consist in the fact that at such densities the
non-quantum-mechanical approach is no longer valid, and there re-
mains in principle the hope that other laws will prevent further de-
velopment of the collapse at these densities.

The density μ ~ 109 3 g/cm3 is reached for masses 102 0 times
larger than Ms, i.e., for Μ ~ 105 3 g. It may be accidental that this
mass coincides approximately with the mass of our universe.

At such compressions it is necessary to take into account the
space-time picture of pair production, the intermixing of charge
particles, and the motion of the pair components towards the
periphery. It is not excluded that this circumstance can essentially
alter the entire situation.

14)When a quantum of energy Ε = hv is emitted, the particle using
Fermi's words [3 3], "borrows" an energy Ε = me2. According to the
uncertain relation, the "borrowing" time cannot be longer than
h/mc2. During that time, the emitted energy quantum cannot move
farther than ~ h/mc away from the particle.
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