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In this article a critical analysis is given of basic geometric concepts as applied to the physics of the
microcosmos. The article begins with an outline of geometry in macroscopic physics. This part is
based on the classical papers of H. Poincare, A. Einstein, and A. A. Fridman. An indication of
possible limitations on the concept of a point event associated with limiting densities of matter
represents new material. Subsequently localization of elementary particles is discussed and limits of
possible accuracy are indicated. In the article it is emphasized that the logical structure of local
quantum field theory presupposes the existence of particles of arbitrarily large mass. The existence of
"maximons"—particles of a limiting, but finite mass—strong gravitation (collapse of particles),
instability of particles with respect to decay due to the weak interaction (this interaction can become
strong for very heavy particles and can lead to lead to total instability of such a particle). In the
conclusion of the article two features of a nonlocal field theory are considered. In this theory the
coordinates of a point event are operators, while momentum space remains a numerical space (either
curved or flat). The first variant presupposes commutation conditions for the coordinates of a point
(the Snyder-Kadyshevskii theory), while the second variant presupposes anticommutation conditions
(the author's theory).
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The present article is a description of problems
arising in transferring geometrical concepts from class-
ical physics into the world of elementary particles.

1. ORDERING OF EVENTS IN SPACE

Theoretical physics begins with the ordering of
events. This is the foundation of all foundations. To
order events a set of four numbers (x) = x0, X[, x2, x3—
the coordinates of an event—are associated with each
point event Jj; if a single set of four numbers is insuffi-
cient, then the event is not a point event. In what follows
we shall call this operation the arithmetization of events.
The arithmetization of events presupposes a definite
physical method of realizing it. This method contains an
essential element of convention1'.

Current convention is based: a) on the principle of
universal constancy of the velocity of light and b) on the
assumption of the existence of "standard" clocks2'.

The arithmetization based on these accepted conven-
tions leads to the Minkowski space with an indefinite me-
tric which we write in the usual notation:

ds1 = c2 dt- — dxK (1)

Two observers 2 and Z moving with respect to each
other and carrying out the arithmetization by the same
method will nevertheless ascribe different coordinates
(x) and (x) to the same event J\

It is assumed that there exists a mutually unique
correspondence between the coordinates (x) and (x) and
that the metric (1) is universal. Then the transformation
which connects the coordinates (x) and (x) in the
Cartesian system of coordinates is the Poincare-Lorentz
transformation

x = A (u) x (2)
where the parameters of the transformation u and a
^represent the relative velocity of the coordinate systems
2 and 2 and the relative displacement of the origin of
coordinates; A(u) is the transformation matrix.

We emphasize that the mutual uniqueness of the rela-
tion between the coordinates (x) and (x) of the same
event J1 is an assumption. Indeed, the parameters of
the transformation (2) u and a could be random variables
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or even operators. In this case the transformation (2)
must be complemented by specifying the probability
dw(u, a) a 0 or correspondingly the state vector * upon
which the operators u and a can act (cf., ch. 3).

For the problems considered below it is important
that the metric (1) is indefinite. From the indefiniteness
of this metric it follows that the concept of the closeness
of two events iT and ;F' in the space .^(x) is not an in-
variant concept and can be formulated only with respect
to a given reference system 2.

Such in its most important features is the geometry
or, using a better expression, the chronogeometry
(cf., t6"8!) which corresponds to the content of the special
theory of relativity.

Naturally, one could choose a different physical basis
for the arithmetization of events, in analogy with the fact
that one can choose different units. In such a case we
would arrive at a different geometry and at a different
method of describing physical events.

The fundamental advantage of the method which under-
lies the basis of A. Einstein's relativity theory consists
of the fact that specifically in applying this method of
arithmetization of events one brings out the invariance
of the fundamental laws of physics. A law expressed by
the relation

F (A, B, x, . . .) = 0 (3)

in the reference system 2, is expressed in the system
2 by the relation

F (A, B , x , . . . ) = 0, (3')

where the quantities A, B, ... are scalars, spinors, vec-
tors or tensors.

Therefore not every method of arithmetization of
events is acceptable. The method of arithmetization,
first of all, must be physically realizable (at least in an
ideal experiment) and, secondly, it must be maximally
universal; this means that it must be based on a set of
phenomena which is the most comprehensive3'.

With this we can conclude the description of the me-
thod of arithmetization of events adopted in classical
relativistic physics. Possible limitations of this method
are discussed below. The discussion of these limita-
tions, as will be seen from what follows, is useful for
the understanding of the more complex situation in the
world of elementary particles.

2. POSSIBLE LIMITATIONS OF THE ADOPTED
ARITHMETIZATION

In classical physics the concept of a point event
corresponds well to the concept of a material point—an
object of finite mass m0 ^ 0 and of arbitrarily small size
a —0.

In virtue of the assumed continuity of space one can
construct at each of its points the space of tangent vec-
tors of infinitely small displacements and the covariant
momentum space ,v>4(p). The metric of this space is also
indefinite and has the form

dP» = dP;-dp», (4)

where dp2 = dp2 + dp2, + dpi. This form is determined by
the metric adopted in the space j*24(x). Thus, the struc-
tures of the spaces .:V?4(x) and./?4(p) are not independent.

The motion of a material point (or of a system of

points) can be formulated in the most general manner in
terms of the geometry of Finsler[9]. The Finsler geom-
etry is a generalization of Riemann geometry in the
sense that an element of length ds in this geometry in
the general case depends not only on the point in space,
but also on the direction of the ray towards a neighbor-
ing point. In particular

ds= L(x, dx), (5)

where L is a homogeneous function of the first degree of
the displacements dx. In accordance with what was stated
above this function can depend in an arbitrary manner on
the ratios dx^/dx^ and in particular in such a manner
that ds would be a relativistic invariant.

If we now consider ds as the differential of a Lagran-
gian function, then the principle of least action turns out
to be identical to the condition that the material point
moves along a geodesic in Finsler space: 6 J"ds = 0.

No logical contradictions exist between Einstein's
method of arithmetization and the mechanics of material
points within the framework of the special theory of
relativity. Therefore material points and special theory
of relativity can be regarded as objects which physically
realize the point event J(x). Limitations come from
gravitation. We shall regard a material point as a ma-
terial particle of finite dimensions a. Let mobe its rest
mass. Then, if the gravitational radius of this particle ag

«/r = " ^ L (6)

(here k = 6.7 x 10 8 cm3/g sec2 is Newton's gravitational
constant), is greater than its size a, then the metric re-
lationships "inside" the particle are altered in an essen-
tial manner. The metric becomes nonstationary and the
phenomenon of collapse occurs'-10'11-1. In this case no
signal from the region r < ag can reach an external ob-
server, and, therefore, no information is possible con-
cerning the ordering of events inside the collapsing par-
ticle. From (6) it can be seen that it is useful to have as
objects marking the points of space-time, material par-
ticles with the least possible mass (m0 — 0). But as
a — a™ a critical density occurs

\3 1

This density for m0 — 0 can exceed the limits known to
us from the physics of elementary particles. It is of in-
terest to note that the critical density p does not exceed

the density of elementary particles p0 if m0 > M = 0.52
x 10~5 g, i.e., smaller than the mass of a gravitational
"maximon" (cf., Ch. 4).

In this connection a curious question arises: would it
not be possible for the method of arithmetization of
events adopted in the theory of relativity to lose its
validity before the condition p - p is reached. Indeed, if

at a certain density of matter p^ < pg not a single light
signal nor even a neutrino signal can be propagated in
the medium because of the exceptionally strong extinc-
tion, the ordering of events in such a medium with the
aid of light or neutrino waves becomes impossible.
Under such conditions a sound signal might turn out to
be a more appropriate method for ordering events. The
speed of such a signal v can even be greater than the
velocity of light in vacuo c, nevertheless no contradic-
tion with the principle of causality arises, since the
v-signal and not the c-signal is utilized for ordering
events (cf., details i ^
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Limitations of a different kind on the applicability of
the standard method of ordering events arise from
stochastic gravitational fields. Fields produced by a
turbulent motion of matter inevitably lead to the fact that
the metric tensor g ^ x ) becomes a stochastic quantity
g (x). The interval between events:

(8)

also acquires the same nature of a random variable. If
the fluctuations h (x) of the metric tensor iU(,(x) are
not great compared to the average values (£„ ^(x))
= gyi,(x), then it is useful to represent this tensor in
the form

g\LV {%) = i\LV (X) 4~ ^IV ( £ ) • (9)

In this case the ordering of events can be based on the
metric defined by the principal part of the metric tensor
(cf., C6'12]). But if the fluctuations are not small, then
the ordering of events inj//4(x) becomes essentially
stochastic. Spaces with a stochastic metric have been
discussed from an axiomatic point of view in referen-
ces'-13'14-1. But the axiomatic basis for these spaces was
restricted to a positive-definite metric. The extension
of the axiomatic basis to stochastic spaces of the
Minkowski type presents still another problem. The
problems relating to this and the paths towards their
solutions are described in the monographt6-' and in the
essay1-1511.

The basic question, which is raised more likely by a
physicist than by a mathematician, is related to indicat-
ing the method of arithmetization of events.

Do we not come here right up to the very boundary of
applicability of the concept of ordering events?

Problems associated with the metric in the case of
large fluctuations and in the case of extremely high
densities of matter will probably become of the highest
importance in analyzing the early stages of the "big
bang". We know that at present definite laws operate
and definite symmetries exist, but there is no basis for
asserting that these forms of existence of matter have
been prescribed for eternity. The possibility is not ex-
cluded that the present day vacuum and the world of
elementary particles which is known to us represent
only one of the possible paths of evolution of the Universe
selected as the result of competition of different possi-
bilities. However at the present stage of development of
our knowledge we do not have sufficient data in order to
discuss this aspect of the subject in greater detail.

3. A POINT EVENT IN THE MICROCOSMOS

We now turn to the world of elementary particles. At
the basis of modern quantum field theory with the aid of
which we describe the behavior of elementary particles
there stands the condition of locality

[9 (x), 9 (y)} = D (x - y), (10)

D (x - y) = 0 for (x - y)2 < 0; (10')

here <£>(x) is the operator for the field taken at the point
(x), q>{y) is^the operator for the same field taken at the
point (y), [A, B] denotes the commutator of the operators
A and f34). Condition (10) is an expression of the prin-
ciple of causality and denotes the independence of fields
if the points (x) and (y) are separated by a space-like

interval (x — yf < 0. In other words, an arbitrary varia-
tion of the field at the point (x) can not affect the field at
the point (y) since a signal propagated with the speed
v < c can not in this case reach the point (y) (and con-
versely).

Under the conditions of locality (10) the coordinates
of the points (x), (y) are assumed to be defined with
arbitrarily high accuracy. Such an assumption is equiva-
lent to assuming the existence of point events :J>(X)> ^(y)>
and we are going to investigate how noncontradictory is
this assumption within the framework of the same local
theory.

The natural candidates for the role of representatives
of point events are the elementary particles themselves—
the analogues of material points of classical physics.
But this analogy turns out to be not too far reaching
because of a number of peculiarities dictated by the laws
of quantum physics.

First of all, all the particles of rest mass m0 = 0
must be excluded from the analogy since they are non-
localizable in the space ./?4(x). They can be localized
only in the tangent space /^(p).

But particles of rest mass m0 / 0 also present diffi-
culties.

Bosons of rest mass m0 fi 0 can not be localized in the
space S?i(x) with an accuracy greater than within the
limits A(x) « nVm<£.

Indeed, the density p(t, x) of the meson field <p(t, x)
which obeys a conservation law is at t = 0 equal to

p (0, x) = <p* (0, x) (11)

(where ft = (m!
0 - V2)l/2 is the operator for the frequency,

while V is the gradient operator). It is positive-definite
only in the region |v| <C m0, i.e., in the nonrelativistic
region. In this case the quantity

p (0, x) (0, x) (12)

and can be interpreted as the probability density for
finding a boson at the point x at the instant t = 0. But for
|V| <C m0 the density p(0, x) is distributed in space in
the region |AX| /

For spinor particles obeying the Dirac equation there
exists a positive-definite probability density

p (0, x) = \|) (0, x) \p (0, x) > 0, (13)

where ip(Q, x) is the wave function for a single-particle
state. There exists a belief that for a single-particle
state AX2 > (h/mfi)2. In actual fact, for a single-parti-
cle state the usual indeterminacy relation holds Ax2

> HV4AP7 (cf.,'-6'16-1). However, it is necessary to take
into account the exchange of states between the particle
under consideration and the particles of the vacuum.
This exchange as a result of the Pauli principle leads
to the polarization of the vacuum in a region of the order
of R/moc (cf., E43^1). Because of this the position of the
initial particle also becomes indefinite within the same
region. One must keep in mind that the construction
also of a wave packet of size AX ^ h/m<p with the aid of
an external field, even when it is switched on adiabatic-
ally, will lead to the creation of pairs of particles, so
that it is impossible to realize a single-particle state
with such a narrow distribution.5' Therefore, the exact
localization of spinor particles also turns out to be
illusory.
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We see that in the microcosmos there are no objects
which could be a model of a point event J>(x), since
elementary particles can not be localized with greater
precision than6'

According to the basic idea of A. Einstein the curva-
ture of space-time R^j, and its metric R are determined
by the motion of matter. The basic equations of the
theory state:

In classical physics not only can one consider mater-
ial points as realizations of a point event, but they can
also be selected as a reference object (Bezugskorper),
which fixes the reference system. In the world of ele-
mentary particles this turns out to be impossible.

If for a reference object one takes an elementary
particle of rest mass m0 then in the Lorentz transforma
tion (2) u will be the four-dimensional velocity of the
particle u = p/moC (here p is the momentum of the parti-
cle) while the spatial components of the displacement
ai , a2, a3 will be its coordinates at time t = 0.

From the uncertainty relation

(15)

it follows that the parameters of the transformation (2)
become operators. Therefore the coordinates (x) meas-
ured with respect to such a reference object also be-
come operators. In particular, from (2) and (15) jit is
not difficult to evaluate the commutator of x and t

where v is the operator for the three-dimensional veloc-
ity of the particle.

Thus, elementary particles of finite rest mass can be
utilized neither as objects with the aid of which one can
denote points in the space .5?4(x), nor as reference ob-
jects.

On the other hand, experimental facts indicate that
predictions of a local field theory based on the condition
of microscopicity (10) are valid down to a scale of the
order of 10"15 cm (cf., [18]).

Therefore one should assume that there exist elemen-
tary particles of a mass significantly greater than the
nucleon mass mp for which

From the preceding it follows that a local theory im-
plicitly presupposes the existence of arbitrarily heavy
elementary particles (m0 — °°). Under this assumption
the contradiction between utilizing the concept of arbi-
trarily exact coordinates of a point in the space .^4(x)
and the absence of objects suitable to play the role of
point events would be removed.

The existence of an upper bound on the masses of
particles in the form of a certain limit m0 = M ("maxi-
mon") would denote a limitation in principle of the appli-
cability of a local theory to dimensions of the order Ax

The requirements of an ideal experiment on specify-
ing a point in space-time turn out to be directly opposite
in classical physics and in quantum physics. We shall
later discuss the possible reasons for the existence of
an upper limit on the mass of an elementary particle.

4. GRAVITATION IN THE MICROCOSMOS
Limitations on the mass of elementary particles may

arise, just as in macroscopic physics, from considera-
tions of gravitation.

R l Snk (17)

We recall that here R^ v is the curvature tensor, T^ v is

the energy-momentum tensor, k is the gravitational con-
stant.

In the detailed description of the motion of matter
quantum phenomena necessarily appear on the scene.

_ Consequently, the tensor T^ „ must be regarded as a
Atstochastic quantity represented by the operator T^ „.

the same time the quantities on the left hand side of
equation (17) also become operators. In other words, as
soon as the motion of matter is treated only with an ac-
curacy up to quantum phenomena, the gravitational field
becomes a quantum field7'.

An entirely different question is one as to what might
be the role of gravitational phenomena in the quantum
domain.

For example, the ratio of the gravitational field to
which zero-point oscillations of a solid body give rise to
the field produced by the fundamental mass of its atoms
is determined by the fraction hwo/moc2, where w0 is the
Debye frequency, while m0 is the mass of an atom (or a
molecule). In order of magnitude this fraction is equal
to 10"11 A"1 (A is the atomic weight of the atoms).

n vWe now decompose the energy-momentum tensor
into two parts:

Tllv(x) = fv.-,(x)-tllv(x), (18)

where the part T^ j,(x) is determined by the average mo-
tion of matter, while the part t (x) is determined by
the fluctuations of this motion. We represent the metric
tensor g,tl/(x) in the form indicated in (9). Then the
Einstein equation (17) assumes the form

ov,. 8nk - (19)

where the tensors A, B, C depend only on the average
tensor g and on its derivatives.

If the masses m which determine the average metric
are of dimensions of the order of a, then the curvature
of space R in order of magnitude is equal to

this following directly from the Einstein equation (17);
here a~ is the gravitational radius of the body (cf., (6)),

o

while I is a length characterizing the curvature of space.
If the characteristic mass of the fluctuation is given by
Am, and its characteristic dimension is b, then Eq. (19)
can be schematically written in the form

IV

where
ZkAm (22)

is the gravitational radius of the fluctuation, I' is a length
characterizing the gradient of the stochastic field h;
a, /3, y are numerical coefficients.

In accordance with the meaning of equation (14) V <C /.
Further, from the fact that the equation is linear it fol-
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lows^that the length determining the gradient of the ten-
sor h and the length determining the gradient of the
matter tensor must be comparable. From this it follows
that V « b. Thus, from (21) we obtain

h*,-f. (23)

This equation determines the order of^nagnitude of
the fluctuations of the gravitational field h in terms of
quantities characterizing the fluctuations of matter.

From this it is not difficult to determine the fluctua-
tions of the metric tensor due to the zero-point oscilla-
tions of some quantum field. For example, for a scalar
field <p(x) the zero-point oscillations of a mass having a
scale exceeding b amount to

Am (fo) = J^A
63 T *""• (24)

where fiwjj/2 is the zero-point energy of the k-th oscilla-
tion.

Substituting (24) into (23) we obtain
? _ Snk A,,, (b) _ A |

where

cm

(25)

(26)

is a certain length which involves both the gravitational
constant and the Planck constant.

It can be seen from (25) that this length determines
the magnitude of the fluctuations of the metric tensor
produced by the quantum fluctuations of the material
field. These fluctuations are small over the whole range
of frequencies for which

b > As. (27)

We now turn to the collapsed particle discussed in
chapter 2, and take into account quantum effects. A par-
ticle of mass m has an effective size of the order of
a = fi/mc; we assume that this particle has reached a
particle mass so that its gravitational radius a = a.
Then from the condition 87rkm/c2 « K/mc it follows that

At the same time the "classical" average metric will
lose its determining significance and the situation will
arise noted in ch. 2: the concept of an interval between
events, and at the same time the very idea of the possi-
bility of ordering events in :/?*(x) becomes more than
doubtful. We approach here the edge of an "abyss" into
which, possibly, it is yet too early to peer.

In what follows we shall consider other possibilities
for limiting a local theory. Among the competitors of
gravitation in this role we shall find the "weak" interac-
tion.

5. "A WEAK MAXIMON"

At the present time we distinguish three types of in-
teractions: the strong interaction, the electromagnetic
and the weak one. We compare their behavior at high
energies utilizing a criterion proposed in referencer

According to this criterion an interaction is said to be
strong if in the process of interaction the density of the
kinetic energy of the particles e^ is considerably smaller
than the absolute value of the density of the energy of
their interaction:

e« < I W |. (29)

We discuss from the point of view of this criterion first
the collision of a nucleon (N) and a pion (TT). The density
of the total energy in this case is equal to

-•rMctW, + \ (3 f('2 f »»V) + giJW'P'P. (30)

a = Ag, m = >/? = - g. (28)

Thus, the length A determines the maximum mass
which can be attained oy a particle obeying the laws of
quantum theory. In this case in accordance with (7) the
density of matter attains a limiting value. Such a parti-
cle was given by Markov the name of " ^ 1 9 2 0 3

From (27) and (28) follow quite different conclusions
concerning the role played by gravitation in the world of
elementary particles depending on what values of the
frequency fi0 = c/a limit in actual fact the spectrum of
vacuum fluctuations. According to modern theory it is
distributed almost uniformly in frequency, and the high
frequencies should give indefinitely great contributions
to gravitation. If later it should turn out that for one
reason or another the possible frequencies in the
microcosmos are limited by an "elementary" length
a J> A , then the gravitational effects will not be signifi-
cant.

In the opposite case they will play a fundamental role
in the microcosmos, but in their quantum aspect8'.

Predictions and hopes based on classical calculations
of gravitation will be swamped by quantum effects.

,[22]

/ / = he

where ip is the nucleon field, <p is the meson field, M is
the nucleon mass, m is the meson mass, 3 = yV-a/dx„,
g is the interaction constant. Let I be the length deter-
mining the value of the gradient in the c.m.s. (Z » fi/p
= A, p is the momentum of the particles). Then the den-
sity of the kinetic energy of the nucleon is of the order
of magnitude of

ew«^f-W> (31)

(since 8 ~ l/l), the density of the meson kinetic energy
is equal to

(32)8 . , •

(since D2 ~ I 2). From this it follows that

(33)

From condition (29), having in mind that ek = e N + eff,
we obtain

Further we have

he e,v + en ' * •

As a result of this we obtain

(34)

(35)

(36)

(37)

from which it follows that the strong interaction in ac-
cordance with our criterion is strong under all condi-
tions (since the inequality (37) is always satisfied).

We now apply the same criterion to the interaction of
the electromagnetic field with a charge spinor particle.
In this case we have
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W = e$Ay, (38)

where A = y^A^, A^ is the vector-potential, e is the
charge of the particles. Following the same procedure
we obtain

•£>*• (39)

This inequality is not satisfied. Consequently, in ac-
cordance with our criterion the electromagnetic interac-
tions do not belong to the number of strong interactions9'.

We now turn to the case of interest to us of a weak
interaction. The total energy density now has the form

H = hcif Scp + mc2cpq) + (40)

where ip is the nucleon field, <p is the lepton field, M and
m are the masses of these particles. Gp is the Fermi
constant,Oa is a spinor operator. It can easily be seen
that in this case the energy of the interaction W is of
the order of magnitude of

BT\,Z Eil

I^I^^-E-TS-' (41)
where eN is the density of the kinetic energy of the
nucleons, while €̂  is the density of the kinetic energy of
the leptons. From condition (29), having in mind that
fvK6 i« pc/z3 = Kc/Z4, we obtain

^ > l . (42)

where Ap = Vgp/Kc = 0.66 x 10 16 cm, I ra A = K/p. From
this it follows that a weak interaction becomes strong
when the energy of the particles is given by E ~ Kc/Ap
~ 300 GeV (cf., also[23'24:l).

We now consider the decay of a heavy hadron of mass
M determined by the weak interaction: M — m + Z + v,
here m is the nucleon mass, I is the lepton, "v is the
antineutrino. The decay constant r for a process of the
type indicated above with M » m i s equal to[25:i

^ . = _i_G j j l f W , (43)

where Gp = (gp/Kc) x lO'Vm2, N is the number of chan-
nels of different decays which need not be small. From
this formula it can be seen that with a hadron mass

Af >m p = AFc
(44)

the decay constant r becomes comparable with the
hadron mass M and the hadron ceases to exist as an
elementary particle since it can not be ascribed any
definite mass. It is useful to give the name of a weak
maximon to such a conventional particle of mass Mp.
This nomenclature is all the more justified since the
weak interaction at distances of the order R ^ Ap leads
to a mass defect D equal to the mass of the maximon.
This result follows from the calculation of pair (lepton)
forces which was first carried out in[47]. In accordance
with this calculation the potential for such an interaction
V is equal to V = -(27r)~3(Ap/R)5MpC2. Therefore for
R < Ap the mass defect D ~ V/c2 « Mp, so that MF
+ Mp = D ~ Mp. This limitation on the mass of the
particles, as can be seen from (44) and (26), occurs be-
fore the limitation dictated by gravitation, since
M At the same time the assumed limitation ofp g
the local theory in this case must occur considerably
earlier than would follow from an assumption of the ex-
istence of a gravitational maximon M .

6. "BLACKNESS" OF PARTICLES AND LOCALITY

An elementary particle represents a certain medium
described by the creation and annihilation of virtual
particles.

It is natural to pose the question of the conditions of
propagation of a metric signal in such a peculiar med-
ium. H one uses perturbation theory then the answer to
this question is given by the Green's function which,
being based on a local theory, guarantees the propaga-
tion of an interaction with the velocity of light.

However, the situation is changed if the interaction
becomes strong. In this case there arise, firstly, non-
linear phenomena and, secondly, a strong absorption as
a result of inelastic processes.

The first group of phenomena occurs in the domain of
strong fields and small field gradients. In referen-
ces'-26'27-' it was shown on the examples of a scalar field
and the electromagnetic field that the law for the propa-
gation of these fields is essentially altered including
even the disappearance of any possibility of propagation:
the characteristics of nonlinear equations become im-
aginary and the equation is converted from a hyperbolic
type into one of elliptic type. The situation arising in
this case has been called a " blob" of events. A more
modern terminology would be "light collapse" t6>22].

In the domain of high gradients inelastic processes
appear. Reference t29-1 called attention to a possible limi-
tation of the space-time description of the structure of
elementary particles arising from the fact that the cross
section of an inelastic process does not diminish with
increasing energy, but tends to a constant limit or even
increases slowly.

At the same time elastic scattering assumes the na-
ture of diffraction scattering by a "black" sphere of
dimension a. In particular, on the basis of the first arti-
cles on the scattering of pions by nucleons it was
notedt28'293 that the "effective" potential for such scat-
tering is purely imaginary and is well represented by
the formula10*

V (q) = IA (£) e-»!«s; (45)

here q is the transferred momentum, A(E) is a certain
function of the energy E determined from the principal
diffraction maximum.

In the case when the role of inelastic processes be-
comes predominant the information refers not so much
to the space-time structure, as to the creation of new
particles.

The resulting "blackness" of the particle prevents
one from using elastic scattering for studying the space -
time distribution of matter. The example quoted above
involving mesons is a very particular one, and therefore
does not have significance as a matter of principle.

For the problem studied in the present paper only
such a situation would be of interest in which "blackness"
would arise for the most universal metric signal. The
most universal ones are the weak interactions. If we ad-
mit the growth of a weak interaction up to values dictated
by the unitary limit, then the possible limitation of a
local theory by the conditions for the propagation of a
signal inside an elementary particle coincides with the
condition arising from the existence of a "weak maxi-
mon".
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7. THE MOMENTUM SPACE #4(p)

The classical theory operates simultaneously with the
space .#4(x) and the contravariant tangent space j*4(p). A
different situation exists in the domain of quantum phe-
nomena. In quantum motion the trajectory of a material
point is nondifferentiable (cf.,C31]), and the spaces y/4(x)
and ^t(p) are mutually complementary. They refer to
two different incompatible classes of measurement.

Both these spaces are theoretically equivalent, since
the transition from a description in one of them to a
description in the other is accomplished with the aid of
a unitary transformation of state vectors * and the
corresponding transformation of the operators L,
representing physical quantities.

However, these two descriptions are nonequivalent in
a physical experiment. The space ,v?4(x) occurs in an ex-
periment in its macroscopic aspect. The microscopic
ordering of events does not manifest itself directly in an
experiment since the causality observed in an experi-
ment is macroscopic.

Indeed, in order that an event A situated in a space-
time region S^(x) can be regarded as the cause of an
event B situated in the domain v'g(y) it is necessary to
be certain that when A occurred a quantum was emitted
of energy e = nu> > 0 and of momentum p = fik, which
later was absorbed in the domain yg(y) generating
thereby the event B.

In this description of a causal connection we utilize
both spaces ^/4(x) and .<v'4(p); the former in order to note
the mutual position of events A and B and the latter in
order to indicate the direction of the transmission of
energy and momentum1- . The simultaneous utilization
of the mutually complementary spaces .??4(x) and .%>4(p)
leads us into the domain of classical, i.e., macroscopic
physics.

Consequently, the space-time description is realized
with an accuracy far from sufficient to make limitations
of type (14) noticeable.

In contrast to the space-time description, the energy-
momentum description in the space .j'4(p) is realized
experimentally with an accuracy which appears to be
unlimited. In this description the microscopic causality
expressed by the condition of local commutativity (10)
manifests itself only indirectly in the behavior of the
amplitudes T^(p) predicted on the basis of a local theory
(here the letter i indicates the initial state, while f indi-
cates the final state of different physical processes). In
particular, microcausality finds its expression in the
analytic properties of the amplitude T^(p) in the com-
plex plane of the variable p u ) . In the space ./?4(p) the
state of free stable particles is described by points on
the hyperboloid

P2 = rf-Pa = < (46)
where m0 is the particle mass. Each such hyperboloid
is a Lobachevsky space R3(p) of curvature R = -l/j

In the space ,7?4(p) due to the indefiniteness of its me-
tric (4) there exists no invariant concept of a large or a
small momentum. Because of this there also do not ex-
ist any invariant limitations on the frequency w or on the
propagation vector |k|. Such a restriction would neces-
sarily pick out some one reference system. This state-
ment is a supplementary one to the assertion concerning
the absence of an invariant measure of nearness of
events in the space j34(x).

The amplitudes Tjf(p) describing physical processes
are matrix element of the scattering matrix S:

Slf = 6,, + iTlt. (47)

As is well known, this matrix determines the state of the
particles at the "instant" of time t̂  = +<*>, if it is given
at the "instant" of time tj = - » . From a geometrical
point of view the S-matrix transforms the state of the
particles given in a certain direct product of the
Logachevsky spaces R3(Pi) x Rs(pz) ... B.3(9$ into a new
state given, generally speaking, in another product of
such spaces Ra(pi) x R3(P2) ... R3(Pf).

Since the momenta of the particles are given, the
coordinates of the particles are indeterminate, and also
the "instants" of time t = ±°° are indeterminate. There-
fore the ordering of events in J?4(X), attained with the
aid of the S-matrix, is minimal.

Contrary to a widespread opinion a description of the
phenomena of the microcosmos with the aid of an
S-matrix is incomplete. By means of an S-matrix it is
impossible to describe the behavior of unstable particles
since the establishment of initial conditions in this case
can not refer to the instant of time t = — so12'.

A situation arising in the case of K°-mesons can
serve as an illustration of this assertion when it is
necessary to trace the evolution of the state:

(48)

where K° are the states of the antimeson, while Kg, K^
are the states of the short- and the long-lived mesons,
and t is the time. Old fashioned methods of description
appear here to be inevitable, since an ordering of events
in time is needed with an accuracy At <C Tg—the lifetime
of the shortlived K°-meson.

These remarks referring to the S-matrix do not re -
strict the possibilities of a description in the space .*?4(p)
which may be extended into the domain of complex values
of p. Moreover such an extension appears to be neces-
sary for the description of the behavior of unstable par-
ticles.

Therefore, in spite of the formal equivalence of the
description of phenomena in ,'?4(x) and ,5?4(p), a descrip-
tion in the latter space is less vulnerable to that criti-
cism which is addressed against a local theory operating
in the space-time ^/?4(x).

Apparently it is just in this connection that already in
the 1940's Snyder^34-1 published an attractive idea in ac-
cordance with which the metric of the momentum space
.y?4(p) can be more complicated than the Minkowski me-
tric (4); in particular, instead of (4) a Riemann metric
is proposed

dp* = gv.vdpy.dpv, (49)

where the metric tensor g^j, is a function of the momen-
tum p:

&.V = for (P, Pa), (50)

and of the parameter

(51)

here a is a certain "elementary length" while p a is a
momentum which determines the scale of the curvature
of the momentum space.

The relation of the space :/M(X) to the space is
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based on the assumption that the curved space is a space
of constant curvature13'. This restriction enables one
to treat the coordinates x0, xi, x2, x3 as displacement
operators in space

For a = 0 A^(p) = 0, so that (52) goes over into a repre-
sentation of the coordinate operators characteristic of a
local theory. But also in this variant the space .y?4(x)
ceases to exist as a four-dimensional set of points repre-
senting coordinates of point events; the point is that the
operators x^ do not commute among themselves:

[Jj,, 'xy\ = 11,^^=0. (53)

As a result of this the four-dimensional space J#4(X)
decomposes into one-dimensional rays directed from or
consisting of points ("quantization" of space-time).

The geometry of a space of constant curvature im-
poses a limitation either on the magnitude of a timelike
momentum, or on the magnitude of a spacelike momen-
tum. In the former case a limitation is imposed on the
mass of the particles:

pj—p"=m;<-^- = M\. (54)

This possibility is in agreement with the concept devel-
oped in the present paper in accordance with which the
real limit to the applicability of a local theory arises in
the case if for one reason or another there exists a
limiting value of the mass of the particles ("maximon").
The mass Mo = fi/aoc has the meaning of a "geometrical
maximon"14'.

The condition (54) should not apply to macroscopic
systems whose mass can be arbitrarily large. There-
fore a problem arises: how can we restrict the appli-
cability of these conditions to the world of elementary
particles? In this connection referencet393 is of interest
which develops a variant of Snyder' s theory in which an
extension of momentum space beyond the limits of the
mass shell (54) forms a de Sitter space. This space can
be regarded as a four-dimensional surface on a five-
dimensional hyperboloid:

PI-P\—P\—P\—P\= (55)

In this theory the total momentum P of a system of
particles remains in the flat space ^«(P), while the in-
ternal momenta of the system belong to a de Sitter space.
The theory is attractive not only because in it there is
contained from the outset an assumption of the existence
of a maximon, but also because it, most probably, can be
developed in an axiomatic form. Another variant of a
nonlocal theory also developed in axiomatic form is
based on a nonlocal field *(x) for which a generalization
can be given of the condition of local causality given in
the form of a T-product11"3 :

(x) Y (y)) = - y, a), (56)

where ac(x — y, a) is a nonlocal causal function. Its
properties can be seen most clearly from the Fourier-
representation

3ic (x, a) = \ K (p, a) e^'d'p, (57)

where
(58)

integral function which vanishes as p2 — -°° and whose
increase with |p| is of order p s y^*1-1.

At first glance this theory, which operates, just as a
local theory, with exact values of coordinates in the
space j?4(x), has no relation to any kind of a modifica-
tion of geometry. But in referencett2] it is shown that
the nonlocal field *(x) can be regarded as an average of
the field *(x) defined in the stochastic space T4(x) in
which the operators for the coordinates £„ are equal to

iv. = xti + ayll,

where y „ are the Dirac matrices and a is a certain
length. It is assumed that the average of iL is equal to
x^. The averaging is carried out over the distribution
dw(a) of the length a concentrated near the maximon
mass Mo, i.e., near a » ao = /

Both variants of the nonlocal theory considered above
are based on the assumption of a new metric of space.

As is well known, in the general theory of relativity
the metric is not prescribed externally, but is formed by
the self-consistent motion of matter.

One can assume that also in the case of the micro-
cosmos the metric of space-time can be dictated by the
field of the elementary particles.

The weak interaction which, in all probability, is
sufficiently universal could claim to exert an influence
on the metric in the domain of extremely small dimen-
sions.

This may be so or not, but it is clear that not only a
quantization of space in the spirit of the conditions (53)
or (59), but any dependence of the metric on the motion
of microparticles inescapably leads us into the domain
of stochastic spaces. A common feature of spaces of
this kind is the probabilistic ordering of point events.

The method by means of which a new probabilistic
aspect enters in such a case into the theory of the micro-
cosmos differs in principle from the one which is intro-
duced by the quantum-mechanical description of the
fields.

Statistics in this case extends not only to kinematics
and dynamics, but also to the ordering of point events in
space-time.

with V(m, a) = 1, while the other function K(p, a) is an

''We note that we are here speaking particularly about conventions
which have been emphasized already in the first papers of H. Poincare
['] and A. Einstein [2]. Cf., also [3] and particularly the brilliant book
of A. A. Fridman [4]. Lately this question was the subject of discussion
in the pages of Usp. Fiz. Nauk [ s] . These questions were also discussed
in the monograph [6].

2'ln principle the function of such a clock can be served by a "light"
clock consisting of a light pulse periodically reflected between two
closely situated mirrors. Then assumption b) is equivalent to the as-
sumption of the existence of an invariant standard of length-the dis-
tance between the mirrors. At the present time the wavelength of one
of the krypton lines has been accepted as such a standard. For details
concerning the choice of a clock cf., the thesis of R. Martske [7] (cf,
also[8]).

3*Thus, for example, a convention founded on the velocity of sound u
in place of the velocity of light c would introduce into a discussion of
all physical events the quite peculiar features of sound phenomena.
Similarly, the measurement of lengths by means of a spring dynamo-
meter would introduce into the discussion of all phenomena the very
specific properties of a spring (cf., in this connection I4 '6 ].) For the
same reason the choice of the coordinate system, which in principle is
arbitrary, in actual fact must correspond in the best possible manner
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to the nature of the problem being investigated so as not to obscure
the essence of the phenomena.

41 Or the anticommutator if the field is a spinor field. We have explicitly
written out the condition for the scalar field ^(x).

5)For example, in a compound nucleus formed when two nuclei with
charges Z,, Z2 approach each other closely, under the condition Zx +
Z2 > 137 an electron orbit appears of radius a0 * h/moc. However, e+,
e'pairs will be created adiabatically in this case, and thus the phenom-
enon is not a single-particle one (cf., in this connection [ " ]).

6) At ten t ion was paid to the possible significance in principle of such an
inaccuracy already in the early stages of the development of quan tum
field theory (cf., I 4 4 " 4 6 ] ) .

7) O the r opinions also exist concerning the quest ion of the possibility of
extending the Einstein equat ions in to the domain of q u a n t u m phenom-
ena. The approach described above is the most natural development
of Einstein 's idea.

" 'This direction is being developed already for m a n y years by Wheeler
and co-workers (cf, [ 2 1 J ) .

" T h i s conclusion is based on the interact ion (38) . Vector mesons are
not taken in to account in the estimate given above.

1 0 )A potential of this kind is at present being successfully used as a first
approximat ion in the theory of the "quas ipo ten t ia l " [ 3 0 ] .

' " T h e "dispersion re la t ions" which are impor tan t for the analysis of ex-
perimental data [3 2] are based on these properties.

l2*With the except ion of certain special cases when, for example , an un-
stable particle can be regarded as a resonance.

l 3 ' Snyder ' s idea has been developed further in the papers by Yu. A.
Gel'fand [ 3 S ] , V. G. Kadyshevskii [36] and I. E. Tamm [ 3 7 ] .

14)We do not investigate the second possibility.
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