
Weak interactions at short distances
B. L. loffe
Usp. Fiz. Nauk 110, 357-404 (July 1973)

The article reviews the present status of the theory of weak interactions of elementary particles at
high energies and large momentum transfers; in the spatial picture this corresponds to short
distances. The usual four-fermion V-A theory of weak interactions and the theory with intermediate
W boson are considered. Special attention is paid to virtual processes, particularly hadron-lepton and
nonlepton weak interactions (weak neutral currents, KL° and Ks" meson mass difference, hadronic
processes with strangeness and parity change). It is shown that a theoretical investigation of these
processes in the comparison of its results with experiment leads to serious contradictions in the
theory. Different ways out of the difficulties existing in the theory are discussed.

1. Introduction. The Essence of the Problem 459
2. The Form of the Weak Interaction 460
3. Real Processes at High Energies 460
4. Virtual Processes 467
5. Attempts at Constructing a New Theory of Weak Interactions . . . 478

1. INTRODUCTION. THE ESSENCE OF THE
PROBLEM

The weak interactions become stronger as the energy
increases. This circumstance, which was pointed out by
Heisenberg'-1-1 as early as 1936, is related to the fact
that the coupling constant G of the four-fermion theory
of weak interactions is dimensional: G = 10~5/m2 (here
m is the nucleon mass, K = c = 1). From this simple fact
and dimensional considerations it follows that in the four-
fermion theory the cross sections for two-particle proc-
esses, such as, for instance, elastic neutrino-electron
scattering, must behave (in first approximation of per-
turbation theory) at high energies like a ~ G2s, where
s = 4 E2, E is the energy of each of the particles in the
center-of-mass system. Experimentally the increase of
the cross sections of weak interactions as a function of
energy is observed in the scattering of neutrinos on
nucleons, where one finds approximately

(1.1)

here atot is the total interaction cross section of

muonic neutrinos with nucleons and E^ is the neutrino
energy in the laboratory system. (The relation (1.1) has
been tested up to E^ * 10 GeV.) It also follows from
dimensional considerations that at high energies the
cross sections of inelastic weak processes involving the
production of n lepton pairs, in first nonvanishing order
of perturbation theory will be of the order crn
~ G2s(Gs)2n. Thus (and this also was already known to
Heisenberg1-13), for energies s ~ 1/G the cross sections
of weak inelastic processes turn out to be of the same
order as the cross sections for elastic processes, i.e.,
the weak interaction becomes effectively strong, although
the cross sections of the weak interactions are still
small compared to the cross sections of the strong inter-
action processes. More precisely, one should say that
the weak interactions become strong at short distances
r 5S G1 2 « 6 x 10~17 cm, since large values of the cross
sections for inelastic processes appear at high energies
on account of the large momentum transfers q ~ s1 2,
corresponding to short distances r ~ 1/q.

Such a situation (albeit for somewhat different
reasons) arises also in the theory of weak interactions
involving an intermediate vector boson W.

The growth of the cross sections of inelastic proces-
ses with the energy is related to the so-called non-
renormalizability of the theory of weak interactions, i.e.,
to the fact that the higher orders of perturbation theory
in the weak coupling constant turn out to be divergent,
and the degree of divergence increases with the order of
the approximation; they are of order (GA2)n, where A2 is
an effective squared mass of the virtual partiples (A2

corresponds to the quantity s for real processes). It
would be natural to expect a picture where the weak in-
teraction amplitudes increase according to perturbation
theory up to values A2 ~ 1/G where the weak interaction
begins to become strong, and then the weak interaction
cuts itself off. Such a behavior of the amplitudes would
mean at the same time that the higher order corrections
with respect to the weak interactions to the amplitudes
of low-energy processes will, in general, be of the order
of unity.

We are thus led to the following problem. On the one
hand, the experimental data (t^N-scattering) and the
theory tell us that the amplitudes of weak processes
grow with energy in agreement with perturbation theory,
so that corrections of higher order in the weak interac-
tion to processes at low energies (compared to 1/G12)
must be essential. On the other hand, the weak interac-
tion does not conserve parity, strangeness and isospin,
whereas it is well known from experiments that in the
strong and electromagnetic interactions at low energies
(compared to G"1 2) parity and strangeness are conserved
to a high degree of accuracy—of the order 10~6—and iso-
spin is conserved to order a ~ 10~2. In addition, the
higher approximations in the weak interaction should
lead to weak hadron-lepton processes with the emission
of neutral leptonic systems, which to date have not been
observed experimentally, in spite of the high accuracy of
the experiments that were carried out.

Thus, the contribution of virtual weak interactions to
low energy processes turns out experimentally to be very
small, which points to an inconsistency (or maybe even

459 Sov. Phys.-Usp., Vol. 16, No. 4, January-February 1974 Copyright © 1974 American Institute of Physics 459



to a contradiction) in the present-day treatment of weak
interaction theory.

A way out from these contradictions might consist in
the fact that, for some reason unknown to us now, the
weak interaction is cut off at distances considerably lar-
ger than G1 2. It is quite likely that such a cut-off can
have a fundamental physical significance1'.

The main purpose of the present review article is to
analyze the higher order corrections of perturbation
theory (with respect to the weak interactions) to the am-
plitudes of low energy processes, with the purpose of
finding out where such contradictions have the sharpest
character, i.e., to find the "hot spots" of the theory;
this will make it possible to construct a new theory of
weak interactions which is free from the indicated diffi-
culties .

We shall first consider the behavior of the cross sec-
tions of real weak elastic and inelastic processes at high
energies. The exposition of these parts of the review
does not claim to be complete, its purpose is to give the
reader a physical picture. After that we discuss consis-
tently (and as completely as possible) the contribution of
virtual weak interaction at high energies to the ampli-
tudes of various low-energy processes. Finally, at the
end of the review, we indicate new theoretical schemes
for weak interaction theory, proposed recently with the
purpose of overcoming the difficulties which appear.

2. THE FORM OF THE WEAK INTERACTION

We start with the universal V - A theory of the weak
interactionst3'4-1 and consider two versions of the theory:
the four-fermion interaction, where the weak interaction
Hamiltonian is of the form2':

and the theory with intermediate W bosons, with the in-
teraction Hamiltonian

'fw = gft (*) Wk (x) + gil(x) Wt (x); (2.2)

here j^(x) is the weak current, which is the sum of the
leptonic and hardonic parts:

ii(*)=,T'(*) + /**(*), it = №)+,

the leptonic current having the form

(2.3)

(2.4)

and the hadronic current can be written in the form

(2.5)

where 9C i s the Cabbibo angle, v ] L and AJL a r e the vec-
tor and axial vector currents , i , k a r e SU(3) indices (we
use the notations of the review art icle by Beres te t sku "-5-1)
The normalization of the hadronic current is such that,
for example, in the quark model we have

Kh = n'Yx (1 + Y») Pl c°s 9c + A»Ti (1 + Ys) P1 sin 6C. (2.6)

The coupling constant g of the W-bos on is related to the

F e r m i coupling constant G by 4irg 2/mw = 2"1 2 G . We shall
not make any assumptions on the value of the mass m^y
of the W boson, and thus on the magnitude of the semi-
weak coupling constant g. We shall neglect the effect of
CP-violation.

3. THE REAL PROCESSES AT HIGH ENERGIES

3.1. Processes in first order of G. a) Elastic scat-
tering of leptons. We consider the process of elastic
scattering of electronic neutrinos or antineutrinos on
unpolarized electrons. In the first approximation in G
the differential cross sections of these processes, com-
puted in the four-fermion theory, according to the usual
Feynman rules have the form

d"vr' G%

^r=w s' (3.D

T ( l + cos9)', (3.2)

where s = 4E2, E and 9 are the energy and the scattering
angle in the c.m.s. (In (3.1) and (3.2) the electron mass
has been neglected compared to E, the same approxima-
tion will be made in the sequel.) The total cross sections
are respectively

c « = "v-. (3.3)

av«=-^- (3.4)

The main contribution to the total cross sections (3.3)
and (3.4) comes from the region of large momentum
transfers -q 2 = 4E2sin20/2 ~ s, which in the space-time
picture corresponds to a main contribution of small im-
pact parameters r ~ l/(-q2) ~ s" .

The differential and total cross sections for the proc-
ess v^ + e — M + i/e is described by the same equations
(3.1) and (3.3) as the cross sections for elastic vee scat-
tering, and the cross section for the T'p.e interaction
vanishes in the approximation under discussion. One
partial wave contributes to cross sections (3.1) and (3.2)
which rise linearly with s. But the contribution of a
single partial wave to the total cross section cannot ex-
ceed a magnitude of the order TTX2 = An/s, which restricts
the growth of the cross sections (3.1), (3.2) due to a
single partial wave. (This circumstance was first
pointed out by Blokhintsev ; earlier a similar con-
sideration was made by Landau'-48-' for the problem of
photon scattering by a spin-1 particle.)

It is worthwhile considering this question somewhat
more in detail. In the weak interaction Hamiltonian (2.1)
the lepton wave functions enter only by two components;
e, v and ^ always exhibiting only left-handed helicity,
whereas e+, v and n* are always right-handed. At high
energies, when the lepton masses are negligible, helicity
is conserved in weak interaction processes, so that in
vee scattering *.„ = Ae =-x/i, and in vee scattering

X-p = V2, A.e =-1/2- Owing to the pointlike structure of

the weak interaction Hamiltonian (2.1) (i.e., due to the
absence of coordinate derivatives in (2.1)) it follows that
the only partial wave contributing to vee scattering has
j = 0, and the only partial wave contributing to vee scat-
tering has j = 1.

As is well known'-7-', the amplitude of an arbitrary
two-particle reaction a + b — c + d with given values of
the helicities, f̂  \ ~\ \ , has the following partial-wave
expansion: c d» a D
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£ 2 P (3.5)

here A = Aa - Â ,
l ld

a ^ = Ac - A^, p is the c.m.s. momen-
tum of the colliding particles, di (9) are the functions

defined by Jacob and WickL J , fJ
AAcAd!AaAb

are the partial
c d a b

wave helicity amplitudes related to the scattering phase-
shifts 5}

AcAd;AaAb
by means of the following relations

l'Ud ' I

for the case of elastic scattering, and by

f. , . . . =—iexp(2i6j . . , . )

(3.6)

(3.7)

for the case of inelastic scattering. The differential
cross section of the process a + b — c + d has the fol-
lowing expression in terms of the amplitude f̂  A,rA Aw"

da < P > I J (3.8)

Application of Eqs. (3.5)—(3.7) to fee and vee scattering
in the first approximation with respect to G, and utilizing
the equalities A°oo = 1, dh(0) = %(l + cos 8) yieldsC8]

'""T4. (3.9)

/7«:=lF4e(1+COSe)' (3.10)

/' = 4-(.M/_l,. (3.H)

where fi and 6. are respectively the partial-wave ampli-
tude and phase shift for angular momentum j . On the
other hand, it follows from (3.1) and (3.2) that

g V? (1+cosO)

(3.12)

(3.13)

(The sign in (3.12) and (3.13) has been chosen in agree-
ment with the usual definition of the amplitude.) It fol-
lows from a comparison of (3.9), (3.10) with (3.12), (3.13)
that the partial wave amplitudes in the approximation
under discussion are

I1- = —

Gs

1/2 '

Cnl/2

(3.14)

(3.15)

The unitarity condition contained in (3.11) sets the fol-
lowing bounds on the quantities |fJ| and |Re fj|:

\f'\<i,

I Re /) | < V2,

(3.16)

(3.17)

i.e., it restricts the maximally possible values of
s = s m a x in (3.14), (3.15). If one uses the stronger re-
striction (3.17), one obtains for s m a x

v8e=scattering: smax=-

vee=scattering: 8maI=-

2£mM=620 GeV, (3.18)

2£mai=io8oGeV. (3,19)

In the sequel the values E m a x (or s m a x ) of the energy
where the growth of the weak interaction cross section
produced by a single partial wave ceases will be called
the unitarity limit. It should be stressed that the bounds

(3.18) and (3.19) characterize the unitarity limit only as
an order of magnitude. Indeed, for s m a x defined accord-
ing to (3.18) and (3.19), Re fj(smax) = %, but then, ac-
cording to (3.11), Im fj (sm a x) = 72, which contradicts
(3.14) and (3.15). Thus, the behavior of the partial-wave
amplitudes fj, e(s) and f\, e(s) must begin to differ from
(3.14), (3.15) on account of the unitarity condition already
for s considerably smaller than s m a x . (We do not dis-
cuss here the problem of artificial unitarization of the
partial-wave amplitudes, which is easily achieved by
setting for all values of s: So^6 =-GS/2TT2 I /2, 6"ee

= -GS/6TT21 2, since for s ~ s m a x the contribution of dia-
grams that do not reduce to simple unitarization becomes
important.

For energies of the order of the unitarity limit the
cross sections for vee and vee scattering, defined by
(3.3) and (3.4) (as well as the cross sections of other
weak processes), are still quite small, considerably
smaller than the cross sections that are characteristic
for strong interaction processes (e.g., ov e^smax^
= (G2A)smax = 2l/2G = 6 x 10"33 cm2). &

We now consider these same processes in a weak
interaction theory with intermediate vector bosons. The
corresponding Feynman diagrams are represented in
Figs. 1 and 2, and the differential cross sections have
the form

l—cosO)/2J J '

da-

for s the total cross sections become

(3.20)

(3.21)

(3.22)

(3.23)

and, in distinction from the four-fermion interaction, they
tend to a constant limit, or even decrease a s s - " ° .
Such a behavior of the cross sections is however atypical
for processes of first order in G in theories with inter-
mediate vector bosons: the cross sections of other
processes increase linearly with s.

One can give a very simple explanation to the growth
of the interactions of a vector boson with energy. A vec-
tor boson, having spin 1, is characterized by three inde-
pendent polarization unit vectors e1 (i = 1, 2, 3), which
in the rest system of the boson can be directed along the
three coordinate axes. Then, for a boson moving along
the z axis with momentum k, the Lorentz boost will leave
unchanged the transverse polarizations e^ fp = X ) v) an(j
the longitudinal polarization vector will take on the form
eL = {k/m^y, 0, 0, ko/m-^} where k0 is the boson energy,
or approximately for k %•

\v* "/

FIG. 1 FIG. 2
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E ^ ^ ' (3.24)

i.e., the four-vector e^ will increase with k. This cir-
cumstance leads to a growth with energy of the interac-
tion amplitudes of longitudinally polarized vector bosons
as long as the vertices where these bosons are emitted
do not fall off sufficiently fast with the increase in en-
ergy. The simplest case where a vector boson interac-
tion does not lead to an increase of the amplitude with
energy is the well-known interaction of the boson with a
conserved current j^(x), i.e., where 3^] (x) = 0, and
consequently, as k — °° the expression €^(k)j^(k) does
not contain terms which are linear in k. (Such a situation
occurs, e.g., in quantum electrodynamics, where the
longitudinal photons do not interact at all.) In the weak
interaction theory described by the Hamiltonian (2.2) the
current jf^x) is not conserved, and therefore, at least in
perturbation theory, the amplitudes for the interactions
of longitudinal W bosons increase with the energy.

What was said above allows one to understand easily
why the lepton scattering cross sections in a W-boson
theory do not increase with energy in the lowest order
of G. Indeed, an increase with energy could be caused by
longitudinally polarized virtual W bosons in the diagrams
of Figs. 1 and 2. However, neglecting the lepton mass,
their contribution to the amplitudes vanishes, since the
free leptonic current is conserved.

In order to illustrate the behavior of other cross sec-
tions in a W-boson theory, we consider the hypothetical
process W* + e" — W* + e ' at high energies s 3> m w . We
shall assume that both the initial and the final W bosons
are longitudinally polarized. The matrix element for the
process described by the diagram in Fig. 3 is of the form

4xg*u (j,1) -iv (1 + %) (P + ky1 Vv (1 + Y.) » (p). (3.25)

so that

I MnveJ(ft') ej(ft) |' = - ^ - (4ng«)» (pft) (pfc1), (3 26)

and the differential c ross section turns out to be

(3.27)

i.e.. increases linearly with s. One partial wave with
j = A contributes to the cross section (3.27). It is easy
to determine the unitarity limit for this process, namely

b) Neutrino-nucleon interactions. The experimental
data on the total cross sections of neutrino-nucleon in-
teractions are at present the only empirical proof of the
point structure of the weak interaction at short distances.
Figure 4 shows the total cross section of the process
"V + N — ix' + hadrons as a function of energy, from the
CERN neutrino experiment . As can be seen from the
figure, up to neutrino laboratory energies E ^ » 10 GeV
(i.e., s l / 2 * (2mElab) K 4.5 GeV) <JV N increases
linearly with the energy: av N = (0.8 ± 0.2) x 10~38 E G e V

cm2. Here the "elastic" cross section (i.e., the cross

"/

FIG. 3

FIG. 4. The total cross section for
neutrino-nucleon scattering as a
function of the neutrino energy Ev

in the laboratory system, from
CERN bubble chamber data. The
freon-chamber data have been
multiplied by 1.35 to normalize
them with those of the propane
chamber; all errors are statistical.

12 r

IO -

"i e

2 -

x-Freon-1963/64

o- ftopane-1967

: _

/
/

1/

- -#
x/

/
/

/
/

/
/

8 IE if,,GeV .

section of the process v^ + n —- ix~ + p) remains approxi-
mately constant in the energy interval 1—3 GeV, and is
considerably lower than the total cross section: aei
(0.5-0.7) x 10~38 cm21110'10. For the case of i^N scat-
tering the total cross section also increases linearly
with the energy and considerably exceeds the elastic
cross section'-11-'.

Since the linear growth with respect to s of the cross
section of i^N scattering is due to the region of large
momentum transfers to the hadrons, |qz| ~ s, and in the
space-time picture large |qa| correspond to small trans-
verse distances (with respect to the vector q) p ^ lq8f ,
this experimental result means that the weak interaction

1 2 ^ 14
is a point interaction up to distances r ~ s

ak i
"1 2 10~ cm.

One should stress the distinction between the deep-
inelastic process of i^N interaction, in which hadron
states with large mass W 3> m are produced, from the
elastic scattering processes (or the production of low-
lying resonances). In the latter the presence of the form
factors has the effect that values Iq2| £ m2 play a funda-
mental role, the cross sections do not increase with en-
ergy and the process is characterized by finite trans-
verse distances p ~ 1/m and longitudinal distances
which increase with energy1-12'13-1.

In order to give more precise formulations, we first
discuss the_kinematics^of the problem. We consider the
process v(v) + N — l( I) + hadrons under the conditions
when one measures the energies E of the incident neu-
trino (antineutrino), E' of the scattered lepton (antilepton)
and the scattering angle 0 of the lepton (antilepton) (all
quantities are measured in the laboratory system), and
a summation is carried out over the hadronic states.
The matrix element of the process is described by the
diagram of Fig. 5. We denote by p the 4-momentum of
the incident nucleon; q = py - p/ (or q = pv - pj) is the
4-momentum transfer from the leptons to hadrons. Then

(3.28)

(3.29)

na-5-,

v = pq = m (E — E').

In the four-fermion theory the-differential cross sec-
tion for the scattering of a neutrino (antineutrino) by an
unpolarized nucleon is of the form >ls]

~ss" E
X [cos* - j - u>f (v, g2) + 2 sin* - j - uif (v, ga) q=

(3.30)

where the upper sign corresponds to neutrino scattering,
the lower one corresponds to antineutrino scattering, and
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Hadrons

FIG. 5
FIG. 6

w[(t\ q2) (i = 1, 2, 3) are functions of the two Lorentz
invariants v and q2 which determine the kinematics of
the problem. (Terms proportional to the lepton mass
have been neglected.)

Owing to isospin invariance (and neglecting strange-
ness-changing terms which are proportional to sin2 OQ)

w*™ = w\n, (331)

One can use the kinematic inequality restricting the
mass W of the resulting hadron state

(3.32)

becomesthe expression for the total cross section
(Q2=-q2)

(3.33)

Introducing the notation

(3.34)

and neglecting terms of higher order of smallness in
m/E one can rewrite (3.33) in the form

to

\ dx\ — (1 —y) wf (Emy: x)

+ xywf (Emy, x) =F - ^ ( l — -§-) xyw$ (Emy, a) J.

(3.35)

The term with wl(Emy, x) must be smaller than the sum
of the two other terms in (3.35), since according to (3.31)
and (3.35) it has the same magnitude, but different signs
for vp and vr\ scattering. Therefore a linear growth of

o-"(^)(E) appears only in the case when for large v one of
the following asymptotic relations holds3':

Jlim

lim vie* (v, x) = mFf (x).

(3.36)

(3.37)

It is natural to assume that both asymptotic equalities
are realized simultaneously, as well as the relation

lim vwf (v, x) = mF*(x), (3.38)

which guarantees a contribution of W3 to the total cross
section of the same order as that of wi and w2. (Although
the sequel remains valid also in the case when Fj and
(or) one of the functions Fi, Fi vanishes.) The relations
(3.36)—(3.38) have been called scaling relations and were
first introduced by Bjorken . They follow from the as-
sumption that for large v and |q2l no external dimensional
parameter enters into the theory, so that the dependence

of physical quantities4' on v and |q2l is of the form
I/V2F(X), where d is the dimension of the quantity under
discussion (in mass units) and F(x) is a function of the
dimensionless parameter x = lq2l/2y. (Hence the name
"scale invariance" or scaling.) If for large v the rela-
tions (3.36)-(3.38) are valid, then[16]

~ dx Ff (x) + ~xFf (x)\. (3.39)

Thus, in order to ensure a linear growth of <jv\v)
it is necessary that finite values of x, of the order of
unity, play an essential role in the integral (3.35); for
these values Iq2| must be of the order of u and conse-
quently, Iq2| ~ mE ~ s.

The relations (3.6)—(3.38) have also been directly
verified experimentally by measuring dav/dq2dv for
large v and |q2| and agreement was found between the
predictions of scaling theory and experiment'-2'17-'
(although so far not to very good accuracy).

Finally, another argument in favor of the scaling re-
lations (3.36)-(3.38) is the fact that similar scaling re-
lations have been verified to a high degree of accuracy
in processes of deep-inelastic electroproduction on
nucleons^18"203.

In order to relate the behavior of the functions
Wj(y, q2) to a space-time picture it is convenient to con-
sider in place of the total cross section the absorptive
part of the matrix element M1 for forward scattering of
an intermediate boson of momentum q on an unpolarized
nucleon of momentum p, this absorptive part being pro-
portional to the total cross section5'.

The corresponding Feynman diagram is represented
in Fig.^6. The absorptive part of the amplitude,
Abs M" ^ , can be represented in the form

-pn), (3.40)

where the summation is over the hadronic states with
four-momentum pn . It can also be expresse.d in terms
of the current commutator:

(3.41)

Abs M" ̂  can be expressed in terms of the invariant

functions Wj(̂ , q2) in the following manner:

(3.42)

(In (3.42) we have omitted terms containing q^ or q^
which after multiplication by the leptonic part of the ma-
trix element will be proportional to the lepton mass.)

Let us consider the expression (3.41). For Iq2

)2/4m2 » q2
q m2,

(3.32) implies the inequality q2, ^ (q2)2/4m2 » q2, and the
exponent of the exponential function can be represented
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FIG. 7

in the form (the z axis is along the vector q)

t-z) + ̂ -z^^(t-z) + ̂ -z. (3.43)

Substituting (3.43) into (3.41) it is easy to see that for
large v and q2, small values of t - z < m/V and values of
the transverse distance z « t ^ î /lq2lm play a role in
(3.41). Since the current commutator vanishes outside
the light cone according to the causality condition x2

= (t - z)(t + z) - p2 > 0, these estimates yield a restric-
tion C1S] on the magnitude of transverse distances
p2 < l/lq2l, as well as on the magnitude of the interval
x2 / 2

We thus reach the conclusion that small transverse
distances p % l /s l / 2 are indeed responsible for the
linear growth with s of the total cross sections for
neutrino-nucleon interactions, and the scattering proc-
ess occurs in a region close to the light cone x2 "£ 1/s.

Up to now in the present section we have considered
the four-fermion theory of weak interactions. If inter-
mediate vector bosons exist then in the expression of the
differential cross section, (3.30), there appears an addi-
tional factor [m^Am 2^-q 2 ) ] 2 , and under the integral
sign in (3.33) there appears the factor
[1 + (2xyEm)/m^r]"2. As a result of this the formula for
the total cross section for s 3* m2^ takes the form

>(«)=- dx- ln(l*rK<0M3.44)

i.e., the linear growth of the cross section as a function
of s is replaced by a logarithmic one (as long as Fz(0)

In addition to the problems discussed above, the in-
vestigation of high energy neutrino-nucleon interaction
leads to other interesting questions, which we shall not
discuss here, referring the interested reader to the ex-
cellent review of Pais (1971).

3.2. Processes of order higher than one in G.
a) Inelastic lepton scattering. In this section we shall
consider inelastic lepton scattering processes which ap-
pear in second order in G in the four-fermion theory and
in the order g3 in the theory involving a W boson; we
shall deal only with processes for which the diagrams
do not require an integration over the momenta of the
virtual particles. The purpose of this discussion is to
illustrate on concrete examples the general assertions
made in Sec. 3.1 on the behavior of the cross sections of
inelastic processes, as well as to obtain concrete esti-
mates on the cross sections of inelastic processes.

As a first example we consider the process

e-e- -» e-Ji-v^. (3.45)

The matrix element of this process is described by the
diagram of Fig. 7, and by the diagram obtained from it

by antisymmetrization in the incident electrons. For
large s the total cross section is

1 + 10 —it2

" (in)6 45 2
(3.46)

The relation (3.46) literally confirms (if one does not
pay attention to numerical factors) the assertions made
in Sec. (3.1) to the effect that near the unitarity limit the
cross sections of inelastic weak processes are of the
same order of magnitude as the elastic ones. In (3.46)
there is however a small numerical coefficient ~ l(Te.
Owing to this small multiplier, at the unitarity limit the
total cross section of the process (3.45) (estimated in
accordance with (3.18), (3.19)) turns out to be 3—4 orders
of magnitude smaller than the cross section for elastic
vee scattering.

For all other inelastic processes of the same order

analogous small numerical coefficients appear'-8-1.

Thus, for energies of the order of the unitarity limit
inelastic leptonic processes still contribute a relatively
small contribution to the total cross section of lepton-
lepton scattering, so that the cross sections of elastic
and inelastic processes can become comparable only at
energies several times larger than s m a x (of course, if
one can attribute significance to numerical estimates in
the region of the unitarity limit, particularly to estimates
based on perturbation theory).

As an example of inelastic processes which occur in
a theory with intermediate W bosons we consider the re-
action

v,.--(,-.-*•. (3.47)

The Feynman diagram for this process is represented
in Fig. 8, and its matrix element has the form

Ma = (4ng2)3'2 u (p,,) Yx (1 + Ys) •* (Pv)

x u (pt) T(F (l + Y5) (Pe + fcP y>. (l + Ys)» (P«) ^rr^r . (3.48)

where Py, Pp., k, p e , pe are respectively the momenta of
the neutrino, the muon, the W-boson, the initial and
final electrons; q = p^ - p^ . For s 3> m ^ the differen-
tial cross section for the production of a longitudinally
polarized W boson on an unpolarized electron is of the
form

dp,, dp', dk 84 (pe + Pv—Pn—pi—k),
W M> e W w — '"yV' '

and the total cross section equals

(3.49)

A comparison of (3.49) and (3.22) shows that near the
unitarity limit the cross sections for elastic and inelastic
processes are of the same order of magnitude.

b) A lower bound on the cross section for elastic e*e~
scattering. Use of the unitarity condition allows one to
derive a lower bound on the cross section for elastic e+e~
scattering produced by the weak interaction . In per-

FIG. 8
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FIG. 9 FIG. 10

turbation theory the amplitude of this process is propor-
tional to G2 and described by the diagrams of Figs. 9 and
10 (we consider the four-fermion theory of weak inter-
actions). A lower bound for the magnitude of the cross
section of e+e" scattering is obtained if one takes into
account only the imaginary part of the scattering ampli-
tude (due to the diagram in Fig. 9), which by virtue of
the unitarity condition can be expressed in terms of the
transition amplitudes into real physical states.

In the case of elastic e*e~ scattering, the particle
helicities in the initial and final states are equal to Ag

= -y 2 and Agt = y2) respectively, and in the approxima-
tion under consideration the total angular momentum is
j = 1. Therefore, according to (3.5), the general expres-
sion for the amplitude has the form

/,«-(£•. d)^ A(E) d\,[(0).- A (E)-± (i +cos Q), ( 3 - 5 0 )

where A(E) is a function only of E, the particle energy in
the c.m.s. The imaginary part of fe+e-(E, 8) can be de-
termined considering the scattering amplitude in the
forward direction and utilizing the optical theorem:

Im/e+,_ (£, 0) - I in A (E)-- : Ea)V,,- (E)- (3.51)

where <jtot is the total cross section of e e annihilation
e+e"

due to the weak interaction. In the G approximation
Ttot

Ve"
equals

at0. - is the cross section of the process e+e" — veve and

2G-s
(3.52)

(We recall that in this reasoning e* and e" are consid-
ered polarized, with Ae- = -1/2, Ag + = l/2; therefore (3.52)
differs by a factor of 2 from (3.4).) Substituting (3.52)
into (3.51) and (3.49) we obtain

Im/„<,-(/?, G) =
Gh (3.53)

so that the contribution of the imaginary part of the am-
plitude to the cross section for the scattering of unpolar-
ized e*e" equals'-9-'

da'"'{E, o) ^ w _ _ ( 1 + c o s e f . (3g54)
d\2 is-^n4

As was shown in (cf. also ), at an energy s1 2

« 500 GeV and scattering angles 8 «" 90° the differential
cross section da*m/dn (3.54) exceeds the cross section
for elastic e+e" scattering produced by the electromag-
netic interaction. Integrating (3.54) over the angles
yields a lower bound on the total cross section for weak
e+e~ scattering

weak interaction becomes effectively strong. In making
this assertion one has in fact two circumstances in mind:
1) that at least in some elastic (or two-particle) proces-
ses the scattering phase shift in one of the partial wave
becomes of the order of unity; 2) that the cross sections
of inelastic (many-particle) weak processes become of
the same order as those for elastic processes. However,
in the region of the unitarity limit, the cross sections of
weak processes are still quite small: a ~ 2n/G ~ 10~32

cm2, since the effective range of the interaction r ~ G1 2

is small. There arises the question: can the weak cross
sections become of the same order as the cross sections
of strong interactions <Tstr <1 l/mz (i.e., can the effective
range become of the order 1/m) and if yes, for what en-
ergies? The answer to this question was given by
Pomeranchuk'-23] (cf. also the discussion of this problem
in ). We reproduce below the basic ideas and conclu-
sions of ~23J.

We consider the scattering of leptons in the four-
fermion theory. The idea of the analysis is to use the
analyticity properties of scattering amplitudes, expressed
as dispersion relations which relate the behavior of the
amplitudes at large and small energies. The main re-
sults are the following. The use of dispersion relations
for the forward scattering amplitude leads the result that
the value s = Si, for which the amplitude of lepton-lepton
scattering attains the value <x(si) = Ui > 2TT/G, satisfies
the inequality

*.>-§-• (3.55)

Use of dispersion relations for the derivative with
respect to the momentum transfer t of the scattering
amplitude f(s, t) at t = 0 yields the stronger inequality

S ' > T 4 T - 0.56)

In order to prove the inequalities (3.55) and (3.56) we
consider the processes of v_e and uQe scattering by a

l
polarized electron (A

s of v_e
= -l/2) and introduce the invariant

crossing-symmetric amplitude

here t is the square of the momentum transfer,
t = V2s(l - cos d), and the amplitudes F,, e and F-p e dif-
fer from the amplitudes iv e and tp e introduced in Sec.
3.1a) by the factor 87rsx 2. According to the optical
theorem

lmF(s, 0) = sa(s), <j(s) = — [a(i)-fo- WJ. fq C:Q\

For F(s, t) we write the once-subtracted dispersion
relation in s:

J <3-5

and set t = 0. For t = 0 the dispersion integral converges
if

ds' < ix,.

Assume that for Si 3> 1/G, cr(si) — ffi and for s > Si,
a(s) > <ji. For s <S Si, (3.59) implies the inequality

c) The behavior of the total cross sections of weak
interactions of leptons at energies beyond the unitarity
limit. On the basis of all the preceding one can now
make more precise the assertion in the introduction
(Sec. 1) that for energies beyond the unitarity limit the

F(s, 0)—F{0, (3.60)

We consider in (3.60) values s ~ 1/G. According to
(3.12) and (3.13) the left-hand side of (3.60) will then be
of the order of unity. In the right-hand side of (3.60) the
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integral over the region s0 < s ' %, s will also be of the
order of unity (ff(s') ~ G) and the positive integral over
the region s ' > s may be neglected, which strengthens
the inequality (3.60). Consequently

i.e., the inequality (3.55) is valid. It is easy to see that
the analyticity conditions and the low-energy behavior of
the forward scattering amplitude cannot exclude the equal
sign in (3.55). Indeed, consider the amplitude

?(s, 0)= jj^j-szln(e": P (J) (3.61)

where P(s) is a polynomial. This amplitude satisfies the
analyticity requirements contained in (3.59), and for an
appropriate choice of P(s) it has a low-energy behavior
compatible with perturbation theory (in the G2-approxi-
mation, according to (3.3), (3.4), a(s) = 4G2S/3TT).
Together with this, (3.61) implies u(s) ~ G2s, which
corresponds to the equal sign in (3.55).

The use of dispersion relations for the function
(9F(s, t ) /9 t ) t = 0 allows one to strengthen the inequality.
Here the idea is that for s £ 1/G the quantity 9F(s, t)/^t
is small,

(3.62)

(cf. (3.12) and (3.13), and an important role is played by
|teff I ~ s ~ 1/G, whereas for s « Si, where CT ~ aS(.r
values |teffl ~ m2 must play a dominant role. Such a
radical change of the t-dependence of F(s, t) requires an
extension of the s interval where this change takes place,
thus strengthening the inequality.

One can write the order-of-magnitude relation
I'etf I _F(sL0) |2 J*eff I 2

16.1

K-

(3.63)

(3.64)

We differentiate (3.59) with respect to t and set t = 0.
This yields

(s. t) 0, t)

) -Jr I m '<• ' • ' I m

(3.65)
Assume that in (3.65) s ~ 1/G. Then the left-hand side of
(3.65), the subtraction term and the contribution to the
integrals from the region s ' < s are all of the order G"1.
For s ' > s the integrand in (3.65) is positive, since
(9/9t)(ImF(s, t)) t = Q > 0. Omitting the positive second
integral in (3.65) and retaining in the first integral only
the integration region s' 5 Si > G"1, we obtain the in-
equality

G > s 2 f i i . | ( 1F(S-, t)) \\ (3.66)
1 s 3 V at I ( = 0 v '

According to (3.63)

w («', t)
Mcff I

2 (»') (3.67)

Assuming that cr(s') = const for s' > Si, substituting
(3.67) into (3.66), and setting s ~ 1/G, we arrive at an
inequality equivalent to (3.56) (up to a factor %, which is
obtained from a niore rigorous derivation of the relation
(3.67)).

As was mentioned above, the growth of the cross sec-
tion of the weak interaction beyond the unitarity limit is
related to a growth of the effective radius of the interac-
tion.

Use of this connection allows one to obtain restric-
tions on the asymptotic behavior of the lepton-lepton
scattering cross sections a s s - * ooC2'] ( ^ also'-26-').
Since in the case of weak lepton-lepton scattering the
exchange of massless particles is possible, the scatter-
ing amplitude has a singularity at t = 0, and the Froissart
theorem (cf., e.g.,^27-1), which establishes bounds on
cross sections for s — °° (a < a0ln2s), is not applicable.
For the sake of concreteness we consider i>ee and v&e
scattering and assume that cr(s), (3.58), behaves as
s — °° like a = co(s/s ) a , 0 < a < 1. A power-law be-
havior of CT(S) leads to a growth of the effective range,
i.e., to a shrinking of the diffraction cone. It is there-
fore reasonable to assume'-25-' that for s —> «° and t < 0

Im F (s, t) ->- sa, (r) e a — const,

and it follows from (3.67) that

(3.68)

The requirement of analyticity of F(s, t) in s for fixed
t < 0 and the relation (3.68) allows one to determine the
nature of the singularity of F(s, t) for t = 0. We write
down a dispersion relation with one subtraction for
aF(s, t)/at at small t:

(3.69)

(It is easy to see that the second integral in (3.65) is
negligible.) Substituting (3.68) into (3.69) and considering
s small we obtain

dF(s, t) flF(0, i) _ 2s2

dt at ~ n (3.70)

Assume (3 > a 2 %. Then in the integral (3.70) an im-
portant role is played by values s/s~ ~ |t|~0 and for small
t the right-hand side of (3.70) will be of the order
| t |d ~ °)/0 - !, and consequently F(s, t) will have a
singularity of the form t^1 ~ «VP (or t In t, if (1 - a)/|3 is
an integer) as t —• 0. One can show that this result re-
mains in force also for 0 < a < % or a > 1. In addition,
the derivation shows that the result can be reformulated
for other types of dependence of Im F(s, t), which differ
from (3.68) (but still correspond to a cross section grow-
ing like sQf and a shrinking cone).

Making various assumptions on the character of the
singularity of F(s, t) at t = 0, one can derive various re-
strictions on the behavior of the cross section for

1) if F(s, t) is finite for t — 0, (a < 1), then a(s) < s;

2) if 9F(s, t)/8t is finite for t — 0, then a(s) < s l / z;

3) if F(s, t) has a singularity of the form t2 lnt as
t — 0 (a singularity of this type appears in the simplest
perturbation theory diagrams), then a(s) < s1 3.

Here it is important to make one crucial remark. As
will be shown in Chap. 4, a consideration of virtual
processes implies that the weak hadron-lepton interac-
tion cannot conserve its structure up to the unitarity
limit, but must somehow change it. Therefore the re -
sults obtained in the present section cannot be applied to
hadron-lepton interactions, and their applicability to
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lepton-lepton interactions will be justified only if under
that change the four-fermion form of the weak leptonic
interactions remains the same.

4. VIRTUAL PROCESSES

In this chapter of our review we shall investigate the
influence of weak virtual interactions which take place
at high energies (or, more precisely, at small distances)
on processes occurring at low energies.

Qualitatively the situation that arises can be ex-
plained on the example of the already discussed e+e"
scattering in the G2 approximation (cf. Figs. 9 and 10).
The diagrams of Figs. 9 and 10 diverge, when integrated
over the momenta of the virtual neutrinos. A simple
count of powers shows that the degree of divergence ac-
cording to the Feynman rules is quadratic. Cutting off
the momenta of the virtual particles at a value A, the
real part of the matrix element for e*e" scattering will
be proportional to

) u (p+)-u(pl) Vn (1 + Ye) »(P-). (4.1)

where p., pi, p+) p+ are the initial and final momenta of
the electrons and positrons (the spinor structure of (4.1)
follows uniquely from the helicities of e+ and e~). The
same result can also be obtained otherwise, by means of
the dispersion-relations method. We denote by *(s, t)
the invariant amplitude in front of the spinor structure
of (4.1). (The amplitude $(s, t) is proportional to
fe+e-/E.) As follows from (3.52), Im *(s, 0) ~ G2s. If one
assumes that for s > A2, Im *(s, 0) decreases sufficiently
rapidly, the contribution of the right-hand cut to *(s, 0)
can be written by means of the unsubtracted dispersion
relation:

O (s, 0) =- — 1 '—- ds'. (A O\

Substituting into (4.2) Im *(s ' , 0) ~ G2s' and integrating
with respect to A2, we obtain *(s, 0) ~ G2A2, i.e., the re-
sult (4.1). Similar reasoning can be applied to the dia-
gram of Fig. 10, considering the imaginary part of $(s, t)
in the t-channel.

For a value of A of the order of the unitarity limit
(A2 ~ 27T/G) the effective coupling constant of the e'e"
interaction in (4.1) turns out of the order of G, i.e., there
appears an interaction of neutral weak currents which
were absent in first order of G, having a coupling con-
stant of the same order of magnitude as the coupling of
charged currents. It should be stressed that the
e+e~- scattering amplitude for A2 ~ 2ir/G and s ~ 27r/G
still remains small, fe+e- ~ G l /2.

The same cannot be said, however, about the correc-
tions to the self-energy. Consider the simplest diagram
of this type in the four-fermion theory, namely the cor-
rection to the mass operator M(p) of the electron (Fig.
11). A count of the degree of divergence shows that the
matrix element corresponding to this diagram must
diverge like the fourth power of the momentum (the inte-
gration over the angles diminishes the degree of diver-
gence of the diagram by one unit), so that to order G2

M (p)~~ nt p(l -HYS) (4.3)

(terms proportional to the electron mass vanish in (4.3)
owing to the two-component character of the weak inter-
action). It can be seen from (4.3) that for A2 ~ 2TT/G the
corrections to the mass operator are of the order of 1 8 \

FIG. 11

As is well known, the coefficient of p in the mass
operator determines the Green's function renormaliza-
tion constant Z2 of the electron (or the ^-function re-
normalization ip = Z2 V R ) , constant which in the case of
nonconservation of parity is in fact a matrix Z2 = A + B y
(A and B are numbers). Since the renormalization con-
stant Z 2 enters in the definition of the physical charge of
various interactions, interactions which conserve parity
will no longer conserve it when this renormalization
constant is taken into account (the violation being of the
order of 1 for A2 ~ 2ts/G). For leptons the only parity-
conserving interaction is the electromagnetic interac-
tion7', for which it can be shown'-30"1 that owing to gauge
invariance the contribution of the parity-nonconserving
terms in Z2 is completely compensated by the renorm-
alization of the vertex part, so that no parity-noncon-
serving terms ~ G2A4 (or in general ~ (GA2)n + 1 ) survive.

In strong interactions the effects of parity-noncon-
servation which stem from the factor Z2 (and also from
the corrections to the vertex parts and amplitudes of
various processes) could be essential if the integrals
over the momenta of the virtual particles would not be
cut off by the strong interactions. In this case, in addi-
tion to the nonconservation of parity, there would appear
large strangeness nonconservation effects, of the order
of unity for A2 ~ 2VG (e.g., the amplitude of the transi-
tion A —• N + ir would be of order 1 due to the diagram of
the transition A —- n analogous to Fig. 11, with subse-
quent emission of a pion). However, until the problem
whether the strong interactions do cut off the integrals
with respect to the momenta of the virtual particles is
solved, one cannot draw any conclusions. Section 4.2
will be devoted to a discussion of this important ques-
tion. We now go over to a concrete investigation of var-
ious observable effects which appear on account of vir-
tual weak interactions.

In order to be able to compare the results obtained in
investigating various processes the following ap-
proach t31'32'29] -will be used: we will consider a theory
with cutoff, i.e., the integration over the momenta of the
virtual leptons, W bosons and photons (but not hadrons!)
will be extended to values of the order A2 of the square
of the four-momentum, and then the values of A2 will be
estimated by comparing the theoretical predictions with
experimental data. A "natural" value of "self-cutoff"
should be A ~ (2VG)l/2 ~ 600 GeV, and values of
A <C 600 GeV will indicate inconsistencies in the theory
of weak interactions.

A similar method of estimating the domain of applica-
bility of a theory, by comparing the calculated radiative
corrections (calculated with a cutoff) with experimental
data has been in widespread use in quantum electro-
dynamics. In particular, the latest measurements of the
anomalous magnetic moment of the muon, when com-
pared to the theoretical calculations'•33a] yield as range
of applicability of quantum electrodynamics A Q ^ ^
> 5 GeV [ 3 * ] . (An investigation of the real process of
ee"-scattering yields a close value AQJJ D > 6 GeV1-34-1.)

It is important to note that whereas in quantum elec-
trodynamics the investigation of real and virtual proces-
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ses makes it possible to obtain only lower limits on the
cutoff parameters, in the weak interactions the virtual
processes yield upper limits on A, and real processes
yield lower limits.

In view of the fact that all the difficulties of the theory
which will be discussed below appear already in first
order of the virtual weak interaction, we will essentially
consider only corrections of order GA2 and (GA2)2 (keep-
ing in mind, in particular, that for A < 1/G, GA2 «C 1).

Before starting a discussion of concrete processes,
we have to make one remark of a general nature. In con-
sidering the higher orders of weak (or any other) inter-
actions two points of view are possible, in principle.
According to the first, the weak interaction Hamiltonian
(2.1) or (2.2) expressed in terms of the "bare" (non-
interacting) particles, has a certain symmetry in terms
of the "bare" fields (equal coefficients in front of the V
and A interactions, absence of neutral currents, absence
of a v^e interaction, etc.). Taking into account the
strong interactions and also the higher orders of the
weak interactions, leads to a violation of this symmetry,
and according to this point of view, the symmetry can be
maintained only if there are physical laws requiring the
conservation of symmetry as the interaction is turned
on. One of the most important tasks of elementary parti-
cle physics is to establish these laws.

An argument in favor of this point of view are the ex-
perimental facts of equality of the muon decay coupling
constant G^ and the vector coupling constant Gy in beta
decay and the difference between G^ and the axial vector
coupling constant GA in beta decay. Indeed, as was
shown by Gershtein and Zel'dovich'-35-' and by Gell-Mann
and Feynman'-3-1, the conservation of the vector current
in strong interactions implies that the coupling constant
Gy is not subject to renormalization on account of the
strong interactions, i.e., that the strong interactions do
not violate the equality Gy = G^. The axial vector cur-
rent is not conserved in strong interactions so that the
strong interactions lead to the difference between G .̂ and
Gp,. Moreover, the relatively small difference between
G^ and Gy (~ 20%) also finds its explanation in the
framework of this theory, on the basis of partial conser-
vation of the axial current (PCAC). Another argument in
favor of this point of view is the approximate validity of
isospin invariance in strong interactions and its violation
by quantities of order a.

According to the same point of view, if a symmetry-
breaking occurs in virtual processes, then the effective
coupling constants of real processes with the corre-
sponding symmetry-breaking must be of the same order
of magnitude as the effective coupling constants (ampli-
tudes) of virtual processes (if again, there are no spec-
ial regions for their "vanishing"). A confirmation of
this circumstance is all that we know of the physics of
strong interactions, where, as a rule, the effective
coupling constants are always of the order of unity.
(With the exception of those cases where the smallness
of the corresponding quantities, e.g., the pion-nucleon
scattering length, is the result of an approximate conser-
vation law.)

Another point of view (formulated by Kirzhnits1-36-1)
starts from the idea that it is meaningless to talk about
symmetry in terms of "bare" particles and all relations
should refer to physical particles after the interaction is
switched on. In this approach the effective coupling con-
stants of real processes are introduced into the theory
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from the outside, i.e., from experiment, and they have
no relation to the amplitudes of virtual processes. From
this point of view one cannot pose in the present theory
the problem of estimating corrections due to higher
orders of weak interactions to low-energy amplitudes, so
that, e.g., the problem of the accuracy to which strange-
ness or parity are conserved in strong interactions is ,
in general, not part of the theory. (The same refers to
the coupling constants of the weak neutral currents.)
Thus, from this point of view, the problem under dis-
cussion does not even exist.

In view of the arguments brought forward above, and
since the first point of view seems to be of higher heuris-
tic value, the remainder of the exposition will be based
only on it.

4.1. Leptonic Interactions

In processes where only leptons and photons partici-
pate the virtual weak processes can only contribute to
the lepton masses and to the amplitudes of various weak
processes. Since the masses (and mass differences) of
the leptons cannot be calculated in the present state of
the theory, there is no sense in separating the contribu-
tions to them of the weak interactions.

4.1.1. Electromagnetic interactions of leptons. We
consider first the contributions of the weak interactions
to the magnetic moment of the muon (or electron). To
order G2 in the four-fermion theory this contribution is
determined by the diagram of Fig. 12. A power-count of
the degree of divergence of the diagram (taking into ac-
count that the contribution to the magnetic moment is
proportional to the momentum q of the external field)
leads to the following estimate of the magnitude of the
magnetic moment of the muon due to weak interactions:
( g - 2)/2 ~ cVmJ , . For a definite choice of the cutoff
factor one obtains C373

5 —GaA2roji
In 2 (4.4)

which for A2 ~ 2TT/G yields (g - 2)/2 ~ 10 9. The accur-
acy of experiments measuring the anomalous magnetic
moment of the muon is at present 10~7, therefore the
correction (4.4) is so far beyond the capabilities of ex-
periments. It is easy to show that in higher orders of G2

the following estimate is valid:
f>-2 1 /GA2\»

which is also beyond present experimental capability.

In a theory with intermediate W bosons, to first order
in G, the contribution to the anomalous magnetic moment
of the muon is determined by the diagram of Fig. 13. If
the W boson does not have an anomalous magnetic mo-
ment this diagram diverges only logarithmically (the
Feynman rules for W boson electrodynamics can be
found, e.g., in1-38-1). The contribution of this diagram has
been calculated in several papers^39"47], and is (taking

•re) V"

FIG. 13
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into account only logarithmic terms)
g - 2 A^

4 1/2 it*
ss —2.10'8 (4.5)

for A2 ~ A w e a k « 2TT/G, m w « 5 GeV. In higher orders
(up to logarithmic terms) we get the estimate (g - 2)/2
~ (GA2/jr)nGm^A2 ~ 10'8. In considering the electro-
magnetic interactions of the intermediate bosons one
must keep in mind that vector-boson electrodynamics is
also a nonrenormalizable theory, that the electromagnetic
interactions of W-bosons grow with the energy (cf.,
e.g./38-1). The effective parameter that determines the
energies where the electromagnetic interactions of the
W boson become strong (in the same sense as was dis-
cussed earlier for the weak interactions) has the order
of magnitude C48"S0] A2

em ~ m w (n/a), so that A | m <
< Aw e ak for not too large values of m ŷ (up to several
tens of GeV). For this reason one might think that a
more correct estimate of the cutoff parameter in (4.6),
for not too large values of my/ would be A2 ~ Agm
~ m|^(ir/a). (The order of magnitude of (4.5) is not
changed by this.)

One can study in more detail the problem of the con-
tribution of virtual electromagnetic interactions of the
W bosons to the magnitude of the muon's anomalous mag-
netic moment by considering the contribution to g - 2 of
terms of the order e2G . Terms of that order corre-
spond, e.g., to the diagrams in Figs. 14 and 15 (in all,
to order e2^} there are 22 diagrams). A count of the de-
gree of divergence of these diagrams show that they
diverge quadratically, i.e., that the contribution to
(g - 2)/2 will be (up to a logarithm)

JJmh (4.6)

Here it is very essential which of the A2 one substitutes
into (4.6): A ^ e a k or A2

em, since for A2 ~ A 2 ^ ^ the con-
tribution to the anomalous magnetic moment of the muon
turns out to be sufficiently large (g - 2)/2 ~ a(m^/m-^)2.
In order to clarify the problem one can proceed as fol-
lows. We divide the integration region in the diagrams
of Figs. 14, 15 and similar, into two regions: 1) where
the momenta of the virtual W bosons are much larger
than the momenta of the virtual photons; 2) where they
are of the same order. Obviously, the integration over
the first region can have a cutoff only on account of the
weak interactions, so that for this region A2 ~ 1
~ 2TT/G. For the second region we can expect that
A2 ~ A2

em ~ m w (n/a). Starting from the Ward identity
one can showt51] that the contribution of the first region
of integration vanishes exactly and consequently the
cutoff limit in (4.6) will be of order A2 ~ A2

em
~ mffi, (n/a)e>. Then one obtains for the contribution of
terms of the order e2G to g - 2 the estimate

(4.7)g-2
2

GA2mf,

(4.1)3
-Gml In— ~ 3.10"8.

Another effect that results from the virtual weak in-
teractions is the interaction of neutrinos with electro-

w A/\y\> w

/ ? \/

A/

FIG. 16 FIG. 17 FIG. 18

magnetic fields'-52'45'53-1. The general expression for the
interaction vertex of the neutrino with electromagnetic
field has the form

l \(p ' . p; q)^l\<7{q)u(p')Yo(i + Vb)u(p)> (4.8)

where u(p) and u(p') are the spinors corresponding to the
initial and final states of the neutrino, q = p ' - p.

From the conservation of the electric current it fol-
lows that qxnX a(q) = 0, whence nXcr(q)
= - (o\aq2 - q^qff)F(q2). Substituting this expression
into (4.8) we find

In the four-fermion theory, to first order in G, the
electromagnetic interaction of neutrinos arises on ac-
count of the diagram of Fig. 16. A calculation of this
diagram leads to the following expression for F(q2) ••:

F{f) . G lnJli (4.10)
12 V2n2 mt

for Iq2| <C m| (m^ is the lepton mass). For Iq2| 3> m|
the quantity mj in (4.10) gets replaced by Iq2|. In the
W-boson theory the process is described by the diagrams
in Figs. 17, 18 and for |q2j « m,2^2'45'53]

1

i n

The dependence of F(q2) on q2 for Iq2

(4.11)

is given

The electromagnetic vertex of charged fermions ac-
quires parity-nonconserving terms on account of the
virtual weak interactions, so that in addition to the usual
electric and magnetic form factors of the electron and
muon there appears a new form factor Fa(q

2) (which was
named "anapolar form factor" by Zel'dovichC54]),
corresponding to the additional term in the electromag-
netic interaction vertex of the electron or of the muon of
the form

— q*Fa (q^)u(p') \ya ^£-1 y5u (p). (4 19)

In the W-boson theory to first order in G the quantity
Fa(q

2) is determined by the diagram of Fig. 13. The
calculations yield the following result[-45-1:

-In-4-.

FIG. 14 FIG. 15

Fa(0) ^
48 V2

An experimental investigation of the electromagnetic
interactions of the neutrinos will probably become pos-
sible when neutrino beams with energies of several
hundred GeV become available. (For Ej, ~ 200 GeV we
have <J(V + p — v + hadrons) ~ 10"39 cm2.)

4.1.2. Weak interactions of leptons. For energies
much smaller than the unitarity limit the amplitudes of
the weak two-particle scattering interactions of leptons
(or the amplitude of muon decay) are determined
uniquely, up to numerical factors, by the requirements
of Lorentz invariance and the two-component character
of all leptons participating in the interaction. Therefore
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FIG. 19

higher-order corrections with respect to the weak inter-
action can only modify the numerical factors in front of
the various amplitudes, without modifying their form1-"-1.
We consider consecutively the lowest order corrections
in G2 to the coupling constants of various processes.

a) Muon decay. In the four-fermion theory, in first
approximation in G, the correction to the muon decay
coupling constant GJJ. is determined by the diagram of
Fig. 19. In the intermediate state of this diagram there
are a lepton and an antilepton.

In order to investigate diagrams where a lepton and
antilepton always enter in the same vertex it is conven-
ient to introduce external currents 1^, adding to the in-
teraction Hamiltonian the term

<№' = —-r̂ (I£ (/*'* +/*"') + Ui^+'lffilk)- (4.13)

The matrix element corresponding to diagrams that have
H and v^ at one vertex and e and vQ at the other can be
written in the form

0>v o (1 + Ys) »i» • « . (P.) Yi (1 + Ys) "v

where Soo is the vacuum expectation value of the S matrix,
considered as a functional of the external currents I
(cf., e.g., 6 ]) . We take the current in the form Ix(x)
= 3(p(x)/9x^, which corresponds to a calculation of the
longitudinal part of nX(J, i.e., q^n^q^ . Transforming
in the total lepton Lagrangian (with lepton mass terms
neglected) the wave functions of the left-handed leptons

^ H ) (> *HO
it is easy to show that up to terms which are quadratic
in <p or <p* the part of the interaction Hamiltonian which
depends on the external currents becomes

(4.13')

Terms proportional to ~ G2 in (4.15) can appear only be-
cause of the first term in the right-hand side of (4.13'),
however, its contribution to order G2 vanishes on account
of antisymmetry upon the substitutions e — ve and
M —• v^. Therefore up to terms proportional to G* we
have qxn\a1<T = °- T n i s implies that to the same accur-
acy nXff

Thus the term S^G2^ is absent from the diagram of
Fig. 19 t s l ] . Similarly one can prove the absence of a
correction of order GA2 to the muon-decay coupling con-
stant due to virtual hadrons.

The reason for the vanishing of these corrections of
order GA2 is quite simple: the current j ^ is conserved in
that approximation (if we disregard higher corrections

FIG. 20 • FIG. 21

It is necessary to make one stipulation. Taking into
account corrections of the order GA2 and neglecting cor-
rections of higher orders (GA2)n, n > 1 is justified (in
addition to order of magnitude estimates) if as a result
of this it turns out that A2 < 2TT/G, i.e., the cutoff of the
weak interactions takes place on account of "something
new." But then the requirement that terms ~ GA2 vanish
in the diagram of Fig. 19 will be legitimate only if this
"something new" does not violate the conservation of the
current j ^ . Therefore in the sequel we shall also con-
sider the possible nonvanishing of these terms.

In the theory with intermediate bosons, the diagram
of Fig. 20 and the four diagrams of the type of Fig. 21
corresponding to the wave-function renormalizations of
the initial and final leptons (Z2-factors) contribute to the
renormalization of the muon decay constant to first order
in G. All that was said above about the diagram of Fig.
19 in the case of the four-fermion theory also refers to
the diagram of Fig. 20. Diagrams of the type of Fig. 21
contribute a term proportional to GA2 to the renormaliza-
tion of the muon decay constant.

b) Elastic vee scattering. In the four-fermion theory
we have only two types of diagrams: those in Fig. 22 and
Fig. 23. There is no reason to require the vanishing of
the quadratically divergent terms for the diagram of
Fig. 22 with lepton number 2 in the intermediate state.
The diagram of Fig. 23 gives a contribution to the vee-
scattering constant G^ e , which is equal to the contribu-
tion of the diagram in Fig. 19 to the muon decay constant
G (independent of whether or not it vanishes). Therefore
the ratio Gv e/G^ is determined by the diagram of Fig.

22 and equalsC31]

*+^V (4.16)

For A of the order of the unitarity limit A2 ~ 2;r/G the
quantity GA2/2 V is of the order of unity, so that in this
case one could expect a significant difference between
the constant of vee-scattering and the muon decay con-
stant.

In the W-boson theory there is an analogous situation,
with the only difference that to order GA2, in addition to
the diagram corresponding to Fig. 22, there are also
contributions from diagrams with renormalized external
lines.
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According to the latest experimental dataC57] G^e/G
< 2, i.e., the accuracy of the experiment is insufficient
to draw any definite conclusions.

c) Elastic v^e scattering. In the usual theory of the
universal weak interaction this process does not exist to
first order in G, and a nonvanishing amplitude for this
process can appear only as a consequence of higher
orders in the weak interaction (or on account of the elec-
tromagnetic formfactor of the neutrino—cf. the diagram
of Fig. 16). In the four-fermion theory to order G2 the
amplitude of the process is described by the diagram of
Fig. 24 and the coupling constant of the v^e interaction
turns out to be

In the W-boson theory we have a similar result
w _c GA2

V~~ V2(4n)2

transfer) increases for Iq2| 3> m2, and therefore the
integration over the momenta of the virtual hadrons is
effectively cut off at values Iq2| ~ m2. These assump-
tions rested on the experimentally observed behavior of
the form factors of elastic and inelastic ep scattering
processes, and by analogy were extended to many-parti-
cle processes (although doubts were also expressed re-
garding the legitimacy of such an extrapolation •').
However, the many-particle processes remained essen-
tially a terra incognita.

An essential breakthrough in this question was real-
ized only relatively recently, as a result of the develop-
ment of current algebra methods. The use of current
algebra made it possible to show that in some cases the
strong interactions do not cut off the momentum integrals
of virtual weakly interacting particles9 '. In the sequel we
restrict our attention just to these most interesting
cases.

(4.18)

At present the experimental restrictions on the coupling
constant of c^e scattering are rather weak^58^: Gv e/G
<0.6 . ^

d) Elastic ee scattering and the reaction e^e" — jx*ji'.
The weak elastic ee scattering to order G2 is described
in the four-fermion theory by the diagrams of Figs. 25
and 26, and the reaction e+e" — n'/i", by the diagram of
Fig. 27. In all these diagrams the lepton and the anti-
lepton enter into the same vertex, so that the reasoning
of the subsection 4.2.2a) is applicable, thus proving the
vanishing of the corrections of order ~ G8A2. (According
to the remark at the end of subsection 4.2.2a) it isneces-
sary that conservation of the currents (yeve) and (vev^)
not be violated when the form of the weak interactions is
changed, otherwise the terms ~ G2A2 will not vanish.)

Summarizing the discussion of the weak interactions
of leptons we would like to stress that at present we
know very little from experiment about the structure of
these interactions. At the same time such information
would be extremely important for the theory. In particu-
lar, it would be very interesting to determine (or find
bounds on) the coupling constant for uyp scattering,
which according to (4.17), (4.18) would make it possible
to estimate higher-order weak corrections in leptonic
interactions.*

4.2. Hadron-Lepton interactions

The fundamental problem which appears in consider-
ing corrections due to virtual weak interactions in
hadron-lepton processes is whether the strong interac-
tions cut off the growth with energy of the virtual weak
interactions. For several years, no progress had been
made in the solution of this problem. It was usually as-
sumed (cf., e.g., the discussion of this problem in'-31'32-')
that the strong interactions lead to the appearance of
formfactors F(q2) for the hadrons, formfactors which
decrease rapidly as q2 (the square of the momentum

We shall use the following notations for the weak
hadronic current densities

(4.19)

(Wherever there is no risk of confusion the index L will
be omitted.)

We shall assume that the charge operators

(4.20)

and the currents j(L .R) i satisfy the SU(3) x SU(3) algebra
Mk

proposed by Gell-MannL60J (cf. also the book by Adler
and Dashen), i.e., that the following equal-time commu-
tation relations are valid

' to),

ft = I

l = 2 (SW<'" R)< (*)

2, 3).

(4.21)

(4.22)

In a number of cases (and these are the most interest-
ing), weaker assumptions will be sufficient, namely the
validity of the SU(2) x SU(2) or SU(3) algebra for the
vector currents. The validity of the SU(2) x SU(2) alge-
bra is confirmed by all the results which follow from the
PCAC hypothesis (cf. the review articleLe i1). The pre-
dictions of SU(3)-symmetry regarding weak decays are
also in agreement with experiment'-82^. Therefore the
use of the SU(3) x SU(3) algebra in the form (4.21) and
(4.22) seems to be well justified.

As will become clear from the sequel, the results
described below remain valid also if the symmetry of the
strong interactions, SU(2) x SU(2) or SU(3), is broken to
a significant degree. It is only important that the weak
interaction currents of the hadrons have the form (2.5)
and are subject to the commutation relations (4.21),
(4.22).

4.2.1. Weak neutral currents, a) The decay KJ -~ n*n~
(W-boson theory). As follows from the form of the
Hamiltonian of the weak interactions [(2.1), (2.2)], in
orders higher than one in the weak interaction hadronic
transitions can occur with the emission of leptonic
//-pairs with zero total charge, transitions which are
absent in first order of G. To a high degree of accuracy
such transitions have not been seen experimentally. Fol-
lowing C63:l, we consider the decay K^ — M*M~, where the
strictest experimental bound on the magnitude of neutral
currents has been obtained'-64-1
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all)
(4.23)

In the theory with intermediate vector bosons the ma-
trix element for the decay mode K° —• n*M." is described
by the diagram of Fig. 28 and can be represented in the
form

In (4.24) the momenta of the external particles have been
neglected in comparison with k. In order to calculate the
leading divergence in the integration with respect to k in
(4.24) it suffices to consider only the longitudinal part,
proportional to k^kj/m^y, in the Green's functions of the
W bosons. Introducing kff under the integral with respect
to x, replacing kftexp (ikx) by -i(d/9xa)exp (ikx), inte-
grating by parts and setting ^ V ^ x ) = 0, we find

i (fc) = - j (01 [tf;h (x), , $ ' (0)] 6(*„)

(4.25)

The second term in (4.25) is proportional to the diver-
gence of the axial-vector current without strangeness
change and on the basis of the PCAC hypothesis it con-
tains at least the small parameter (n^/mo)2 ~ 0.1. (For
large k the smallness parameter can be even smaller.)
Therefore one may neglect in (4.25) the term which is
proportional to 9 ^

In order to find the equal-time commutators in (4.25)
we assume that these commutators contain only terms
which are proportional to 6(x) and 9)̂ 5 (x). Terms con-
taining the first derivatives of 6 (x) will not contribute to
(4.24). In view of the fact that the K° — vacuum transition
changes parity, one can rewrite the right-hand side of
(4.25) in the form

(4.29)

where q is the K-meson momentum. Making use of
(4.29) and (4.28) it is easy to find the ratio of the rates
for the Kj, — P-+M~ and K+ — \±*v decay modes:

(4.30)

'(0), F&3(0)]|£°). (4.26)

We now assume (and this is the essential point of the
whole reasoning) that the current-charge commutators
are subject to the SU(2) x SU(2) algebra, i.e.,

[<?T2 (0), Al, (0)] = [<?f (0), Vl3 (0)] = -Al, (0). (4.27)

It should be stressed that there is no need to require the
SU(3) x SU(3) symmetry in order to obtain the result, but
it suffices to assume SU(2) x SU(2) symmetry. (Thus, in
place of calculating the commutators of charges with
currents according to (4.27) one could act with the opera-
tors Q 7 2 and QA 2 on the state vectors between which
matrix elements are taken, and utilize the PCAC results.)
Substituting (4.27) into (4.26) and (4.26) into (4.24) we ob-
tain after an integration with respect to k

.(OMA^HO^Yiia + YsJuWsinec. (4.28)M=— g

In view of the isospin invariance the matrix element
<O|AJ33(O)|K°> equals the matrix element of the K+ — n*u
decay

w {K* -*• H+v)
, i g»A» \ 2 _ 2 r G A a I2

Here it is appropriate to make some remarks regard-
ing the assumptions made in this derivation. Since the
result (4.30) is proportional to the fourth power of the
cutoff parameter A one can hardly expect more than
order-of-magnitude accuracy from this result. There-
fore the terms omitted from (4.25), terms which are
proportional to the divergence of the axial vector cur-
rent, could be essential only in the case when they com-
pletely cancel the contribution of the fundamental term,
which seems highly improbable in view of the approxi-
mate conservation of the axial vector current. If we as-
sume further that the SU(3) symmetry is better satisfied
than the SU(2) x SU(2) symmetry, one may use the fact
that a nonvanishing contribution to (4.24) comes only
from products of the vector current and the axial vector
current to reformulate the proof so that the omitted
terms contain only the divergence of the strangeness-
changing vector current, 9aVa3(x), and utilizing the com-
mutation relations for the group SU(3). Finally, in (4.24)
we have not taken into account diagrams with the emis-
sion of two W bosons from the same point. One can
prove[63] that the contribution of these diagrams leads
to a different spinor structure of the leptonic part of the
matrix element, therefore these diagrams cannot com-
pensate the contribution of the main term (the compensa-
tion of (4.30) does not exceed 20%).

A comparison of the result (4.30) with experiment is
at present difficult since the experimental result (4.23)
contradicts the inequality l~65-1

u>(jr£-(i+n-)
">(#£->- all)

which follows from the unitarity condition (taking into
account only the intermediate 2y state) and the reason
for this discrepancy is not clear at the present time.*
Therefore, for the sake of caution, we adopt in place of
(4.23) a weaker inequality

-<10"8,s , (4.31)
w(Ka

L-<- all)

which is also based on experimental data . It follows
from (4.30) and (4.31) that

A<25GeV, (4.32)

i.e., that the cutoff limit is rather low.

b) The decay mode K^ —• M*M.~ (four-fermion theory).
In the four-fermion theory the matrix element for the
decay K° — n*n" (Fig. 29) takes the form

Af ^ -
(4.33)

where M^Jk) is defined according to (4.24'). The lep-
tonic part of (4.33) can be written as follows:

FIG. 28 FIG. 29
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(4.34)

Under the assumption of SU(3) x SU(3) symmetry and
neglecting the current divergences, the contribution of
the first two terms in the square brackets in (4.34) to
the matrix element (4.33) can be calculated in the same
manner as in the W-boson theory, yielding for the matrix
element the expression (4.28), but with a numerical co-
efficient eight times larger. The contribution of the
terms - 5 a ^ k - ieap\ak\y<j can be calculatedf67] if one
considers the Bjorken assumption I-883, that for ko —• °°
and k = const

UmkoMafl(k)^-jdxe-
ikx(O\[?%>(x), ;$(0)]|/f°) (4.35)

and utilizes the commutation relations between the space
components of the currents. These relations are model-
dependent. In the quark model consideration of the terms
-5agk - iCffiSXa^A^a le ads to the result that the numer-
ical coefficient in (4.28) is reduced by a factor of two
compared to the value it had when only the terms kay a
+ k^y a are taken into account. Thus, as a result, in the
quark model one obtains the expression (4.28) with the
additional factor 4, i.e., (4.31) implies the following
bound on A:

A < 12.5 GeV (4.36)
c) Other hadron-lepton interactions. The method ex-

posed above can also be applied*-63-1 to the discussion of
other hadron-lepton interactions involving neutral cur-
rents, such as, for example, the elastic scattering of
neutrinos on nucleons or the decay modes K* — n*e*e~,
K* — n*vv. In the first case (in the W-boson theory) the
effective coupling constant of neutral leptonic currents to
nucleons is

r r GA2

I* neutr — v ,, >.i

The values A < 25 GeV in the W-boson theory, and
A < 12.5 GeV in the four-fermion theory, derived from
the consideration of the KL — /x*M" decays, are at pres-
ent the strongest and most accurate restrictions on the
domain of applicability of the theory of weak interactions
in its present form. These values of A are considerably
lower than the unitarity limit, indicating the need for
changing the theory of weak interactions (or at least part
of it) for momentum transfers larger or equal to several
tens of GeV, i.e., for distances smaller than 10~15 cm.

4.2.2. The ratio of the beta and muondecay vector
coupling constants As is well known, in the V - A theory
of weak interactions the vector coupling constant in beta
decay is not renormalized due to the strong interactions,
so that to first order in the weak interaction the beta
decay vector coupling constant (divided by cos 8Q) must
be equal to the muon decay coupling constant. The ex-
periments confirm this equality within an accuracy of 1%
(a certain indeterminacy arises on account of electro-
magnetic radiative corrections, which introduce an un-
certainty of the order 1% into the ratio G^j/G^).

In higher orders of perturbation theory the weak in-
teractions lead to a violation of this equality. In the four-
fermion theory the corrections to the muon decay coup-
ling constant of order GA2 due to weak interactions are
determined by the diagram of Fig. 19, and the correc-
tions of the order GA2 to the beta decay coupling are
described by the diagram of Fig. 30. The contributions
from the diagrams of Fig. 19 and Fig. 30 are identical.
Therefore (if one ignores the corrections due to nonlep-
tonic weak interactions which are possibly cut off by the
strong interactions) in the four-fermion theory the equal-
ity G^/cos 6Q = G remains in force when terms of the
order GA2 are taken into account.

(4.37)

whereas experimentally G n e u t r
of the rates of the decays K+ — 7T*e+e~ and K*
obtains in the W-boson theory the expression

In the terms of order (GA2)2 the equality GY/COS 0-
< O.SG1-69 .̂ For the ratio =Gy. is violated. A consideration of these terms does

not lead however to strong restrictions on A1-72-1.

w (K* -»Jl<V+v) ~ |_ (4n)2 J '

A comparison with the experimental bound
i i"- )<4-10-J

C70]

yields

all)

A < 200 GeV-

(4.38)

(4.38')

In the four-fermion theory (with the quark model) the
same data yield

A < 100 GeV

The ratio of the decay rates for the modes K* — n*veve
and K+ — ir°eV in the W-boson theory is equal to (4.38).
The experimental bound'-71-' on the rate of the mode
K+ — n*vv is w(K* — ir*vi>)/w(K* — all) < 1.2 x 10~6, and
leads to the inequality A < 220 GeV. It should be noted
that from a theoretical point of view an investigation of
the decay mode K* — v*W has definite advantages over
the decay K^ — M V " or K* — 7r*e*e~, since transitions
due to both weak and electromagnetic interaction are
possible in the latter, according to the chain K^ -— 2y
— M > ~ or K* — v*y — n*e*e~ these, by virtue of the
unitarity condition, determine the lower bound of the
decay rates. In the process K* — n*vv such transitions
are absent, which, in principle, allows one to obtain
stronger bounds on A.

In the W-boson theory the diagram of Fig. 20 contri-
butes to the renormalization of the muon decay constant,
as well as the four diagrams of Fig. 21. A diagram
corresponding to that of Fig. 20 exists for the beta decay,
so that in the calculation of the ratio GY/G^ the contri-
bution of these diagrams may be omitted. The same is
true for diagrams where the W boson is emitted and ab-
sorbed by the electron or the electronic neutrino. We
consider the contribution to the renormalization of Gp of
the other diagrams of order GA2 in the W-boson theory
(Fig. 31). The matrix element for the correction of order
g2 to the vertex part describing the emission of the W in
the n — p transition has the form

A'nvo (*) I f <*'* i ' J ' * 1 - " </>| T [/* (x). / ; (j,), /+ (0) + / - (z), f* („), /* (0)] | n).

((4.40)
The most divergent expressions in the integration with

FIG. 30 FIG. 31
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respect to k in (4.39) appear due to the term -k^k^
in the W-boson Green's function. The quadratically
divergent terms in (4.39) can be brought to the form

JM. K № H (0)11 6 (*o) 8 (y0) + 2T {[«(*). av;-(y)) 8 (xo-i/o), /J(

(4.41)

All terms, except the first, in the right-hand side of
(4.41) are proportional to the divergence of the weak cur-
rent, i.e., they contain the small parameter (jj.^/m0)

2 or
sin2 9Q. In addition, all terms, except the first and sec-
ond, depend on k, and one might think that they decrease
with increasing k. Therefore it is reasonable to consider
only the first term in the right-hand side of (4.41). In
the calculation of the equal-time commutator, like in the
discussion of the decay K° — n+ji~, it suffices to use the
charge algebra SU(2) x SU(2) in place of the current
algebra. Neglecting sin2 QQ we obtain

j dtxdW'T (p | Ht (i), [/y (i/), I* (0)]] 6 (*„) 6 (i/0) 1 B> ( 4 . 4 2 )

= (p | [?«->+ (0), [QM- (0), j * (0))l | B> = 8 <p | ;J (0) i n),

r i=—-*••£-<* I J"S (0) | n>. ( 4 . 4 3 )

The correction of order g2 to the vertex where the
W boson is emitted has been expressed in terms of the
matrix element of the current. Since the vector part of
the matrix element is not changed on account of the
strong interactions, this correction has the same form
as if the strong interactions did not exist. But in the ab-
sence of the strong interactions the renormalization of
the beta decay constant to order g2 is due only to the re-
normalization of the external nucleon lines (except for
the diagram analogous to Fig. 20). The quadratically
divergent parts of these diagrams are obviously the same
as for the corresponding diagrams of muon decay. (One
can check directly that the two diagrams in Fig. 21 con-
tribute to the renormalization of g a term equal to (4.43)
by calculating the Z2 factor for the muon in the g2 ap-
proximation taking into account that in view of parity
nonconservation and the two-component character of the
interaction, the relation between the "bare" and re-
normalized coupling constants in the g2-approximation
has the formC30] g = g0Z2/(2 - Z2).) Therefore in the
W-boson theory the ratio between the vector coupling
constants of the beta and muon decays does not change
when corrections of the order GA2 are taken into account.

4.3. Nonleptonic interactions

a) The K^ - Kg mass difference. The K^ - Kg mass

difference Am = m ^ - mg is of particular interest,
since experimentally Am ~ G2m5 (more precisely,
Amexp =-0.8 x 10 G2m|jmj^, where m^j, m-^ are res-
pectively the masses of the nucleon and the K°-meson),
i.e., the quantity Am is so far the only experimentally
observable quantity which is of second order in the weak
interaction. If one estimates, however, the magnitude of
Am by means of perturbation theory without taking into
account the strong interactions'-59'7 -1, e.g., by consider-
ing the transition K° — K° via a virtual nucleon-anti-
nucleon pair, one obtains for Am the considerably larger

2 2 3

We consider this problem following1-63-1 (cf. also1-74-1).
The mass difference between the K^ and Kg mesons is
determined by the matrix element M^o ^jjo of the

K° — K° transition according to

Am = mKh - mKs = -2MK0^a. (4.44)

In the theory with intermediate W bosons the matrix
element Mĵ o _ -go is described by the diagram of Fig. 32
and has the form

1 f d*kt d*k2

2mKJ k\-m*w kl~m*

where

iZnySUp^—P50)Ar^vio(p, fci, k2)

= —i [ dixdix'diydiy'e-'k^x-x'>+ik'^-i''

p, kuk2h

(4.45)

(4.46)
and the state |K°> is normalized so that ||K°>I2 = 1.

Considering in (4.45) only the most divergent terms,
i.e., the terms proportional to kijjLkixk2i^2ffMfii'X(r.
utilizing the SU(3) x SU(3) current algebra, and neglecting
the divergences of currents, we obtain from (4.45),
(4.46) after some transformations

(4.47)

(4.48)

(4.49)

where

i\ dW"<K«IT{«,(x), A,(0)}IK°).

The integral over K in (4.47) diverges quadratically. In
order to evaluate it we assume that M^i, is a function
that decreases sufficiently rapidly as k increases, so
that the integral with respect to k converges. Then one
can neglect k compared to K. Integrating with respect to
K and k in (4.47) and making use of (4.44), we obtain

Am = _ « ^Re(f°|fM(0)Jls(0)|if»>. (4.50)

We note that the reasoning above can be carried over
without modification to the discussion of the amplitude of
any nonleptonic process with AS = 2, and (up to the norm-
alization of the initial and final states) this amplitude
will be equal to the right-hand side of the relation (4.50).

Introducing in (4.50) a summation over a complete set
of intermediate states |n), we write Am in the form

(4.51)

value Am ~ G Am (i.e., the experiment would require where Cn is the charge-conjugation parity of the state
that A ~ m). Since the strong interactions can lead "to a
cutoff of the integrals at momenta A ~ m, it is very im-
portant to study this problem in a manner which takes the
strong interactions into account correctly.

n

In). In order to estimate the order of magnitude of Am
we consider the contribution to the sum over n in (4.50)
of several of the lowest intermediate states. The lowest
intermediate state in (4.51) is the vacuum state. In this
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case the matrix element with the axial-vector current
defined in (4.29) comes into play. Substituting (4.29) into
(4.51), we obtain

(Am)Tac=— ;cos2 9 c (4.52)

Comparing (4.52) with the experimental value of Am we
get the inequality

A < 5 GeV (4.53)

Such a low value of the cutoff would seem to imply that
the weak interaction changes i ts form at relatively mod-
est energies . In reali ty, however, one cannot draw such
a conclusion from a consideration of the K L - Kg mass
difference. In order to see this we consider the contribu-
tion to (4.51) of the next-higher s ta te , namely the one-
pion intermediate s ta te . In this case the matrix element
of the vector current does not vanish, and equals the ma-
tr ix element for Kg3 decay:

(n°| VJ3 (0) I K°) = <Jt» IVI, (0) | K+). (4.54)

Substituting for the lat ter the expression that resul ts
from SU (3)-symmetry

s (0) I K+) - - ^ = - (Pu + <fc) F (
2 = (p-qf (4.55)

where p and q are the momenta of the K and it, respec-
tively, and F(K2) is the form factor of K ^ decay, we ob-
tain after simple manipulations

cos2 6C \ — 2mq0). (4.56)

The integral in (4.56) contains values of F(K2) in the un-
physical region K2 < 0 for Kg3 decay, and the integral
converges if F(/c2) decreases in that region faster than
(-K2)3 2. If one assumes that this is indeed so, i.e., that
for instance F(K2) ~ [1 - («2/mo)]"! for -K 2 > m2,, one
obtains the following estimate for the contribution of the
one-pion state to (4.51) (for m0

sin2 9C
2 0c (4.57)

and for mo K m^+AmjO « — 0.5Amvac. From here it can
be seen that a very strong compensation of the contribu-
tions of various intermediate states is possible for the
quantity Am defined according to (4.51) (it is not even
excluded that a complete compensation occurs, i.e., that
the sum over n in (4.51) vanishes). Thus, one can at best
attribute only a qualitative meaning to the estimate (4.53)
for the cutoff, obtained by taking into account only the
vacuum as an intermediate state.

A similar consideration with the same conclusions
can be carried out in the four-fermion theory.'-74-1 How-
ever, additional assumptions must be made in order to
derive the result.

b) Hadronic processes involving change of strange-
ness, parity or isospin. One of the most serious difficul-
ties of the theory appears in the discussion of hadronic
processes with |AS| = 1 or P = —1. Experimentally,
these processes are possible due to the weak interac-
tions and their (dimensionless) amplitudes are of the
order Gm2, (m0 is some characteristic mass < 1 GeV)10>,
whereas theoretically one could expect that their ampli-
tudes will be of the order GA2, i.e., even of order 1 for
A2 ~ G"x.

Let us consider the situation which appears in the
W-boson theory'-76-1. (In the four-fermion theory the
situation is less well-defined.) The matrix element for
the transition between the hadronic states a and b,

FIG. 33

schematically represented in Fig. 33, can be written in
the form:

•^ d'xd'yeW-iAiblTiJMx), 7v
(4.58)

Strictly speaking the expression (4.58) must be symme-
trized with respect to the currents j + and f, but since a
rigorous discussion which takes into account the symme-
trization leads to the same result as when one forgets to
symmetrize, we shall not list here the appropriate
formulas.

The quadratically divergent term in (4.58) has the
form

, QiL)'(x0)]\a),
(4.59)

In going from (4.58) to (4.59) we have assumed that
Jd4x(blT{BpJ^(x), 9^j^(0)}|a) decreases as k -* •», and
that the Schwinger terms are c-numbers. In addition, in
the transition to the last of the equations (4.59) it was
assumed that the equal-time commutator [djj.j'jj.ix), jo(y)]
contains only terms proportional to 6 (x - y) and 6' (x - y).

We first apply the equation we have obtained to a |AS|
= 1 transition, and for concreteness we assume that
Sa - S(j = 1. Then a nonvanishing contribution to (4.59)
comes only from terms with AS = 0 from 3^ j^(x) and
from terms with |AS| = 1, involving Q~(x0). The main
contribution to the divergence of the strangeness-con-
serving current comes from the axial vector current, so
that a;tii*(x) is determined by a small parameter which
determines the partial conservation of the axial current
(PCAC), namely (ixn/mo)2 ~ 0.1. Consequently we obtain
for the appropriate dimensionless matrix element of the
AS I = 1 transition the estimate

M | A S | = l GA2

[76b]

2 ~\/2 (4.60)

Comparing (4.60) with the experimentally observed order
of magnitude of the matrix element for the transition
with |AS| =1, M^SI = 1 ~ Gm2, sin2 8C we obtain for the

cutoff limit the following estimate

A«25GeV. (4.61)

We now consider AS = 0 transitions which change the
parity, P = — 1. In this case one of the weak currents in
(4.58) must be a vector current and the second one an
axial vector current, and one can write the quadratically
divergent part of (4.59) in such a form that it contains
the divergence of the vector current, 8HV^ . If both cur-
rents do not change the strangeness, the smallness of
e/iV£, is determined by the violation of isospin invari-
ance, i.e., by the parameter e2A and the following esti-
mate holds for M^y1- -1

«£=-' ££* (4.62)

If both currents are strangeness-changing the smallness
°f a;UV|Li will be determined by the violation of the SU(3)-
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symmetry (i.e., by the parameter A ~ 1/5) and
will be of the order

(4.63)

Comparing (4.62), (4.63) with

A < 100 - 150 GeV.

GM2), we obtain

(4.64)

Transitions involving a change of isospin |AT| = 1, AS
= 0, P = +1, are not that critical for the theory, since
such transitions could take place on account of virtual
electromagnetic interactions, and the experimentally ob-
servable matrix element would be of the order e2/ir. A
theoretical estimate for the matrix element of the weak
transition follows from (4.59), the largest contribution
coming from the case when both currents j + and j " are
axial-vector with AS = 0. Then

AfiifvT|=1~ ,,°f^,-i i-rV- (4.65)

A comparison of (4.65) with ^

A < 700 GeV.

e2/ir yields

(4.66)

Estimates of |AS| = 1 (and also P =-1) hadronic
processes lead to a rather low cutoff A, of the same
order as that obtained from the K L — fi V decay. The
consideration of hadronic processes, however, differs
from the consideration of hadron-lepton processes in one
important aspect. The divergent part of the matrix ele-
ment (4.59) is proportional to the x-integral of the equal-
time commutator [9(ij] i(x), Q^L)~(x0)] and thus depends
on the structure of the strong interactions, since the
divergence of the current can be expressed in terms of
the strong interaction Hamiltonian S(g(t) in the following
way:

j dxd^(x)^ | dxao;S(i) = i[<^g(io), <?LU(x0)]. (4.67)

Therefore, in principle, there is a possibility of making
the matrix elements in the right-hand side of (4.59) van-
ish, by means of a special choice of the strong interac-
tion Hamiltonian.

This possibility was indicated by Bouchiat, Illiopoulos
and Prentki , who have assumed that the strong inter-
action Hamiltonian consists only of terms of two types:
an SU(3) x SU(3)-symmetric$r0 and a termed which vio-
lates the SU(3) x SU(3)-symmetry, and transforms ac-
cording to the (3, 3) + (3, 3) representation:

i= 2 (4.68)

where ê  are constants, and L1 and R1 are operators
transforming according to the triplet representations of
the group SU(3), with the generators QJjp)* and Q i R ^ ,

respectively. (The Hamiltonian (4.68) for the strong
interactions had been proposed earlier by Gell-Mann1-80-1.)
In the simplest quark model the mass-term correspond-
ing to the Hamiltonian $t\ in (4.68) has the form

3 3

2 mrtt1/t = -% 2 m>-№(!+Vs) % + •>!'< (1 — V«)W. (4.69)

so that the operators L and R are the ^-functions of the
quarks with left and right helicity, respectively.

The requirement of isospin invariance leads to the
equality ey = e2. With the aid of the Hamiltonian (4.68) it
is not hard to calculate the expression for the divergence
of the current (4.67) and the equal-time commutator in
(4.59), making use of the commutation relations of SU(3):

For |AS I = 1 transitions one obtains

] d*x [3,j+ (x), <?(L)- (xa)\l = 2 cos 0c sin 6C J

where

~ [$• (

Substituting (4.71) into (4.59) yields

8 J + e .

= 1 = o ,

(4.

(4.

;.(4,

.70)

™
.72)

since

= i (2n)*6* (pb - pa) (pb - p«)u (b I F,. (0) | o> = 0,

(4.73)
on account of four-momentum conservation in the a — b
transition.

Similarly, and with the same result M ^ = ~ 1 = 0, one

can also discuss transitions with a change in strangeness.

For transitions involving a change in isospin the com-
mutator [9jj,i»(x), Q'k)~(xo)] does not reduce to the
divergence of some operator, so that for these transi-
tions the proof that M ^ v vanishes is not valid, and M ^ v

turns out, in general, to be different from zero. How-
ever, as was shown (cf. (4.66)), the experimental data do
not lead to strong restrictions on the cutoff parameter A
in such transitions and consequently the non-vanishing
of the quadratically divergent terms in the matrix ele-
ments of transitions with |AT| = 1, AS = 0, P = 1 presents
no difficulty for the theory.

The result obtained above can be given a simple ex-
planation111, by noting that in the theory with the Hamil-
tonian (4.68) (or in the quark model (4.69)) the current
divergences have the forms of mass terms (in general,
nondiagonal). A computation of the commutator of such a
term with the operator QvL)- corresponds to a rotation
in unitary space which also transforms it into a mass
term, but with different unitary indices. In view of what
was said before, this mass term is proportional to the
divergence of some vector current, as long as this
divergence does not vanish identically. It thus becomes
clear why the quantity M<£V defined according to (4.59)
is zero for transitions with |AS | = 1 or P = - 1 , to which
correspond currents with nonvanishing divergence,
whereas M,£V does not vanish for transitions with |AT|
= 1, to which corresponds a conserved current, on ac-
count of isospin invariance.

One could attempt to find out whether the conclusions
derived from the hypothesis about the strong interaction
Hamiltonian (4.68) remain valid for corrections of arbi-
trary order (GA2)n to hadronic processes. This question
was investigated in!-78'79], and it was shown that whereas
for transitions with |AS| = 1 , M ^ | l = 1sho

= 1 = 0 to all orders,

for transitions with P = —1, 0 in higher orders.

Finishing the discussion of the hypothesis of Bouchiat,
Iliopoulos and Prentki c " : it should be noted that for its
success it is necessary that the strong interaction
Hamiltonian have the form (4.68), without any correction
terms transforming according to other representations
of the group SU(3) x SU(3), since the presence of even
relatively small terms of this kind (say, of order 10~2 of
the fundamental ones) would lead for A2 ~ G"1 to very
large values of the transition amplitudes with |AS| = 1 or
P = — 1, in contradiction with the experimental data. On
the other hand, a rigorous absence of such correction
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terms appears to be quite strange. There is, however,
an escape, consisting in the fact that for the vanishing of
M^jy one must not necessarily require that the Hamil-
tonian of the strong interactions have the form (4.68),
but it suffices that the equal-time commutator in (4.59)
have the same form as for the Hamiltonian (4.68) (i.e.,
the form (4.71) for |AS| =1 transitions), i.e., that the
structure of the singularity of the commutator
[9jj.jp.(x), Q(L)~(y)] for small x— y remain the same.
(An analysis of the structure of the singularity of current
commutators was proposed in .)

Although, as was already explained, transitions with
|AT| = 1 present a difficulty for the theory, it is inter-
esting to investigate whether one cannot generalize the
form of the Hamiltonian (4.68) in such a manner that one
obtains a vanishing of the quadratically divergent terms
also in the amplitude for these transitions. Such an
attempt was undertaken in1-81'8^.

In [81] it was assumed12' that in the Hamiltonian (4.68)
there are present terms which violate the isospin in-
variance, i.e., £i 4 £2- Then it is convenient to expand3t\
in terms of representations of the group SU(3), writing

« , = U + 1 A + 1I«.. (4.74)

where Uo is a unitary scalar, and U3 and u8 enter in the
octet representation of SU(3). Substituting (4.74) and the
expression for Q(L)- into (4.67) and (4.59) it is easy to
calculate the integral /dx[9MJ^(x), Q(L)-(xo)]. The
amplitudes for the transitions with |AS| = 1 and P = - 1
vanish as before, and the requirement that the coeffi-
cients of the terms which transform like U3 and u8 vanish
leads to two conditions. (In the case of the Hamiltonian
(4.74) the expressions which transform like U3 and u8
cannot be expressed in terms of divergences of currents,
so that one must require the vanishing of the coefficients
in front of these expressions.) These conditions have the

-2—1—1 ~-£

V1

(4.75)

(4.76)

where

; ) • (4.77)

The relations (4.75)—(4.77) are extremely interesting,
since they express a connection between the Cabibbo
angle and the parameters of the violation of the SU(3)
x SU(3)-symmetry.

The SU(2) x SU(2) symmetry leads to vanishing of p,
so that p is small, of the order (^n/m0)

z ~ 0.1. The
magnitude of A3 must be of the order of the violation of
isospin invariance and A8 must be of the order of the
violation of SU(3) symmetry, i.e., A3 ~ a/ir, A8 ~ 1/5.
Considering p small and eliminating it from (4.75)—(4.76)
we obtain the relation

Kg
• e c . (4.78)

Numerically, for tan 9Q = 0.25 the right-hand side of
(4.78) equals 3.4 x 10"3 = 1.5(a/7r), and the left-hand side
is of the order 5(a/v), i.e., the order-of-magnitude
agreement is not bad.

Since the violation of isospin invariance due to the
electromagnetic interactions does not obviously reduce
only to the effective Hamiltonian (4.74), one cannot take
the relations (4.75)—(4.77) too seriously. However, the

FIG. 35

order-of-magnitude agreement of these relations with
experiment may possibly indicate that taking into account
isospin violations leads to some compensations in the
divergent parts of the transition amplitudes with |AT|
= 1. Another more consistent approach will be discussed
in the following section.

c) Hadronic processes involving the emission of
photons. As in the preceding section we restrict our
attention to the theory with W bosons. In the case of a
general strong interaction Hamiltonian the analysis of
processes involving the emission of photons does not
yield anything new compared to the analysis of weak
corrections to hadronic processes carried out in sub-
section 4.3b), and leads to the same restrictions on the
cutoff parameters, (4.61) and (4.64). It is however inter-
esting to investigate the situation of weak corrections to
the amplitudes of hadronic processes in the case when
the strong interaction Hamiltonian has the form (4.68).
This investigation is quite important, since if in the am-
plitudes of hadronic processes with |AS| = 1 or P = —1,
and emission of photons in the model with the Hamilton-
ian (4.68), the quadratic divergences remain and the
effective coupling constants of such processes with the
emission of n photons would be of the order GA2en, it
would follow that the cutoff parameter A is subject to a
strong inequality, and this fact would completely disrupt
the scheme proposed in1-77-'.

The amplitude of a hadronic process with the emis-
sion of a single photon is determined by the two diagrams
in Fig. 34 and Fig. 35, which correspond to the emission
of the photon by hadrons and by the virtual W boson.

A computation of the quadratically divergent terms on
the matrix element of the transition a -— b + y due to the
diagram of Fig. 34 leads to the following resultC83]:

I/4.1
•i \

(x0),

;fM(0)]]|a)

(4.79)

j ^where j ^ m is the hadronic electromagnetic current ,
which in the SU(3) scheme has the following expression
in te rms of the currents jj_ which form the unitary octet:

; EM= n = | (/«•'. + ;•<«)•). (4.80)

Making use of the Ward identity one can show1-83-1 that the
contribution of the quadratically divergent t e rms to the
diagram in Fig. 35 describing the matr ix element of the
transition a — b + y is equal in magnitude (but has oppo-
site sign) to the first term in curly brackets in (4.79),
so that the total matrix element is determined by the
second te rm in (4.79). If the strong interaction Hamilton-
ian has the form (4.68), one can use Eq. (4.71) for the
calculation of the second term in (4.79) for transitions
with |AS| = 1, yielding

^d'x{b\T{[QiL)-(xa),

= — 2cos0osin0c \dix{b\T{dtiF'vlt(x), /\EM(0)}|a) (4.81)

= 2 cos 6C sin Gc J d'xS (*„) (b | [F[, (x), jf M(0)] J a) = 0,

<UU*)1. ; f M ( 0 ) } | ^
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FIG. 38 FIG. 39

since the charges Q [ L ^ and Q | R , through which

J d x F|2(x) is expressed, commute with n ™ , according

to (4.80). Thus, in the case of a strong interaction
Hamiltonian of the form (4.68) the quadratically diver-
gent terms in the amplitudes of hadronic processes with
|AS| = 1 and emission of photons vanish. A similar as-
sertion can be proved for parity-changing transitions.

One can treat similarly the amplitudes of hadronic
processes with emission of two photons. Here one must
take into account four types of diagrams, Figs. 36—39.
A consideration of these diagrams shows that: 1) the
sum of the diagrams of Fig. 36 and Fig. 39 does not con-
tain quadratically divergent terms, independently of the
form of the strong interaction Hamiltonian; 2) in the sum
of the diagrams of Fig. 38 and Fig. 37 only quadratically
divergent terms survive which vanish for |AS 1 = 1 for
P = — 1 transitions, if the Hamiltonian has the form
(4.68), i.e., in this case too the hypothesis of Bouchiat,
Iliopoulos and Prentki leads to the vanishing of quad -
ratically divergent terms.

Knowing the amplitudes of hadronic processes involv-
ing the emission of photons one can attempt to investigate
the question of corrections of order Ge2 to the amplitudes
of hadronic processes (the corresponding diagrams are
obtained from those in Figs. 36—39 by closing the photon
lines into one another). Such an approach is obviously
more consistent than the approach discussed at the end
of the preceding section, based on the Hamiltonian (4.74),
which effectively takes into account the violation of iso-
spin invariance due to electromagnetic interactions.

A study of this question (I do not dwell on the details,
referring the reader to1-83-1) shows that in diagrams in
which the photon is absorbed and emitted by hadrons
(Fig. 38) the quadratic divergences survive, so that the
method of t81>82]

; in which only these diagrams are effec-
tively taken into account and where it turns out to be
possible to realize a complete cancellation of these
divergences, is not completely correct. However, in the
sum of all diagrams such divergences cancel, and the
result—the presence or absence of quadratically diver-
gent terms—turns out to be dependent on the behavior of
the forward scattering amplitude of virtual W bosons and
photons, i.e., the amplitudes of the reactions W + a —• W
+ b , r + a — y +b, for large squared mass q2 of the W
or the y, with the result that quadratic divergences sur-
vive only when these amplitudes decrease as 1/q2 for
q2 — °°. The last assertion is in no way related to the
divergence of the currents, and therefore quadratic
divergences, if they exist, cannot be liquidated by means

of relations of the type (4.75)—(4.77). It is very likely,
however, that for processes involving a change of
strangeness or parity (and maybe even of isospin) they
are simply absent, since there are reasons to think that
the amplitudes under considerations fall off faster than
1/q2.

In the whole discussion of this section it was assumed
that the W boson does not have an anomalous magnetic
moment. If this is not so, the situation changes drastic-
ally, and quadratically divergent terms proportional to
the anomalous magnetic moment of the W boson appear
in the amplitudes of hadronic processes with photon
emission according to the diagram in Fig. 35. The ma-
trix element then takes the form1-83-'

M--=—^y-£-q*(b\h(0)\a), (4.82)

where q is the photon momentum and y is the anomalous
magnetic moment,

/ = cos» 8C 05—;{) + sin2 8C 05—/5)—cos 9C sin 8C 05 + /!)• (4.8 3)

Since M i s proportional to q2 it is necessary to consider
processes with the emission of a virtual photon in order
to obtain from (4.82) restr ict ions on A2. The most inter-
esting among these processes is the decay mode
K* — 7 r V e \ For the branching ratio of this process ,
Eqs . (4.82 ) and (4.83) yield

w{K+~x+e+r) . ay- / A \4
w ( J C + - • n o e + v ) ~ 4 ( 4 . t ) 2 \ m w ) ' * .o 1 )

A comparison with the experimental limit (4.38') gives

A<3mwT-1/2- (4.85)
This result is an argument against the existence of
W-bosons with an anomalous magnetic moment y J> 1.

5. ATTEMPTS AT CONSTRUCTING A NEW
THEORY OF WEAK INTERACTIONS

The contradictions which have appeared in the theory
of weak interactions make it necessary to construct a
new theory of weak interactions. The main requirement
on the new theory must insist, obviously, that at large
distances (i.e., for low energies and small momentum
transfers) the new theory goes over into the usual one,
but that the growth of the weak interaction stop for
r ~ 10"15 cm (E ~ 20-50 GeV), at least in those proces-
ses where at present we encounter the strongest contra-
dictions.

A series of attempts were made in this direction. We
shall describe below some of the approaches to a new
theory of weak interactions which have acquired wide
publicity. We shall not go in detail into the merits and
deficiencies of these approaches, which would enlarge
this review article too much, but indicate only the formu-
lation of the fundamental ideas and the basic literature,
from where the reader can obtain all the information
that interests him in regard to this problem.

5.1. A theory with compensating intermediate
boson fields (Gell-Mann, Goldberger, Kroll, Low)1841.
Several intermediate vector and/or scalar mesons with
vector coupling are introduced, with different coupling
constants to the hadron and lepton currents. The inter-
action between the currents jj,(x) and jk(x')(the super-
scripts i, k denote the (e>e)-and (py^-currents with
AS = 0, IASI = 1 hadronic currents) is described by the
propagations

J (5.1)
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where ^ (x) = Wj^(x) in the case of vector fields and
xj(x) = aJ/9x^ in the case of scalar fields, and g* are
the appropriate coupling constant. For the interactions
of currents of the same kind (diagonal interactions,
i = k), according to the Lehmann theorem the behavior of
AJij/x) cannot be more singular than the behavior of
A ^ f ( x ) f° r a single vector field, i.e., by this method one
cannot achieve a less singular behavior than in the usual
theory for small x. However, (and this is the basic idea
of this approach) by an appropriate choice of the coupling
constants g*. one can realize a less singular behavior
of AJ|^(x) for x — 0, e.g., such as in the theory mediated
by scalar bosons (in momentum-space, for k2 — °°,
Aik,(k) ~ <5M1,/(k

2) or k^k /k" ) . One of the simplest
realizations of the scheme under discussion is a theory
with one vector meson of mass n and two scalar mesons
(with masses Mi and M2) with vector coupling and propa-
gators of the form

The contradictions discussed above between theory
and experiment on account of virtual processes appeared
for nondiagonal currents j*j , i / k. In the theory under
consideration these discrepancies disappear, since the
effective propagator A*k(k) (i / k ) behaves like a propa-
gator of a renormalizable theory for k — °° (one can even
make it decrease faster). For the diagonal interactions,
where there is no cutoff of the growth of the interaction
with energy, the corrections due to virtual weak interac-
tions remain the same as in the usual theory, i.e., of
order GA2, which is large. Therefore in the scheme
of1-84-1 one should expect a difference between the con-
stant of vee scattering and the coupling in muon decay.

A difficulty in the scheme of Gell-Mann et al. appears
in the discussion of strangeness-changing hadronic inter-
actions. In order to consider this interaction nondiagonal
it is necessary to introduce different coupling constants
for the V and A hadronic currents, i.e., one must give up
the two-component character of the weak hadronic cur-
rent, which is esthetically undesirable. If this is not
done, odd-P hadronic interactions will appear on account
of the diagonal terms and turn out to be large, contradict-
ing experiment. One can avoid this difficulty by combin-
ing the scheme'-84-' with the assumption of a definite
structure of the strong interactions, discussed in subsec-
tion 4.3b).

5.2. A theory with strong interactions of the inter-
mediate vector bosons [85-89] The basic idea here is the
assumption of a strong interaction of the intermediate
W bosons with the hadrons (1-st version) or with each
other (2-nd version), which ensures the cutoff of all in-
tegrals with respect to the momenta of the W bosons at
values characteristic for the strong interactions. In the
first version a quadratic strong interaction of the
W bosons with the hadrons of the form (NN)W*W is in-
troduced, and definite isospin and SU(3) quantum num-
bers are ascribed to the W bosons. Thus, in1-853 the
W bosons are classified as a triplet of the SU(3) group,
forming an isodoublet (W% W°) and an isosinglet W0', and
have nonvanishing triality t = 1, so that their charge is
Q = Tz + (Y/2) + (t/3), where Tz is the isospin projection
and Y is the hypercharge. Conservation of these quantum
numbers allows one to forbid a series of unobserved
processes (e.g., K^ — P-V owing to the strong and semi-
weak interaction with an amplitude of the order g2), how-
ever, for other unobserved processes (the reaction

Vp + N — /LI~+W+ hadrons with an amplitude ~ g, the
reaction v^ + N — v^ + hadrons with an amplitude ~ g2)
the smallness of the cross sections can only be accounted
for by assuming sufficiently large masses for the W. For
an_ arbitrary (but SU(3)- or SU(2)-invariant) form of the
(NN)(W*W) interaction, the beta decay vector coupling is
renormalized on account of the strong interactions. One
can achieve its nonrenormalization by introducing a
gradient coupling, but in this case it is not clear whether
one can obtain the required magnitude of the "weak mag-
netism."

In the 2-nd version 85'88-1 one assumes a strong cubic
self-interaction of the W bosons. In this case one can
introduce in a natural manner into the theory a CP-viola-
tion, assuming that the weak interaction has CP = — 1.
(The presence of the W3 interactions does not allow one
to make the transformation W — iW.) On the basis of the
Lehmann theorem the W3 interaction alone does not
guarantee a cutoff of the integrals in the amplitudes of
the nonleptonic processes (the diagram of Fig. 33), so
that this model must be combined with the hypothesis
advanced in1"77-1 which we have discussed above.

5.3. The hypothesis was advanced that in the theory
with intermediate vector bosons the growth of the weak
interactions at small distances may be cut off by the
electromagnetic interactions of the W bosons, which also
increase at short distances1-90-1. The electromagnetic in-
teractions of W bosons become strong at distances r of
the order of l /m^a 1 2. Therefore, according to this
hypothesis the cutoff of the integrals in virtual weak
processes should occur for Agjyj ~ m^/a, so that the
effective expansion parameter here is GAgjyj ~ 1(T3

(m\y/m)2, which is a small quantity if m ^ ~ 10 GeV. An
analysis of this hypothesis within perturbation theory
has shown'-91-' that when only longitudinal W bosons par-
ticipate in the weak virtual processes (this corresponds
to the most essential corrections ~(GA2)n, the electro-
magnetic interaction of the W bosons introduces a rela-
tively small contribution and cannot guarantee a cutoff of
the weak interactions; consequently, the possibility that
they cut off the weak interactions appears only when at
least one of the virtual W bosons is transverse. This
means that the electromagnetic interaction of the
W bosons is capable of cutting off the growth of the weak
interaction only in combination with another mechanism,
which guarantees the vanishing of terms of order (GAs)n.

5.4. There exists the point of view that all the diffi-
culties of the theory of weak interactions are due to the
use of perturbation theory, which in those cases when
there appear contradictions does not even give a qualita-
tively correct answer and that in the correct theory all
these problems will go away. Attempts at a nonperturba-
tive approach to the equations were made made both in
the framework of the usual formalism1^92-1 and outside this
frameworkL93]. Although not very much was accom
plished, one cannot consider this possibility as ruled out
at the present time.

5.5. T. D. Lee and G. C. Wick[94] have attempted to
solve the problem by introducing an indefinite metric into
the W-boson theory. In their approach the propagator of
the W-boson has the form Sjiy/(kz - m-^) - (k^k^/m2^)
x [(k2 - m ^ r 1 - (k2 - m 2 , ^ 1 ] (or the form of a differ-
ence of two propagators), in place of the usual form
(S^j, - k^ky/mlyHk2 - m^y) \ i.e., an additional state of
spin zero and negative norm is introduced into the theory.
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It is obvious that for this form of the propagator the
weak interactions will not grow at short distances and
the contribution of the virtual processes remains small.
However, theories with indefinite metric have their own
very serious difficulties, which until now have not been
overcome, in spite of the intensive activity in this direc-
tion (cf., e.g./95-1 and a discussion of the difficulties of
the Lee-Wick theory in r 9 6 J) .

The main assertion of these authors (which was proved
for simple models) is that the unitarity difficulties oc-
curring in such theories will disappear if the negative-
norm state (or W boson) is unstable. It was shown inC97]

that in the theory proposed by Lee and Wick there appear
at high energies signals propagating faster than light,
i.e., a violation of the causality principle.

An attempt was made to reformulate the theory of
weak interactions as a nonlocal theory: in second
order weak corrections to muon decay were discussed
within the framework of the nonlocal theory developed by
one of the authors1-99-1.

5.6. A theory with scalar baroleptons [100'101]. it was
assumed that the weak interaction is described by the
Hamiltonian

ffl = —v,) ecB, + gtn (1 — Ts) vfB

ia" (1—Vs) vjfl* + g^ (1 -

_ Ys)

~g& (1 - y5) v?fl3

1 - Vs) v?

(5.3)
where Bi and B2 are scalar neutral bosons carrying
baryon and lepton numbers equal to 1 (baroleptons), and
B3 is a charged scalar boson; the superscript " C " de-
notes charge conjugation. If the mass of the bosons is
sufficiently large, then after the exclusion of the virtual
boson fields from (5.3) an effective four-fermion interac-
tion appears in order g2, corresponding to hadron-lepton
and lepton-lepton processes. The properties of the Fierz
transformation implies that the interaction expressed in
terms of the fields e, i>~, M, v^_, acquires the form of the
usual V - A interaction"100^. The theory with the Hamil-
tonian (5.3) is obviously renormalizable and there is no
growth of the weak interactions at small distances (for
r / )

However, some of the achievements of weak interac-
tion physics are lost in this theory: the universality of
the interaction has a fortuituous character, there is no
reason for conservation of the vector currents and the
description of nonleptonic processes requires the intro-
duction of new bosons. In addition, in the form (5.3), the
theory leads to a large difference between the cross sec-
tions for e+p and e~p scattering1^02-1, in disagreement with
experiment.

5.7. A theory in which the four-fermion interaction
arises as the low-energy limit of a fourth-order effect
in the interaction g<Pa(A + By5)</<b<pc, where y^ is a
spin-0 boson field and A and B are constants' liIS"1O5:l.

Several charged and neutral heavy bosons are intro-
duced into the theory, as well as two heavy neutral lep-
tons (with the quantum numbers of the muon and of the
electron) and at least one heavy baron. An example of
such a theory is described by the Hamiltonian

(5.4)

FIG. 40

In the theory with the Hamiltonian (5.4) the matrix ele-
ment of muon decay is described by the diagram of Fig.
40, which, if one neglects the momenta and the masses
of the leptons, has the form

M,:-^fi j d'k ki ̂ Mtf "**?» t1 + V») »»• ' »«VH (1 + Vs) "v«- (5.5)

(the boson masses are set equal to Mg = Mgg). Calcula-
tion of the integral in (5.5) yields

M = T • u"Vx (1 + Vs) «v., (5.6)

i.e., there appears an effective muon decay interaction
1/2 ^ /with the coupling constant G/2
e mu
1/2 = One can

carry out a similar consideration for the beta decay in-
teraction. If one adopts the Bjorken assumption'-"-' re-
garding the asymptotic behavior of the matrix element
M(k) of scalar fields for k0 — °°:

M (k) = - i j eih' d*x (p | T {p(x) (1 + Vs) n(x),P (0) (1 + y5) n (0)> | n)

-*• -±- [ dxe-'tx <p | {p{x) (i + Ys) „ (X), F (0) (1 + Ys) n (0)] | n>10=0

(5.7)
(cf. the critique of this assumption for the case of non-
conserved currents in r i 0 > 8 ]), then one can show1-105-1 that
the beta decay interaction is of the V - A form, and the
vector coupling constant is not subject to renormaliza-
tions due to the strong interactions.

The theory with the Hamiltonian (5.4) is obviously
both renormalizable and universal. The difficulties of
this theory are the nonleptonic processes with |AS | = 1
or P = — 1, which according to (5.4) occur in order g2 and
are characterized by a dimensionless constant g2 which
is considerably larger than Gmz (m is the nucleon mass),
and thus is in contradiction with the experimental data.
Moreover, the coupling constants of the neutral currents
vv are of the order G, which is also hard to reconcile
with experiment. In order to avoid these difficulties,
various modifications of the theory have been pro-
pose dClo4'105], introducing additional intermediate
baryons, leptons and bosons; the hadronic part of the
weak interaction Lagrangian has been assumed strange-
ness-conserving (or strangeness- and parity-conserving)
and the effects of strangeness (or strangeness and par-
ity) nonconservation in nonleptonic processes were due
to virtual leptonic pairs. This allowed the authors to get
rid of part of the difficulties. However, at the present
time we are not convinced that by going this way one can
construct a self-consistent theory of weak interactions,
agreeing with experiments.

5.8. A theory of weak interactions based on an as-
sumed SU(4) symmetry of the hadrons^107-1 (cf. also the
earlier work1^08-1). It is assumed that, at least at short
distances, the strong interactions exhibit the SU(4) sym-
metry. Since in this symmetry there appears a new
quantum number, called hypercharge, there exist
hypercharged particles. In quark language this means
that in addition to the three quarks p, n, A, which form
an SU(3) triplet, there exist a fourth quark, p ' , which is
assigned the same electric charge as the p quark (but in
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distinction from the p, n, A it has nonvanishing hyper-
charge). The basic idea consists in selecting a weak cur-
rent of the form

/jT* = cos 6cnyB (1 + Vs) P + sin 8cAyB (* + Vs) P

(5.8)
interacting with the field of charged W-bosons, and using
the SU(4) x SU(4) algebra of currents . This form of the
hadronic current leads to vanishing of t e rms of order
G2A2 (and also of order G(GA2)n in the matr ix elements of
the hadron interactions with neutral leptonic currents ,
for transitions with |AS| = 1, i .e . , one of the basic diffi-
culties of the theory, namely the absence of neutral cur-
rents in the leptonic decays of strange particles (e.g.,
K^ — M+M~) i s removed in this approach. Terms of
order G2A2 remain in the matr ix elements of the interac-
tions of hadrons with neutral leptonic currents for t ran-
sitions with AS = 0, the effective coupling constant sa t i s -
fying the equality (4.37). In this theory there are no
contributions of order G2A2m3 (and also of order
G(GA2)nm3) to the K L - Kg mass difference. In order to
achieve the vanishing of t e rms proportional to GA2 in
matrix elements of nonleptonic processes with S = 1 or
P = - 1 this theory has to assume, by analogy to1"77-1, that
the strong interaction Hamiltonian consists of SU(4)
x SU(4)-invariant t e r m s , and of t e rms which transform
according to the representation (4, 4) + (4, 4) of the group
SU(4) x SU(4). The basic problem of this theory i s , of
course, the problem of existence of hypercharged pa r t i -
c les , which in the present scheme cannot be too heavy,
and must be pair-produced in strong interactions and
decay into hadrons and leptons due to their weak interac-
tions.

5.9. Theories with intermediate Yang-Mills vector
bosons. This approach, which has shown remarkable
successes in recent months is possibly one of the
most promising. As is well known, the theory of
mass less Yang-Mills gauge bosonscl09: l is renormal-
izable1-110-1, and there is no increase of the interactions
at short distances. Up to now, the application of this
theory to weak interactions was hampered by the fact
that the Yang-Mills gauge bosons were supposed to have
a vanishing mass ; if the mass is nonzero the theory r e -
mains unrenormalizable ' 1 1 1 ] , and in this sense there is
little difference from the usual intermediate vector boson
theory (at least as long as one remains within perturba-
tion theory). In a recent paper 't Hooft'-1'2-'*** has shown
that in a gauge theory of a special form, where the gauge
fields interact with a scalar field with nonvanishing
vacuum expectation value, the gauge fields acquire a
mass and the renormalizability of the theory remains in
force. On the basis of this result it was possible to
prove the renormalizability of various schemes for the
theory of weak interactions with Yang-Mills gauge bosons
having mass (and also including the photon as a mass less
gauge field) proposed earlier'-113-', or newly
invented1-114^. The proposed theory is still far from
completion: some aspects of the hadron-lepton and
hadron-hadron weak interactions sti l l await their ex-
planation. Nevertheless the idea of this approach is very
beautiful and its direction is quite promising.****

6. CONCLUSION

An investigation of higher-order corrections in the
weak interaction in the framework of the usual theory
shows that there is a contradiction between the concept

of a natural cutoff of the growth of the weak interactions
with energy at energies of the order A ~ G~l/2 ~ 103 GeV
and the experimental data, which require a cutoff at sub-
stantially lower energies, of the order of several tens of
GeV. Such a contradiction appears both in the W-boson
theory and in the four-fermion theory of weak interac-
tions. The contradiction manifests itself in its strongest
form in the leptonic decays of strange particles with
emission of lepton pairs of total charge zero (the decay
KT_, — M*M~) and in strangeness- or parity-changing non-
leptonic processes. In the latter case, however, the dis-
crepancy can be removed by assuming a definite symme-
try of the strong interaction Hamiltonian (or at least, as-
suming a definite symmetry of the strong interactions at
short distances. For purely leptonic processes one can-
not make any definite statements at the present time, in
view of the insufficient accuracy of the experimental
data.

The experimental consequences of what was said above
consist, first, in the necessity of measuring lepton-lepton
interaction, particularly the v^e and vee scattering.
Another conclusion for experimentalists (in addition to
the obvious ones, like searching for W bosons) is the
necessity to find out up to what energies the neutrino-
nucleon scattering cross section continues its increase,
and whether such an increase exists when the strangeness
of the hadrons produced in the process is different from
zero. Further searches for neutral leptonic currents in
hadron-lepton processes without change of strangeness
are needed, by means of an investigation of the reaction
v + N —* v + hadrons in neutrino experiments (cf. in this
connection Translator's footnote**).

For the theorist, the conclusion is , first of all, that
time is ripe for the construction of a new theory of weak
interactions free from the difficulties described above,
but containing all the advantages of the old theory. In the
construction of such a theory one must remove at first
all the difficulties related to the problem of neutral cur-
rents (in particular, for strangeness-changing proces-
ses). Finally, both theoretical and experimental clarifi-
cation is required for the problem of the structure of
strong interactions (more precisely, of the current com-
mutator) at short distances, problem which is important
for understanding the nonleptonic processes.

I wish to express my gratitude to Ya. B. Zel'dovich
and L. B. Okun' who have induced me to write this re-
view article, have carefully read the manuscript and
have given me some valuable indications.

"The situation in the theory of weak interactions is somewhat reminis-
cent of what happened in classical field theory. Starting from that
theory itself, it was established that classical electrodynamics is not
applicable (becomes self-contradictory) at distances of the order
of the classical radius of the electron r0 = e'/mc1. However, experi-
ment has shown that owing to the existence of the quantum of action
ft, the validity of classical electrodynamics breaks down considerably
earlier, at distances of the order of h/mc = ro/a. At the present time
one cannot exclude the possibility that the "cutoff of the weak inter-
actions is connected with a reason as fundamental as the existence of
the quantum of action. (This remark belongs to S. S. Gershtem.)

2)In this review we use the following notation: the components of the
metric tensor 5 ^ are 50 0 = -Su = - 5 2 2 = - 5 3 3 = 1, a^b^ = aobo - a-b,
djj, = 3/3x^ = (3/3t, - 3/3x), the Dirac matrices are

T » = ( o - l ) ' V== l - . r o ) ' V S = - ( 1 O ) •
p = PjuT ,̂ and the spinors u and u are normalized by the condition uu =
2m.

3)By large v we understand here v > m2, but at the same time v <S G"1, so
that the strong interaction asymptotic behavior has already started, but
one can still use the first approximation in G.
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4)It is understood that the definition of physical quantities does not in-
volve external dimensional parameters. The functions w,, w2, w3 are
not such quantities, since in this section, in agreement with generally
adopted notations, a normalization of the spinors describing the initial
state of the nucleons is used such that uu = 1. The transition to the
normalization uu = 2m, corresponding to invariant normalization of
states (cf. infra) in (3.40)-(3.42), p'p = 2po53(p-p'), and taking into
account the external dimensional parameters 1/m2 which enter the
defintion of w2 and w3 in (3.42), leads to agreement of the equations
(3.36) and (3.38) with the requirements of dimension theory.

5)In order to avoid misunderstandings we note that in this part of this
section we consider the four-fermion theory, and not the W-boson
theory, and that the term "matrix element for the forward scattering
of the virtual intermediate boson" is used only for the convenience of
describing the quantities M ^ .

6)The assertions made above can also be reformulated in the language of
the "prerenormalization era." In that language the electronneutrino
field produces a potential which acts between the nucleons [28] (cf.
also [29]) having the form V(r) ~ G2/rs. The minimal distances r0, for
which this potential makes sense are r0 ~ G1/!. To the potential V(r)
corresponds a scattering amplitude s '^f^-Jgiq^r) dr ~ G2^2 ~ G,
and a level-shift AE ~ /V(r) li|/(r)|2dr, which attains values ~m (or
maybe even G'v', due to the noncovariant way of writing) if the \jj-
function is concentrated in regions of the size r0. (This case corresponds
to the non-cutting-off of weak interactions by strong interactions.)

7'We do not consider here the gravitational interaction, for which a
similar situation holds.

"'This is also an argument in favor of electromagnetic cutoff in (4.5).
"'investigation of deep-inelastic electromagnetic and weak processes (cf.

Sec. 3.1b)) has also shown the absence of rapidly decreasing form-
factors.

""Thus, for instance, the experimental values of the coupling constants
of ANtf and K°7T7T interactions, corresponding to the Hamiltonians
g\//A( 1 + \ 7 S ) 4 N ^ and tV>K^>,, a r e t h e following: g « (l/5)GiriK
sin 6Q, f « 3Gm^3 sin 6Q and the effective dimensionless coupling
constant of the parity-nonconserving four-nucleon interaction equals
[7S1 F * ( 2 - 4 ) X 10"7.

"'This explanation belongs to V. I. Zakharov.
12)The approach of [S2] differs somewhat from that in ref. [81], although

the ideas of both papers are close to each other.

Translator's Notes

* Recent evidence (talk by H. Wachsmuth (CERN) at Berkeley
APS Meeting, August 14, 1973; NAL Preprint, Sept. 1973) shows that
neutral currents are present (in agreement with the Weinberg model, cf.
infra); in particular one event of v^e scattering has been reported.

**More recent experimental evidence shows less (or no) discrep-
ancy.

***The basic idea of a gauge theory of weak and electromagnetic in-
teractions goes back to Schwinger (Ann. Phys. (N.Y.) 11,1 (1957), cf.
also M. E. Mayer, Physik. Verhandl. 9, 57 (1958). However, the use of
the Higgs mechanism [ " 3 ] to give the vector bosons mass is due inde-
pendently to 't Hooft and Weinberg (Phys. Rev. Lett. 29, 338 (1972),
where earlier references can be found), based on a model invented by
Weinberg in 1967.

****Quite recently some very promising progress has been made in
using nonabelian gauge theories in strong interactions too; cf. D. Gross
and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973), H. D. Politzer, ibid.,
1346 (1973); G. 't Hooft, to be published, S. Weinberg, Phys. Rev. Lett.
31,494(1973). For an early attempt to use gauge vector bosons to med-
iate both weak and strong interactions, cf, also M. E. Mayer, Nuovo
Cimento 17,802(1960).

*****Some of Blokhintsev's results were obtained in collaboration
with the Translator.
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