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A review is given of the physical properties and of the theoretical models for transition metal

compounds of the A 15 (or /3-tungsten) structure. Not only binary compounds of stoichiometeric

composition are considered, but also their multiple alloys with one another. The behavior of the

electronic specific heat, magnetic susceptibility, Knight shift, and other electronic properties as

functions of the composition and temperature is discussed, and a comparison is made of these results

with the optical and x-ray spectra. The anomalies of the elastic constants in V3Si and Nb3Sn are

investigated in detail, and the nature of the martensitic transformation in them is analyzed. The

superconducting transition temperature as a function of the composition, stoichiometry, electron

concentration, and pressure is analyzed in considerable detail for both pure compounds and for their

alloys. An account is given of the existing theoretical models for the electronic structure of these

compounds, and the predictions of these models with regard to electronic and lattice properties are

compared with the experimental data. It appears that none of the existing models is able to explain

the entire set of observed phenomena. The direction of future experimental investigations is indicated.
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I. INTRODUCTION

The superconductors known at the present time with
record properties, i.e., the highest transition tempera-
tures T c and the highest critical fields, belong to the
class of compounds with /3-W structure. In particular,
the celebrated superconductors Nb3Sn, Nb3Al
(T c = 18°K), and V3Si (T c = 17°K) belong to this class.
The superconductor with the highest known (up to the
present time) transition temperature of approximately
23°K—the compound Nb3Ge—is a representative of this
same class. Now approximately seventy pure com-
pounds of /3-W structure have already been synthesized;
the majority of them sre superconductors, and in
twelve of them T c exceeds 10°K. Many of these com-
pounds form solid solutions with each other, crystallize
into the same type of structure, and are also good
superconductors.

There is no doubt that the /3-W structure is extremely
favorable for good superconducting parameters of the
intermetallic compounds. The heightened interest in
such compounds, which has been displayed in the last
few years by both physicists (experimentalists and
theorists) and technologists, is obviously due to this fact.
It is just in these years that extensive experimental data
pertaining to their different physical properties—elec-
tronic and lattice properties—has been accumulated, and
moreover in some of these compounds, which are
superconductors with high T c , a martensitic structural
transformation of the lattice from a cubic into a tetra-
gonal phase is observed at temperatures slightly ex-
ceeding T c . This unexpected discovery has attracted
special attention to all compounds of β-W structure.

Apparently the high values of T c and the presence of
a martensitic transformation in a number of compounds
of the type under consideration have a common physical
origin, which is hidden in the properties of their

crystal-chemical structure; many theoretical articles
appearing in the last few years have been devoted to the
search for this common origin. The basic goal of the
physical investigations which have been carried out con-
sists in an attempt to answer the following questions:
Why are the superconducting transition temperatures so
high in compounds with the /3-W structure (but, on the
other hand, why not in all such compounds), what kind of
connection exists between the superconducting transition
and the martensitic transformation, and is it possible
to obtain higher values of Tc in solid solutions of these
compounds than in the pure compounds?

To answer these questions, it is necessary to inves-
tigate and compare the physical properties of not only
the high-temperature superconductors but of all repre-
sentatives of this class of compounds. In the present
review the authors set themselves the goal to collect
and systematize the experimental data on all compounds
with /3-W structure, including solid solutions of these
compounds with each other, using all of the scientific
literature available to them up to and including 1973.*'
Theoretical models of the electronic band structure of
these compounds and the attempts to explain the ob-
served phenomena which follow from these models are
discussed on the basis of this data.

Let us consider the basic features of the crystal
structure of β-W type compounds having the chemical
formula A3B. In such compounds the Β atoms form a
body-centered cubic lattice, and the A atoms are dis-
tributed in pairs on the faces of the cube and parallel to
the coordinate axes (Fig. 1). The unit cell of the com-
pounds under consideration contains 8 atoms; the space
group is O^—Pm3n.

The characteristic feature of this structure is the
fact that the A atoms form a series of interpenetrating
linear chains, where the distance between the atoms in
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TABLE I. T c in compounds with (3-W structure (°K)

FIG. 1. The (3-W structure of in-
termetallic compounds of the type
A3B (atoms: »-A, o-B).

one chain is the shortest distance between the atoms in
the /3-W structure and is 22% less than the distance be-
tween A atoms belonging to different chains.

Transition elements of group IV, V, or VI (Ti, V,
Cr, Zr, Nb, Mo, Ta, W) invariably appear as the A
atoms, while the Β atoms may be either nontransition
elements (Al, Si, P, Ga, Ge, As, In, Sn, Sb, Pb, Bi) or
transition elements (mainly elements from group VIII:
Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Au). Vanadium forms the
largest number of A3B compounds with the /3-W struc-
ture .

The majority of these compounds have narrow regions
of homogeneity.1-21 However, in a number of vanadium
compounds with components of similar atomic radii, the
formation of the /3-W structure does not occur in peritec-
tic reactions but in the process of ordering a solid solu-
tion with a body-centered cubic lattice, and these com-
pounds possess rather extended regions of homo-
geneity[3]

A mechanism involving the substitution of atoms
materializes, as a rule, in the compounds under consid-
eration upon deviations from stoichiometry in either
direction. This means that the linear chains remain
undisturbed in the compound A3+ xBj_x, and the excess
A atoms occupy B-sites. However, a partial destruc-
tion of the chains of A atoms is possible in the com-
pound A 3 . X B 1 + X .

One of the interesting structural features of the
A3B-phase with a β-W type lattice is their tendency
towards a high degree of ordering. However, the de-
gree of ordering turns out to depend on the type of Β
atom involved, i.e., whether the Β atom is a transition
element or a nontransition element. If the A3B com-
pounds containing nontransition Β elements are, as a
rule, highly ordered, then for the second group of these
compounds the degree of ordering depends on the mutual
location of elements A and Β in the periodic table.[ 4 J

Now let us proceed to an investigation of the physical
properties of the A3B compounds.

II. EXPERIMENT

1. The superconducting transition temperature of
pure compounds and their alloys. The data known in the
scientific literature (ending in 1973) on superconducting
transition temperatures in compounds of (3-W structure
are shown in Table I. As the techniques for synthesizing
these compounds have improved, there has been a con-
tinuous improvement in the accuracy of the determina-
tions of T c ; therefore, the results of the most recent
measurements are compiled in Table I fr Om[ 2'5~1 3'1 1 4 '1 2 3 1.

Even a brief acquaintance with the results cited in
Table I indicates that, for A3B compounds of vanadium
and niobium with β-W structure, the highest supercon-
ducting transition temperatures are obtained when the

\ . A3

Β ^ \

Al
Ga
In
TI

Si
Ge

Sn
Pb

Ρ
As
Sb
Bi

Fe
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Rh
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<0.35
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<4.20
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0.082
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<4.20

Nb

18.80
20.3

9.2

19.0 (from23)
17.0,14

(23.2from )
18.0

<1.20

2.00
2.25

0.94

2.64
2.85
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10.8

Ta

S.35

0.72

0.40

16.0

Cr

<0.35

<0.015
<1.20

3.42
4,68

0.07
0.75

<0.015

Mo

0.58
1.20

1.70
1.75

12.C5

9.6

8.11

I

W

<1.20

Β atom is a nontransition element: Al, Si, Ga, Ge, Sn.
It is precisely among these compounds that the highest
temperature superconductors Nb3Ga with T c = 20.3°K[13J

and Nb3Ge with T c = 23.2°K[U41 are found. A number of
unusual phenomena can be noted for this group of com-
pounds. Let us take, for example, the compounds of V
with Si, Ge, and Sn. The three metalloids form a single
group, the valence electron concentrations are identical
in all three compounds, but the values of Tc differ
markedly. One might think that the decrease of T c from
V3Si to V3Sn is related to the increasing mass of the Β
element. But if we take compounds of niobium with Si,
Ge, and Sn, the values of Tc hardly change at all.

Thus, the chemical kinship of the elements in a
single group of compounds does not, in the general case,
lead to the proximity of their values of T c , and this
difference between them is not governed by the mass of
the atoms.

The superconducting transition temperatures are
lower as a whole for the second group of superconduct-
ing A3B compounds with transition B-elements: T c

reaches a value between 13 and 16°K[2] for the highest
temperature superconductor in this group, Ta3Au. If
roughly identical values of T c are encountered just
about as frequently for vanadium as for niobium in the
first group of A3B compounds, one can note a different
picture for the second group of compounds—namely, the
superconducting transition temperatures for the niobium
compounds as a rule exceed the values for the corre-
sponding vanadium compounds by a factor of two or
three.
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Investigation of the superconducting properties of
A3B compounds in the region of homogeneity has shown
that the highest values of the superconducting transition
temperature are generally attained as the stoichio-
metric composition is approached. Deviation from
stoichiometry is usually characterized by a decrease in
the value of T c . [ i 2 ' " ' 1 5 ] For example, T c = 16.85 to
17.1°Kfor stoichiometric V3Si whereas T c = 9.40°K
when the same compound contains 20.1 at.% Si. [ 1 4 ] The
compound V3Ir, which is not superconducting when its
composition is stoichiometric (T c < 0.015°K), is an ex-
ception; superconductivity appears in this phase at
31 at.% Ir, and the maximum transition temperature is
reached at 38 at.% Ir . [ 1 2 ]

In connection with this point, it is interesting to note
that transition temperatures of 6.9°K and 14.9 to 16.0°K,
respectively, were first obtained for the compounds
Nb3Ge and Nb3Ga. In this connection it was noted that
both compounds crystallized with a deviation from
stoichiometry. By using a special technique of synthesis
with the application of rapid quenching, it was possible
to obtain a closer approach to stoichiometry and, as a
consequence, a substantial increase of the superconduct-
ing transition temperature, up to 23.2CK for Nb3Ge and
up to 20.3°K for Nb 3 Ga. [ 1 3 ' l e ' 1 1 4 1

Now let us proceed to an investigation of the super-
conducting properties of the alloys of compounds with
jS-W structure. Two cases are possible in connection
with the formation of solid solutions as a result of dop-
ing A3B compounds: The isomorphic replacement of
A atoms by A' atoms, and the isomorphic replacement
of Β atoms by B' atoms.

For the first group of solid solutions, the supercon-
ducting transition temperature of the alloys has been
investigated in greatest detail in the following systems:
V3Si - Mo,Si, Nb3Au - V3Au, V3Sn - Nb3Sn, V3Sn
- Ta3Sn, and Nb3Sn - Ta3Sn.[ 2 ] In all of the enumer-
ated cases and in many other cases which are described
int 2 ) , there is a smooth and continuous variation of T c

as the composition of the alloys changes. However, not
a single case is known in which the replacement of an
A atom by another transition element A' has led to an
appreciable increase of T c , such that its value would
exceed the superconducting transition temperature of
the highest-temperature component from the alloyed
compounds. A similar situation is observed in connec-
tion with alloys of A3B compounds in which the Β atom
is a transition element and its replacement by B',
another transition element, takes place. Here the alloy
systems which have been studied in most detail are:
Nb3Rh - Nb3X (X = Co, Ru, Pd, Os, Ir, Pt, Au),[17)

Mo3lr - Mo3Ru, and Mo3Os - Mo3Ru.[ 1 1 5 ]

In systems of the type A3B - A3B', where atoms Β
and B' are both transition elements, the formation of
the following solid solutions has been established: V3Si
- V3Ga, V3Si - V3Ge, V3Si - V3Sn, Nb3Sn - Nb3Al,
Nb3Sn - Nb3Ge, Nb3Sn - Nb3Sb, Nb3Al - Nb3Ge, Nb3Al
- Nb 3 Sb, [ 2 ' u e ] etc. Here the situation is somewhat dif-
ferent from the first group of solid solutions. For ex-
ample, an increase of the superconducting transition
temperature up to 2O.O5°K was first observed1-181 in the
Nb3Al - Nb3Ge system in 1967. In recent years this
result has been repeated by many investigators, and
their combined efforts have been able to bring the
superconducting transition temperature in this system

first to 20.7°K (Nb3(Al0.7 5Ge0.2 5))c l 9 ] and finally to

The preparation of the highest values of Tc in this
compound was found to be possible after long periods of
annealing at relatively moderate temperatures, in con-
nection with which the authors of[19] conjectured that
this is related to ordering processes. Here it was as-
sumed that, side by side with the ordering of the Nb
atoms in the j3-W structure (which is indicated by the
fact that the highest value of T c is reached in the
Nb3+ xAlyGei_y system when χ = 0), there is also an
ordering of the Al and Ge atoms. However, the x-ray
structural analysis performed on a polycrystalline sam-
ple of Nb3(Alo.75Geo.25) in the work[4] did not establish
the presence of new superstructure lines in the x-ray
diffraction pattern.

The study of the superconducting properties in the
solid solutions Nb3(Ali_xMex), Nb3(Sni_xMex), and
Nb 3 (Gai- x Me x ) [ 2 1 > 1 1 7 ] showed that it is also possible to
obtain some increase in the value of T c by the isomor-
phic replacement of the atoms of the nontransition ele-
ment Β by B' atoms not only in the system Nb3( Al
- Ge) but also in other systems, for example, in
Nb3(Al - Ga), Nb3(Sn - Ga), Nb3(Al - B), and Nb3(Al
- B e ) .

However, in spite of the definite optimism which un-
doubtedly appeared for the experimentalists after the
publication of article[ 1 8 ] , it is necessary to state that
during the last five years the numerous doping attempts
with the utilization of various model criteria as guides
have essentially not led to any encouraging results (see,
for example,[22]). And what is more, the latest successes
in the synthesis of the compounds Nb3Ga (T c = 20.3°K)
and Nb3Ge (T c = 23.2°K) give grounds for the following
reflections: either to continue the experimental doping
attempts in more complicated systems or else to con-
centrate efforts on the development of new methods of
synthesis, which might enable us to obtain compounds
which are closer to stoichiometry.

It is convenient to systematize the extensive experi-
mental data on the effect of impurities on the supercon-
ducting transition temperature T c in A3B compounds
of β-W structure by using the following principles. In
the first place, in order to compare the effect of the
impurities on different initial compounds with transition
temperature T£ (the value associated with strict stoich-
iometric composition) it is convenient to plot the con-
centration dependence of the relative transition temper-
ature T c /T° = t. In the second place, it is necessary to
distinguish the points in the lattice where the impurity
enters, i.e., whether it replaces one of the type A atoms
(transition elements) which form the chains or one of
the type Β atoms (nontransition or transition elements)
which are located at the vertices or at the center of the
cube. Figures 2 and 3 have been constructed according
to this principle, where the data pertaining to ternary
systems of the type (A0.75 -χ Ax )Bo.25 with 0 < χ
< 0.75[2)15>23~26] is shown in Fig. 2, and the data pertain-
ing to systems of the type A0.75(Bo.25-xBx ) with 0 < χ
< 0.25[ 2 ) 1 7 > 2 1 ) 2 7 1 are shown in Fig. 3. For each separate
curve shown in the figures, the initial compound was
chosen to be the one with the largest value of the transi-
tion temperature T c . That is why the quantity T C / T £
is smaller than 1 everywhere for the limiting concen-
tration of the third component.
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. ί .

FIG. 2. The dependence of T c on the composition of the alloy
(A - A')3B. In Fig. 2 (a) the elements A' belong to the same group of
the periodic table as the elements A. In Fig. 2 (b) A and A' are ele-
ments belonging to different groups of the periodic table.

0.70 χ

An analysis of the results shown in Figs. 2 and 3
indicates that the general rule which holds in all of the
situations under consideration is the following: if two
compounds A3B and A3B' are alloyed with a third, the
superconducting transition temperature T c of the re-
sulting alloy becomes lower than the maximum T c for
the pure, initial compounds. This "unfortunate" rule
has only a few exceptions, which were considered above.

If the region of small concentrations χ of the third
component (the impurity situation) is considered, one
can easily see an appreciable reduction of Tc with in-
creasing impurity concentration in the majority of al-
loys pertaining to all five cited cases. As a rule this
drop is very strong in the case when atoms in the chains
are replaced (Fig. 2). Physical mechanisms for the
lowering of T c due to the presence of impurities will
be discussed below.

We have already mentioned that T c is sensitive to
deviations from stoichiometric composition. Investiga-
tion of the region of homogeneity of the alloys V3Si and
Ti3Sb[ 1 4 ' 1 5 ' has shown that in both cases the maximum
transition temperature is reached near the stoichio-
metric composition. T c is weakly modified by the
presence of an excess of type Β atoms, whereas a sharp
drop in the value of T c is observed when there is a
shortage of Β atoms (i.e., when transition element
atoms replace the nonmetal atoms in the Β positions).
The latter fact apprently indicates that, in the alloys
under consideration the strong decrease of Tc is con-
nected with an increase of the interaction between the
chains through the transition element atoms occupying
Β positions.

Thus, the superconducting transition temperature is
very sensitive to substitutions of the atoms in the linear
chains, independently of whether this occurs upon doping
or associated with deviations from stoichiometric com-
position.

2. The dependence of the superconducting transition
temperature, the electronic specific heat, and the mag-
netic susceptibility on the electron concentration. An
analysis of various empirical criteria for superconduc-
tivity indicates that the clearest correlation is observed
between T c and Ne—the average number of valence
electrons per atom (the electron concentration).^1 In
fact, it follows from a consideration of Fig. 4 that the
superconductors with the highest values of Tc are
grouped around two intervals of the electron concentra-
tion: 4,50 to 4.75 and 6.25 to 6.60 e/a (electrons per
atom). The first region includes compounds in which
element Β is either a nonmetal or a simple metal, and
the second region—compounds in which the Β atom is a
transition element or a noble metal.

However, a careful analysis of Fig. 4 leads to the

. - NbjlSn-Si)
•-V3(Ga-AU

0.7,0

O.W 0.20 0.Z0

FIG. 3. Dependence of T c on the composition of the alloy
A3(B -B') (Ao.7s(Bo.2s-xB')). In Figs. 3 (a) and 3 (b) the element B'
is a nontransition element, where in Fig. 3 (a) B' is taken from the
same group as B, but in Fig. 3 (b) B' and Β are taken from different
groups; in Fig. 3 (c) the elements Β and B' are both transition elements.

TC.°K

20-

10

Als

»-Ti.4 -Zr, D - V, ο - №,• -Τα,ο - Cr. · -Mo

I I
I I
I I,

I "I

I
Ι · ΐ Γί.

' S n .

* ί ill.zs 6 ™tzs «««» 7 N e , e/a

FIG. 4. The superconducting transition temperature in compounds
of/3-W structure as a function of the electron concentration N e .

conclusion that, the ranges of valence electron concen-
trations, which are indicated above as being favorable
for high T c , are essentially the regions in which for
one and the same electron concentration there exists a
larger number of A3B compounds than exist for other
values of N e .
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For example, two groups of A3B compounds with one
and the same electron concentration stand out very pre-
dominantly in the region of the first "peak": either
4.50 e/a (Nb3Ga, Nb3Al, V3Ga, V3In, V3Al, Nb3ln) or
4.75 e/a (Nb3Ge, V3Ge, V3Si, Nb3Sn, V3Sn, Nb3Pb).
The same feature can also be noted in the second
"peak." It is natural that different compounds, corre-
sponding to identical concentrations of valence electrons
per atom, have different superconducting transition
temperatures which are distributed along a vertical line
on the graph of T c vs. N e . Here the scatter in the
values turns out to be greatest precisely in the ranges
4.50 to 4.75 e/a and 6.25 to 6.60 e/a; a value in these
intervals is apparently a necessary but not a sufficient
condition for obtaining high values of Tc. In connection
with this we wish to note that, in describing the depend-
ence of T c on Ne one often talks about the existence of
two maxima, forgetting about the fact that in the middle
part of the "favorable" electron concentrations, where
the depicted peaks are usually found, there is not a
single A3B compound of stoichiometric composition
(see, for example, the dependence of T c on Ne pre-
sented in [ 2 8 ] ) . If the data on ternary compounds, for
which a continuous variation of the electron concentra-
tion can be obtained, were plotted on this figure, we
would see that their T c assume quite different values
(depending on the composition within the limits of one
and the same value of Ne ), uniformly filling the space
between the vertical lines, which bound the region of
"favorable" electron concentrations. Therefore, we
are not inclined to attach the importance of an "abso-
lute" parameter to the dependence of T c on N e , such
that only by being governed by this parameter can one
knowingly seek alloys of A3B compounds with high T c .
However, this parameter turns out to be convenient for
the investigation of other physical properties of the
compounds in question.

The values of the electronic specific heat1-111 and the
paramagnetic susceptibility[12) as functions of the same
quantity Ne are plotted on Figs. 5 and 6 for A3B com-
pounds. It is not difficult to notice a certain similarity
between the nature of the variation of these properties
and the dependence of T c on the electron concentration
(see Fig. 4). The relative location of the points are the
same (with rare exceptions) on all three diagrams (see
Figs. 4-6).

Since both the electronic specific heat and the para-
magnetic susceptibility in metals are proportional to
the density of electron states at the Fermi level, the
presence of the indicated correlation gives a basis for
concluding that the high values of T c in compounds of
/3-W structure are associated with a high density of the
electron states at the Fermi level. (Typically the same
correlation between T c , Ύ, and χ is also observed in
the region of homogeneity of the compounds under in-
vestigation.[ 12> 14 ])

However, certain deviations from the described regu-
larity are observed in stoichiometric compounds of nio-
bium. For example, the high value of T c for the com-
pound Nb3Al (T c = 18.8°K) corresponds to relatively
low values for Ύ and χ (Figs. 5 and 6). In connection
with this point some authors have concluded (see, for
example,[β]) that, in this compound the high-temperature
properties are not related to the location of the Fermi
level near a peak in the density-of-states curve p(E),
but perhaps are determined by other factors, for exam-

I

U.'a »-Tl,o-Vr o-Cr,v-Zr, o-Nb

S 1 W sHAh%~?

1-0 5.0 6,0 7,0 Ne,e/a

FIG. 5. The electronic specific heat of compounds with 0-W
structure as a function of N e .
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^,0-Nb.o-Cr,

1
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! fr«f

*0,25\

s' V

ι ι r f
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FIG. 6. Paramagnetic susceptibility as a function of N e for com-
pounds with /3-W structure.

pie, the structure of the vibrational spectrum. In turn
we wish to call attention to the following fact: Although
the values of Ύ in the A3B compounds of niobium with
high T c are not as large as one might expect in analogy
with the vanadium compounds, nevertheless there is a
general correlation between T c and / in the series
Nb3Os - Nb3lr - Nb3Pt - Nb3Au [ 2 9 ) (Figs. 4 and 5),
that is, higher values of T c correspond to higher values
of y.

Thus, from the results presented above it follows
that, although the electron concentration is not some
kind of universal parameter which one can use to seek
alloys of /3-W compounds with higher values of T c , the
investigation of a number of physical properties as
functions of the electron concentration turns out to be
useful. It leads us to the important conclusion that the
high values of T c in the compounds under discussion
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χ, ΙΟ"6 emu/g-at κ.%
TABLE II. Energy gap in compounds with /3-W structure

0.55

0.50

0.Ί5

0.55

O.SS

DM

0.55
FIG. 7. The temperature dependence

of the susceptibility χ and of the
Knight shift Κ for A3B compounds of
vanadium and niobium (B is a nontransi-
tion element) according to the data
given in [6>3°-"J.

Τ,'Κ

are, as a rule, associated with a high density of elec-
tron states at the Fermi level.

3. Temperature dependence of the magnetic suscep-
tibility and of the Knight shift. X-ray and optical spec-
tra. Many compounds with high values of Tc turn out
to have interesting dependences of such properties as
the variation of the susceptibility and the Knight shift
with temperature. It is well known that the ordinary
Pauli susceptibility and the Knight shift (which is pro-
portional to the susceptibility) should not depend on the
temperature for a degenerate electron system, which is
also observed for the majority of metals. However, a
strong temperature dependence of these characteristics
was observed in compounds of β-W structure and, what
is of even greater interest, this phenomena was observed
precisely in those compounds which have the highest
transition temperatures. Does this indicate that one
should necessarily anticipate high values of Tc where
the temperature dependences of the susceptibility and
of the Knight shift are stronger? The experimental in-
vestigations t3 0"3 2] indicate that such a correlation is in
fact observed for the V3X compounds (X = Si, Ga, Ge,
Sn, As, Sb, Pt, Au) (Fig. 7). For example, the strong
temperature dependence of Ky(T)and χ(Τ) for V3Si
is accompanied by a high value of T c (17QK), and, con-
versely, for V3As (T c = 0.2°K) and V3Sb (T c = 0.8°K)
the indicated dependences are almost absent.

However, for niobium compounds the temperature
dependence of the susceptibility was found to be weakly
expressed, and the temperature variation of the Knight
shift has a more complicated nature than in V3X com-
pounds.[ 6'1 2 > 3 3 > 3 4 1 It was found to be impossible to estab-
lish any correlation between the behavior of these char-
acteristics and the superconducting properties of Nb3X
compounds. Thus, in regard to this group of properties
one can remark that the niobium compounds stand as
isolated objects and exhibit completely different behav-
ior than the vanadium compounds.

Let us return to the investigation of the unusual de-
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pendence of the susceptibility and of the Knight shift in
V3X compounds. The observed, strong temperature de-
pendence of Ky(T)and χ(Τ) in V3X compounds with
high values of T c indicates that the Fermi level ap-
parently lies near a narrow peak in the density of
states, this peak being so narrow that its width is com-
parable with the energy kT.[ 3 2 ) What kind of electron
states can form such a peak? A series of other experi-
ments enables us to obtain such information and, to be-
gin with, the x-ray spectra. Investigation of the x-ray
spectra for different series of binary components of
V3X compounds gives the possibility to establish the
nature of the distribution of the various types of states
in the empty and filled parts of the conduction band.
Such measurements were carried out j.n[ 3 5 ' 3 6 ] and
showed that V3d-states appear at the Fermi surface in
all V3X compounds, and it is apparently these states
which form the indicated narrow peak in the density of
states. The electronic states of the x-component are, as
a rule, located at the bottom of the valence band, where
the degree of their localization depends on the nature of
the location of the X-element relative to vanadium in the
periodic table.

The extraction of detailed information from optical
spectra runs into great difficulties connected with non-
unique interpretation of the experimental data. How-
ever, from optical experiments one can obtain other
important parameters such as, for example, the fre-
quency of electron collisions or the values of the energy
gap. The effective electron-collision frequency for the
compound Nb3Sn, determined from optical spectra, was
found to be i>eff = 1.85 x 1014 sec"1. 1"1 Furthermore, the
electron-phonon collision frequency was calculated,
vep = 1.1 x 1014 sec"1, from this value and by using the
data concerning the measured values of the residual
and room-temperature resistances, and the electron-
phonon coupling constant was found to be Λ = 0.46. The
effective Coulomb potential μ* was obtained by substi-
tuting this value of λ into McMillan's formula1·381 for
the superconducting transition temperature; the result-
ing value unexpectedly turned out to be negative in sign:
μ* = -0.12. This value for λ cannot give so a high value
of T c (~18°K) for conventional values of the effective
Coulomb potential μ*. Therefore, the authors οί [ 3 7 )

propose that a nonphonon superconductivity mechanism
may perhaps also exist in Nb3Sn.

Optical measurements are also valuable in that they
enable us to determine the energy gap in superconduc-
tors. Thus, for example, from a measurement of the
optical properties of the compound Nb3Sn in the infra-
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TABLE HI. Temperature of the structural transformation in binary
compounds of /3-W structure

Compound

V3Si
Nb3Sn
VaGa

Structural
transformation
temperature,0 Κ

21
43
50

Tetragonality,
c/a

1.0024
0.9939

Reference

51

51

93

red region of the spectrum the relative value of the
energy gap was found to be 2A/kTc = 3.77, which is
close to the value which follows from the BCS theory
(2A/kTc = 3.53). However, the method of infrared re-
flectivity is not the only way to measure the energy gap;
therefore, a comparison of the values of 2A/kTc, deter-
mined by using different methods, is of interest. Exam-
ination of these data,[ 3 9"4 e ] which are summarized in
Table II, indicates that there is a great deal of scatter
in the values of this parameter for the compounds
Nb3Sn and V3Si. For Nb3Sn the relative values of the
energy gap 2A/kTc fluctuate between 0.2 and 4.8, and
for V3Si they fluctuate between 1.8 and 3.8. What is the
reason for the different values of the energy gap, which
are obtained even when the same method of investiga-
tion is used (for example, tunneling)? On the one hand,
as is indicated in [ 4 3 ] , this may be related to the aniso-
tropy of the energy gap as a function of the orientation
of the crystal with respect to the tunneling contact. In
the case of polycrystalline samples a set of different
orientations will exist and, as a consequence of this,
there will be several values for the gap, as observed,
for example, in1-42'. On the other hand, since tunneling
experiments measure the energy gap within a distance
of the order of the coherence length ξ from the surface,
it is possible that in the compounds of /3-W structure
under consideration, which have small values of ξ (ξ
~ 100 A for Nb3Sn), the values of the energy gap are to
some extent determined by the state of the surface and
by the impurities present on it. For example, it is
shown in [ 4 4 ] that damaging the surface of the Nb3Sn
sample leads to a reduction of the relative values of the
gap (2A/kTc) from 3.77 to 1.9.

Quite original measurements of the energy gap in
superconducting Nb3Sn were performed by Axe and
Shirane.[481 They used inelastic neutron scattering to
study the phonon damping at low temperatures, and it
was found that for certain transverse phonons the pho-
non linewidth decreases sharply when the temperature
is below T c . Such behavior of the phonon damping can
be explained by processes involving the decay of the
phonon into two quasiparticles in the superconductor.
This process obviously has a threshold equal to 2Δ(Τ);
therefore, when the phonon energy is less than the indi-
cated threshold, its damping should fall off sharply. The
data for 2Δ(0), which is given in the Table, corresponds
to a phonon with wave vector ~ [1 10]; therefore, the
obtained value for the gap corresponds to precisely this
direction in k-space. However, the majority of the re-
maining methods give certain characteristics of the gap
which are averaged over the anisotropy.

Measurements of the energy gap, of course, give
valuable information; however, the obtained data are
unfortunately inconsistent, especially for the compound
NbaSn. If the multiple-valued nature of the tunneling ex-
periment results is due to the existence of a strongly
anisotropic Fermi surface, it would be desirable to de-

termine which directions in k-space the obtained data
pertain to, by performing measurements on single
crystals.

Now let us proceed to a consideration of the lattice
properties.

4. Structural transformation. In 1963, in connection
with neutron diffraction studies of the compound V3Si,
Shull observed a broadening of the diffraction lines on
cooling the sample below the superconducting transition
temperature. This is regarded as the first observation
of a structural transformation in compounds of the /3-W
type. Later Batterman and Barrett1-501 performed a care-
ful, low-temperature, x-ray structure analysis of a
single crystal of V3Si and established that the crystal
undergoes a transformation from a cubic to a tetragonal
structure at a temperature of the order of ~21°K. A
similar structural transformation was soon observed in
another compound having the /3-W structure—namely,
Nb3SnC51'52l (Table III).

The basic characteristics of this transformation are
as follows:

1) The absence of diffusion, that is, the compositions
of the phases—the initial (cubic) phase and the final
(tetragonal) phase—are identical. This implies that only
a realignment of the crystal lattice occurs during the
transformation, without any changes of the composition
due to diffusion of the component atoms.

2) No noticeable change in the crystal volume is de-
tected in the transformation process.

3) The temperature of the structural transformation
always exceeds the superconducting transition tempera-
ture.

4) The transformation is reversible, i.e., upon heat-
ing above the structural transition point the crystal al-
ways returns to its original orientation (the absence of
hysteresis effects).

5) The temperature of the structural transformation
may vary from sample to sample: for V3Si it occurs in
the interval between 18 and 30°K, and for Nb3Sn in the
interval between 35 and 50°K. The structural transfor-
mation was not observed in a number of samples of
V3Si and Nb3Sn.

6) The single-crystal nature of the material is not
preserved during the transformation from a cubic to a
tetragonal structure. A twinning domain structure is
detected in the tetragonal state.

There is one essential difference in the general fea-
tures of the compounds V3Si and Nb3Sn enumerated
above, which lies in the fact that if the ratio c/a > 1 in
V3Si the same ratio will be less than unity in the tetra-
gonal structure for Nb3Sn (see Table III).

The nondiffusive nature of the transformation, the
absence of changes in the volume, and certain other
features recall the martensitic transformation in the
alloy In-Te,[ 5 4 ] which was thoroughly investigated
earlier; in connection with this Batterman and Barrett
also called the structural transformation in V3Si and
Nb3Sn martensitic.

In addition to V3Si and Nb3Sn, the martensitic trans-
formation has also been detected in the compound V3Ga
on observation in an electron microscope.1-531 No struc-
tural transformation of any kind has been observed in
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FIG. 8. Temperature dependence of the tetragonal strain e = (a/c) - 1
for the compound Nb3Sn. The solid curve gives the results of a calcula-
tion of the indicated dependence according to the data from article ["] .

FIG. 9.The atomic displacements in a /3-W type lattice which cor-
respond to the irreducible representations Γ 2 5 ( - ) , Γ 1 5 ( - ) , Γ 1 5 (+), and

the other binary compounds of /3-W structure at low
temperatures. Thus, the martensitic transformation has
so far been observed only in those compounds which
have high T c . Is this transformation related to high-
temperature superconductivity? This question will be
discussed below.

X-ray structure measurements first established'50'511

the fact that the ratio c/a increases rapidly below the
temperature of the martensitic transformation, reaching
saturation at temperatures of the order of T c . (The
impression is gained that the onset of the superconduct-
ing state prevents any further growth of the tetragonal
deformation.) A sudden change in the value of c/a was
not detected in these articles, and in this connection it
was assumed that the transformation in question can be
regarded as a second-order phase transition. However,
more careful measurements by Vieland and coworkers'551

showed that a temperature range exists where the tetra-
gonal deformation undergoes a jump (Fig. 8), which in-
dicates a first-order phase transition.

Since the question of the nature of the transition was
not solved in the indicated experiments, subsequent at-
tempts were made to investigate the tetragonal phase.
It followed from the analysis by Anderson and Blount[56'
that, if a second-order phase transition occurs in the com-
pounds V3S1 and Nb3Sn, the tetragonal deformation
cannot be homogeneous. Four types of atomic displace-
ments, corresponding to the irreducible representations
of the cubic group, are possible within the limits of the
unit cell, namely, Γ^ 5 (-) , r i 5 ( - ) , r i 5 ( + ) , and Γ 1 2 (+)
(Fig. 9). An x-ray structural investigation of V3S1 did
not detect these displacements;[57J however, the neutron
scattering investigation of single-crystal Nb3Sn, car-
ried out by Shirane and Axe,[581 showed that displace-
ments of the Nb atoms with respect to each other cor-
responding to the representation ΓΊ2(+) appear below
T m . The spatial structure which arises is D | n · It is
remarkable that the displacement δ of the Nb atoms
with temperature identically coincides with the temper-
ature dependence of the tetragonality parameter deter-
mined from x-ray structural measurements. Thus, a
linear relation exists between the two parameters:

The influence of residual stresses on the transition
of a number of binary compounds with β-W structure
and their alloys into the superconducting state was in-
vestigated in[ 1 1 8~1 2 0 ] . Broadening of the superconducting
transition and the formation of an additional low-tem-
perature step on the transition curves, which is con-
nected with the large development of the martensitic
transformation in the samples under the influence of the
stresses, were observed in the stressed samples. The
low-temperature step on the transition curve is at-
tributed to a transition of the martensitic phase into the
superconducting state. This agrees with the general
nature of the processes going on in ordinary martensitic
transformations, when plastic deformation in the initial
state raises T m , thus increasing the amount of marten-
sitic phase which is formed at one and the same tem-
perature of measurements. However, direct x-ray
structure analyses are required in order to reach a
final conclusion about the influence of residual stresses
on the martensitic transformation in the indicated com-
pounds and alloys.

An interesting experimental study of the effect of a
magnetic field on the martensitic transformation in
V3Si was recently made by Maita and Bucher/5 9 1 They
measured the specific heat in zero field and in a field
of 90 kOe, which was applied along the [0 0 Indirection
of the crystal. Upon applying the magnetic field, a shift
of the martensitic transformation point towards lower
temperatures was observed: AT m = -0.26QK. The very
concept of the effect of a magnetic field on the position
of the martensitic transformation point in β-W com-
pounds might have originated from the known (in the
literature) shift of the martensitic transformation tem-
perature range in steels and carbon-free alloys of iron
base when a pulsed magnetic field is applied/601 The
observed effect of a magnetic field on T m apparently
once again confirms the martensitic nature of the struc-
tural transformation in compounds of β-W type.

It is interesting to note that, near the temperature of
the structural transformation, anomalies are observed
in such physical properties as the following: the elec-
tronic specific heat/6 1 1 the magnet susceptibility,[59J

nuclear magnetic resonance/6 2' and the Mossbauer ef-
fect/631 For example, large relative changes of the
electric field gradient were observed in NMR studies of
V3S1; the observed field-gradient change was two
orders of magnitude greater than the changes in lattice
constant and differs from the predictions of the point-
charge model by almost 60 t imes/ 6 2 1 The experimental
data on the temperature dependence of the probability
for resonance absorption of r quanta in Nb3Sn indicate
strong anharmonicity of the lattice in this compound/631

5. Anomalies of the acoustic properties. Some high-
temperature superconducting compounds with /3-W
structure, and certainly those in which a structural
transition is observed, exhibit anomalies in their elastic
properties. The temperature dependences of the velocity
of sound for polycrystalline samples of a number of
compounds with β-W structure, measured in the range
between 4.2 and 300°K,[641 are shown in Fig. 10. Exam-
ination of this data leads to the conclusion that, for
compounds with relatively high T c ( > 14°K) the velocities
of sound fall anomalously as the temperature decreases,
which indicates a "softening" of the lattice moduli.

The elastic moduli Cy were calculated from meas-
urements of the velocity of sound in single crystals of
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FIG. 10. Temperature dependence
of the velocity of sound for the com-
pounds A3B.
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FIG. 11. Temperature dependence of the elastic moduli for V3Ge (a),
V3Si (b), and Nb3Sn (c).

the compounds NbjSn and V3Ge for different directions
and polarizations. This data from [ e 5 ' 6 8 ] are presented
in Fig. 11.2 ) The completely anomalous temperature
dependence of the elastic moduli Cu and (Cn - Ci2)/2
in V3S1 and Nb3Sn at low temperatures should be noted,
whereas in V3Ge their temperature dependence is simi-
lar to that observed for the majority of metals. For all
three compounds, the modulus Cn turns out to exhibit
the most weakly-expressed dependence. It is necessary
to separately note the large temperature variation of
the shear modulus (Cn - Ci2)/2, which almost vanishes
in the compound V3S1 and is markedly "softened" in
Nb3Sn. "Softening" of the shear modes has also been
detected in measurements of the temperature depend-
ence of the derivative of the shear modulus with respect
to the pressure,1·121' and in a very unique experiment by
Testardi in which the generation of second-harmonic
ultrasound by shear waves in V3S1 is observed.[122]

The softening of the lattice in V3Si and Nb3Sn and the
instability of the shear phonon modes apparently leads
to a martensitic phase transition in these compounds.
Also the change in the value of dCij/dT at Τ = T c , due
to the transition from the normal state into the super-
conducting state, was found to be anomalously large in
the compounds V3Si and V3Ge. (The normal state was
maintained in these compounds by applying a magnetic
field of the order of 23 kOe, which destroyed the super-
conductivity at low temperatures.) The discontinuity in
the derivative of the shear modulus with respect to
temperature in V3Ge and V3S1 was found to be two and
four, respectively, orders of magnitude larger than
typical values for the majority of superconductors.

The temperature dependence of the attenuation of
sound is also anomalous for the compounds V3S1 and
Nb3Sn[ e e > e 9 ] (Fig. 12). At temperatures of the order of
several tens of degrees Kelvin, the attenuation is small
and slowly increases with decreasing temperature.
There is a spike in the attenuation curve for Nb3Sn at
a temperature of the order of 36°K, which is apparently

FIG. 12. The attenuation of
sound as a function of the tem-
perature in the compounds
Nb3Sn and V3Si. The dashed
line indicates the attenuation
for a typical superconductor.
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FIG. 13. Values of 9Tc/3p for a number of compounds with /3-W
structure.

due to the structural transformation from a cubic into a
tetragonal phase. A second spike in the attenuation
curve for this compound occurs at the superconducting
transition temperature (~18°K). For V3 Si the marten-
sitic transformation temperature T r a and the super-
conducting transition temperature T c are separated by
only 4°K, so that here the two bumps in the attenuation
curve may overlap.

Thus, it follows from an analysis of the propagation
and attenuation of sound that quite unusual behavior of
the crystal's elastic properties is observed in com-
pounds with /3-W structure. In this connection it is very
interesting that many anomalies of the elastic properties
are observed just in the high-temperature superconduc-
tors. This may mean one of two things, either the high
values of Tc in these compounds are related to an insta-
bility of the lattice (in the cubic phase) or else both are
consequences of one and the same cause, for example,
anomalies of the electronic spectrum. We shall discuss
this alternative in Chapter III of the review.

6. The effect of pressure on the superconducting
transition temperature. Under conditions closely ap-
proximating hydrostatic pressure conditions, Smith
recently measured the superconducting transition tem-
peratures of approximately thirty compounds with (3-W
structure.[ 7 0 > 7 1 ] His data are shown in Fig. 13. Examina-
tion of these results indicates the interesting fea-
tures of the behavior of 3Tc/ap in these compounds.
The investigated compounds of chromium and most of
the vanadium compounds indicate a positive sign for
9Tc/9p (V3Pt and V3Ir are exceptions). At the same
time a decrease of Tc with increasing pressure is
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registered for all molybdenum compounds and for most
of the niobium compounds. Our attention is drawn to
the substantial difference in the behavior of a Tc/9p for
compounds of vanadium and niobium with identical
second components and, consequently, identical electron
concentrations (V3Ga and Nb3Ga, V3Ge and Nb3Ge,
V3Sn and Nb3Sn, V3Ir and Nb3lr, V3(Al - Ge) and
Nb3(Al - Ge)). One more interesting feature can be
noted. A3B compounds with β-W structure, in which
the transition 3d-metals (Ti, V, Cr) appear as the A
atoms, exhibit, as a rule, positive values of 9Tc/3p,
whereas a reduction of T c with increasing pressure is
observed for the analogous compounds of 4d- and 5d-
metals (Nb, Mo, and Ta). Deviation from stoichiometry
in the compound V3Si and the presence of disorder in
the compound V3Au lead to a drop in the value of Tc

with increasing pressure.

Thus, the depicted experimental data on the effect of
pressure on T c conclusively demonstrate that there is
no universality in the behavior of 9Tc/9p for the differ-
ent compounds. It is difficult to distinguish a parameter
with respect to which it might be possible to establish
some kind of regularity in the fluctuations of 3TC /dp.

It should be noted that the application of hydrostatic
pressure also leads to changes in other crystalline
properties and, in particular, to a reduction of the
volume and also of the lattice parameter. Let us see
whether such an effect can be achieved by other methods,
for example, by doping. In this connection, how will the
superconducting properties be modified? The experi-
mental data indicate that, by doping the compounds
V3Si, V3Ge, and V3Ga one can, in contrast to compres-
sion, obtain either an increase or a decrease of the
lattice parameter. However, in order to compare with
the experimental data on pressure we shall only be in-
terested in that part of the doping data which pertains
to a decrease of the lattice parameter. Let us examine
these results. The experimental points shown in Fig. 14
correspond to the dependence of T c on lattice parame-
ter in ternary alloys based on V3Si, V3Ga, and V3Ge.[ 7 2 ]

It is evident that in V3Si and V3Ga the superconducting
transition temperature decreases as the lattice parame-
ter becomes smaller, but the transition temperature in-
creases in V3Ge, From these data one might anticipate
that 9Tc/3p would be positive for V3Ge and negative
for V3Si and V3Ga. But in all three cases, as we have
seen in Fig. 13, the change of T c under high pressure
indicates that 9Tc/9p has a positive sign. Thus, the
comparison which has been made implies that it is im-
possible to reduce the effect of doping to just changes
of the volume.

The dependence of T c on hydrostatic pressure is a
special case of the question of the strain dependence
of Tc = T c (e ). In a number of articles [ 6 4 ' 7 2 ' 7 3 1

Testardi has attempted to systematize the extensive
experimental data on the basis of a phenomenological
expansion of T c in powers of the strain tensor, where
the £j with j = 1, 2, , . . , 6 label the independent com-
ponents of the strain tensor, namely, €χχ, €yy, £zz>
exy> eyz, and €ζχ. Κ is postulated that T c ( e ) can be
represented in the form of the series

Tc (ε) = Tc (0) (6.1)

FIG. 14. The dependence of
the superconducting transition
temperature on the lattice param-
eter for compounds with /3-W
structure (according to the data
in [7 2]).

TC.-K

•

•

•

/

/

• ι
I

• ι
1
1

-"A*Si, ο

- V J S L H A I , Ο

- V 3 G u
-A
Hv,

A*

/ " 8No\

'° / v

170 1,71 1.76
lattice paiameter, in A

For this purpose it is necessary to utilize the following
expression for the difference between the free energies
of the system in the normal and superconducting states
near T c :

ε)
(6.2)

By differentiating this expression with respect to the
strains and with respect to the temperature, we obtain
three equations relating the experimentally observable
quantities at the point T c to the coefficients Fj and

>-<#=-g-Γ,Γ,,

dT

rS a.2Tc .

(6.3)

here Cy and Cjj are the elastic constants in the nor-
mal and superconducting phases, which are related to
the free energy by the relation

The coefficients Tj and Ajj in this expansion can be
determined independently from a series of experiments.

Ν S
and Cy and Cy are the corresponding specific heats.

Having made complete measurements of the elastic
properties of single crystals of V3Ge and V3Si,[65'72] l

Testardi determined the expansion coefficients Tj and
Aij, which for V3Si turned out to be given by: | ΓΊ|
< 50°K, Δ η = -24 x 10*°K, Δ1 2 = -5 Χ 104οΚ, Δ44 = -1

χ 104oK; and for V3Ge he found: | Γ\ | < 45°K, AL1

= 9.4 x 104oK, Δi2 = -1.8 x 104oK, and Δ4 4 = 0.4
χ 104οΚ. Such small values of the coefficients Tj rela-
tive to the values of the coefficients Δί-j, obtained for
both compounds, indicate that the strain dependence of
T c is mainly quadratic; this is shown in Fig. 14 by the
parabolas with branches directed downward for V3Si
(since Δη ^ 0) and with branches directed upward for
V3Ge (Δη > 0). This means that all strains should in-
crease the superconducting transition temperature in
V3Ge and, conversely, decrease T c in V3Si. Are
these predictions in agreement with the experimental
data?

For V3Si the different methods of producing defor-
mations give a drop in the value of T c . Thus, for ex-
ample, the application of uniaxial stress [ 7 4 ] and also the
doping with different components, indicated in Fig. 14,
lead to a decrease in the values of T c . Furthermore,
the spontaneous deformation which arises in connection
with the structural transition in V3Si also gives a re-
duction of T c by 0.1 to 0.4°K[72] for samples under-
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going a structural transformation in comparison with
samples in which a martensitic transition was not ob-
served. This number is very close to the value 0.38°K
which Testardi's estimate gives.[e5] As for V3Ge there
are no direct experiments involving uniaxial pressure,
but a decrease of the lattice parameter caused by dop-
ing leads to an increase of T c (Fig. 14). It should be
noted that the experimental points obtained from the
dependence of T c on the lattice parameter (the data
with respect to doping) fit very well on the curves pre-
dicted by Testardi from his analysis of the elastic
properties of V3Si and V3Ge.

In spite of the successful interpretation of a set of
experimental data, it must be noted that Testardi's
treatment is not rigorous and not unique. The very
possibility of expanding T c in powers of the strain is
problematic because it may not be an analytic function
of e.

In addition, V3Si and V3Ge compounds with extreme
values of the superconducting transition temperature
were chosen as the objects on which the experimental
verification of the strain dependence of T c is based.
As we have seen from the material presented in Chap.
I, arbitrary doping of high-temperature superconduc-
tors (including V3Si and V3Ga) leads to a decrease of
T c and the reverse situation is very often observed
(VaGe). Furthermore, some of the experimental data is
not included in Fig. 14, for example, the data concern-
ing (V - Pd)3Si and (V - Mo)3Si alloys,C2J which
clearly does not fit a parabolic dependence of T c on the
lattice parameter. Therefore, it is possible that the
above described correlation between the dependence of
T c on the lattice parameter predicted by Testardi and
the selected experimental data on the variation of T c in
A3B alloys is accidental.

In order to reach final conclusions about the adequacy
of such a treatment, an investigation of the intermediate
case is of interest—namely, superconductors with
transition temperatures of the order of 9 or 10°K, in
which doping might lead to either a decrease or an in-
crease of T c .

III. THEORETICAL MODELS

7. Calculations of the electronic spectrum. The
cited experimental data indicate that high values of the
magnetic susceptibility and of the electronic specific
heat are observed for high-temperature superconducting
compounds such as V3Si, V3Ga, Nb3Sn, etc.; this fact
indicates a high density of states near the Fermi sur-
face. In these compounds there is apparently a peak in
the density of states and the Fermi level falls on it.

It is characteristic that, it is only for these high-
temperature compounds that appreciable temperature
dependences of the magnetic susceptibility and of the
Knight shift are observed; this indicates that the peak in
the density of states, existing near the Fermi level, is
extremely narrow with a width comparable to the en-
ergy kT of thermal motion. What kind of atomic elec-
tron states can produce such a peak? Certain arguments
can be given in this respect if all the anomalies of the
considered compounds are analyzed with respect to the
Knight shift (in order to be definite, we shall have the
compound V3Ga in mind). They are the following:
1) The Knight shift Ky of the vanadium atoms is posi-
tive and decreases with decreasing temperature;

p(D

FIG. 15. Model of the band
structure for V3Ga according to
Clogston and Jaccarino I32].

if-Ga Ji-V.fy-Ce

2) The Knight shift KQa for gallium atoms is negative
and increases with decreasing temperature. We also
recall that the susceptibility increases with decreasing
temperature.

In order to explain these facts, Clogston and Jac-
carino[ 3 2 ] proposed the following model for the elec-
tronic spectrum of V3Ga. There is a wide electron con-
duction band formed principally from vanadium 4s and
4p and gallium 4p-type atomic states. This band over-
laps a narrow band formed from the vanadium 3d-type
states, and the Fermi level occurs somewhere inside
this band (Fig. 15). It is also assumed that the 4s states
belonging to the Ga atoms form a very narrow band
lying far below the Fermi surface. This assumption
reflects the fact that the Ga atoms are distributed in the
lattice at considerable distances from one another so
that their levels will be broadened only slightly. Finally
it is assumed that the 4p states of Ga lie sufficiently
close to the Fermi surface so that they are strongly in-
termixed with the vanadium bands. To explain the
strong temperature dependence of the susceptibility, for
V3Ga it is necessary to assume that the width of the
peak in the density of states at the Fermi surface
amounts to about 0.04 eV. We shall see below how
numerical calculations of the spectrum for vanadium
compounds confirm the correctness of the proposed
structure. We also note that the proposed model for the
band structure of vanadium compounds is in complete
agreement with the results of x-ray spectroscopy for
these compounds, which were given in Sec. 3.

To verify the correctness of the Clogston-Jaccarino
model, in 1965 Mattheiss[ 7 5 ] made detailed calculations
of the electronic spectrum of a number of compounds
having the β-W structure. The calculations for the com-
pounds V3X (X = Al, Si, Co, Ga, Ge, As) were made
using the augmented-plane-wave (APW) method; the
spectrum was calculated at all symmetry points in the
Brillouin zone and, in addition, along symmetry lines
for V3Ga so as to be able to construct the density of
states as a function of the energy for this compound.

The results of the calculations turned out to be in
qualitative agreement with the Clogstron-Jaccarino
model. The following structure of the spectrum was
recognized in detail. Lowest of all are the bands which
are mainly associated with the 4s states of the Ga atoms
and which lie well below the Fermi surface. They are
separated by an energy gap from the overlapping con-
duction bands. The 3d bands, formed by the atomic
states of vanadium and having a width of approximately
7 eV, lie in the midst of bands which represent the
vanadium 4s, 4p, and gallium 4p-type states. These 3d
bands are divided roughly into two sub-bands separated
by a minimum in the density of states p(E) between
them (Fig. 16). The calculation of the density of states
showed that the Fermi level for V3Ga falls at the peak
in p(E). Analysis of the APW wave functions for V3Ga
in the vicinity of the Fermi energy suggests that they
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are predominantly 3d states of vanadium with a small
admixture (of the order of 5%) of gallium 4p states.

Thus, the calculation led to a high value for the
density of states at the Fermi surface; for V3Ga it gives
1.3 spin states per eV for one atom and one spin direc-
tion. The experimental values for the density of states
are 7.1 and 5.6, obtained respectively from measure-
ments of the electronic specific heat and the magnetic
susceptibility. The calculated values turn out to be
several times smaller. Clogston[76] pointed out that a
possible cause of this discrepancy is a renormalization,
due to the electron-phonon interaction of the density of
states, which determines the electronic specific heat.

Although Mattheiss's calculations confirmed the
Clogston-Jaccarino model for V3X compounds, a new
attempt was recently made to theoretically investigate
the electronic band structure in these compounds.
Goldberg and Weger[7?1 performed a calculation using
the tight binding method, allowing for interchain coup-
ling between the chains of vanadium atoms. The tight
binding calculation also led to the existence of a peak in
the density of states near the Fermi level. Typically the
parameters of the interchain coupling turn out to be of
the same order of magnitude as the interaction of the
V atoms inside the chains. From the point of view of
these results, one gains the impression that the appear-
ance of the indicated peak is not due to the weak inter-
action of the chains in V3X compounds, but rather to a
cancellation of the interaction with the eight next near-
est neighbors due to symmetry . [ T 7 ]

8. The Labbe-Friedel model of noninteracting chains.
Although numerical calculations of the electronic spec-
trum demonstrate the existence of a narrow peak in the
density of states near the Fermi surface, they are not
convenient to use since they do not give an analytic ex-
pression for the density of states. It would be desirable
to obtain an approximate analytic expression for the
spectrum of the compounds under investigation even at
the cost of using a very crude model; this is what
Labbe and Friedel[ 7 8 ] were able to accomplish by con-
sidering the characteristics of the crystalline structure
of A3B compounds. As indicated above, in these com-
pounds the Α-type atoms (transition element) are
located on straight lines directed along the axes of the
type [1 0 0], and moreover the distance between neigh-
boring atoms on such a straight line is considerably
smaller than the distance between atoms belonging to
different lines. In other words, the Α-type atoms form
three mutually perpendicular systems of linear chains
in the crystal.[791 it is assumed, in the first place, that
the s-electrons of the transition atoms and of the B-type
atoms undergo collective motion in the crystal, forming
a wide band (valence p-electrons of the B-type atoms

may also appear in this band), and in the second place it
is assumed that the d electrons form a narrow band and
can be described in the tight binding approximation.
Thus, from an electronic point of view, a crystal of the
\f3Ga type can be represented as an assembly of one-
dimensional chains, immersed in s electrons which
stabilize the system.1-781

For a linear chain one can write down the energy of
the d electrons in the tight binding approximation in the
following form:

EH = Eo — Em cos (ka), (8.1)

where Eo is the atomic level of a d electron, E m is the
doubled matrix element for a transition between nearest
neighbor atoms in the chain, the atoms being spaced a
distance a apart, and k is the quasimomentum.

Thus, in the model under consideration the motion of
the d electrons in the crystal turns out, in the first
place, to be one-dimensional and, in the second place,
multiply degenerate (according to the number of chains).
It is obvious that the Fermi surface for such a system
consists of three mutually perpendicular plane sheets.

One can easily verify that the density of states p(E)
of the one-dimensional motion has a square root singu-
larity at the band edges. In fact, let us substitute ex-
pression (8.1) into the formula for the density of states
per single atom of a chain,

ρ (&) = -. (8.2)

and then by integrating we obtain the dependence on
[78]

(8.3)

Near the bottom of the band, expression (8.3) gives
exactly a square root singularity of the form

0. " E<Em, (8·4)

where the energy reference point is chosen such that
Eo = 0.

Now it is necessary to take the angular nature of the
atomic d-states into consideration. In a linear chain the
five-fold degenerate atomic term can be decomposed
into three degenerate terms, combining the states ac-
cording to the principle

d,JZ), (8.5)

(the ζ axis is directed along the chain). In a chain,
each of these orbital levels is smeared into a one-
dimensional band with the dispersion law (8.1), where
the parameter E m will still depend on the type of
orbital (8.5). Let us assume that the structure of the
electronic spectrum for compounds of β-W structure
with high T c , such as V3Si, Nb3Sn, and so forth, has
the form of three bands which are "nested" inside one
another, corresponding to the one-dimensional motion
of the d electrons, and a wide band associated with the
collective motion of the s electrons throughout the en-
tire crystal (Fig. 17).

For vanadium compounds, where the number of d
electrons is equal to 3 or 4 per vanadium atom, the d
band is less than half full and the Fermi level may turn
out to be near the bottom of the upper d band, thereby
ensuring a high density of states near it. Precisely such
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FIG. 17. The band structure
for compounds of the type
V3Si, V3Ga, Nb3Sn, etc., ac-
according to the Labb£-
Friedel model.

a situation is assumed for V3S1, Nb3Sn, and for a num-
ber of other compounds with high superconducting
transition temperatures. The contribution to the density
of states from the other d sub-bands and also from the
s band near the Fermi level can be neglected, and thus
the electronic spectrum of these compounds can be ap-
proximated by the one-dimensional dispersion law (8.1)
and by a density of states in the form (8.4).

In such a model it is possible to explain1-80'811 the
strong temperature dependence of the magnetic suscep-
tibility and of the Knight shift in the compounds under
investigation. The magnetic susceptibility consists of
two main contributions: The Pauli susceptibility Xd(T),
which is connected with paramagnetism, and the orbital
susceptibility χ0:

X = Xo + Xd(T).

In view of the large contribution of d electrons to the
density of states at the Fermi surface, one can neglect
the contribution to χ from the s electrons; then xd(T)
can be written in the form

Xd(T> = — 2μ% j /' (Ε) ρ (Ε) dE, (8.6)

where f'(E) is the derivative with respect to Ε of the
Fermi distribution function, μ Β is the Bohr magneton,
and p(E) is the density of states of the nearly empty d
band, which is approximated by expression (8.4). The
chemical potential of the system at any given tempera-
ture is determined by the equation

(E)dE, (8.7)

where Q is the number of electrons in this band. We
choose the values of the basic parameters for V3S1—
namely, the width of the band 2 | E m | , the Fermi energy
E F , and Q (the number of electrons per vanadium
atom)—as follows:

2 I Em I = 9eV, EF = 1.8-10-»eV, Q = 0,036. (8.8)

Formula (8.6) leads to a temperature dependence xd(T)
which agrees with the experimentally observed behavior
of χ in the temperature interval from 50 to 400°K. How-
ever, at room temperature the numerical value of xd(T)
differs from the experimental value by a factor of seven.
The experimental value amounts to 8 x 10~4 emu/mole,
whereas Xd(T) w 1.1 x 10~4 emu/mole. Thus, the or-
bital contribution should amount to approximately
6 x 10~4 emu/mole. The orbital contribution χ0 is of the
order of μ^/Δ, where Δ is the mean separation of the
energy levels connected by the orbital angular momen-
tum. Since Δ is of the order of 1 eV, the orbital con-
tribution must be almost temperature-independent and
amounts to ~10"4 emu/mole.

Labbe's calculations[80) gave a value χ0 * 2.3
x 10"4 emu/mole, which is substantially smaller than
the experimentally observed value. These calculations
should be regarded only as order-of-magnitude esti-
mates. We note that satisfactory agreement between the
calculated values for the Knight shift[81] and the experi-

mental values is obtained upon using the chosen values
(8.8) of the parameters for V3Si.

In order to clarify the qualitative features of super-
conducting compounds of type V3S1 in the Labbe-
Friedel model, let us first attempt to use the ordinary
BCS theory of superconductivity,1-821 taking into account
only the substantial energy dependence of the density of
states near the Fermi level.1·831 The equation for the
determination of the transition temperature T c

(8.9)

(g is the BCS coupling constant) must be solved to-
gether with the equation for the chemical potential Ε ρ
of the system

ρ (£+£,)- • dE, (8.10)

where p(E) is the electron density of states for one
spin direction. In view of the large density of states in
the nearly empty sub-band, we neglect the contribution
to (8.9) and (8.10) from other sub-bands and also from
the s band. Thus, in the model under consideration'831

it is assumed that only the d electrons of the nearly
empty d sub-band play a significant role in the super-
conductivity of the present compounds; therefore, it is
necessary to substitute expression (8.4) into the equa-
tion under investigation instead of the total electron
density p(E). Taking the narrowness of the electron
spectrum into consideration, i.e., assuming the in-
equality

— Em taD (8.11)

one can extend the upper limit in the integral (8.9) to
0 0. The results of a numerical solution of Eqs. (8.9) and
(8.10) are shown in Fig. 18, where T c is plotted as a
function of the number Q of d electrons in the nearly
empty sub-band.

The curve for T c typically has a maximum at the
value QM = 7.5 B2. The variations of T c are slight
throughout a wide neighborhood of the maximum. Thus,
in the strong-coupling limit (8.11) under consideration,
the dependence of Tc on the electron concentration Q
is weak. In the opposite weak-coupling limit, when
Q » QM a n d ( E F - E M ) » RwD, Eqs. (8.9) and (8.10)
lead to an exponential dependence of T c on Q accord-
ing to the well known BCS formula, T c

~exp[-l/gp(Ep)]. It is quite remarkable that the de-
pendence of Tc on the Debye frequency O>D drops out
in the strong-coupling limit (8.11), i.e., the isotope ef-
fect disappears, which is characteristic for the high-
T c compounds under investigation.

If we take for V3S1 the parameters (8.8), which were
used for the calculations of the susceptibility and of the
Knight shift, and if we add to them the value g =0.15 eV
(instead of the value 0.4 eV usually assumed for transi-
tion metals), we then obtain a transition temperature
T c = 17°K. Thus, the assumed quasi-one-dimensional

FIG. 18. The superconducting transition
temperature T c and the structural transition
temperature T m for V3Si as functions of the
number Q of d electrons in the band (ac-
cording to [8 3]).
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model of the spectrum leads to high values of T c for a
reasonable choice of the physical parameters.

It is necessary to make a comment about the ap-
plicability of the BCS theory to models of noninteracting
chains. It has been rigorously shown that superconduc-
tivity is impossible[84] in a one-dimensional system due
to the destructive action of the electron density fluctua-
tions [ 8 5 ] and the fluctuations in the phase of the order-
ing parameter. The density fluctuations can be sup-
pressed due to the long-range nature of the Coulomb
interaction by considering, for example, a model for a
metal which consists of a parallel system of linear
chains spaced at distances from each other which are
much greater than the interatomic distance inside a
chain.[ 8 6 ] In such a system the long wavelength fluctua-
tions in the density remain essentially the same as in
an ordinary three-dimensional metal.

In order to limit the influence of the phase fluctua-
tions, we need to take real transitions from chain to
chain into account; in the model of a quasi-one-dimen-
sional metal1·86' they are described by a dispersion law
of the form

(8.12)

(the ζ axis is directed along the chain), where
α « kf/2m and kp is the Fermi momentum. It was
found^86! that, for very small values of a « Tc the
formula for the superconducting transition temperature
essentially agrees with the formula which was obtained
for the case of a purely one-dimensional metal[ 8 7 ]

(within the framework of the "logarithmic" approxima-
tion, without taking the fluctuations into consideration).
For larger values of α ~ T c , superconductivity is de-
scribed by the usual formulas of the BCS theory. Since,
as we have seen above, the matrix element for a transi-
tion from one chain to another is not very small even
for the compounds V3S1 and Nb3Sn, it should be possi-
ble to use the BCS equations to estimate the value of
Tc, by substituting into them an expression for p(E)
with a singularity corresponding to the quasi-one-
dimensional spectrum. The justification of the qualita-
tive correctness of the results of such an approach was
undertaken by Kats.[ 8 8 ]

The chain model enables us to give a theoretical ex-
planation of the lattice phase transition.L 7 8'8 9 ] As the
experiment described in Sec. 5 shows, this transition is
connected with a "softening" of the elastic shear modu-
lus C11 - C12, the vanishing of which must determine
the lattice instability temperature, which is identified
with the temperature Tm of the structural transforma-
tion. On the basis of the quasi-one-dimensional model
one can show (detailed calculations of the elastic con-
stants in a similar model are presented in Sec. 10) that
the interaction of the d electrons with the strained
lattice leads to a strongly temperature-dependent term
in the free energy, which ensures the "softening" of
the modulus ( C n - C12) as the temperature decreases.
The results of calculations of T m for V3Si as a func-
tion of the number Q of d electrons are shown in Fig.
18 (side by side with the results for T c ) . A similar
curve is obtained for Nb3Sn.[ 9 0 ] It is seen from the
figure that the lattice instability occurs only for suf-
ficiently small values of Q, not exceeding the value Qo,
which for typical values of the parameters amounts to
between 0.01 and 0.1 electron per atom. But small
values of Q can also lead to large values of T c . The

FIG. 19. Splitting of
the upper d sub-band in
the chain model in the
tetragonal phase for
c/a > 1 (a) and for
c/a < 1 (b).

Bim]
[100] [001]

converse statement does not hold, that is, large values
of T c are not necessarily related to a softening of the
lattice and to the possibility of a phase transition. Ap-
parently this is the reason why martensitic transitions
are not observed in all A3B-type compounds, but only
in some of them. Incidentally, the strong temperature
dependence of the martensitic transition temperature
on stoichiometry already becomes clear from the re-
sults of the calculation presented in Fig. 18. If the value
of Q for the pure compound turns out to be close to Qo,
a deviation from stoichiometric composition may cause
the value of Q to shift to the other side of Qo and thus
lead to the appearance or disappearance of the phase
transition, while T c changes very little in this connec-
tion. The temperature T m , determined from the condi-
tions for instability of the cubic phase, is the point of
the phase transition into the tetragonal structure. A
spontaneous deformation of the tetragonal type appears
below T m . This deformation has different signs for
the compounds V3S1 (c/a > 1) and Nb3Sn (c/a < 1). It
is easy to understand how the electronic spectrum is
modified in this connection. For V3Si the band spectrum
of the d electrons in the cubic phase is described (ac-
cording to Labbe-Friedel) by Fig. 17. The upper, almost
empty sub-band turns out to be doubly degenerate with
respect to the magnetic quantum number and, which is
now most important, triply degenerate with respect to
the directions of the chains. Let us associate the [1 0 0]
direction with the tetragonal axis; then the two perpen-
dicular directions [0 1 0] and [0 0 1] will be equivalent.
For V3Si the cell turns out to be elongated; therefore,
in the [1 0 0] direction the band narrows, but it broad-
ens in the perpendicular directions. Thus, a splitting
of the spectrum appears so that the Fermi level may
fall in the region between the bottom edges of the sub-
bands (see Fig. 19). It is conjectured that just such a
situation occurs in the compounds V3S1 and Nb3Sn at
Τ = OK. It is clear that as soon as the tetragonal de-
formation appears below T m and the sub-bands begin
to separate, there is a very rapid redistribution of the
electrons between them, which leads to an abrupt in-
crease of the spontaneous deformation with decreasing
temperature. As soon as the Fermi level emerges be-
yond the edge of the upper, split sub-band, the rear-
rangement of the electron redistribution is completed,
and the growth of the deformations must cease. The
temperature dependence of the spontaneous deformation
observed experimentally (Fig. 8) is of precisely such a
nature.

By comparing the conclusions of the Labbe-Friedel
model with the experimental data pertaining to com-
pounds of the type V3Si and Nb3Sn, we arrive at the
conclusion that it qualitatively describes the complete
set of their anomalous properties: The temperature
behavior of the elasticity moduli and of the magnetic
susceptibility, the lattice transition, high-temperature
superconductivity, and their connection with each other.
The model is, of course, too crude for a quantitative
description.
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Now let us pose the following question: To what ex-
tent do the explicit assumptions about the one-dimen-
sional nature of the motion of the d electrons pertain to
the compounds with /3-W structure under consideration?
In order to quantitatively explain the observed proper-
ties of the compounds VsSi, Nb3Sn, and so forth, it
would be necessary to assume a very low Fermi energy
of the order of 0.005 eV relative to the bottom of the
upper, nearly empty band. A reasonable value for the
width of the whole band is 2.5 eV; therefore, the parame-
ter 11 characterizing the intrachain interaction of the
atoms must have the same order of magnitude. In order
that the interchain interaction l2 should not strongly
change the value of the Fermi energy, it is necessary
that il/li i. (Ep - E m ) , that is, h must be two orders
of magnitude smaller than lu However, such a ratio of
the interaction parameters for nearest neighbors and
next-nearest neighbors is very improbable in the struc-
ture under consideration (at a difference of 20% be-
tween the corresponding interchain distances). Estimates
of the ratio of the nearest neighbor interaction integral
to the next nearest-neighbor interaction integral, made
by using the structure of the d-state wave functions and
of the potentials, indicate that /2 is either roughly the
same order of magnitude as /1 or else is only one order
of magnitude smaller.[ 9 1 ]

In order to understand the effect of interchain coup-
ling on the electronic band structure, Weger[92] numer-
ically investigated a model consisting of two families
of mutually orthogonal chains. Of course, this model is
a very simplified idealization of the spectrum in the
/3-W structure; however, by investigating it the author
reached the conclusion that the quasi-one-dimensionality
is apparently a topological property of a lattice with in-
terpenetrating chains, but anisotropy of the interatomic
interaction parameters by itself is still not sufficient to
cause appreciable one-dimensionality. It would be of
great interest to investigate this question in general
form and establish the analytic nature of the density of
states in the energy regions corresponding to states of
quasi-one-dimensional character.

9. The model of interacting chains and the effect of
impurities on T c . The essential feature of the Labbe-
Friedel model of noninteracting chains is the one-
dimensionality of the electronic spectrum, leading to a
singularity in the density of states near the Fermi sur-
face. However, as has been indicated above, the matrix
elements for electron transitions from chain to chain
turn out to be fairly large, and the inclusion of these
transitions restores the "three-dimensionality" of the
d-electron spectrum and "smoothes over" the singu-
larity of the one-dimensional spectrum. This fact must
lead to results which are very sensitive to the value of
the parameter characterizing the interchain transitions.

First let us approach this problem phenomenolog-
ically. We add to expression (8.1), which gives the
spectrum of the chain in the tight binding approximation,
a term that allows for interchain transitions and corre-
sponding to the spatial symmetry of the /3-W struc-
t u r e : ^

^ s ^ ) (9.1)

(we also have two other branches, obtained by cyclic
permutation of the momentum components kx, kv, and
kz). Here ξ0 is the parameter characterizing the inter-
chain coupling, a is the lattice parameter (it exceeds

twice the distance between atoms in a chain; therefore,
there is a formal difference between expression (8.1)
and the first term in Eq. (9.1)). To be definite, we as-
sume that E m and ξ0 are positive.

The density of states per unit cell and for one spin
direction is given by

(9.2)

The factor three appears because there are three
branches of the type (9.1). We shall only be interested
in energies Ε near the bottom of the band, i.e., Ε « E m .
Assuming that ξ0 « E m , we may expand cos (kxa/2) in
(9.1) in a series in powers of kx and immediately carry
out the integration over this variable in Eq. (9.2). Then
it is convenient to write ρ (Ε) in the form

" τ tce>\

(9.3)

•li
8flg+coa»(y/2) + c

-dydz,

where

(9.4)

(9.5)

In the integrand in Eq. (9.4), θ(ζ) is equal to unity for
ζ > 0 and vanishes for ζ < 0. As follows from Eq. (9.4),
I(<?) does not vanish for i > -2 ; the point g = -2 de-
fines the lower edge of the spectrum. The asymptotic
behavior of the quantity I(<?) can be easily determined:

(9.6)

In the last case the density of states turns out to be
independent of ξ0:

Β η 3Po = -
Em) π V~Em/2

(9.7)

and corresponds to a system of quasi-one-dimensional
chains with a singularity at the edge of the spectrum.
Thus, for interacting chains p(E) has the square root
dependence at the edge of the band which is typical for
three-dimensional motion, and exhibits quasi-one-
dimensional behavior well inside the band. The energy
parameter, separating these two regimes of the behav-
ior of p(E), is ξ0.

A numerical calculation of the quantity (9.4) is neces-
sary for intermediate values of I(<?); the results are
shown in Fig. 20. As we might have anticipated, upon
taking the interaction between chains into account the
singularity of the quasi-one-dimensional motion gets
"covered over" and in its place appears a maximum,
shifted downwards from the edge of the band spectrum
for noninteracting chains.

Now let us investigate how the superconducting
transition temperature Tc changes as a function of ξ 0·
Numerical solution of the basic equations (8.9) and
(8.10), determining Tc in the BCS theory with the cal-
culated density of states (9.3), gives the dependence of
Tc on |o shown in Fig. 21, where τ£ denotes the
transition temperature in the same crystal but with ξ0

= 0 (noninteracting chains). The calculations were per-
formed for three values of the parameter η0 = (Ef
- Em)/2Tc, characterizing the model of noninteracting
chains.

Thus, we reach the conclusion that this model[e3]

gives an overestimate of the superconducting transition
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FIG. 20. The function I(E) which determined the density of states
in the interacting chain model.

FIG. 21. T c as a function of the interchain coupling parameter £0.

temperature. In addition, taking account of the inter-
chain coupling eliminates the difficulty in the theory1-831

associated with the fact that superconductivity is im-
possible in a one-dimensional system. As follows
from[861, the superconductivity of a quasi-one-dimen-
sional system can still be described by the BCS theory
for ξ0 a T°, Hence the curves shown in Fig. 21 should
correctly describe T c as a function of ξ0 for values of
ξ0 > T j ; however, T° must be understood not as a
physical quantity—the superconducting transition tem-
perature in a one-dimensional model, but as the mathe-
matical limit for T c , given by Eqs. (8.9) and (8.10) of
the BCS theory, as ξ0 — 0.

The investigation which has been made of the depend-
ence of T c on ξ0 permits us to understand in principle
why the transition temperatures are so different in the
same type of compounds (for example, in V3X, where
X = Si, Ge, and Sn) even though the electron concentra-
tion and the chemical nature of the compounds remain
the same for the whole series. One of the causes of
such a difference may be a difference in the strength of
the interchain coupling. The other possibility lies in a
variation of the parameters characterizing the splitting
of the d band into sub-bands, in connection with which
the Fermi level may be displaced from the edge of one
of the sub-bands, giving a singularity in the density of
states. The relative role of these factors in each spe-
cific compound is, of course, unknown.

The analysis of the interchain coupling which has
been made enables us, possibly, to understand the
nature of the effect of impurities on the value of Tc in
high-temperature compounds of β-W structure. The
extensive experimental data described in Sec. 3 indi-
cates that in almost all cases a strong decrease of T c

with increasing impurity concentration is observed, in-
dependently of whether the impurity replaces a B-type
atom or an Α-type atom occurring in the chains. To be
sure, the presence of impurities in the chains generally
strongly reduces T c .

Apparently one can suggest two fundamental mecha-
nisms for the effect of impurities on T c in these com-
pounds : a change of the density of states due to impuri-
ties, and interband scattering. The first mechanism can
be effective only for compounds with high T c in which
there probably exists a narrow peak in the density of
states at the Fermi surface, so that small impurity
concentrations can lead to an appreciable distortion of
this peak, thus causing a change in the value of T c . If
we start from a model of weakly interacting chains for
the pure compound, the presence of impurities may

modify the effective interchain coupling, thereby leading
to a change in the degree of "three-dimensionality" of
the quasi-one-dimensional electronic spectrum. This
problem was investigated in article[ 9 3 1, where expres-
sion (9.1) was obtained in the tight binding approxima-
tion for the electronic spectrum of weakly interacting
chains; here the parameter ξ0 turns out to be related
to the transition matrix elements U (between neighbor-
ing atoms on the same chain) and l2 (between neighbor-
ing atoms on different chains) in the following way:

E o = # y (\h\<]i,\)- (9.8)

Analysis of the spectrum, taking the angular nature
of the atomic d functions and the twofold degeneracy of
the nearly empty band into account, leads to the same
result (9.1) but with another expression for ξ0. Thus,
the essential feature of the utilized spectrum consists
in allowing for the spatial structure of the lattice, not
the angular nature of the atomic wave functions.

One can show1-931 that in the presence of impurities
substituted into the chains, the results remain the same
but the parameters Zi and iz in expression (9.8) for ξ0

are replaced by average values. Thus, the graphs shown
in Fig. 21, giving the dependence of Tc on ξ0, now in
fact also determine the dependence of T c on the im-
purity concentration CA in the chains.

A different situation arises when Α-type atoms re-
place B-type atoms. In this case an additional inter-
chain coupling appears through the transition atoms oc-
cupying positions outside the chains; as a result the
parameter ξ0 is replaced by ξ = ξ0 + £',[ 9 3 J where ξ'
denotes the correction associated with the additonal in-
teraction of the chains, and moreover ξ' increases with
increasing concentration C B .

One can understand the nature of the variation of Tc

as a function of the stoichiometric composition of a
binary alloy on the basis of this last result. For exam-
ple, in the alloys V - Si[ 1 4 ] and Ti - Sb[ 1 5 ] the maximum
transition temperature is reached near the stoichio-
metric composition, i.e., for 25% type-B atoms. Upon
increasing their content (when the excess number of
these atoms get into the chains) T c is changed only
slightly; however, an abrupt decrease of T c is observed
when the transition-metal atoms A occupy the sites of
Β atoms. Perhaps this is related to an increase of the
parameter ξ (due to the growth of ξ' with concentra-
tion), i.e., with the additional "three-dimensionality"
of the electronic spectrum which is, as we have seen,
accompanied by a decrease in the value of T c .

The other mechanism which decreases Tg— namely,
interband scattering of the electrons by impurities—was
investigated in[ 9 4 ' for the Labbe-Friedel model; the fol-
lowing two cases were considered: The transition of an
electron from the d band to the wide s band, and the
scattering between two degenerate d sub-bands. Acting
together with the above considered mechanism for
"three-dimensionalization" of the spectrum, it leads to
an effective decrease of Tc with increasing impurity
concentration.

However, a number of the compounds shown in Fig. 2
give an especially strong decrease of Tc with increas-
ing impurity concentration. Among them, for example,
the compound V3S1 with admixtures of Mo and Cr. It
cannot be excluded that, in these compounds the impurity
atoms Mo or Cr may have weak localized moments or
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they may be found near the critical condition for the ap-
pearance of this moment when paramagnetic scattering
of the electrons by the impurities arises, strongly
lowering the superconducting transition temperature. In
this case the dependence of the magnetic susceptibility
of such alloys on the impurity concentration must be
very substantial, which is observed experimentally.[23)

Another example, which does not fit into the schemes
under consideration, is the alloys of vanadium with gold.
The pure compound V3Au has Tc = 2.40°K (see Table
I). It is well known that small surplus amounts of Au
atoms, replacing V atoms in the chains, change Tc by
factors of tens.1·951 Labbe and van Reuth[9e] proposed the
idea that the Au atoms, having completely filled d
shells, protrude in the V chains like ion-like atoms,
thus breaking the chains in which the one-dimensional
motion of the d electrons occurs. Within the limits of
each segment of a chain of vanadium atoms, containing
Au atoms at each end, the electronic spectrum is dis-
crete with the distance between the levels inversely
proportional to the number of vanadium atoms in such a
segment. The authors of this idea calculated the density
of states of the system for a given concentration of
randomly distributed Au atoms and showed that, for a
finite concentration the singularity in p(E), correspond-
ing to the quasi-one-dimensional spectrum, gets
"smoothed out," leading to an exponential behavior of
p(E) at the edge of the band. However, calculations of
Tc using the expression found for the density of states
were not made, so it is still difficult to say what the
concentration dependence of the transition temperature
will be on the basis of the proposed mechanism of
broken chains.

The cited theoretical analysis refers to compounds
of /3-W structure with high values of Tc for which the
quasi-one-dimensional model of the spectrum is appar-
ently valid, and leads to qualitative agreement with the
experimental data in regard to the effect of impurities
on T c . The latter exist only for the original high-tem-
perature compounds. It would be desirable to experi-
mentally investigate the effect of impurities on Tc in
compounds with low transition temperatures in order
to verify, in comparison with the existing data for high-
temperature compounds, the particular role of the
quasi-one-dimensional nature of the electronic spec-
trum for the behavior of Tc in compounds with impuri-
ties.

10. Quasi-one-dimensional model with a constant
density of states. We have seen that the Labbe-Friedel
model of quasi-one-dimensional chains is able to give
a qualitative explanation of many anomalous electronic
and lattice properties of high-temperature superconduc-
tors of the type V3Si and Nb3Sn. The physical origin of
these anomalies is the sharp decrease in the density of
states near the Fermi level which, in the Labbe-Friedel
model, is related to the fact that the quasi-one-dimen-
sional d band is nearly empty. If the essential point
here is the fact that there is an abrupt change in the
density of states near the Fermi level, the model may
be simplified. Cohen, Cody, and Halloran[97] proposed
an electronic model of the compounds under considera-
tion, postulating in it the following behavior of the
density of states of the d electrons as a function of the
energy:

t £<£ (ι ο·ι }

where No is some constant, and Eo is the edge of the
band, which is assumed to be triply degenerate (corre-
sponding to the three types of linear chains) in a cubic
crystal. Thus, in its typical foundation this model is
quasi-one-dimensional; however, instead of using an
exact expression of the type (8.4) for the density of
states, the approximation that p(E) is constant is as-
sumed. According to the chain model, the Fermi level
passes near the edge of the band. It was found that such
a model enables one to easily obtain analytic results,
which are likewise in good agreement with experiment.

First of all let us see how the temperature behavior
of the lattice moduli of elasticity is calculated in this
model. We shall assume that the crystal is found at a
temperature below the martensitic transformation tem-
perature and has a tetragonal structure. In order to
calculate the elastic constants Cy according to formula
(6.4), it is necessary to calculate the free energy of the
crystal F as a function of the strain tensor e. It is con-
venient to represent the free energy as consisting of two
parts:

* " - = * + * . , (10.2)

where Fi refers strictly to the lattice and F 2 describes
the system of d electrons existing in the deformed lat-
tice. Fi can be expanded in a series in powers of the
strains, and for a tetragonal crystal this expansion has
the form

(10.3)

where the Ajj are the elasticity moduli of the lattice
without the d electrons.

The electronic part of the free energy can be ex-
pressed in terms of the internal energy U and the en-
tropy S: F2 = U - TS, and for an electron gas

s = - k Σ

p,(E)ft{E)dE,

- υ -ft

(10.4)

(10.5)

where p/(E) is the density of states in the /-th band
(/ = 1, 2, 3 corresponding to the three types of ortho-
gonal chains), and fy(E) is the Fermi distribution func-
tion for the electrons from the Z-th band, which interact
with the field of the strained lattice. We shall assume
that this interaction is described in terms of a deforma-
tion potential, that is, the correction to an electron's
energy due to strain has the form

δ£, = U,tt. (10.6)

The deformation interaction obviously shifts the band
edge in a strained crystal; therefore, in the case when
the Fermi level lies near the edge it leads to a strong
temperature dependence of the calculated quantities.

According to Eqs. (10.4) and (10.5), the free energy
of the electronic system can be written down in the form

where E; = Eo/ + δΕ^ denotes the edge of the band asso-
ciated with a chain in the /-th direction in the deformed
crystal (Eo/ denotes the edge of the band in the unde-
formed tetragonal crystal), p/(E) = No/3 for Ε > Ej
and vanishes for Ε < E/.
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We substitute expressions (10.3) and (10.7) in (10.2);
after differentiation with respect to the strains, the inte-
grals over energies are easily evaluated since the
density of states is constant. As a result the following
formula appears for Cij:

C,2 = -η- ΛΓ

οί/2/ο, (10.19)

Cii = Ail-^-^l(Em)[- ί (£,-£,)

L·
where f(Efj;) is the Fermi function evaluated for energy
Ε = E 0 / .

In the derived expression Eo/ and E ,̂ and EOF ar»d
E F denote the edge of the Z-th band and the Fermi en-
ergy in the unstrained and strained crystals, respec-
tively. The Fermi energy is determined from the con-
dition for conservation of the number of electrons in the
d band, which in this model takes the form

) = <?· (10.9)

Differentiating this equation with respect to £i and tak-
ing the dependence (10.6) of the deformation energy on
the strain into account, we obtain the following expres-
sion for the derivative of the Fermi energy with respect
to ej:

3 Ί 3

-^f =Σ4§Γ / ( £ ί ) /^ / ( £ ί ) · (lo.io)
ί = 1 ' - - 1

Relation (10.8) together with (10.10) determine the
temperature dependence of the elastic constants in the
tetragonal phase:

Ι — Λ ii g- ft φ , /]/?

rr- M/ - / a )

+ 2/, '
η

(10.11)

(10.12)

(10.13)

(10.14)

here the notation fy = f (Eo/) is used for brevity. The
quantities Aij can be assumed to be temperature inde-
pendent; thus, the entire temperature dependence of the
elastic constants Cjj is determined by the factors fy.

The tetragonality arising in the compounds NbsSn
and V3Si is small; therefore, in formulas (10.11)—
(10.14) one can approximately set [ e 8 ' 9 8 ]

A,t--=A22, A13 = AI2, US = U2=U. (10.15)

The tetragonal crystal itself can be assumed to be ob-
tained by a spontaneous tetragonal deformation of the
cubic crystal which keeps its volume unchanged:

f \ 1
= | — ε0, —ε0, — (10.16)

In this case the edges of the energy bands for the chains
along the tetragonal axis and for the chains perpendicu-
lar to it are given by the expressions (Fig. 22)

(10-17)

In the cubic phase the positions of the edges coincide
for all three bands so that the elastic constants are de-
termined by the same expressions (10.11)—(10.14) in
which, together with (10.15), it is necessary to replace
fi and iz by

(10.18)

from which we find that the shear modulus is given by

C u - C , ^ (Λ,,-Λ,,)-J-.¥„[/=/„. (10.20)

Let us introduce the temperature To which is a
measure of the Fermi energy in the cubic phase: kT0

= E 0 F - Eo. As follows from Eqs. (10.20) and (10.18),
the temperature behavior of the shear modulus is char-
acterized by the dimensionless quantity To/T since An
and A12 are assumed to be temperature independent.
The shear modulus decreases with falling temperature
and vanishes at the point which is determined from the
condition

.-To! Τ
3(Λη-Αη) (10.21)

Careful experimental measurements of the tempera-
ture dependence of the elasticity moduli in monocrystal-
line NbsSn ( T m = 45°K) were made in the work de-
scribed in article[ 6 8 1 (Fig. l ie). The experimental data
for Cii and C12 in the cubic phase and in the tempera-
ture interval 49°K < Τ < 300°Κ fits on the curves (10.19)
— (10.20) for the following values of the theoretical
parameters:

/l,1=2,94-10" erg/cm3, ^
.vot7«H7,47- 7,8GM0" erg/cm3,l
An = 0.84 -1012 erg/cm ,
To = 80 °K.

Satisfactory agreement of the values of Cu and C12
calculated from formulas (10.11) and (10.13) with the
experimentally measured values of the moduli in the
tetragonal phase is obtained for these same parameters
if the temperature dependence of the tetragonality
parameter eo(T) is taken from experiment.'551 For the
calculation of eo(T), one can set up the equation mini-
mizing the free energy with respect to eo:

^r(Alt-Aa)tll-±-N0U
2e + ±-N0UkT\nJ± = 0. (10.23)

Together with Eq. (10.9) it determines the temperature
behavior of the spontaneous deformation. We immedi-
ately see that Eq. (10.23) describes a phase transition
of the first kind/"1 First let us write down the asymp-
totic form of this equation for e0 —• 0. One can see that
in this case Eq. (10.23) goes over into the equation

[ { ( 4 - Aa) - i- N0U*f0] e0 = -L "Wot -/„) ,,i ( 1 0 - 2 4 )

which has two solutions: e0 = 0 and

so that we obtain

(we have used formula (10.20) for the shear modulus).
This relation indicates that the temperature T1 ; at which
the shear modulus vanishes, is the temperature of abso-
lute instability of the cubic phase. On the other hand, the
temperature T2, above which the tetragonal phase is ab-

FIG. 22. The density of states in
the d band of Nb3Sn according to the
model of Cohen, Cody, and Halloran
[97] for the cubic (a) and tetragonal
(b) phases. For Τ = 0, when the
spontaneous deformation reaches a
small value, it is assumed that the
Fermi level lies totally within the
first band.

ill
m1

ε
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solutely unstable, is determined from the condition
(d€o/dT)T = T 2 = *>. Differentiation of Eq. (10.23) with
respect to Τ gives the equation

hh
Λ + 2/s

(10.26)

which together with the fundamental equation (10.23)
determines T2 and the value of the spontaneous defor-
mation at this point. We note that if we set eo = 0 in
Eq. (10.26), it goes over into Eq. (10.21).

The temperature range between Tl and T2 corre-
sponds to metastable states, where I 1 ! is obviously the
supercooling temperature and T2 is the superheating
temperature of the cubic and tetragonal phases. The
phase transition point T m , which must lie somewhere
between Ti and T2 is determined by equating the free
energies of the tetragonal and cubic phases, which leads
to the equation

(A,,-A a ) e'o(Tm) = -iNokTm [2F(-Ue0) + F ( \ U e ) -3F(0)J,

(10.27)

where

/•(Δ)
( 1 0 > 2 8 )

The solution of Eq. (10.27) with Eq. (10.9) for the
chemical potential determines the tetragonal transition
and the jump in the spontaneous deformation. On the
basis of a numerical solution of these equations by the
authors of the model under discussion, the dependence
of Eo on Τ which is shown in Fig. 8 was obtained for the
same parameters (10.22), together with experimental
points for Nb3Sn determined from x-ray measure-
ments.[ 5 5 1 As we see, the magnitude of the jump in the
spontaneous strain parameter at the point T m is in
good agreement with the theoretical predictions. A
region of coexistence of the two phases near T m (cross-
hatched in the figure) is also clearly revealed in the
experiment.

Thus, the model under consideration gives a reason-
able explanation of the "softening" of the shear modu-
lus and, as a consequence of this, the appearance of a
lattice phase transition. However, the agreement with
experiment is much worse for calculations of the other
moduli. Thus, for example, one can easily see that in
this model the modulus C44= A44, i.e., it does not depend on
the temperature whereas in actual fact it experiences
considerable "softening." Quantitative disagreement
with experiment also appears in the calculation of the
magnetic susceptibility, although the characteristic be-
havior of χ(Τ) near T m (a sharp drop for Τ < T m ) is
obtained from the present theory.

An estimate of the superconducting transition tem-
perature T c in this model was made inC l 0 0 ] . The authors
assumed that the interaction of the d electrons in the
nearly empty bands with acoustic phonons was responsi-
ble for the appearance of superconductivity. If it is
postulated that this interaction is described by the
matrix element of the deformation potential, the solution
of the Elisashberg equations'1011 for the strong-coupling
method leads to the following expression for T c : [ 1 0 0 ]

(10.29)

where λ i s the effective coupling constant for the elec-
tron-electron attraction due to electron-phonon coup-
ling, which is determined from the equation

X ( 1 + T ) = J ^ - · (10.30)

The difference between expression (10.29) and the
formula obtained for Tc in the strong-coupling method
consists in the appearance of the coefficient 1/2 in
front of λ in the numerator of the exponential function's
argument and the appearance of VWDTQ in place of WD
in the factor appearing in front of the exponential func-
tion. Both of these changes arise as a consequence of
the fact that in the adopted model the energy integration
below the Fermi energy is cutoff at the value To « ωο·
Since here To = Q/No, formula (10.29) gives T c ~ /Q~,
in contrast to the Labbe-Friedel model where Tc and
Q are described by a function with a maximum (see
Fig. 18). This distinction is due to the difference in the
behavior of the density of states p(E) at large energies
in the compared models.

If we take the parameters N0U
2 and A n obtained

from measurements of the temperature dependence of
the moduli in the cubic phase, the values of λ and T c

turn out to be given by: λ = 0.92 and T c = 28°K for
Nb3Sn, and λ = 0.72 and T c = 2ΓΚ for V3Si. The value
of T c obtained for Nb3Sn is strongly overestimated.
The discrepancy becomes even greater if T c is calcu-
lated for the tetragonal phase ( T c = 8°K for Nb3Sn).
This indicates that, in the model under consideration it
is impossible to obtain numerical agreement with ex-
periment in regard to T c . Nevertheless, it is possible
to establish some correlation between high values of
T c and the existence of a structural transition. The
condition under which a structural transition should
exist in Nb3Sn and V3Si follows from Eqs. (10.30) and
(10.21): it has the form λ > 0.7. Thus, high values of λ
(and hence, high values of Tc) are favorable to a struc-
tural transition.

11. Dynamical treatments. The nature of the lattice
phase transition. The treatment of the martensitic
phase transition described above used a static approxi-
mation in order to describe the coupling of the elec-
tronic system with the lattice deformations. Such an
approximation leads to a uniform shift and a splitting of
the d band, depending on the magnitude of the spontane-
ous deformation, which is calculated by a self-consist-
ent method. However, one can develop a theory which
also takes dynamical effects into consideration, i.e., the
interaction of the d electrons with long-wavelength
acoustic phonons.t1021 The equation for the spontaneous
tetragonal deformation obtained in such a treatment es-
sentially agrees with Eq. (10.23) if only the renormali-
zation of the electronic spectrum in the self-consistent
field approximation is taken into account, i.e., take the
static part of the electron-phonon interaction. Considera-
tion of the dynamical part leads to renormalization of
the phonons, described by the usual polarization term,
which corresponds to the virtual creation of an electron
and a hole by the phonon:

where fm(k) is the Fermi function for an electron with
momentum k from the m-th sub-band.

If the nearness of the Fermi level to the edge of the
band is taken into account in connection with the calcula-
tions in expression (11.1) and the model (10.1) is used
for the density of states, one can easily obtain the ex-
plicit form of the temperature dependence of the acous-
tic phonon branches. One can verify[102] that, for pho-
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nons propagating in the [1 1 0] direction and with polari-
zation along [1 1 0] in the cubic phase, the frequency
vanishes at a certain temperature Ti (see Eq. (10.21)),
at which the shear modulus disappears. Of course, the
whole region of phonons with wave vectors adjacent to
this direction should experience "softening". However,
how far with regard to the value of the wave vector does
this "softening" extend? For compounds of the type
VaSi and Nb3Sn, the width of the d band amounts to
several electron volts, and the Fermi level corresponds
to To ~ 102oK. This implies that the Fermi momentum
^F <K- <1D> where qo is the Debye wave vector. For
q ~ q£) expression (11.1) decreases by the amount
(kjr/qj})2 in comparison with the value which corre-
sponds to acoustic phonons. This means that high-fre-
quency phonons in these compounds should not be re-
normalized, and consequently they should not strongly
depend on the temperature. The recent neutron scatter-
ing studies of the phonon spectrum in V3Si[103] showed
that the "softening" of some acoustic phonons (espec-
ially of the transverse type) is extended to approxi-
mately the middle of the Brillouin zone, although the
degree of "softening" falls with increasing wave vector.

In the model under consideration, the instability of
the individual phonon modes in the cubic phase leads to
a phase transition of the first kind. We recall that in the
compound Nb3Sn a jump in the tetragonal stress
parameter eo is actually observed experimentally at the
transition point T m ; however, the other characteristic
signs of a first-order phase transition are absent: the
specific volume does not change in practice, and no
latent heat of transition or hysteresis is observed. All
these facts compelled investigators to seek a model for
these compounds which would give a phase transition of
the second kind.

By applying Landau's theory of second-order phase
transitions to the martensitic transformation in V3S1
and Nb3Sn, Anderson and Blount[561 showed that if the
tetragonal strain parameter is the only order parameter
characterizing the system from the point of view of the
phase transition, then the latter must, with absolute
certainty, be a first-order transition. Therefore, if a
second-order phase transition occurs in these cases it
must be characterized by one more order parameter,
for example, by the relative displacements of the atoms
within the limits of a single unit cell. Such displace-
ments might appear if one of the optical modes (for ex-
ample, Γιβ(-), Γ 2 5 ( - ) or Γ 1 6 ( + ) [ 5 6 ] ) were found to be
soft and become unstable at the point T m .

Klein and Birman[ 1 0 4 ] calculated the optical frequen-
cies of A3B compounds on the basis of a one-dimen-
sional model of the electronic spectrum in the tight-
binding approximation and reached the conclusion that,
at Τ = 0°Kthe optical modes Γ 1 5 ( - ) and Γ 2 5 ( - ) may
become unstable for suitable values of the density of
states due to an additional screening of the d electrons.
However, later Sham[ 1 O 5' l o e i, who was making first-
principle calculations of the optical frequencies in this
same model, pointed out an error in the calculations of
Klein and Birman. The point is that, in the harmonic
approximation the only source of a "softening" of the
phonon modes is the interaction with the electrons, in
the present case the interaction with the d electrons,
which are treated in the chain model. In the modes of
Γΐδ(-) or Γ 2 5 ( - ) symmetry the atoms of one chain
vibrate as a whole; therefore, such motion cannot excite

the d electrons, which might renormalize the frequen-
cies of these modes (Fig. 9). So in the present model
the frequencies of the ΓΊ5(-) and Γ 2 5 ( - ) modes cannot
substantially depend on the temperature. The same re-
mark also pertains to the mode F1 5(+), in which nearest-
neighbor atoms of a chain can rotate about an axis per-
pendicular to the chain, but the associated change of the
interatomic distance, which is what the electronic band
parameters depend on in the tight-binding approximation,
is extremely small.

For q = 0 the only optical mode, which excited elec-
tronic motion in the chain model and thereby turns out
to be temperature dependent, is the mode r i 2 (Fig. 9).
Sham's calculation[106] for Nb3Sn showed that the fre-
quency of the Γι2 ( +) mode is the largest of all optical
branches. It actually depends on the temperature, de-
creasing with falling temperature; however, the fre-
quency change amounts to only 10% for a reduction of
the temperature from room temperature to T m . Thus,
this optical mode does not become unstable at any tem-
perature. Nevertheless, it was found that its tempera-
ture variation is significant for the temperature behav-
ior of the shear moduli. Owing to the electron-phonon
interaction, the long-wavelength acoustic phonons, de-
termining the transverse moduli (Cu - Clz), turn out
to be coupled to the optical frequency ω( Γ ^ ). Sham
showed that in this situation the shear modulus can be
expressed as the sum of three terms:

(11.2)

where the first term gives the contribution of the ionic
interactions screened by the s electrons, the second
contribution comes from the d electrons, and the third
term—which is negative—describes the influence (via
the d electrons) of the motion of the atoms in the chains
relative to each other on the transverse acoustic pho-
nons. The temperature dependence of (Cn - d 2 ) is
determined by the last two terms of expression (11.2),
where the negative contribution of each term increases
with decreasing temperature. This dependence corre-
sponds to the experimental behavior of the modulus
(Cn - C i 2 ) . However, in contrast to the preceding
theories[ 8 9 ) 9 7 ] which also led to a "softening" of the
shear modulus, according to Sham the loss of stability
of the Nb3Sn lattice is only related to some "softening"
of the Γ 1 2 (+) mode. The latter, although it itself does
not lose stability, nevertheless leads to a loss of sta-
bility of the shear acoustic vibrations.

Coupling of these vibrations with the mode Γ 1 2 (+)
should lead to a nonuniform, tetragonal distortion of the
lattice, described by the symmetry Γ 1 2 (+) of the mode,
as if the latter were "frozen" into the lattice below the
temperature T m . In such a distortion the atoms must
be displaced by an amount δ one with respect to the
other, as indicated in Fig. 9. The neutron scattering
study of the tetragonal phase by Shirane and Axe (see
Sec. 4) actually revealed these displacements. Analysis
of the temperature dependences of 5 and of the tetra-
gonal strain parameter e0 showed that they are linearly
related (see Eq. (4.1)). Thus, there is actually only one
parameter in the system, so that the lattice phase
transition is a first-order transition. This transition is
the result of a loss of stability of the acoustic shear
modes of the lattice, which is the common conclusion of
all the theories[ 8 9 '" ' 1 0 2J.
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IV. CONCLUSIONS

Although the considered models^78'97', which are
fundamentally based on the concept of the quasi-one-
dimensional nature of the d-electron spectrum in com-
pounds with (3-W structure, give a qualitatively correct
explanation of various anomalies in high-temperature
superconductors of this type, they nevertheless turn out
to be unable to explain the experiments on the effect of
pressure,[ 7 3 ] and also on the strain dependence of T c .
Testardi1-651 showed that the coefficient associated with
the large quadratic term in the expansion of T c in
powers of the strain is determined by the quantity
8TC/3Q, but in the Labbe-Friedel model (see Fig. 18)
the latter is extremely small for V3S1, from which one
concludes that the large strain dependence of Tc in
V3S1 does not originate from a singularity in the elec-
tron density of states. Testardi[ 7 3 > 1 0 7 ] developed the idea
that the anomalous behavior of the high-temperature
superconductors among these compounds is connected
with a lattice instability due to the strong anharmonicity.
Although the source of the instability must finally result
from singularities of the electronic bond in these com-
pounds, Testardi places major emphasis on singularities
in the phonon spectrum in the origin of high values of
T c .

Now let us return to the question of the connection
between high values of Tc in a number of compounds
with /3-W structure and the presence of a martensitic
transition in them, or a tendency towards such a transi-
tion, manifesting itself in the "softening" of the corre-
sponding elastic moduli. In the theoriesC89»89;102) under
consideration, both of these phenomena are a manifesta-
tion of singularities in the density of states near the
Fermi level, that is, simply the existence of a sharp
peak with a width comparable with T c and T m . This
singularity arises from the quasi-one-dimensional
nature of the d-electron spectrum, but by itself it does
not specify a connection between superconducting and
structural transitions. Gor'kov recently emphasized1·1 0 e a i

that the connection between these transitions results
from the quasi-one-dimensional nature of the motion of
the d electrons in the structure under consideration,
the singularities of which do not simply reduce to
singularities in the density of states of quasi-one-
dimensional systems.

The point is that, according to [ 8 7 ] in the presence of
an attraction between the electrons the metallic state of
a one-dimensional chain is simultaneously unstable with
respect to superconducting pairing and doubling of the
period. In this connection it was shown by the authors
οί [ 8 7 ] that, at temperatures much greater than the phase-
transition temperature (strictly speaking, the phase-
transition temperature in a one-dimensional system
must be equal to zero), the value of the effective elec-
tron interaction increases logarithmically with decreas-
ing T; therefore, the corresponding observables should
exhibit a logarithmic dependence on T. Precisely such
a dependence was observed by Testardi for the elastic
shear moduli in V3S1. On the other hand, the neutron
scattering experiment of Shirane1·58' indicates a doubling
of the period in the chain of niobium atoms in the com-
pound Nb3Sn. If one (but not two, as actually occurs)
niobium atom from each chain were necessary per
lattice period in a /3-W structure, it would be possible
to attribute the indicated doubling to the Peierls insta-
bility of a one-dimensional metal with one electron per
site. Of course, if transitions of the electrons from

chain to chain are completely neglected, and also if the
interaction of the electron with the nontransition-ele-
ment atoms is ignored, we obtain a set of one-dimen-
sional chains which are isolated from each other. How-
ever, in order to attribute the observed doubling to a
manifestation of the Peierls instability, another diffi-
culty exists: As a consequence of the degeneracy of the
d-states of the transition atoms forming the chains, the
type of possible instability, associated with the charac-
teristics of the effective interelectron interaction in a
one-dimensional system, must be more complicated
than the Peierls instability.

The indicated facts only make the problem of a theo-
retical explanation of the structural phase transition in
the investigated compounds more acute. The group-
theoretical analysis of the /3-W s t ructure t l 0 a a ] indicates
that a second-order phase transition is possible within
the limits of isolated chains. However, the weakness of
the phase transition in the three-dimensional structure
itself is due to the smallness of the interchain coupling.

From the point of view of the methods of treatment
applied in[ 8 7 ] , the structural and superconducting transi-
tions in a linear chain, resulting from the attraction be-
tween the electrons, must take place simultaneously.
However, in the compounds V3Si and Nb3Sn, in which
the quasi-one-dimensional nature of the electron spec-
trum is assumed, T m and T c are different, although
the difference between them is smaller than the temper-
ature interval where there is a logarithmic dependence
of the elastic moduli on T, and moreover the structural
transition always precedes (for pure samples!) the
superconducting transition.

In order to explain the connection between these two
transitions, Gor'kov uses the quasi-one-dimensional
model, assuming however that in the indicated com-
pounds the Fermi surface passes near the point X (we
recall that for the /3-W structure, the reciprocal lat-
tice is a simple cubic; the point X lies on the boundary
of the Brillouin zone in the directions [10 0] and thus
the coordinates (ir/a, 0, 0)). Since two atoms of transi-
tion elements along the chain are required per lattice
period in the /3-W structure, one might expect complete
occupation of the band of an individual chain. However,
as Weger showed,[92] due to the presence of nontrivial
translations in the /3-W structure the levels are doubly
degenerate at the point X, and this guarantees the
metallic conductivity of the chosen model. At the same
time it turns out that,1'0 8 ] the complete set of proper-
ties of superconductors with /3-W structure can be
understood as the result of an instability of the electron
spectrum at the point X with respect to the interactions
of the electrons with the lattice and among themselves.
The nature of this instability is related to the twofold
degeneracy of the levels at the point X and the linear
dispersion law in its neighborhood. The latter circum-
stance leads to the result that the instability of such a
spectrum is related to the instability of the spectrum of
a one-dimensional metal, discovered in[ 8 7 1 .

In this situation, by taking the interaction of the
quasi-one-dimensional electronic states near the point
X with the lattice deformations into account, Gor'kov
showed that the lattice moduli Cn and C1Z decrease
logarithmically with falling temperature, which is in
good agreement with Testardi's results'1 0 7 1 in V3S1, and
moreover the relation between these moduli has the
correct character. At a certain temperature the shear

376 Sov. Phys.-Usp., Vol. 17, No. 3, November-December 1974 Yu. A. Izyumov and Ζ. Ζ. Kurmaev 376



modulus (Cn - C12) may vanish, which would corre-
spond to the appearance of a tetragonal deformation in
the lattice. However, consideration of an attraction-type
interaction between the electrons may strongly shift the
corresponding transition temperature. It turns out that
in this case the logarithmic term, determining the tem-
perature dependence of the modulus, is multiplied by a
dimensionless factor proportional to the scattering
amplitude which, as was shown in[ 8 7 ] , sharply increases
with decreasing temperature in a quasi-one-dimensional
metal, determining the boundary of stability of the
normal metallic phase, for example, the superconducting
transition temperature Tc. The presence of this factor
obviously leads to the result that, the vanishing of the
modulus occurs at a temperature T m close to T c . This
is then the connection between the two associated phe-
nomena in the /3-W structure, the martensitic transition
and superconductivity, from the point of view of the
electronic spectrum of the investigated model. One
should add to this the fact that Gor'kov's model also ex-
plains the anomalous temperature dependence of the
magnetic susceptibility for V3Si, which turns out to be
logarithmic over a wide range of temperature above
T m , according to calculation and experiment.L 1 0 8 b ' A
number of other properties of compounds with β-W
structure, for example, the strain dependence of T m ,
are in agreement with this model.

Thus, after the work of Gor'kov, which has shown
that the "softening" of the lattice moduli in the super-
conducting compounds V3Si and Nb3Sn may be regarded
as a "distant precursor" of the phase transition, which
is the result of an instability of the quasi-one-dimen-
sional system with respect to the interactions of the
electrons with the lattice and with each other, the con-
cepts concerning the quasi-one-dimensional behavior of
the d electrons in these compounds find further confir-
mation.

However, we recall that there are two different
models which utilize the concept of the quasi-one-
dimensional spectrum for the chains—the Labbe-Friedel
model[781 and the Gor'kov model, [ 1 0 e a ) which differ first
of all in the position of the Fermi level. In actual fact,
where does the Fermi level occur for compounds of the
type V3Si and Nb3Sn? One can reformulate this ques-
tion as follows: is the Fermi momentum small (kp
« ττ/a) or, on the contrary, large (kp ~ ττ/a) for these
compounds? Right now a direct experimental determina-
tion of this quantity would be extremly important. Let us
indicate one theoretical possibility, which is related to
the study of inelastic neutron scattering by an electron
Fermi gas in a metal. If the wave vector ρ of the inci-
dent neutron is much larger than the extremal diameter
2kp of the Fermi surface, the differential cross section
da/aQ for the scattering of neutrons should have a cusp
at a scattering angle θ0 - 2kp/p. [ 1 0 9 ] For ordinary
metals the fulfilment of the condition 2kp « ρ requires
neutrons with epithermal energies of the order of an
electron volt or more, which does not allow us to use
the indicated method in view of the small intensity of
neutrons with such energies in reactor beams. However,
if the Fermi momentum is small in comparison with the
limiting wave vector, then one can satisfy the condition
2kF « Ρ even for thermal neutrons, so that the observa-
tion of a singularity in their angular distribution is
actually possible in this case. As the calculations re-
cently completed by Dieterich showed,[110] the corre-
sponding cross section da/dil for V3Si (under the as-

sumption that kp « π/a) should amount to 10'3barn per
vanadium atom—an effect which, unfortunately, is ex-
tremely small.

Another possibility for the investigation of the Fermi
surface in this type of substances is connected with posi-
tron annihilation. An experiment performed on V3Si[ i 1 1 1

showed that the Fermi surface in it is sharply aniso-
tropic, where the equal-energy surfaces have planar
sections perpendicular to the directions of the type
[1 0 0], as was first predicted by Weger.[79] It would be
very valuable to carry such experiments further, since
this technique also affords a possibility of determining
the thickness of the plane layer between different seg-
ments of the Fermi surface, i.e., its position with re-
spect to the points Γ and X.

Any experiment in which specific predictions of the
two models under consideration might appear deserves
a great deal of interest. In this connection let us turn
our attention to the work concerning the influence of a
magnetic field on the structural transition in V3Si. In
the Labbe-Friedel model the Fermi level for this com-
pound is estimated, as we know, to be several tens of
degrees. This means that magnetic fields of the order
of 105 Oe can substantially shift it and cause noticeable
effects. One of such effects is the reduction of T m on
application of the magnetic field. The predicted reduc-
tion of T m in a field of 90 kOe was 0.30°Κ;[112] the
measured value was found to be 0.26°K.t59]

Such surprising agreement with experiment, which,
of course, might be accidental, caused the authors
of[113] to go further. They predicted a new effect for
V3S1— the dependence of the spontaneous deformation €0
on the magnitude of the field, using the same values of
the parameters which give agreement with experiment
in regard to the entire set of properties of this com-
pound (see Sec. 8). It was found that e0 slowly de-
creases upon application of the field, and moreover the
effect depends on the temperature: The lower the tem-
perature T, the smaller the derivative | deo/dH |. How-
ever, a certain critical temperature exists (for the
parameter chosen, it turned out to be equal to 17.4°K,
and Tm(H = 0) = 21.25°K) below which a field of a
definite value will suddenly transform the crystal from
the state e0 > 0 (c/a > 1) into the state with e0 < 0
(c/a < 1). At the critical point Τ = 17.4°K itself, the
critical field Η « 275 kOe. Of course, the observation
of such an effect would indicate that the position of the
Fermi level is near the edge of the one-dimensional
band.

In spite of the fact that at the present time it is still
impossible to make a final choice between the models
under discussion, from an examination of the review of
the experimental facts and by comparing them with
these models, one must conclude that the different
properties of such compounds as V3Si and Nb3Sn ap-
pear as if they can be understood on the basis of the
concept of the quasi-one-dimensional nature of the d-
electron states in the (3-W structure.

However, it should be noted that there is a very
clearly expressed difference between the compounds
V3S1 and Nb3Sn in regard to purely electronic proper-
ties. The experimental material presented in Sec. 2 of
the present review indicates a high density of states at
the Fermi level for V3Si, whereas the density of states
appears to be small for Nb3Sn. Nevertheless, both
compounds have high values of Tc and exhibit a marten-

377 Sov. Phys.-Usp., Vol. 17, No. 3, November-December 1974 Yu. A. Izyumov and Ζ. Z. Kurmaev 377



sitic structural transition. Is this difference related to
the fact that in V3Si, let us say, the Fermi surface
passes near the point Γ, but in Nb3Sn it passes near
the point X?

In order to definitely confirm this idea, it would be
necessary to ascertain whether the special lattice
properties of V3Si and Nb3Sn are unique, or whether
other representatives exist in the series of high-tem-
perature superconducting compounds with β-W struc-
ture for which the high values of T c are accompanied by
a "softening" of the lattice moduli and perhaps by a
structural transition. Unfortunately, the elastic proper-
ties of compounds such as V3Ga, Nb3Al, Nb3Ga, and
Nb3Ge (T c > 15°K) have not been intensively studied.
Nevertheless, the first acoustic experiments, performed
on polycrystals, indicate (see Fig. 10) an appreciable
softening of the lattice for V3Ga and Nb3Al. It would
be of great interest to carry out a detailed measurement
of the lattice moduli with variation of the temperature,
as was done for V3Si and Nb3Sn, and also their inves-
tigation by neutron scattering experiments at very low
temperatures on the subject of the existence of a struc-
tural transition.

Another aspect of the investigations, which have the
goal of clarifying the validity of the model of a quasi-
one-dimensional spectrum in compounds with /3-W
structure, is connected with the dependence of the lattice
properties on doping or on stoichiometric composition.
Since these factors may disturb the chains of A atoms
(transition elements) in the A3B compounds, one can
anticipate considerable changes in a number of the
properties of these compounds (for example, the tem-
perature dependence of the elastic moduli) upon doping
or the introduction of disorder if, in actual fact, the
reason for the anomalous properties of the pure com-
pounds of stoichiometric composition is due to the
quasi-one-dimensional nature of the electronic states.
A detailed comparative analysis of the properties of the
various compounds with β-W structure should indicate
how widely the model of weakly interacting chains can
be utilized for them.

Note added in proof. Information about the synthesis of the com-
pound Nb3Si with β-W structure and its superconducting properties is
communicated in [ 1 2 3 ] . The effect of a magnetic field on the structural
transition in V3Si was investigated in [124] and an interpretation is given
of the experimental results within the framework of the LabbiS-Friedel
model. Further development of the theory of the structural transition
in Nb3Sn, which was started in [ 1 0 s > 1 0 4 ] , is carried out in [ ' " ] . We also
call attention to review articles on structural transitions, [126] tunneling,
[127] and an experimental article which investigates the softening of the
lattice moduli in ternary systems [1 2 8].
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