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Questions associated with the magnetic susceptibility of the d-band transition metals that are not

magnetically ordered, i.e., that are neither ferromagnets nor antiferromagnets, are reviewed. The

principal components of the magnetic susceptibility of the transition metals are discussed, theoretical

estimates of these components and of the total paramagnetic susceptibility are presented for

individual metals, the experimental results on the susceptibility of the transition metals and on the

temperature dependence are collected, and methods used to resolve the susceptibility into its

individual components are described. The results of studies of the susceptibility of single crystals with

the hep structure are analyzed. The experimental results are compared with theoretical estimates.
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INTRODUCTION

Those d-band transition metals11 that do not exhibit
magnetic ordering, i.e., that are neither ferromagnets
nor antiferromagnets, can be somewhat arbitrarily in-
cluded among the so-called " P a u l i " paramagnets. This
classification is customary even today, despite the fact
that the spin paramagnetism accounts for only part of
the observed magnetic moment of these metals.

The paramagnetism of the transition metals differs
essentially from that of the normal metals that form the
classic example of " P a u l i " paramagnets (e.g., alkali
or alkaline earth metals). First, the molar paramag-
netic susceptibility is an order of magnitude larger for
d-band transition metals than for normal metals
(Xalk.met, ~ *07 emu/mole and xtrans.met. ~ 108

emu/mole). A certain regularity is observed in the
changes of the susceptibility on going from metal to
metal as the d band is being filled: metals with odd
numbers of d electrons per atom have larger suscepti-
bilities than metals with even numbers of them; this
rule does not hold for metals having more than five d
electrons per atom (see Table I). The temperature de-
pendence of the susceptibility is appreciably stronger
for transition metals than for normal metals. More-
over, an alternation in the signs of the temperature co-
efficient of the susceptibility (d^/dT) in the d-band
metals of the first half of each transition series has
been observed: ΰχ/dT is negative (positive) for metals
having larger (smaller) susceptibilities. This alterna-
tion does not take place for metals having more than
four d electrons per atom.

These characteristics of the magnetic susceptibility
of the transition metals were discovered comparatively
early'1"51 but they have still received only qualitative
explanations. This is due to the fact that the observed
magnetic susceptibility is actually determined by the
sum of the separate magnetic moments of the conduc-

tion electrons and the ion cores, which cannot be meas-
ured independently. Recently, however, a number of
papers have been published[6~9] in which attempts have
been made to separate the individual components of the
magnetic susceptibility by analyzing a group of diverse
phenomena: electronic specific heat, magnetic suscep-
tibility, nuclear magnetic resonance, etc. The conduc-
tion electrons, because of their spin and orbital mag-
netic moments, make a paramagnetic contribution to the
susceptibility, while the closed shells of the ion cores
make a considerably smaller diamagnetic contribution.
Since the susceptibility of weakly magnetic transition
metals is determined mainly by the conduction electrons,
it depends strongly on the band structure. Estimates of
the individual components of the magnetic susceptibility
or of the total susceptibility have been made for certain
d-band metal crystals on the basis of calculated elec-
tron energy spectra.

The last review article on the susceptibilities of
transition metals was published in 1962 by Vonsovskii
and Izyumov[5J. Since then many papers have been pub-
lished in which calculations of the susceptibility of in-
dividual metals on the basis of known electron energy
spectra are discussed. Both theoretical and experi-
mental evidence has been found that the orbital para-
magnetism of the d electrons makes an important
contribution to the susceptibility of transition metals.
Studies of single-crystal specimens have revealed the
anisotropy of the magnetic susceptibility of transition
metals with hep structure. It would therefore seem
useful to review this field again, collecting the experi-
mental data on the magnetic susceptibility of weakly
magnetic d-band transition metals and on its tempera-
ture dependence, comparing the measured quantities
with the results of theoretical calculations, discussing
methods of distinguishing experimentally between the
different components of the magnetic susceptibility, and
pointing out the specific features of the magnetic sus-
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TABLE I. Electron configuration, molar susceptibility (χ), sign of the

temperature coefficient of the susceptibility (dx/dT), and the calculated

susceptibility ( χ ω ι 0 ) for transition metals

Metal

Scandium
Titanium
Vanadium

Yttrium

Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium

Palladium

Lutecium
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium

Platinum

Electron
configuration

3^4*2
3d24s2

3a*34s2

4025s2

4d35s2

4dB5s1

4ti55s2

4d75s1

4ouo

5d16s2

bcfi&s2

5d*6s2

5d56s2

5&№

χ- ΙΟβ,emu/mole

2641»
155 I»
300 13

183H

1291s

212,11*
89,21"

2 7 0 "
39,218

107 is

55018

3361·
7 0 "

162 «

53,3 '·
68,7 1°
13,1 '8
24,1 i»

192 1»

Sign of dx/dT *)

— (4— 1800°K)
-1- (4-1800 °K)
— (4—1800 °K)
- (<300°K)

— (300-800 °K)
~r (20—1500 °K)
— (7-1875 °K)
+ (7-1875 °K)
— (7—1875 °K)
ι (80—1850 °K)
τ (80-1850 °K)

-i- (<80°K)
— (80—1850 °K)
— (80—1000 °K)
4- (20-1500-K)
— (7—1875 °K)
- (7-1875 °K)
- (80—1850 °K)

- (80-1850 °K)
-:· (80—1850 °K)

- (80—1850 °K)

Xalc-lO*.
emu/mole**)

161.4

-

171.2
162.4
214.7
379.4
276.1
290.6
287 6
14313
205.1

124.6
147.7
199.2
370.6
299.5
349.1
344 9
198'
265

*The increase in the susceptibility observed for certain metals at low temperature

(near 30—40°K) is not taken into account in the table because it is due to ferromagnetic

impurities in the investigated specimens f 2 0 ] .

**The χ ^ ΐ ς values were taken from [66] and computed on the basis of the energy

spectrum calculated by Yamashita et al. [ 6 7 ] . When two Xc aj c values are given for the

same metal the first was computed on the basis of the energy spectra calculated by

Friedeletal. [*
1

ceptibility of d-band transition metals that have not yet
found their theoretical explanation.

1. PRINCIPAL COMPONENTS OF THE MAGNETIC
SUSCEPTIBILITY OF TRANSITION METALS

We shall begin our consideration of the principal
components to be taken into account in analyzing the
magnetic susceptibility of transition metals with a dis-
cussion of the spin paramagnetism and various interac-
tions that lead to its enhancement.

a) Spin paramagnetism of the conduction electrons.
The polarization of the conduction-electron spins that
takes place when the metal is placed in a magnetic field
changes the free energy of the conduction electrons and
gives rise to spin susceptibility ("Paul i " paramag-
netism). In the band theory, the spin susceptibility of
free electrons is related to the density of states at the
Fermi level, N ( E ) E = E F > b v t n e formula

, (1.1)

where μ Β is the Bohr magneton and N ( E ) E = E F ^S

counted for one spin direction. Except for a constant
factor, N ( E ) E = E F i s equal to the coefficient 7 of Τ
in the expression for the electronic specific heat:

(1.2)

where k is Boltzmann's constant.

The spin susceptibility χ§ρ i·8 temperature independ-
ent in the first approximation, but if one takes into ac-
count the thermal broadening of the sharp Fermi distri-
bution function, which leads to a change in the density
of states N(E) near the Fermi energy Ερ, one finds a
weak quadratic temperature dependence:

(1.3)

where N ' ( E ) E = E F a n d Ν ' ( Ε ) Ε = Ε ρ are the first and
second energy derivatives of the density of states at
Ε = E F . Κ is evident from (1.3) that the sign of the
temperature coefficient of the susceptibility (άχ/άΤ)
for metals whose N(E) curve has a complicated shape
must depend on the position of the Fermi level with re-
spect to that curve.

In the band theory, the peculiarities of the suscepti-
bility of transition metals noted in the introduction are
qualitatively explained by peculiarities of the spin
paramagnetism associated with specific features of the
band structure. The point is that in transition metals
there is not only an unfilled s band, but also an unfilled
d band. Since the energies of the nd and (n + l ) s
levels of transition-metal atoms are close together,
these bands overlap. The density of states is consider-
ably higher in the d band than in the s band since the
d band is the narrower and contains five states per
atom (not counting the spin degeneracy) while the much
wider s band contains only one state per atom. In
transition metals the Fermi level lies below the top of
the d band, so the peculiarities of the d band have
their effect on such properties of the transition metals
as are sensitive to the density of states at the Fermi
level. This is especially evident from the fact that the
transition metals have higher electronic specific heats
than normal metals. The shape of the density-of-states
curve N(E) for metals of a single transition series can
be derived from data on the electronic specific heats of
the pure metals and alloys of neighboring metals in the
series by analyzing those data in terms of the rigid-
band model. This is a very crude approximation, but it
provides a qualitative picture of the band structure that
leads to an obvious explanation1·4'10] of certain features
of the susceptibility of transition metals.

Figures 1 and 2 show density-of-states curves N(E)
for the 3d-, 4d-, and 5d-band transition series as de-
rived in [ 1 1 ' 1 2 1 on the basis of the rigid band model from
data on the electronic specific heats of the pure metals
and alloys. The N(E) curves consist of maxima and
minima following one after another. The position of the
Fermi level E F with respect to the N(E) curve varies
in a regular manner from metal to metal in a single
transition series: for metals having an odd (even) num-
ber of d electrons, E F lies close to a maximum ^mini-
mum ) on the N( Ε) curve. Metals having an odd number
of d electrons accordingly have higher susceptibilities
than metals having an even number of them.

The shape of the N(E) curve near E F also deter-
mines the sign of dx/dT, the temperature coefficient
of the magnetic susceptibility. Since in the pure metals
Ep lies close to an extremum of the N(E) curve where
the first derivative N ' ( E ) E = E F vanishes, the sign of
d x /dT will be determined by the sign of the second de-
rivative N " ( E ) E = E F ( s e e Ε(1· ί 1 · 3))· Μ E F lies close
to a maximum (minimum) on the N( E) curve, then
N " ( E ) E = E F > and therefore also d x /dT, will be nega-
tive (positive). This explains the change in the sign of
άχ /dT on going from one transition metal to its neigh-
bor in the same series.

The values of the spin susceptibility and the temper-
ature coefficients as estimated from the band theory
differ considerably from the experimental values. For
most of the metals, the spin susceptibility calculated
from Eq. (1.1) using N ( E ) E = E F values taken from
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FIG. 1. Density of states vs energy for metals of the first transition
series as derived in [" ] from electronic specific heat data.

FIG. 2. Density of states vs energy for metals of the second and third
transition series as derived in [ l 2] from electronic specific heat data.

TABLE II. Electronic specific heat coefficient (γ),
"band theory" susceptibility ( x ^ a n d t h ) , and calculated
spin susceptibility (x™[c) for transition metals

Metal

Scandium
Titanium
Vanadium
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium

Palladium

Lutecium
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Indium

Platinum

V.
mi/deg^ole

10.71721
3.36 22
9.26 2 a

8.75 24
2.8125
7.8 Z 6

2.02'
8.328
3.04 2»
4.65 3 0

9.40 '"

11.2732
2.146 21
5 . 9 3 3

0.84 3 4

2.29 "
2.3 3 l i

3.27 3 '

6.56 3 S

band th . . „,
xsp 1 0 ·

emu/mole

144
45.3

125
118

38
105
28

112
41.30*)
62

127

152
29
80
11
31

31.22·)
44.32·)

88

rale
xsp '

emu/mole61**

_

79
—
—

78.7
31.4
32.5

114.9
93.5

1011
108.7
66.8

111.2
—

78.2
36.4
33.9
89.7
88
99.7

110 1J

63.'0
90.8

'Corrected for the electron-phonon enhancement of the elec-
tronic specific heat.

**See the second footnote to Table I.

electronic specific heat data is 2 —3 times lower than
the measured paramagnetic susceptibility (Tables I and
II). Ruthenium, osmium, and iridium are exceptions;
for these metals the calculated susceptibility is higher
than the measured value.

The electron-phonon interaction that takes place in
metals appreciably enhances the specific heat coef-
ficient rS391 Hence the true value of N ( E ) E = E F > a n d

therefore also the value of the spin susceptibility, is
lower than the corresponding value calculated from Ύ.
When the spin susceptibility calculated from y is higher
than the measured paramagnetic susceptibility one may
correct for the electron-phonon enhancement of the
electronic specific heat coefficient (see Table II).

The lack of quantitative agreement between the
measured susceptibility and the value calculated on the
band theory for free electrons can be explained on the
assumption'401 that the Bohr magneton should be re-
placed in Eq. (1.1) for the Pauli magnetic susceptibility
by a certain effective value μ* that would take into ac-
count to a certain extent the interactions between the
conduction electrons. Thus, Stoner[41] suggested that
there may be a positive exchange interaction between
the conduction electrons in a metal that would increase
the spin susceptibility by a quantity β formally equiva-
lent to the Weiss molecular field:

(1.4)

Estimates of the exchange interaction parameter ob-
tained by comparing the measured and "band theory"
susceptibilities give values of ~2 eV for the transition
metals. This is comparable in order of magnitude with
the exchange interaction in ferromagnetic metals, but
the Fermi distribution of the conduction electrons pre-
vents the establishment of magnetic ordering.

The interelectron interactions have been taken into
account in calculations of the spin susceptibility only
for alkali metals'4 2 ' 4 3 '; both the exchange interaction
and the correlation effects (the electron-electron inter-
action after subtraction of the exchange interaction)
were taken into account in these calculations. The ex-
c.iange interaction increases the spin susceptibility,
while the correlation effects act in the opposite direc-
tion. Taking these effects into account together im-
proves considerably the agreement between the meas-
ured and calculated spin susceptibilities for lithium,
sodium, and potassium. In some calculations of the
susceptibilities of the transition metals'8 ' 4 4 1 it was as-
sumed that the exchange and correlation effects cancel
one another out, while in other calculations'45' it was
assumed that the exchange effects among the d elec-
trons in the metals lying at the ends of the transition
series (palladium and platinum) are large and are not
cancelled out by the correlation effects, Attempts have
been made'4 6 1 to establish the form of the exchange en-
hancement of the susceptibility of a transition metal
having two conduction bands (electron and hole) without
making any quantitative estimates.

The spin-orbit interaction also enhances the spin
paramagnetism somewhat. The spin-orbit susceptibil-
ity Xsp-orb * s smaller than χ 8 ρ by a factor of λ/Δ,
where λ is the spin-orbit interaction parameter and Δ
is the mean width of the d band. According to some
calculations'4 7'4 8' xsp-orb makes significant contribu-
tions to the susceptibilities of palladium and platinum.

b) Orbital paramagnetism of the d electrons. In
analyzing the magnetic susceptibility of transition
metals it was formerly assumed that the orbital mag-
netic moment was quenched, its contribution to the
susceptibility being negligible. Theoretical studies have
shown'441, however, that the orbital magnetic moment of
electrons in partly filled degenerate bands described by
nonspherical wave functions contributes a Van Vleck
term to the susceptibility, which is comparable in mag-
nitude with the spin susceptibility.

It has been assumed'4 9'5 0' that the Van Vleck "high-
frequency" orbital contribution to the paramagnetic
susceptibility of transition metals is due to the reduc-
tion in the energy of the occupied electron levels bythe
action of the perturbation energy -μΒΐι ·Η, where L is
the orbital angular momentum operator and Η repre-
sents the external magnetic field. If the magnetic field
is parallel to the ζ axis the perturbation operator can
be written in the form V = -μΒΗΙ-.ζ.

The change in the energy of an arbitrary state i as
a result mixing with state j via the perturbation V can
be expressed in the form

&,&,•; (1.5)
""·— E,-E, — E,-Ej »°'»°J>

here the δ symbol indicates that the interaction takes
place only for electrons with opposite spins. If both the
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states i and j are occupied, or if both are unoccupied,
we have 5Ej = 0. Hence the change in the total energy
is the sum over all the occupied states i or all the un-
occupied states j . In a metal at 0°K the states in each
band are either doubly occupied or doubly empty. If the
spin-orbit interaction can be neglected, the double oc-
cupation simply results in doubling the total perturba-
tion energy, i.e., the operator L z can couple states
having the same reduced wave vector k. Then expres-
sion (1.5) for the change in the energy of the metal takes
the form

x o r b · 10', emu/mole χ . Ί 0 6 , emu/mole

(1.6)

where the wave vector k labels the states, the numbers
i and j label the bands, and fy represent the Fermi
distribution function. The orbital paramagnetic suscep-
tibility per atom has the form

(1.7)

where Ν is Avogadro's number and the bar indicates
averaging in k space.

It is very difficult to calculate xorb for individual
metals with this formula, so a simpler formula, in
which xorb i s expressed in terms of the width and
relative filling of the d band, has been proposed[ 3 9'5 1 > 5 2 ]

for estimating the orbital paramagnetism of the d
electrons:

Χοχ^ΣμΙ, "(1°-"> , (1.8)

where η is the number of d electrons, and Δ is the
mean energy separation between the vacant levels i and
filled levels j for which the matrix elements of L z do
not vanish.

The calculation of the orbital susceptibility is of
great theoretical interest since X o r b is determined by
the energy parameter Δ whose value is of the order of
the width of the d band. Calculations1"'"3 of the orbital
susceptibility as a function of the d-electron Fermi en-
ergy for lattices of various types have shown that the
orbital contribution is greatest for metals lying near
the middle of the d band (Figs. 3 and 4); this corre-
sponds to the largest values of the quantity n( 10 - n)
in Eq. (1.8). In calculating xorb, the width Δ of the d
band was taken as ~2.67 eV for fee metals (from the
calculation of the energy spectrum of nickel1·55]), and
as ~6.3 eV for bec metals (from the calculation of the
energy spectrum of iron[ 5 e ]) . At equal d-electron con-
centrations, xorb is about twice as large for fee
metals as for bee ones. Taking hybridization of the d
band with the s and ρ bands into account leads to a
general broadening of the xorb(E) curves and to a
~25% decrease in the values of xorb· The calculated
values of x o r b are very sensitive to the spectrum used
in the calculation^].

c) Diamagnetic susceptibility. The diamagnetic com-
ponent of the susceptibility is due to the diamagnetism
of the filled shells and the conduction electrons. In
analyzing the magnetic susceptibility of transition
metals one usually takes into account only the ionic
diamagnetism by adding tabulated values of the suscep-
tibility of the corresponding ion (Table III) to the meas-
ured susceptibility. One neglects the diamagnetism of
the conduction electrons since in the transition metals
it is the d electrons, which have a large effective mass,

100

I 2 3 Ί

FIG. 3

5 e
EpeV

FIG. 3. Orbital paramagnetic susceptibility χΟ Γ|, vs Fermi energy for
d-band metals with fee structure. [54]

FIG. 4. Orbital paramagnetic susceptibility χ ^ vs Fermi energy for
d-band metals with bec structure. I 5 4 ]

TABLE III. Diamagnetic susceptibility of the ion
core (Xjon)> experimental estimates of the exchange
interaction constant (a), and the calculated spin-orbit
susceptibility ( χ '

Metal

Scandium
Titanium
Vanadium
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium

Palladium

Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Indium

Platinum

x i o n ' 1 0 ' ·
emu/mote' '

5
4

12
10

9
7

18
18

18

16
14
13
12
11
20

28

α-10-4, mole/emu

0 . 8 2 "
0.52»

0- 0.63 5 8 , 59

0.21; 0.09 5», 1·
0 <e, »

1.33; 0.5858, «o

10.85 5»

0; 0.87612
0 12, i«

0; 3.061». 12
0; 1.78K

—
—

0.62—0.66 «1

*s?orb·10'·
emu/mole"

-10.8

—2.5
—13.7
—0.5

36.7
17.0
35
61
45
42

—60
-37.8

2.3
59.9
36.5
78

112
83
85

that play the principal part in producing the magnetic
moment.

The expression for the diamagnetic susceptibility of
the conduction electrons in the lattice^621 (neglecting
interband transitions) contains a polynomial in the ratio
of the effective masses:

d ia— 6 Zj [ dkl dki Κ
k,,ki

' I <>io(E)
J № (1.9)

where e is the electron charge, fo(E) is the electron
distribution function, m° is the mass of a free electron,
and m* is the effective mass of an electron in the lat-
tice. For free electrons, the diamagnetic susceptibility
is one-third of the paramagnetic susceptibility (Eqs.
(1.1) and (1.9) with m* = m°):

..free — L γ _
Λ-dia 3 ^sp-

(1.10)

Moreover, the" paramagnetism of the s electrons is
about ten times smaller than that of the d electrons
(xalk.met. ~ 10> Xtrans.met. ~ 100 μβπηι/πιοΐβ).
Hence if we assume that the effective mass of an s
electron is close to the mass of a free electron we may
neglect the diamagnetism of the s electrons21.

Equation (1.10) does not hold for the d electrons.
The effective mass of a d electron is considerably
larger than the free-electron mass (mj » m°) so the
diamagnetic susceptibility of the d electrons is small
and can be neglected, as in the case of the s electrons.
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2. THEORETICAL ESTIMATES OF THE INDIVIDUAL
COMPONENTS AND THE TOTAL PARAMAGNETIC
SUSCEPTIBILITY FOR TRANSITION METALS

Now let us consider theoretical estimates of the
paramagnetic susceptibility of transition metals. A
number of investigatorst63~69l have given expressions
for the total magnetic susceptibility of free electrons,
but they are so complicated that it still seems impos-
sible to use them for estimating. Kubo and Obata[44)

gave simpler expressions in the tight-binding approxi-
mation for the paramagnetic part of the susceptibility
of the conduction electrons. This part of the suscepti-
bility was expressed as the sum of three terms: the
spin paramagnetism of the conduction electrons (xsp),
the Van Vleck orbital paramagnetism (χ Ο Γ Ο ) , and the
paramagnetic part of the susceptibility due to spin-
orbit coupling (xSp-orb):

,(k))— /(£„ (k)) -idk

Λ

:(nk|2S|re'k>(n'k|2S!nk>,

£„, (k) — £ n ( k )

X (izk | L ( ra'k) {«'k | L ] nk),
(2.1)

Xsp-orb =2μΐ) 2 rjk_
J (2π)3 En,(k)-En(k)

X [<nk | L | n'k) (n'k [ 2S\ nk) + (nk 1251 n'k) (n'k \ L \nk)],

where μβ is the Bohr magneton, f(En(k)) and
f( E n ' (O) are the Fermi distribution functions giving the
probabilities for finding an electron in states with ener-
gies En(k) and En'(k), and the ( nk | S, L | n'k ) are the
matrix elements for the sgin and orbital angular mo-
mentum operators § and L between the states nk and
n'k.

To calculate the paramagnetic susceptibility one
must also know the dispersion law E(k) and the elec-
tron wave functions.

The formulas of Kubo and Obata have been used[ 4 7 > 4 8 ]

to calculate the paramagnetic susceptibilities of many
transition metals and transition-metal alloys having
various crystal structures. The energy spectra of
nickel, chromium, and cobalt, altered in the rigid band
model in conformity with the particular metal, were
used in the calculations. It is characteristic that for all
the metals the calculated spin and orbital parts of the
paramagnetic susceptibility were of the same order of
magnitude, the orbital susceptibility of the d electrons
being somewhat larger, as a rule, than the spin suscep-
tibility of the conduction electrons (see Tables II
and IV). The component of the paramagnetic suscepti-
bility due to spin-orbit coupling was negligible as com-
pared with xSp and xorb f° r a ^ the metals except for
five of the d-band transition metals, for which xsp-orb
was considerable (see Table III). The calculations indi-
cated a weak temperature dependence for all the com-
ponents of the paramagnetic susceptibility (Figs. 5 and
6).

The calculated values of the spin and total paramag-
netic susceptibilities of the transition metals are given
in Tables I and II. The calculated spin susceptibility
(Table II) differs from the band-model estimate, the
calculated value being usually higher than the band esti-
mate. In some cases (Mo, Tc, Pd, and Pt) the two
values are virtually the same. The total paramagnetic
susceptibilities calculated for metals close to the be-
ginnings of the transition series (Ti, Zr, Nb, and Ta)

TABLE IV. Orbital paramagnetic susceptibilities: experimental
values obtained by different methods, and theoretical estimates

Metal

Scandium
Titanium
Vanadium
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Palladium
Luttecium
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium

X o r b ' 10 6 , emu/mole

(Shimizu's method)

95 5 Z

731 ' , 113™
178 1'
75 7 1

HO ^ , 09 5 9

98 72, 123 1β

60 7 2 , 8216
—

18. 29*) 7 3

30 i 6

30 i 6

41. 58 1 2

98 I 2 , 117ie
71 «, 58. 67*2

4.69 12
_

.—
42. 28βΐ

X o r b ' 10 6 , emu/mole

(Clogston's method)

.
200 5 1

_

H O 7 4

—
30 eJ

25 " J

—.
—

915 -i

—

30 8

X . * 106, emu/mole

(Theory)

_

145 47, 9362
183 6°, 146 62, 7 5 6

95 "2
I °8 ΰί)

182 °2
228 62
1 6 5 <i'z

130, 144e2

40 6, 34 ? 4§62
10U62

139 62, 102 6

103 62, i i 3 β
221 β2

175 62

100, 110 62

200 Υ

-60

S
*

Jd(Ti)

<Kt(Zr) xsp-orb

Sd I Hf]

2000
T.°K

FIG. 5

1000

FIG. 6
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FIG. 5. Calculated [48] temperature dependences of Xsp. Xsp-orb'
and χ Ο Γ β for 3d-, 4d-, and 5d-band transition metals with the fee struc-
ture and two d electrons per atom (Ti, Zr, and Hf). The dashed curves
show the temperature dependences of % s p and xOrb without correction
for spin-orbit coupling.

(see Table I) are in satisfactory agreement with the
experimental values. For the other metals, the calcu-
lated paramagnetic susceptibilities are considerably
higher than the experimental values. This difference
should be compensated to some extent by the diamag-
netic contributions from the ion cores and the conduc-
tion electrons themselves.

Modern electron structure calculations are not so
accurate as to lead one to expect quantitative agreement
between the observed and calculated values of the sus-
ceptibility. It is very important, however, that the cal-
culations give the correct order of magnitude for the
paramagnetic susceptibility, for this would be evidence
that the principal contributions to the susceptibility
have been taken into account and correctly evaluated.

3. EXPERIMENTAL RESULTS

Now we shall consider the experimental data on the
magnetic susceptibilities, and in Sec. 4 we shall also
discuss the methods used to resolve the measured
susceptibility into its individual components for com-
parison with the theoretical estimates discussed above.

The results of various measurements of the molar
magnetic susceptibility and its temperature dependence
for the transition metals are presented in Table I and
Figs. 7—13.3) As is evident from the figures, the gen-
eral behavior of the susceptibility as a function of the
temperature is about the same for the several metals
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of a single group, although there are some discrepan-
cies among the data from different sources on the mag-
nitude of the molar susceptibility and the details of the
χ(Τ) curves. These discrepancies are probably due to
inadequate purity of the investigated specimens.

Now let us examine the experimental results for the
several groups of transition metals in somewhat more
detail:
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FIG. 7. Temperature dependence of the magnetic susceptibility of
scandium (a) (curves 1 and 2 are from [76] and [ " ] , respectively),
yttrium [ H ] (b),and lutetium [19] (c).
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FIG. 8. Temperature dependence of the magnetic susceptibility of
titanium (a) (according to data from various sources reported in [7 7])
and hafnium f 8 ] (b).

FIG. 9. Mangetic susceptibility of zirconium ["] (a) (1-calculated
temperature dependence of the spin susceptibility χ 0 (Τ), 2-total suscep-
tibility calculated for α = -1.37 X 104 mole/emu and x c = 0.95 X 10'"
emu/mole, 3-the same as curve 2 but for α = 0.37 Χ 104 mole/emu and
Xc = 0.71 Χ 10'4 emu/mole; the other curves represent experimental data
from different souces) and rhodium [79] (b) (1—calculated temperature
dependence of the spin susceptibility xo(T), 2-total susceptibility calcu-
lated for α = 1.33 X 10" mole/emu and x c = 3.22 X 10'4 emu/mole, 3 -
the same as curve 2 but for α = 0.7 X 104 mole/emu; the other curves
represent experimental data from different sources).

a) Group III metals (Sc, Y, and Lu) (Fig. 7). For
scandium and lutecium, d^/dT < 0 over the entire in-
vestigated temperature range. The magnetic suscepti-
bility of yttrium passes through a maximum near
Τ = 300° Κ; the nature of this maximum has not yet been
established. Above 300°K, d x /dT < 0 for yttrium, as
for the other two metals of this group.

b) Group IV metals (Ti, Hf (Fig. 8), and Zr (Fig. 9)).
For all these metals, άχ/άΎ > 0. The X (T) curves for
titanium and zjirconium each has a break at the temper-
ature (1150 and 1130°K, respectively) of the phase
transition from the hep to the bec structure. We note
that there are some discrepancies between the values
of the susceptibilities and the details of the χ(Τ)
curves obtained for titanium and zirconium by different
investigators. This is due to differences in the purity

110
Ά
I 230
s
e

.Λ no

250

230

Nb

W 800 1200

ο Π5

3
Ε

V ISO

Τ,'Κ

Τα

SOU 1000 1500 2000

T;K

SOU 1000 1500 ZOl
T.'K

c

FIG. 10. Temperature dependence of the magnetic susceptibility of
vanadium (a), niobium (b), and tantalum (c) according to data from
various sources reported in I 1 6 ] .
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of the investigated metals and also, possibly, to texture
of the specimens, since considerable anisotropy has
been observed in the magnetic susceptibilities of transi-
tion metals with the hep structure (see Sec. 5).

c) Group V metals (V, Nb, and Ta) (Fig. 10). For
these metals dx/dT is always negative and the χ(Τ)
curves have no anomalies. However, the considerable
discrepancies among the molar susceptibility data for
vanadium and tantalum from different sources are
striking. A considerable effect of the presence of oxy-
gen in the specimens on the observed susceptibility of
vanadium has been noted[9].

d) Group VI metals (Mo and W) (Fig, 11), These
metals resemble the group IV metals in having dx/dT
> 0. For molybdenum and tungsten, as for the group V
metals, there are considerable discrepancies between
the measured molar susceptibility values from differ-
ent sources.

e) Group VII metals (Tc and Re) (Fig. 12). Up to now,
results on the temperature dependence of the suscepti-
bility have been published only for rhenium; d^ /dT is
positive. The results of different studies on the χ(Τ)
curves are somewhat contradictory: some investiga-
tors'7 8 1 report a susceptibility minimum at high tem-
peratures, while others[ 1 6 ] report a monotonic increase
in the susceptibility,

f) Group VIII metals (Ru,Os, Rh, Ir, Pd, and Pt)
(Fig. 13). For ruthenium, osmium, rhodium, and
iridium, dx/dT is positive in the investigated tempera-
ture range, However, the data from the several sources
differ as regards the magnitude of the susceptibility
and there are some differences in the shape of the χ(Τ)
curve: for rhodium, at high temperatures, and for
osmium, at low temperatures. According to some
data[ 7 8 ] ruthenium exhibits hysteresis of the magnetic
susceptibility, while according to other datar i 8 ] it does
not.

For palladium and platinum dx/dT is negative. The
susceptibility of palladium has a maximum in the low-
temperature region; this maximum has been attributed
to peculiarities of the energy structure of the conduc-
tion band[7J and to peculiarities of the exchange inter-
action[80].

4. EXPERIMENTAL METHODS FOR SEPARATING THE
SUSCEPTIBILITY COMPONENTS

The following contributions are usually taken into
account in analyzing the magnetic susceptibility meas-
urements: 1) the spin paramagnetism of the conduction
electrons as enhanced by the exchange interaction,
2) the orbital paramagnetism of the d electrons, and
3) the diamagnetism of the ion cores. To establish the
magnitudes of these individual contributions one must
make use of the results of studies of other physical
properties of the metals.

Shimizu[7' proposed a method for resolving the
susceptibility into components on the basis of a joint
study of the susceptibility and the electronic specific
heat. This method is based on the assumption that for
the transition metals, the observed temperature depend-
ence of the susceptibility is entirely due to that of the
spin susceptibility of the conduction electrons. Accord-
ingly, one considers two terms in the susceptibility:

tmcalT) ~= Xconst τ Zsp(^). (4.1)

where xconst * s *-ne temperature independent part of
the susceptibility, which is due to the orbital paramag-
netism of the d electrons, and the ionic diamagnetism

Xconst ^ "/.orb + Zion, ( 4 . 2 )

and xgp(T) is the temperature dependent part of the
susceptibility:

where χο(Τ) is the spin paramagnetic susceptibility of
the conduction electrons and a is the exchange interac-
tion constant.

The temperature dependence of the conduction-elec-
tron spin susceptibility is calculated theoretically. For
this calculation one first constructs the density of
states curves N(E) for the metals of all the transition
periods from the electronic specific heat data (see
Figs. 1 and 2). Then, in the context of the rigid band
model one determines the change in energy with tem-
perature and calculates the xc a^c(T) curves for the
individual metals from formula (1.3). Figure 9 shows
such calculated χο(Τ) curves ^79J for zirconium and
rhodium. The calculated χο(Τ) curves differ consider-
ably from the experimental χ(Τ) curves both in the
magnitude of the susceptibility and in the temperature
trend itself. The curves are brought into conformity by
selecting suitable values for xorb an<3 <*. Tables III and
IV give the values of χ ο ^ and a that lead to calculated
curves showing the total susceptibility as a function of
temperature which agree most closely with the experi-
mental χ(Τ) curves. The orbital paramagnetism of the
d electrons is found to be greatest for the metals lying
close to the middle of their respective transition series.

Clogston et al. [ 8 ' 5 1 ' proposed another method for re-
solving the susceptibility into components. This method
is based on joint study of the temperature dependences
of the susceptibility and the Knight shift. The Knight
shift is the difference between the NMR frequency for
the metal and the resonance frequency for the same
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nucleus in a nonmetallic compound; it arises because
in the metal there appear additional fields at the nucleus
owing to the indirect or contact interaction of the nu-
clear spins with the conduction electrons.

Just as the net susceptibility of the metal is deter-
mined by both diamagnetic and paramagnetic moments
acting jointly, so the Knight shift is the sum of a num-
ber of negative and positive contributions, each of
which is associated with a corresponding contribution
to the susceptibility. For the transition metals, the
Knight shift Κ (in percent) is usually regarded as the
sum of the following terms:

Κ = Ks + Kd + K0lb + 6Kdiz. (4.3)

Here Kg arises from the contact interaction of the
nuclear spins with the fields of the unfilled s shells;
Kd arises from the contact interaction of the nuclear
spins with the fields of the filled s shells whose spins
are polarized as a result of the exchange interaction
with the spin moments of the d electrons; KQJ-J, arises
from the contact interaction of the nuclear spins with
the fields of the filled s shells whose spins are polar-
ized as a result of the exchange interaction with the
orbital magnetic moment of the d electrons; and
SKdia i s t n e diamagnetic contribution to the Knight
shift.

The spin paramagnetic contributions from the s and
d electrons are treated separately in the expression for
the magnetic susceptibility:

X = χ* (Τ) + χοΛ + X d i a .

Each component of the Knight shift in Eq. (4.3) is asso-
ciated with a corresponding contribution to the suscep-
tibility:

atXst Karh =

The coefficients as, α$, and β, the relativistic correc-
tion factor Fj, and the quantity flKdia can be calculated
by making certain approximations that we shall not dis-
cuss here.

On comparing the temperature dependences of the
Knight shift and the susceptibility for the transition
metals it was found that the Κ vs Τ plot for any given
transition metal is a straight line (Fig. 14). As in
Shimizu's method, it is further assumed that the tem-
perature dependence of the susceptibility (and in the
present method, also that of the Knight shift) is entirely
due to the temperature dependence of the d-electron
spin susceptibility.

Now let us see how the K(x) plot for separating the
spin and orbital components is constructed, using plati-
num as an example. The heavy line segment on the

FIG. 14. Knight shift of the Pt 1 9 s

NMR in platinum metal vs the suscep-
tibility. The heavy line marked "ob-
served" represents the experimental
data; the line above it marked "cor-
rected" represents the same data cor-
rected for the positive NMR shift in
the chloroplatinic acid reference solu-
tion; and χΤ is the spin susceptibility
calculated from the electronic specific
heat data.
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lower right in Fig. 14 represents the experimental part
of the Κ(χ) plot; its slope is assumed to be a^. The
quantity X c u a is laid off leftward from zero along the
abscissa axis; for platinum, its contribution oKdia to
the Knight shift is negligible. Then the quantity χ8 is
laid off along the abscissa axis from the point B, and a
line is drawn with slope a s and continued until it inter-
sects the vertical erected at the end of the χ8 segment.
A line with slope β is drawn from the point A and is
extended until it intersects the extension of the experi-
mental line. Projection of the intersection point onto
the abscissa axis yields segments corresponding to the
values of Xcj and xorb· The orbital susceptibilities of
a number of metals have been evaluated in this way (see
Table IV); the results are in satisfactory agreement
with the values of X o r D obtained by Shimizu's method.

It is also possible to obtain information about the
magnetic moment by a method that does not involve in-
vestigating the magnetic susceptibility—namely, by
measuring the magnetomechanical ratio. Such measure-
ments for the weakly magnetic transition metals are
very difficult since, for example, to evaluate the
Einstein-de Haas effect for these metals one must
measure very small (~10"s rad) angles of rotation-
angles that are two orders of magnitude smaller than
those encountered in similar measurements on ferro-
magnets. An improved resonance technique has made
it possible to make such measurements for a number
of transition metals. The results of these measure-
ments[ 8 1 > 8 2 ] are presented in Table V. The fact that the
magnetomechanical ratios differ from two shows that
the orbital magnetic moment does not vanish in these
metals4).

The experimental values of the orbital paramagnetic
susceptibilities of the transition metals as obtained by
the two different methods are collected, together with
their theoretical estimates, in Table IV. In some cases
the agreement is not bad, although no particular signifi-
cance should be attached to precise agreement since the
experimental values and theoretical estimates are
equally inaccurate. However, the agreement in order of
magnitude between the theoretical estimates and the
experimental values of the orbital paramagnetic suscep-
tibility definitely shows that in the weakly magnetic-
transition metals the orbital magnetic moment is re-
sponsible for a considerable part of the net paramag-
netic moment.

5. MAGNETIC ANISOTROPY

Studies of the magnetic susceptibility of single
crystals of weakly magnetic transition metals[ 2 9'7 6'8 3"9 1 1

have shown that the susceptibility of the metals with the
hep structure depends on the direction of the magnetic
field with respect to the crystallographic axes, i.e.,
these metals exhibit magnetic anisotropy. Anisotropy of
the magnetic susceptibility with a period of 180° is ob-
served in a plane containing the hexagonal axis c (Fig.
15). For some of the metals (titanium, zirconium,
hafnium) the greatest susceptibility is measured with

TABLE V. Magnetomechanical ratio for transition
determined from the Einstein-de Haas effect

Metal

g'

Vanadium

1.18

Niobium

1.05

Tantalum

1.02

Palladium

1.77

metals as

Platinum

1.02

352 Sov. Phys.-Usp., Vol. 17, No. 3, November-December 1974 E. V. Galoshina 352



Ζ- /ί>*. emu/mole

m

№

1W

130

1Z0

110

100

V

Λ

V

X-10 ,emu/mole

fi» 150 180

Η lie Hlc Hk

35

0 30 BO 90 120 150 180

№, deg

Hllc Hie Hllc

FIG. I 5. Magnetic susceptibility of single crystals of transition metals
with the hep structure vs the angle between the magnetic field vector Η
and the hexagonal axis c.

structure. The trouble is that the observed susceptibil-
ity is the sum of a number of components and it is im-
possible to determine experimentally whether the
anisotropy is associated with the diamagnetic part of
the susceptibility, or with the paramagnetic part of it.

TABLE VI. Molar susceptibilities of hep metals for the mag-
netic field parallel (xy, Η || c) and perpendicular (χχ, Η i c) to the
c axis, and the values of x p o ] y = (xy + 2χ1)/3

Metal

Scandium
Yttrium
Titanium
Zirconium
Hafnium
Rhenium
Ruthenium
Osmium

χ || • ioe, emu/mole

294, 281
174, 270

169; 164; 168,7
147; 151

95
68.3
35.2
5.40

Xĵ -106, emu/mole

232, 298
220, 445

144.5; 143; 143.3
86; 100

63
73.0
44.2
12.65

Xpoly·10',

emu/mole

253, 294
191, 387

152; 147: 153!
110; 117

73
69.8
41.2
10.23

Refs.

76, 85
20, 83

87-89

84, 86
8 e

2 0

B8

»1

the field parallel to the c axis (xn), while for others
(scandium, yttrium, rhenium, ruthenium, and osmium)
the maximum susceptibility is measured with the field
perpendicular to the c axis (χι). In the basal plane, the
susceptibility is independent of the direction of the mag-
netic field with respect to the crystal axes within the
accuracy of the measurements.

As Table VI shows, the experimental data are not
numerous and require confirmation. There is consider-
able spread of the χιι and χι values for scandium and
yttrium. The values of χ obtained in[ 7 6>8 3 > 9 0 ] are perhaps
much enhanced with respect to the other data because of
the presence of rare-earth metal impurities (~0.3%) in
the investigated specimens. Except for the data of'-76'83·',
the susceptibilities of the polycrystalline specimens are
correctly given for all the metals by the usual averag-
ing formula: X p o l y = (XN + 2 X i )/3.

Some features of the susceptibilities of transition-
metal single crystals with the hep structure can be
traced in their temperature dependences (Fig. 16).
Although the general behavior of the susceptibility as a
function of temperature remains the same as for poly-
crystalline materials, i.e., the sign of the derivative
άχ/dT is the same for single-crystal and polycrystal-
line specimens, the magnitude of the temperature coef-
ficient is different for χιι and χ_|_: specifically, the
smaller of the two susceptibilities has the larger tem-
perature coefficient. Hence the absolute value of the
susceptibility anisotropy (i.e., of the difference Δχ
= χμ - XJJ falls with increasing temperature.

For convenience in the subsequent discussion we
arbitrarily introduce the notion of the "sign of the
magnetic anisotropy," by which we shall mean the sign
of the susceptibility difference χ,| - χι. As Table VII
shows, the sign of the anisotropy is not the same for
all the metals. If we trace the filling of the d-band
energy levels, we find a definite regularity: metals
having an even number of d electrons have positive
anisotropy, while metals having an odd number of d
electrons have negative anisotropy, i.e. metals of the
same group have anisotropies of the same sign. Osmium
is an exception: it has six 5d electrons but negative
anisotropy.

At present we have no unambiguous explanation for
the anisotropy of the magnetic susceptibility observed
for the weakly magnetic transition metals with the hep

TABLE VII. Electron configuration, magnitude and sign of the suscep-

tibility anisotropy, and the relative anisotropy for hep transition metals

Metals

Scandium
Yttrium
Titanium
Zirconium

No. of d
electrons

1
1

2

Λχ·ιη«,
emu/mole

— II
—"(i

21-2.">
51—(il

Metals

—ll. l l I Hafnium
—0.43 i Rhenium

0.22-0.21; •' Osmium
(1.1)4—11.1.1 , Ruthenium

No. of d
electrons

5
(i

emu/mole

32
— 4 . /
—7 .25
- .-9.11

0.43
- 0 . 1 2

—U. 5

0 50 100 !50 200 250 Τ Κ

15.5

1 if

Η I f 0 50 150 200 250 Γ Κ
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FIG, 16. Temperature dependence of the magnetic susceptibilities of
yttrium [20] (a), titanium [88] (b), zirconium [84J (c), hafnium [86] (d),
rhenium [20] (e), ruthenium [88] (f), and osmium [91] (g) single crystals
with the magnetic field parallel and perpendicular to the c axis (H || c and
Η || c, respectively).
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Authors usually limit themselves to more or less well
founded assumptions concerning the nature of the sus-
ceptibility anisotropy.

It is well known that the energy characteristics of
the conduction electrons in hep crystals depend to a
considerable extent on the crystallographic axis ratio
c/a. The hypothesis has been advanced'90] that the
anisotropy of the susceptibility is due to the anisotropy
of the charge density of the electron cloud consisting of
collectivized s and d electrons. In hep crystals this
distribution is axially symmetric and could lead to
anisotropy of the diamagnetic part of the susceptibility.
Estimates[ e 0 ] of the isotropic and anisotropic parts of
the diamagnetic susceptibility of the conduction elec-
trons in scandium and yttrium based on the Bloember-
gen-Rowland[92J formula for the mean density of the
electron cloud gave very large values for the isotropic
diamagnetic part. There is no foundation for the pres-
ence of considerable diamagnetism in these metals and
no attempts have been made to reconcile such diamag-
netism with the shape of the Fermi surface. The view
that the anisotropy of the magnetic susceptibility of the
weakly magnetic transition metals is associated with the
orbital paramagnetic contribution has received better
theoretical foundation. Ducastelle and Cyrot-Lack-
mann[ 9 3 ], using a method proposed by them involving a
moment expansion of the density of states, showed that
when calculating the orbital paramagnetism in the tight
binding approximation anisotropy appears in the fourth
order of perturbation theory provided the axial ratio
c/a differs from its ideal value of 1.633. One also
finds that the orbital paramagnetic susceptibility of an
ideal close packed lattice is anisotropic, but in this
case the anisotropy appears in the sixth order of per-
turbation theory. It is the overlap integrals in the ex-
pression for xorb t n a t a r e responsible for the direc-
tional dependence of the latter. It was shown that the
anisotropy changes sign at least twice in each series as
the d band is being filled, and that the magnitude of the
susceptibility anisotropy depends on the deviation of
c/a from its ideal value. Preliminary estimates of the
relative anisotropy of the susceptibility as defined by
the formula A x / X o r b = (XM - χι)/[(χιι + 2x i)/3] give
values of the order of 0.02, whereas the experimental
values are much larger: ~0.1—0.5.

6. CONCLUSION

The establishment of correlations between the theo-
retical estimates and observed values of the orbital
contribution to the paramagnetic susceptibility and of
the total paramagnetic susceptibility for the weakly
magnetic transition metals strongly supports the as-
sumption that the theory does take the principal com-
ponents of the susceptibility into account and that those
components can be calculated provided the electron
structure of the metal is known. Nevertheless, there
are a number of problems of fundamental importance
that remain unsolved and that cannot be solved on the
basis of studies of the static susceptibility alone. Among
these problems is that of determining the part played
by the exchange interaction and the diamagnetism of the
free electrons in forming the net magnetic moment of
the transition metals. The observed temperature depend-
ence of the susceptibility of the transition metals has
not been explained; it is essentially attributed entirely
to the spin paramagnetism, but discrepancies between
the theoretical and experimental X (T) curves clearly

indicate that this explanation is inadequate. Further
studies of the anisotropy of the magnetic susceptibility
of the d-band metals with the hep structure will also be
necessary before its nature can be satisfactorily ex-
plained.

In concluding I wish to express my sincere gratitude
to N. V. Volkenshtein for suggesting that this review be
written, for his interest in the work, and for discussions
during the course of the work, and to S. V. Vonsovskii
for reading the manuscript and for critical remarks.
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