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A thermodynamic theory of heterophase structures is proposed, describing the relation of the

volumes, shape, internal structure, and mutual disposition of the crystals that are formed in a phase

transformation in the solid state. An important feature of solid heterophase systems is the presence

of internal-stress fields arising as a consequence of the contact between the phases. The tendency to

reduce the elastic energy of the internal stresses leads to the breakdown of the crystals composing

the heterophase system into elastic domains and to the formation of ensembles of crystals arranged

in an ordered manner. As a result of the competition between the elastic energy of the internal

stresses and the interphase surface energy in a solid, metastable many-phase states arise, characterized

by a regular spatial distribution of plate-like structural elements.
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INTRODUCTION are certain sufficiently general structural features,
. i u i x J . - - I - J j · among which are included the following:

As a rule, phase transformations in solids proceed in & &

the following way: separate regions or crystals of the 1. There is a definite orientational relationship be-
new phase first appear in the initial phase, then grow, tween the lattices of the initial and final phases,
interact and form a complicated heterophase system. 2. The typical structural shape of the new phase is a
The shape, volume and crystallographic orientation of p l a t e with a small ratio of thickness to the other linear
the individual crystals and their internal structure and dimensions.
mutual alignment, i.e., the real structure of the hetero- o _, , . . . . . . . . , . ., ,

, . . ., . . , ,. , 3. The habit faces of the crystals of the new phase
phase system arising in the phase transformation, de- f o m e d h a v e a d e f i n i t e c ; y s t a U o g r a p h i c 0 1 T i e n t a .
termine to a considerable extent many physical proper- tion
ties of crystalline solids. The study of the real struc-
ture is therefore of considerable interest for solid-state 4. The transformation of any part of the old phase
physics, metallography and physico-chemical mechanics. i n t o t h e n e w l e a d s t o a macroscopic change in the shape
An enormous amount of factual material has been ac- o f ϋώ8 Pa r t> w n i c h is manifested in the form of a charac-
cumulated in this field. teristic relief on a plane surface of the sample. The

parameters of the macroscopic deformation are specific
Despite individual successes in the physical interpre- f o r e a c h t y p e of transformation.

tation of the data obtained, until recently the overall _ _ , , . , .
picture has appeared extremely patchy and confused. 5 · , T h e crystals of the new phase have a regular in-
In recent years there has been definite progress in our ^ r n a l structure. In a number of cases the structure of
understanding of the general laws governing the forma- t h e n e w P h a s e » « * m o n ° - b u t Polycrystalline, e.g., the
tion of a real structure. It is evidently possible, at the n e w P t o s e c a n b e Produced in the form of a polysynthetic
present time, to talk of a sufficiently general theory of twin.
heterophase structures that not only explains satisfac- 6. There is a definite tendency to an ordered mutual
torily the principal featues of real substances but also alignment of the crystals.
makes it possible to give a quantitative treatment of the illustration we shall consider the structure that
observed phenomena In this article this theory is ex- . g f o r m e d ^ ^ F e _ 3 3 % № a g & r e g u l ( . o f a m a r .
pounded systematically for the first time The mam t e n g i t i c t r a n s f o r m a t i o n . F ^ u r e l a s h o w s t h e m i c r o .
attention is given to the fundamentals of the theory and s t r u c t u r e e x p o s e d b y p i l i n g . The light regions are the
to the new physical results stemming from the theory. high-temperature fee phase, and the dark regions
Therefore, toe article does not contain concrete quant- a r e * o f ^ s t a b l e b c c ^ T h e ^ o f t h e

tative emulations, and experimental material is invoked ^ i g o r i e n t e d r e l a t i v e t o t h e c r y s t a l l o g r a p h i c « β β

only as illustrations; the mathematical apparatus used £ f ^ m a t r i x ( ^ { 3 1 Q 1 5 } ) > K c a n b e g e e n ^ ^
is extremely simplified, and preference is given to quah- p l a t e g a r e a r r

v

a n ^ e d i n a d

J

e f i n i t e o r d e r > f o r m i n g c h a r a c .
tative physical estimates. teristic truss-like groups. Trusses of higher orders are

Morphologically, the structural states formed in distributed in the gaps between the "links" in the large-
phase transformations are extremely diverse, but there scale trusses.326 Sov. Phys.-Usp., Vol. 17, No. 3, November-December 1974 Copyright © 1975 American Institute of Physics 326



FIG. 2. Relief on the surface, caused by
the emergence of a crystal of the new phase.

FIG. 1. Macro- and microstructure of the alloy Fe—33% Ni after a
martensitic transformation (X500 (a) and X10,000 (b)).

A study of the relief which arises on the plane surface
of the initial phase at the point at which the plate of the
new phase emerges reveals the pattern represented in
Fig. 2. An analysis of the relief makes it possible to de-
termine the parameters of the macrodeformation ac-
companying the formation of the plate. Usually, the
macrodeformation is a combination of a simple dis-
placement along the plane of the plate and an expansion
or contraction normal to this plane. This is a so-called
invariant-plane deformation—the planes parallel to the
habit faces of the crystal are displaced as a whole rela-
tive to each other, without being distorted or rotated
(Fig. 3). The macrodeformation parameters—the dis-
placement and expansion—are specific for each trans-
formation (in the example under consideration, the dis-
placement γ « 0.2 and the expansion δ ~ 0.05).

A study of the internal structure of the plates of the
bcc phase shows that they are not monocrystals but
polysynthetic regions composed of alternating plane-
parallel layers, situated in a twinned relationship (see
the electron-microscope photograph in Fig. lb). The re-
lationship between the thicknesses of these layers, and
also their orientation relative to the lattice of the sur-
rounding initial phase, are well defined for each alloy.
The orientational relationship between the crystal lat-
tices of the fee and bcc phases, which can be determined
using x-rays (one obtains a quantity averaged over the
many bcc plates formed within the boundaries of the one
fee crystal), is an almost constant characteristic (to
within 1°) for a specific transformation.

We must call attention to one other characteristic
feature of the structure considered—the presence in it
of the initial phase. The relative quantity of the new
phase is a function of the thermodynamic conditions of
the transformation—the temperature, pressure, etc. The
greater the deviation from the point of thermodynamic
phase equilibrium, the greater is the relative quantity of
the new phase, the new phase being formed only when the
deviations from the point of phase equilibrium are grea-
ter than a certain minimum size. In particular, at a con-
stant pressure the transformation begins at a tempera-
ture T m different from the phase-equilibrium tempera-
ture To. On further deviation from equilibrium the ex-
tent of the transformation increases and, finally, at a
certain temperature Tf, the initial phase disappears
(Fig. 4). A study of the kinetics of the transformation
shows that the limiting extent of an isothermal trans-
formation is attained extremely rapidly, and then re-
mains unchanged for arbitrarily long time intervals.
This points to the fact that we are dealing here not with

a b c

FIG. 3. An invariant-plane deformation, (a) General case; (b) uniaxial
expansion; (c) simple shear.

FIG. 4. Dependence of the extent
of transformations on the magnitude
of the deviation from the point of
thermodynamic phase equilibrium.

a kinetic effect but with a manifestation of a thermo-
dynamic feature of the transformation: in the tempera-
ture interval T m — Tf a distinctive two-phase equili-
brium is established in the system. The nature of this
phenomenon is difficult to understand from the stand-
point of ordinary thermodynamic concepts: in the proc-
ess of a martensitic transformation the composition of
the phases does not change, and in a first-order phase
transformation in such a quasi-one-component system
only one phase can be stable.

The features of the formation of the structure that
have been demonstrated in the example considered are
most clearly manifested in the martensitic transforma-
tions'-1'2-, but to varying extents they are characteristic
of all phase transformations in the solid state. In the
course of the subsequent account we shall show that the
structural pattern presented is typical for transforma-
tions in crystals and can be reconstructed as a result
of a theoretical analysis of the equilibrium states of a
heterophase system. The possibility of applying a
thermodynamic analysis to the real structure of hetero-
phase crystalline solids is not obvious and requires
some explanation. Indeed, if a solid has attained stable
equilibrium as the result of a phase transformation,
then, in accordance with the Gibbs phase rule, a limited
number of phases exist in it. In particular, a one-
component single crystal should be transformed into a
single crystal, a two-component one into a two-phase
bicrystal, and so on. On the other hand, the observed
real structure of a solid is not infrequently nonequili-
brium and is determined as a whole by the kinetics of
the transformation. Thus, in crystallization, a poly-
crystal is formed as a result of the impact of crystals
growing from independent nucleation centers, and the
fundamental parameter of the structure—the average
size of the crystals (grains)—is determined by the rate
of nucleation and growth. Between the two extreme cases
indicated there are a number of intermediate cases, in
which the resulting structure depends both on kinetic
and on thermodynamic factors. For example, it is often
assumed that the growing crystal of the new phase has
an equilibrium shape corresponding to the minimum of
the free energy for fixed volume of the crystal. This
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assumption corresponds to reality if the shape relaxa-
tion time is substantially shorter than the time in which
the volume of the crystal changes (e.g., if the shape
changes as a result of surface diffusion while the in-
crease in the volume of the crystal requires a supply of
atoms from the bulk of the initial phase). In this article
we also consider another situation, arising as a conse-
quence of the fact that the new-phase crystal being
formed interacts with the surrounding initial phase and
changes its state. As a result the development of neigh-
boring crystals turns out to be interrelated, and the
formation of the structure in a certain region proceeds
in a self-consistent manner. The size of this region is
determined by the impact and interaction with other
"colonies" developing from independent centers, and,
consequently, depends on the kinetic the internal-stress
fields which arise in all transformations and are a
specific feature of solid-state heterophase systems.
Below we consider those transformations in which the
internal-stress fields play a dominant role amongst
other long-range fields, i.e., electric or magnetic fields
are absent or their energy is negligibly small compared
with the elastic energy of the internal stresses. By
varying the thermodynamic potential with respect to the
phase composition of the heterophase system, the vol-
ume and shape of the phases, and also with respect to
their mutual disposition, with certain additional condi-
tions pertaining to the system being studied we can find
the equilibrium structure corresponding to the minimum
of the thermodynamic potential. Alongside the above-
mentioned kinetic condition limiting the size of the
transformed region, the supplementary condition for
metastable equilibrium is that plastic relaxation of the
internal stresses be absent.

1. GEOMETRY OF THE DISTORTION OF THE
CRYSTAL LATTICE, AND INTERNAL STRESSES IN A
HETEROPHASE SYSTEM

The stress fields arising in phase transformations in
the solid state are determined by two factors: the
characteristic parameters of the transformation. In
particular, it can be individual grain of a polycrystal.
At the same time, within the boundaries of the region of
self-consistent development of the transformation, the
structure is determined by the tendency of the system
toward minima of the free energy and corresponds to
metastable equilibrium. Of course, a real structure can
differ from a metastable one by virtue of the kinetic
factors determining the development of the transforma-
tion. But even in those cases in which an equilibrium
state is not attained, we may expect (and this is con-
firmed by analysis of the experimental material) that the
tendencies that are characteristic for equilibrium struc-
tures will appear in the study of real structures, which
can be kinetically fixed at some or other stage of the ap-
proach to equilibrium.

To find the equilibrium structures, it is necessary to
calculate the thermodynamic potential of the hetero-
phase system, which is made up of the volume "chem-
ical" energy of the phases, the surface energy of the
interphase boundaries, the energy of long-range fields
and the work by external forces. Included in the long-
range fields are electric or magnetic fields (if electric
or magnetic phases are formed in the system), and also
deformation accompanying the phase transition, and the
nature of the contact between the phases in the hetero-
phase system. For each phase transformation we can

assign a characteristic deformation, i.e., the average
deformation acquired by the new phase relative to the
initial phase in the absence of external forces:

Ι; η2, £2) = έ ϊ ( η 2 - η ι , c2 —« •ίΐ(η,, υ,). ( 1 . 1 )

Here rji;2 and Ci,2 are the order parameters
(ι?\ η2, ..., Tjk) (atomic, magnetic or electric) and con-
centrations (c\ c2, ..., cm— one for each component) in
the initial phase 1 and in the phase 2 being formed, and
ei is the characteristic deformation associated with the
change of order or concentration in the phase transition.
In the case of magnetic transitions this is the magneto-
striction, in atomic ordering it is the cell deformation
induced by the rearrangement of the atoms over the sub-
lattices of the superstructure, in diffusion transforma-
tions it is the average change in lattice constant as a
result of the deviation of the concentration of the diffus-
ing component from the initial concentration, and so on.
In the first approximation, the deformation ej· is propor-
tional to the change of the corresponding parameters.
For example, in transformations accompanied only by a
change in the composition of the phases, e? = w(c2 — ολ),
where w is the concentration expansion tensor (analogous
to the temperature expansion coefficient). The presence
of the second term in the expression (1.1) is due to the
fact that a phase transition is not always determined
entirely by a change in the composition or degree of
order. Moreover, there is a large class of transforma-
tions—the martensitic transformations, in which the
concentrations and order remain unchanged and the only
parameter of the transition is the deformation. In mar-
tensitic transitions the state of a phase is uniquely
specified by the characteristic deformation, and in par-
ticular cases the transformation reduces directly to a
certain microscopic uniform deformation of the
latticeC3].

The characteristic deformation e° defines a linear
transformation (U°), which, when applied to the sites of
the initial lattice (rO> gives the sites of the final lattice

(1.2)

1 is the unit matrix
/I 0 0
0 10

\o ο ι
For example, the deformation

0 Ο-
ΙΟ η 0 = — - 1 , (1.3)

describes the transition of a cubic lattice with param-
eter a0 into a tetragonal one with parameters a and c;
for δ = (a/ao) — 1, η = (V2a/ko) — 1, this deformation leads
to the transformation of a face-centered cubic (fee)
lattice into a body-centered cubic (bec) lattice
(Fig. δ)1143.

The observed orientational relationships of the phases
are directly connected with the characteristic deforma-
tion. We shall elucidate this connection with the example
of the fcc-bcc transition. The deformation (1.2) leads to
a transformation of the crystallographic planes and
directions of the initial fee phase into the corresponding
(i.e., related by the lattice-correspondence matrix U°)
crystallographic elements of the final bec phase. The
different experimentally established orientational rela-
tionships between the fee and bec phases in two-phase
systems indicate the close orientations of some of the
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plane boundary element with normal n, then r^n = 0 for
every vector r^, and the requirement (1.4) that the
contact remains the same is fulfilled under the condition

FIG. 5. Tetragonal deformation in the transition of an fee lattice (γ)
into a bec lattice (a).

corresponding elements. In particular, in transforma-
tions in alloys based on iron, it is usually_observed that
the corresponding close-packed planes (111)^ and
(K*l.)bcc (cf. Fig. 5) are almost parallel; in this case,
[101L II [lll]j jC C (the Kurdyumov-Zaks orientational
relation) or [112]f c c n [101] b c c (the Nishiyama rela-
tion)1-1'2-1. We note that the observed mutual orientations
of the phases is not such that the cubic axes are paral-
lel, which would correspond to unchanged positions of
the principal axes of the deformation (1.3), i.e., the ob-
served lattice distortion contains a certain rotation in
addition to the pure deformation (1.2). This rotation,
like the internal stresses, is the result of interaction of
the phases.

The presence of the characteristic deformation in a
transformation is not a sufficient condition for the ap-
pearance of internal stresses. It is also necessary that
the new phase undergoing deformation in the transforma-
tion remain in contact with the old phase. What is the
nature of this contact? A natural generalization of the
concept of a characteristic lattice deformation leading to
a unique correspondence between the sites of the initial
and final structures within the transformed region is the
idea that a unique correspondence of this type remains
valid for all points of the heterophase system, including
points lying on a phase-contact surface. This conjecture
corresponds to the condition that the connectivity of the
lattice is conserved at all points, including the inter-
phase surface: any closed contour drawn through the
sites of the initial lattice will remain closed after the
transformation. This is equivalent to the requirement
that there be no formation or motion of dislocations in
the transformation. Correspondingly, any violation of the
microscopic connectivity can be regarded as the result
of a plastic deformation or plastic yielding. This as-
sumption of the absence of violation of the microscopic
connectivity of the crystal lattice is equivalent to the
concept, widely used in metallography, of phase coher-
ence, according to which the neighborhood of each atom
is the same on the interphase boundary as in the initial
phase (i.e., the arrangement of the atoms is such that it
can be obtained by a continuous small distortion of the
initial phase). If several phases coherent with the initial
one are formed in the transformation, they will clearly
also be coherent with each other.

The coherence of phases on the boundary implies that
each vector connecting two points on the interphase sur-
face before the transformation goes over into the same
vector after the transformation, irrespective of which of
the contiguous phases it is regarded as belonging to, i.e.,

Or (u2-u,)rb = (1.4)

u 2 — uj = s

with an arbitrary vector s. The dyadic tensor s»n
describes an invariant-plane distortion: all planes with
normal η are undistorted, since the displacements in
each of the planes are equal: u = (s ° n)r = s(nr) = sx,
where χ is the distance of the plane considered from the
coordinate origin (cf. Fig. 3). When the condition (1.5)
is fulfilled the relative deformation of the contiguous
phases reduces to a simple shear and a normal displace-
ment of the stack of planes parallel to the boundary,
these planes being geometrically identical in the two
phases.

Below we shall assume all deformations to be small
(the changes in the lattice parameters are small com-
pared with these parameters). In this case the principle
of superposition of distortions is valid, each distortion
in its turn being made up of a deformation and a rota-
tion, and the condition (1.5) of conservation of the con-
nectivity reduces to definite restrictions on the possible
discontinuity in the deformations and on the disorienta-
tion of the phases at the interphase boundary:

Δω = 0)2— (Oj — ((oii-j-iug) — (Wj-|-Wj) = y (s ° η — n ° s ) , ( 1 . 6 )

where €°;2 and ώ?) 2 are the symmetric and antisymme-
tric parts of the characteristic distortions of the phases
1 and 2, and ef,2 are the elastic deformations which the
phases acquire as a result of conservation of continuity
(Fig. 6). In the case when £% - e° = (s° η + η° s)/2, elas-
tic deformations are absent, i.e., the phases are in con-
tact along a common undistorted plane. Conversely, the
deviation of the discontinuity in the characteristic
deformations from deformations with an invariant plane
determines the extent of the mutual elastic distortion of
the phases and serves as a source of internal stresses
in heterophase systems3'.

The internal stresses in a heterophase crystalline
system can be studied within the framework of the
classical theory of the elasticity of a continuous med-
ium, if the following assumptions are fulfilled.

First, the deformations and stresses do not change
significantly over distances of the order of interatomic
distances (|ve|a <iC 1). Then we can neglect the discrete
atomic-molecular structure of the phases and treat the
crystal as a continuous medium, the free (elastic) en-
ergy of which at each point depends on the value of the

FIG. 6. Discontinuity of the deformations e / * e ' | •' V Λ ^
at a boundary between coherent phases.

where Ui and u2 are the full distortions of the adjoining
phases relative to the initial one-phase state, and r^ is
a vector on the interphase boundary2'. If we consider a
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deformation at the same point. This assumption is not
fulfilled on an interphase boundary, where the deforma-
tions experience a discontinuity. Therefore, the results
obtained by neglecting the gradients of the deformations
in the local free-energy density are valid for points that
are at a sufficient distance from the boundary, compared
with its effective thickness.

Secondly, application of the classical theory of elas-
ticity implies the existence of a linear relationship be-
tween the elastic deformation and the stress (a quadratic
dependence of the elastic-energy density on the deforma-
tions). A necessary condition for this is that the charac-
teristic deformations be small and that the interphase
surfaces be "smooth" (with no angular points, edges,
etc.). Despite the limitations indicated, the theory of
elasticity is an effective instrument for analyzing the
real crystal structure, as is confirmed by its successful
use in the theory of crystal-structure defects.

The study of the stressed state of a heterophase sys-
tem within the framework of elasticity theory presup-
poses the calculation of the displacement field, deforma-
tion and stress from a given distribution of characteris-
tic deformations or, if the phases are homogeneous,
from the discontinuity of the characteristic deformations
at the interphase boundaries. The solution of this prob-
lem has been obtained in explicit form only for certain
particular cases of elastic anisotropy, and for the
simplest geometry of the heterophase system (the most
general of the solutions obtained pertains to the ellip-
soidal inclusion of one phase in an unbounded matrix of
another, with equal elastic moduli of the phases^7"10^).
However, if we confine ourselves to treating phases
whose moduli are the same, the problem is substantially
simplified, inasmuch as the equilibrium solutions, as
will be shown in the next Section, correspond to one-
dimensional distributions of the characteristic deforma-
tions.

c In the one-dimensional case, when the characteristic-
deformation field is constant in a plane normal to the
direction of n, and e°(r) = c°(x) where χ = rn, the total
deformation, by virtue of the compatibility condition
(1.6), has the form

.(*)]+P, (1.7)

where £° is a certain constant. From the equation of
equilibrium, ση = 0, and the fact that the total force

L
acting on the system equals zero, j σ dx = 0 (here σ is

the stress: σ = 6 · c e = G · (c(x) - e°(x)) where G is the
elastic modulus, and 2L is the length of the system), it
follows that

s (χ) = (ηέη)"1 (ηά).(i° (ζ) - 3>), (1.8)

σ(ΐ) = 0·.(έ°(χ)-ε°), 6· s(&n) (ηάη)"1 (no)-6, (1.9)

£· = -. (1.10)

The elastic-energy density in the layer with coordinate
χ equals*

It follows directly from the expressions (1.7)—(1.10) that
the discontinuity in the stresses at the boundary between
phases with characteristic deformations e? and e° equals

ά,-5, = ό··(έ;_ο, (1.12)

and the characteristic field in the vicinity of the inter-
phase boundary has the form

<Ji — — o 2 = -^-li -(β, — e,). ^l.Xuj

As will be shown below, the above relations, describing
a field of one-dimensional distributions of characteris-
tic deformations'-11'"-1, are sufficient for the effective
solution of variational problems concerning optimal
heterophase structures. These formulas can be gener-
alized to the case of different elastic moduli'-11-'. In this
case, however, it is far from always the case that one-
dimensional distributions are an acceptable approxima-
tion for the description of equilibrium structures'-13-1.
Therefore, we shall confine ourselves to treating sys-
tems consisting of phases for which the difference in the
moduli can be neglected. Apparently, this assumption is
fulfilled for many phase transformations for which there
is no change in the type of interatomic bonding. More-
over, this restriction is lifted if the heterophase system
attains a state in which there are no internal stresses.

2. EQUILIBRIUM OF A HETEROPHASE SYSTEM

We shall formulate the equation of equilibrium of a
heterophase system with respect to displacement of the
interphase boundaries. For this we shall introduce the
concept of the configurational force acting on an element
of the interphase surface[u^.

We shall consider a portion of a boundary separating
phases 1 and 2, the mutual transformation of which is
accompanied by a discontinuity (c° — c?) in the charac-
teristic deformations (Fig. 7). The change in the
thermodynamic potential, associated with a local in-
crease of the volume of phase 2 at the expense of phase
1 at the point rg (with normal n), equals

M l ' " " ' " * ' " ' " • * (2.1)

where f 1 and f£ are the specific free energies of the un-
stressed phases 1 and 2, e(rg)6V is the energy of forma-
tion in phase 1 of the crystal A of phase 2, equal in vol-
ume and shape to the variation of the region 2 on dis-
placement of the interphase boundary at the point rg,
and (c? ~ €?) · ii(rg)6V is the work of the stress field in
phase 1 at the surface separating the phases as the
crystal A is formed. The change in the thermodynamic
potential in the inverse process—increase of the volume
of phase 1 at the expense of phase 2 at the point rg—is

(2.1')

where e'6V is the elastic energy of the crystal Β of
phase 1 (the characteristic deformation is (c? - c?) in
phase 2), and 02(rg) is the stress at the surface, due to
the phase 2.

The above changes in the thermodynamic potential
can be regarded as the work of a force F acting on the
boundary:

F=[/S-/; + «-e;)-H^]n, (2.2)

where δΦ^—2 = ~δΦ2-»1 = Fn6n5S (6n5S = 6V, δη is the
displacement of the boundary along the normal, and 6S
is the area of the variation). For the existence of a force
F defined in this way, it is necessary and sufficient that
e = e ' = (c? - €?)(σ2 -δχ)/2, which is equivalent to the re-
quirement that the crystals A and Β have the shape of a
plate with a small ratio of the thickness δη to the other
linear dimensions 6L ~ (6S)lA. In fact, by making use of
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FIG. 7. Illustration to define the configurational force.

the expression (1.12) for the stress discontinuity at the
interphase boundary, it is not difficult to show that the
energy e is equal to the elastic-energy density inside a
plane-parallel plate (cf. (1.11)) having normal η and
characteristic deformation (e° ~ ej). Consequently, as
will be shown Sec. 3, to within small terms proportional
to (δη/δϋ,)2, e is equal to the elastic energy of a crystal
with dimensions δη, 6L, 6L. In other words, if the varia-
tions of the boundary configurations are sufficiently
smooth, we can introduce the concept of a configura-
tional (i.e., dependent on the position of the boundary)
force (2.2).

The stress σ = (<Τι + σ2)/2 is the stress, continuous
at the boundary, that will exist at the point rg if the por-
tion of the interphase surface adjacent to this point is
removed, i.e., if we subtract the discontinuous field
(1.13) of the planar boundary with normal n(rg) from the
stress field at the surface. It is appropriate to divide
the stress <i(rg) into an external stress a^(Tg) associa-
ted with the action of forces applied to the solid and also
with all fixed sources of internal stresses, and an in-
ternal stress ff^(rg) due to the discontinuity in the char-
acteristic deformations at the interphase boundaries {S}.
The configurational force can then be regarded as the
resultant of two forces: a thermodynamic driving force
Δ μ° = fΐ - ύ - (el - e°) • i c ( r ) directed toward the less
stable phase, and the response of the characteristic field
of the interphase surface, this field being a functional of
the configuration of this surface '-8-1:

(2.3)

here Δ £ ? ( Γ ' ) is the discontinuity in the characteristic
deformations at the point r ' of the i-th phase boundary5',
U(r — r') is a tensor Green function, or elastic-field
source function (cf. i 1 4 1 , and also p. 27 in the English
edition of1-15-1), i.e., the displacement field at the point r
induced by the action of a unit force at the point
r '; nG· Ac?dS is the force acting on an element of the
interphase surface. The integration over one boundary
and summation over the different boundaries are the re-
sult of the principle of superposition of elastic displace-
ments; the multiplication by the elastic modulus and the
spatial differentiation (Gv) are associated with the
transformation from the displacement to the stress. In
equilibrium the interphase surface occupies a position
in which, at all its points, the configurational force
equals zero, i.e.,

Δμ°(Γ8)-(έ;-έ!).ά8(Γβ)=Ο. (2.4)

The condition (2.4), together with (2.3), is the integral
equation for determining the configuration of the inter-
phase boundary in a given field Δμ°(Γ).

In deriving Eq. (2.4) we neglected the surface energy
of the interphase boundary and the action of the surface-
tension forces ~ r / R (where Γ is the surface energy and
R is the radius of curvature of the interphase surface).
This means that the equilibrium equations derived are
applicable to sufficiently large-scale structural com-

ponents, such that forces that are elastic in origin are
substantially greater than the surface-tension forces
(σ·Δε° 3> r/R). In order to emphasize this fact, we
shall call such structures macroscopic, in contrast to
"microscopic" structures for which the elastic and sur-
face-tension forces are comparable in magnitude.

The equilibrium of a heterophase system as a whole
corresponds to the minimum of the thermodynamic po-
tential or, in the absence of external fields, to the mini-
mum of the free energy

& = ll J" /ft(r)rfF=S \ [fl + ̂ (i-il)-a.(i-il)]dV, (2·5)

where f^(r) is the free-energy density at the point r of
the k-th phase, and f£ is the same in the absence of
stresses; the second term is the elastic energy at the
point r and is determined by the difference between the
total and characteristic deformations at this point. In
phase transitions in crystals, two fundamentally different
cases are possible:

a) Martensitic transformations: the state of the
phase is completely determined by the deformation e.
In this case, for specified external conditions, i? and i?
are the given phase parameters. The condition for
equilibrium of the system reduces to the condition that
F be a minimum with respect to variation of the total
deformations, i.e., reduces to the mechanical equili-
brium describable by the equations of elasticity, of
which (2.3)—(2.4) are a consequence. Therefore, the
equilibrium of a heterophase system is equivalent to the
equilibrium of the interphase boundaries and is deter-
mined by Eq. (2.4). Mechanical twinning—the reorienta-
tion of a crystal lattice under the action of a load—can
be regarded as a particular case of a martensitic trans-
formation. For the initial crystal and the twin, f2

0 = f°lt

but the specific thermodynamic potentials differ by the
work done, — <JC · e°, where e° is the twinning displace-
ment C l 6 ' 1 7 ] .

b) Nonmartensitic transformations: together with the
deformation, the order parameters (η) and concentra-
tions (c) are the internal parameters defining the state
of a phase. In this case, f£ and e£ in (2.5) are variable
quantities, depending on η and c. To the condition for
equilibrium of the interphase boundaries we must add
the condition that F be a minimum with respect to varia-
tions of η and c. For example, for a phase transition
associated with a change of order, this additional condi-
tion, at each point of the k-th phase, has the form

(') <?/2
δη

(2.6)

where, clearly, 8e£/ajj = θε^/θτ? (cf. (1.1)), and σ = σ^
+ σ° + σ7) is the stress which is produced at the point
considered by the action of the external forces and in-
terphase boundaries and by the nonuniform distribution
of the order parameter:

* vh

((2.7) is the analog of (2.3) for internal-stress sources
distributed over the volume; cf. pg. 160 in the (second)
Russian edition of r i 5 ; ) ) . If the internal parameters are
the concentrations, the condition (2.6) corresponds to
constancy of the chemical potentials of the components.
The coupled equations (2.4) and (2.6) determine the
equilibrium of a heterophase system. In general in a
phase transformation there occurs both a change of
order and concentration, and a rearrangement of the
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crystal lattice, unconnected with the former changes
and characterized by a characteristic deformation CJJ.
In this case, the relaxation of the atomic order or re-
distribution of the concentrations, being effected by
diffusional transfer of atoms, may proceed much more
slowly than the displacement of the interphase boundar-
ies separating the phases with different cj. Therefore,
the formation of metastable martensitic phases is possi-
ble in phase transitions which, in equilibrium conditions,
proceed with a change in the concentrations or degree
of order (e.g., diffusionless transformations in many-
component systems'-1-').

3. SINGLE-DOMAIN CRYSTAL OF THE NEW PHASE

The simplest heterophase system is an isolated crys-
tal of the new phase, situated inside the initial phase.
What are the shape and orientation of an equilibrium
crystal of the new phase with constant characteristic
deformation e° in an unbounded elastic matrix? Equation
(2.4) for equilibrium of the interphase surface has, in
this case, the form

os (rs) = ^ d · VU (rs - rs) (nd. ί") dS (r

the crossed integral denotes that the stress is regular-
ized as a result of the exclusion of the vicinity of the
point considered in the interphase surface. It is clear
from dimensionality arguments that for a constant driv-
ing force, i.e., in a uniform field σ ·̂, an equilibrium
state does not exist for a macroscopic crystal: it is im-
possible to form a parameter having the dimensions of
length from the physical quantities (G, £°, Δμ°) appear-
ing in the equation of the elastic equilibrium6'. In an
inhomogeneous external field, the shape and size of an
equilibrium crystal are determined by this externally
introduced inhomogeneity. For example, the shape and
size of a twin in mechanical twinning are determined by
the character of the distribution of stresses arising
under the action of the external load'"18·'. In phase trans-
formations, the inhomogeneity of the system usually re-
duces to local obstacles limiting the possible maximum
sizes of a crystal of the new phase. For example, in a
polycrystal of such a type the obstacle is the grain boun-
dary, and the maximum size of a crystal of the new
phase is equal to the diameter of a g»ain of the initial
phase. In the presence of local inhomogeneities, not
possessing long-range fields, in a doubly-connected
heterophase "crystal-matrix" system a characteristic
equilibrium state is attained, corresponding to a crystal
in the form of a thin plate oriented in a definite way
(Fig. 8)1-11·1. In fact, the solution of the equilibrium
equation (3.1) with a constant driving force should be a
configuration ensuring the constancy of the internal
stresses σ^ at the interphase boundary. This require-
ment is fulfilled if the crystal of the new phase has the
shape of an unbounded plane-parallel plate: at each point
of the unbounded interphase plane its self-interaction
equals zero, and S& is the constant stress from the sec-
ond face of the plate. Recording to (1.13), for a plate
with normal «1, dS = -G*(n) · c°/2 and the equilibrium
condition (3.1) takes the form

Δμ° — e (n) = 0, (3.2)

where, in accordance with (1.11), e(n) is the elastic-
energy density inside the plate. The elastic field of a
plate-layer is similar to the electrostatic field of a
planar capacitor: outside the plate the fields of the
planar faces cancel each other, and inside they add and

FIG. 8. A single-domain plate.

give a uniform field ef = /^(s^n + n°s) - €° (1.8).
Accomodation of the phases proceeds entirely as a re-
sult of elastic distortion of the layer-phase, in which the
parallel faces of the plane become identical with the
boundary plane of the matrix-phase. For the equilibrium
(3.2) to be stable, it is necessary that the phases border
on the plane no corresponding to the minimum of e(n)
(otherwise, a change of η can lead to decrease of e(n)
and to violation of the equality (3.2)). The adjunction of
the phases occurs along crystallographically similar
planes and is associated with minimum distortion of the
new phase. Distortion is absent if in the transformation
any plane remains unchanged and, consequently, the
characteristic deformation is an invariant-plane deform-
ation. Any planar deformation in which one of the prin-
cipal values is greater and another less than zero is
such a deformation:

(ε' Ο Ο

Ο -ε" Ο Ι -

Ο Ο Ο
(3.3)

where αϊ'2 = VeTsi ± TP/Sj, s0'
2 = Son!'1, s0 = e' + e",

and i and J are unit vectors along the coordinate axes;
the two values of no correspond to the two conjugate in-
variant planes. In the formation of a plate of the new
phase along the invariant plane n0, ee = 0 and e(n0) = 0.
The characteristic deformation has the form (3.3) in the
cases of twinning and fee—hep (hexagonal close-packed
structure) transformations. The invariant plane in the
first case is the twinning plane, and in the second case
is the basal plane of the hep phase or the {111} plane of
the fee phase. The equality

Δ μ « - β ο = Ο (<?0 = β(η0)) (3.4)

for an unbounded layer-plate corresponds to neutral
equilibrium. When Δμ° > e0 a plate of the new phase
tends to expand. However, if it terminates inside the
matrix crystal, there is an inhomogeneous elastic field
at its edge, the energy of which increases with increas-
ing thickness (H) of the plate and stabilizes the plate.
The energy of the edge field in the first approximation is
proportional to the perimeter of the plate, the coefficient
of proportionality having the meaning of the linear en-
ergy of the plate edge. Inasmuch as the inhomogeneous
field of the plate is concentrated mainly in a region of
radius ~H at the edge of the plate, the linear energy of
the edge equals eLH2, where

(m is the normal to the perimeter of the plate in the
plane of the plate; cf. Fig. 8)'-19-'. In the case when c°
is an invariant-plane deformation (3.3), the edge field is
equivalent to the field of an effective dislocation passing
round the plate along the perimeter and having the
Burgers vector Β = BoH, and ej_, ~ Gs?> This approxima-
tion corresponds in the theory of dislocations to the so-
called linear-tension approximation usually used in the
analysis of dislocation configurations1-20-'. In a more ex-
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act treatment one takes into account the nonlocal charac-
ter of the linear energy, which is manifested, in particu-
lar, in the fact that e L ~ In (H/L), where L is the length
of the plate. The exact calculation of the edge energy of
the plate requires knowledge of the configuration of the
edge of the plate. For an equilibrium crystal this con-
figuration is the solution of Eq. (3.1), and depends on the
form of the inhomogeneous fields compensating the edge
of the crystal. A similar problem has been solved (in
the thin-crystal approximation) in the determination of
the configuration of the point of a twin1^1-1 or of the ori-
fice of a fraction fcf.[22] and also p. 179 in the (second)
Russian edition of'-15·1)7'. However, if we do not consider
the shape of the edges of the individual crystals, which
is determined by the concrete form of the obstacles and,
in a real structure, is to a considerable extent random
in character, we can confine ourselves to the qualitative
estimate of the edge energy given above. The neglect in
this case of the dependence of the linear energy on the
crystallographic direction of the edge of the plate is also
unimportant: the contour of real crystals is apparently
determined to a greater extent by the elastic and contact
interaction with obstacles (including other crystals) than
by the anisotropy of the linear energy of the characteris-
tic edge field.

Thus, when the inhomogeneity of the initial field re-
duces to the presence of obstacles acting over short dis-
tances and limiting the maximum size of a crystal of the
new phase, the equilibrium shape of the crystal can be a
plane-parallel plate8'. The smaller the thickness of the
crystal and, correspondingly, the effective range of the
edge field, the greater will be the part of the crystal sur-
face on which the condition (3.2) is fulfilled: for H/L
<SC 1, the plate is an asymptotically exact solution of the
equilibrium equation (3.1). For H/L <C 1, the change of
thermodynamic potential accompanying the formation of
the equilibrium crystal equals

Φ = (-Δμ° + e0) arL'ff 2Γ (n0) as T'aJIL,
(3.5)

where aegh2 is the area, ayL the perimeter and ayL2H
the volume of the plate, ag, a^ and a y are numerical
coefficients of order unity, depending on the configura-
tion of the plate, and Γ and Γ ' are the specific surface
energies of the planar faces and edge of the plate. For
macroscopic crystals (H ^S> Γ'/ejJ, the surface energy
of the edge can be negelcted in comparison with the elas-
tic energy of the edge field, which is represented by the
second term. Sufficiently far from the edges, the field
inside the plate is homogeneous and coincides with the
field of an unbounded layer Πο: the total deformation
(1.8) is ei = (s°n0 + no°s)/2, and s = (nodnoj'^ndfi · e°).
The new phase experiences, as a whole, a rotation
ώ = (s°n0 — no°s)/2. The regions of initial phase separa-
ted by the plate that has been formed undergo a rigid
displacement relative to each other, by an amount sH.
The emergence of the plate at the free surface leads to
the formation of the characteristic relief (cf. Fig. 2)
which, if we neglect effects due to image forces, repeats
the invariant-plane deformation ei.

If the greatest dimension L = Lo of the crystal is
given as a structural parameter of the initial phase,
then, minimizing Φ with respect to H, we obtain

#„=
Αμ° —gp a y (3.6)

certain cases such a reversible change in the sizes of
crystals of the new phase on variation of the temperature
or external stress has been observed experimentally,
e.g., in elastic twinning'-16'18-' and in the thermoelastic
equilibrium of martensitic crystals'-1'28-1. The relation
(3.6) expresses the equilibrium of points at the center
of a planar face of the plate under the action of stress
from the other face and of the edge field (σ ~ ej_ll/e0L)
stabilizing the planar shape of the crystal.

For fixed Lp, formation of a crystal of the new phase
is thermodynamically favored if Φ^ο, Ho) < 0, i.e., for

Λμ» -eLT±.
La

(3.7)

i.e., the thickness of the equilibrium crystal depends on
the deviation from the point of phase equilibrium. In

The relation (3.7) determines the boundary of stability of
the initial phase in real crystalline systems: the devia-
tion Δμ°ΪΓοΐη the equilibrium point of the undistorted
phases that is required to start the transformation is
greater, the smaller the grain size or the smaller the
distance between the defects in the initial phase that are
insurmountable for the new crystals. This dependence
on, e.g., the grain size has been observed for the tem-
perature of the onset of a martensitic transformation in
polycrystals.

On the other hand, since crystals that have been
formed earlier can serve as obstacles to the growth of
the crystals, in a two-phase system Lo is determined by
the relative quantity of the new phase (Lo = f(V2/Vi)) and
decreases as the transformation develops. The relation
(3.7) can then be used to determine the limiting extent of
the transformation, V2/Vi = Γ^Ι^Δμ 0 )), for a constant
driving force Δμ° in, e.g., isothermal conditions. With
increase of the deviation Δμ° from true phase equilib-
rium, the amount of the new phase increases as a
consequence of the increase in the equilibrium thickness
of the existing crystals and the formation of new crys-
tals, and an elastic two-phase equilibrium is established
in the system. In transformations in many-component
systems the elastic equilibrium is superimposed on the
ordinary thermodynamic phase equilibrium, distorting
the latter; in one-component systems this is manifested
in the smearing-out of the transition temperature over a
range of temperatures.

It should be emphasized that the relation (3.7) is ap-
plicable to the study of the elastic equilibrium due to the
stabilization of the sizes of each crystal of the new
phase by its own stress field. Therefore, it is valid only
for small amounts of the new phase, when the elastic
interaction of the crystals can be neglected9'. The role
of the elastic interaction of the crystals is considered
in Sec. 5.

For L o — » the inequality (3.7) goes over into the re-
lation (3.4) determining the magnitude of the thermo-
dynamic hysteresis in the phase transformation. The
expression (3.4) can be interpreted as the equality of the
thermodynamic potentials of the initial undistorted phase
(μ0 = f°) and the uniformly stressed phase being formed
(μι = fi — e° · σ*- = fι + eo — e° · ffC)10). A transformation
in a solid, with conservation of the microscopic continu-
ity of the crystal, is possible if the undistorted initial
phase becomes less stable than an elastically deformed
new phase arising in conditions of minimum expenditure
of energy on the creation of internal-stress fields. The
relation

Λ'(7Ό-ι) = /;-ε"°·σΓ+βο(β0) (3.8)

can be regarded as the definition of the limiting tem-
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perature T Q ^ of the transformation of phase 0 into
phase 1, phase 0 being in equilibrium with a layer of
phase 1. The temperature T ^ _ o of the inverse trans-
formation of unbounded phase 1 into phase 0 is deter-
mined by the relation

i°(Tt ΐι) ( ε°1 •o'-'-l—e I E°̂  = fn (Τ ιΛ (3 9^

(if we neglect the difference of the elastic moduli of the
phases, the elastic energy e 0 is the same in the direct
and inverse transformations). We note that external and
internal stresses affect the phase equilibrium in funda-
mentally different ways. Since the work done by the ex-
ternal forces is linear in the characteristic deformation,
external stresses displace the position of equilibrium11',
whereas the internal stresses, the energy of which is
quadratic in the characteristic deformation, lead to a
splitting of the phase equilibrium point into two points,
between which lies a region in which a two-phase state
is less favored thermodynamically than the one-phase
state (Fig. 9a). This splitting of the phase equilibrium
point into two (the points of the direct and inverse trans-
formations) determines the hysteresis of the trans-
formation in a system of coherent phases. In, e.g., a
one-component system, where f ? — f ° « qAT/T° (q is the
heat of the transformation and T° is the temperature of
equilibrium of the undistorted phases), this hysteresis
is clearly equal to ΔΤ = T J ^ Q ~ T 0 — 1 ~ 2eo/q.

If several virtual phases exist in the system, then,
for given external conditions (temperature, external
stress), that phase for which the thermodynamic poten-
tial

μί=/;-έ?·σί; + β0(έ?) (3.10)

is lowest will be formed preferentially from the initial
phase. Because of this, in a solid there can arise differ-
ent intermediate phases, which, while not being stable in
the isolated state (i.e., the potential μ? = f? — c? · S^ is
not a minimum for them), couple better with the initial
phase, and, consequently, are characterized by a lower
elastic energy eo(e?) than is the stable phase. The
formation of intermediate phases is often observed in
the early stages of the break-up of solid solutions.

In those cases when the transformation occurs with a
lowering of the crystal symmetry, phases are formed
that are physically identical (but with different charac-
teristic deformations) and connected with each other by
twinning relationships. In particular, the transformation
of a cubic phase into a tetragonal one is possible in three
ways, differing in the choice of the tetragonal axis from
the original cubic axes. The corresponding characteris-
tic deformations differ by a reorientation of the principal
axes through 90° (Fig. 10):

(0)

/δ 0 0
έ;=Ι ο η ο

\0 0 η

/ηΟΟ\ / η 0 0\
έ° = | 0 δ 0 , β 5 = Ι θ η θ | . (3.11)

\0 0 η/ \0 0 6/

The higher the symmetry of the initial phase and the
lower the final symmetry, the greater is the number of
equivalent variants of the transformation (e.g., in the
transformation of a cubic into a rhombic phase, there
are twice as many of them as in the transformation into
a tetragonal phase). In the presence of an external field,
the structurally equivalent variants of the transforma-
tion become physically distinguishable. The result of
this lifting of the degeneracy is a splitting of the phase-
equilibrium point into several points, corresponding to
transitions with different characteristic deformations

FIG. 9. (T- <rc)-diagram of the phase equilibrium, (a) Forbidden
region for the coexistence of two phases; (b) regions of different relative
stability of the phases (Ι-μ0 < μ, < μ3; ΙΙ-μι <μ 0 < Μ3; ΠΙ—Μι
<μ 3 <μο;ΐν~μ3<Μ, < μ ο ; ν - μ 3 <μ 0 < μ ι ; ν ΐ - μ 0 <μ 3 <μ,).

FIG. 10. Possible variants of the cubic-tetragonal transition.

and, consequently, with different thermodynamic poten-
tials of the phases being formed:

μ?=/;_£$.8ε. (3.12)

As an example, Fig. 9b shows the Τ - crC diagram of the
equilibrium of cubic and tetragonal phases under the ac-
tion of a uniaxial stress σ along [001]. The line of
equilibrium of the cubic phase (phase 0) with the tetra-
gonal phases 1 (AA':dT/da = T°r?/q) and 3 (BB' : dT/da
= T*Vq) divides the Τ - σ plane into six regions of dif-
ferent relative stability of the phases 0, 1 and 3 (the
phase 2 is energetically equivalent to phase 1) (cf. (3.11)
and Fig. 10). The cubic-tetragonal transition becomes
thermodynamically favored below the line AT°B. If η
and δ have opposite signs (as in Fig. 10), then the equili-
brium temperature is raised under the action of a uni-
axial stress, irrespective of the sign of σ. In the regions
Π and V the cubic phase is intermediate in stability be-
tween the two variants of the tetragonal phase. There-
fore, if phase 3 is taken as the initial phase, its transi-
tion into phase 0 becomes possible on heating from the
region ΠΙ to the region Π. But, on the other hand, in
region II the transition 0 — 1 is favored. Since phase 1
remains stable in region m, as a result of the tempera-
ture cycle ΠΙ — Π — ΠΙ the transition 3 — 0 — 1 occurs,
i.e., the initial state is not regenerated and a twinning
orientation of the initial phase, stable under the stress,
is formed: mechanical twinning of the tetragonal phase
in the regions Π and V proceeds via the formation of an
intermediate cubic phase. It is obvious that the above
effects can be observed if they are not suppressed by
the elastic interaction of the phases (see Fig. 9a).

For nonmartensitic transformations, in the minimiza-
tion of the thermodynamic potential Δμ° and t° are them-
selves variable parameters, and the solution of the
variational problem (2.6)—(2.7) should give (besides the
characteristics of the structure) the equilibrium values
of the parameters of the phases in the metastable state,
which, in principle, differ from the parameters of the
stable phases. But for plate-like crystals with H/L <Si 1
in elastic equilibrium, these parameters, like the elastic
deformation of the new phase, turn out to be uniform
over the phase and sufficiently constant so that the dis-
torted phase can be taken as an intermediate phase hav-
ing special crystal structures, composition or degree of
order. Evidently, it is necessary to keep this fact in
mind when analyzing experimental data on processes of
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precipitation and formation of zones, on the initial
stages of ordering, and so on.

4. MANY-DOMAIN PLATE. ELASTIC DOMAINS

In the case when the transformation of the initial
phase can lead to different resultant characteristic
deformations (in particular, if two or more new phases
arise), the formation of polysynthetic regions that are a
conglomerate of domains with different characteristic
deformations ej5 may turn out to be energetically fav-
ored'-29'30-'. If the dimensions of the domains are small
compared with those of the polysynthetic region, we can
talk of an average, or macroscopic, characteristic
deformation e° = Σ α ; €j, where a= is the volume frac-

i
tion of domains of the i-th sort (Σ/α^ = 1). For a uni-
form macrodeformation c°, i.e., when the domain com-
position over the region is constant, as in the formation
of a single-domain crystal, the optimal shape of the poly-
synthetic region inside the initial phase is that of a thin
plate. But in the case of the formation of a many-domain
plate, there appears the additional possibility, as com-
pared with the single-domain case, of lowering the en-
ergy of the elastic interaction between the phase being
formed and the initial phase at the expense of a change
in the domain composition. In particular, by variation
of the domain composition (o^) and the orientation of the
plate (n), we can reduce to a minimum the energy as-
sociated with the incompatibility of the macrodeforma-
tion at the plane surfaces of the plate

If there exists a solution of the compatibility equation

nx ε°(α,-)Χη = 0, (4.2)

then for the QÎ Q and n0 satisfying this equation the plane
surfaces do not create a macroscopic elastic field (i.e.,
the fields from the boundaries between the different
domains and the matrix mutually cancel), and (4.1) van-
ishes.

At the same time, the breakdown of the new phase
into domains is accompanied by extra expenditure of
energy on the production of internal stresses as a conse-
quence of contact between domains with different char-
acteristic deformations, on the creation of the inter-
domain boundaries and on the microdistortions at the
points at which the domains emerge on to the interphase
boundaries. The first two terms form the self energy of
the polysynthetic "phase" and the last makes a contribu-
tion to the energy of interaction of this phase with the
initial matrix. We shall estimate these additional energy
terms in the case of formation of a many-domain plate
from two sorts of domain (c°, 62, cti = 1 — a, a2 Ξ a).

In a uniform field the equilibrium equation (2.4) is
satisfied by a system of plane-parallel domains, the
elastic-energy density of which equals, according to
(1.11),

The interdomain interaction energy (4.3) is additive
with the macrofield energy (4.1), since the energy of the
interaction between the field generated by the deviation
of the characteristic deformation from the average and
the uniform field (— Z/aj(e° — €j) * a) equals zero, by

definition of c°. Together with the elastic energy of the

interdomain interaction, the surface energy of the do-
main boundaries, which for a packet of domains is equal
to 2y(m)/D, where y(m) is the specific surface energy
of the domain boundary with normal m and D is the aver-
age period of the domain structure, appears in the self
energy of the many-domain "phase." It is assumed that
the surface energy of the domain boundaries is less than
the elastic energy. Otherwise, if D < 2y/em, plane-
parallel domains are unfavorable and the formation of a
many-domain structure in the form of spheroidal do-
mains of one of the phases being formed, in a matrix of
a second phase, will be preferred. Such a structure has
been observed in the formation of thin layers of a sur-
face martensite.

The emergence of domains on to the interphase sur-
face of the plate leads to the appearance of microdistor-
tions, which are due to the deviation of the true charac-
teristic deformation from the average and are absent on
the boundary of a single-domain crystal. The field of a
plane boundary of the polysynthetic phase is produced by
alternating portions of the boundaries of the initial phase
with the phases 1 and 2. Interference of the fields from
these portions gives an average macrofield a = G* (n)
xc"/2, at distances greater than D' from the boundary
(where D' is the period of the domain structure at the
boundary), and an oscillating field of microdistortions
in the layer adjacent to the boundary. The microdistor-
tions, like the field from the domain walls, is incoherent
with the macrofield of the plate and makes an additive
contribution to the total energy of the system. The en-
ergy of the microdistortions is a minimum for a constant
period of the oscillations, and makes an additional con-
tribution to the interphase-surface energy of the boun-
dary of the plate with the initial phase, which can be es-
timated by means of (1.11) and (1.13):

(4.4)
where ξ °° sin (n, m)ln ο is a factor of order 1.

Thus, the equilibrium structure of the many-domain
region is a plate consisting of a regular alternation of
plane-parallel domains (Fig. 11). The change in the
thermodynamic potential when it is formed is equal to

< D = - [ - ( i - a ) A M ) - a ^ 2 + oc(l-a)e(8,-e !>, m) + 2V/O ^ ( 4 < 5 )

Minimizing Φ with respect to η, Η, a, D and m for a
given maximum dimension L = Lo, we can determine the
equilibrium domain composition a0, the structure, the
habit and the energy of the many-domain plate.

The variation with respect to D leads immediately to
the relation

D^j/^f, (4.6)

i.e., the thickness of the domains is determined by the
competition between the surface energy of the inter-
domain boundaries and the energy of the microdistor-
tions. These two energy terms together constitute an
effective increment in the surface energy of the habit
faces of the plate:

&T0 = ]/8esyli. (4.7)

The thermodynamic potential Φ can then be represented
in the form

Φ = (μ<2 - μ») avIiV- + (Γ + ΔΓ0) asL
2 + eLaL H*L, (4.8)

where μα = (1 - a)(fj - I? · <xC) + a(f2

0 - e° · <rc)
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FIG. 11. Structure of plane-parallel
domains.

+ α(1 - a)e(c? - c£, m) + e(e°, n) is the specific thermo-
dynamic potential of the polysynthetic phase (1; 2) com-
posed of domains of phases 1 and 2 and forming a layer
with normal η inside the initial phase. For a crystal of
sufficiently large volume, we can assume that the com-
position and orientation of the interphase boundaries is
determined by the first term in (4.8), while the second
and third terms determine the linear dimensions of the
structure—the equilibrium thickness Ho and, conse-
quently, by (4.6), Do. (Note added in proof: The condi-
tion θΦ/da = 0 for α = 0 determines the boundary separ-
ating the regions of stability of the single- and many-
domain plates in the H, L plane; for small dimensions of
the plate, a single-domain state is the more stable.) It
is not difficult to see that the condition for the volume
energy of the polysynthetic phase to be a minimum with
respect to variation of the domain composition (9μ12/θα
= 0) is equivalent to equating the configurational force at
the interdomain boundaries to zero:

where σ = (σι + σ2)/2 = σ + $m + σ** is the stress at the
interdomain boundary due to the interaction with the
initial phase (σ), the action of the interdomain boundaries
(other than the one being considered) (5m), and the ex-
ternal stress (σ^); ί ι and σ2 are the stresses in phases
1 and 2. Stable equilibrium of phases 1 and 2 at the
interdomain boundary corresponds to that orientation
m 0 of the boundary which ensures that μ^ is a minimum,

i.e.,

(4.10)

The fact that the configurational force at a plane face of
the many-domain plate equals zero or that the thermo-
dynamic potentials of the initial and polysynthetic phases
are equal

μ» = μο (4.11)

corresponds to equilibrium of these phases that is stable
for no such that

(4.12)°. Ό _ η

The system of equations (4.9)—(4.12) defines the point
of equilibrium between phases 1 and 2 and between the
initial phase and the polysynthetic phase (1; 2). It is
pointless to consider the equilibrium of each of the
homogeneous phases 1 and 2 with the initial phase, since
the effective width of the interphase boundary between
the many-domain region and the initial phase is com-
mensurable with the thickness D of the domains. The
many-domain composite structure on the plane boundary
wUth the initial phase can be regarded as one polysyn-
thetic phase, since it is stable, or at least metastable,
with respect to separate development and formation of a
"comb" of the more stable component. (This is easily
shown by means of an estimate similar to (4.4).) A
measure of the absolute stability is provided by the dif-
ference in the energies of the many-domain phase and
the final product of separation—a packet of parallel

plates of the stable phase, considered in the next section.
Local equilibrium at the surface of the many-domain
plate is attained as a result of fine adjustment of the
microscopic (over scales ~D) configuration of this sur-
face, which on average is parallel to the plane no. The
thermodynamic variables describing a system of the
three phases (0, 1 and 2) are Τ, σ*-; α> m, and n. Solu-
tion of the system of four equations (4.9)—(4.12) gives
ao, mo, n0 and the temperature TQ__ ,^. 2) at which the

transformation of the initial phase into the many-domain
phase becomes thermodynamically possible, as functions
of the external stress. As we move along the line
T0—-(1- 2J (^)» t n e d o m a i n composition of the equili-
brium polysynthetic phase and the orientation η of the
plate change; the orientation of the domain boundaries,
according to (4.10), does not change. A monovariant
equilibrium of the three phases with two external param-
eters is possible because of the presence of the addi-
tional (as compared with a system of noninteracting
phases) internal parameter a—the ratio of the volumes
of the phases forming the polysynthetic phase.

Apart from the simplest many-domain structure con-
sidered, which is formed of domains of two types, poly-
synthetic crystals composed of domains of three or more
forms can exist. The introduction of an additional type
of domain leads to an increase, by one, of the number of
thermodynamic parameters of the polysynthetic phase—
the additional parameter is the relative fraction of the
new domains. The number of variants of the equilibrium
of the many-domain structure is not changed if the num-
ber of equations of the type (4.9) and (4.11) expressing
the fact that the configurational forces at the interphase
boundaries are equal to zero is also increased by one,
i.e., if each new domain leads to the appearance of only
one new interdomain boundary (the type of the boundary
is determined by its orientation and by the contiguous
phases). For this, it is necessary that a domain of
phase 3 be a plane-parallel layer inside a domain of
phase 1 or 2. Since the new 3—1 (or 3—2) boundary need
not necessarily be parallel to the 1—2 boundary (the
orientation of m1 3 is determined by the condition
9e(€° - €°i, tn)/am = 0), in the general case (for
Dcot(aii2, m13) <C H) the new boundary intersects the
old and the introduction of a third type of domain into
the structure should be accompanied by a transition to a
second-order domain structure in which the role of the
domains is played by the polysynthetic plates of domains
of two types that were considered above. A polysynthetic
phase of three types of domain should have one of the
two structures shown in Fig. 12. In the first case (Fig.
12a), as compared with a two-domain structure an addi-
tional degree of freedom appears—the volume fraction
of the domains 3 and the extra boundary between phase 3
and the polysynthetic phase (1; 2); in the second case
(Fig. 12b), two additional degrees of freedom appear—
the volume fraction of the domains 3 in the "phase"

FIG. 12. Second-order do-
main structures.

D
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(1; 3) and the fraction of domains (1; 3) in the whole
many-domain structure ((1; 3)(1; 2)). Correspondingly,
two new types of boundary appear, between domains 1
and 3 and between the polysynthetic domains (1; 2) and
(1; 3). The orientations of the additional boundaries are
determined by equations of the type (4.10), (4.12), the
number of which coincides with the number of character-
istics m1 3, m^jU, etc., being sought. A polysynthetic
phase formed from four phases should have either a
structure of the second-order type ((1; 2)(3; 4)) consid-
ered above, or a structure of the third-order type
{((1; 1)(1; 3))(1; 4)}, etc. The domain hierarchy becomes
more complicated as the number of phases increases,
but this does not exclude the possibility in principle that
any number of stable or virtual phases are in equili-
brium; a polysynthetic phase formed from domains of
2n — 1 homogeneous phases has an n-th-order structure,
and one formed from 2n phases has either an n-th or an
(n + l)-th-order structure. The physical stimulus tend-
ing to make the structure more complicated lies in the
decrease in the elastic energy of the macrofields and
microdistortions at the interphase boundaries. Since the
dimensions of the structure are limited, the formation
of domains inevitably leads to an increase in the number
of domain boundaries per unit volume; this determines
the optimal order of the domain hierarchy. In particular,
for many-domain structures formed from two phases
the formation of structures of higher order should be
unfavorable, while for many-phase composite structures
the formation of structures of a higher order than is re-
quired by the "phase rule" formulated above is also un-
favorable. That many-domain structure which has the
minimum energy will be realized. Thus, the transforma-
tion of a crystal into a polysynthetic phase may turn out
to be thermodynamically more favorable than the single-
domain formation of stable (in the isolated form) phases.
This is of fundamental importance not only for the study
of phase transformations but also for the interpretation
of real phase-equilibrium diagrams of a solid.

Different phases, both stable and metastable, may
emerge in the role of domains. In one-component sys-
tems or, in particular, in diffusionless transformations
in many-component systems, domains of virtual phases
can arise if the potential of the system containing these
phases is lower than the potential of the system contain-
ing single- or many-domain formations of stable
phase1-31-1. Here it is not necessary that all the phases
appearing be more stable than the initial phase (in (4.5),
Δμ£ can be less than zero, if Δμϊ > 0). As an example
of the formation of a structure with participation of a
virtual phase, we can point to the formation of the
"duplex structure" formed in the "massive" transforma-
tions in alloys of copper'-32-1. In a diffusionless trans-
formation of the high-temperature bcc phase, what is
formed is not the stable (according to the equilibrium
diagram) hep phase but a double layer structure consist-
ing of alternating layers of hep and fee phases. In this
case, the virtual fee phase is stable in another region of
the equilibrium diagram, but, clearly, in heterophase
structures phases can be present which are not realized
at all in the isolated state.

In those cases when one phase is formed in the trans-
formation, domains with different characteristic defor-
mations arise, because of the point or translational sym-
metry of the crystalline phases[ 2 9^. For example, in the
case (3.11) of the transformation of a cubic phase into a
tetragonal one, with formation of a new phase of domains

of two types, e.g., e?and c2, the discontinuity in the
deformation between neighboring domains is the invar-
iant-plane deformation (3.3):

(δ-η Ο 0\
0 t|-« 0 = | ( s » m + m.s),
0 0 0/

A _ _ (4-13)
ID], 2

: z =l/ Al/2 i dr 1̂ 1/2 j , s l 3 =sii i2, i* s=^2(8—η).

If_the domains_are contiguous over the plane m, i.e.,
(110)cui3 or (110)cuk, no stresses arise in their contact.
The planes of the interdomain boundaries in this case
are coherent twinning planes, the discontinuity e° — e°
in the deformations is equal to the twinning displace-
ment, and the many-domain phase is a polysynthetic
twin (Fig. 13).

Under the condition that the principal values of the
tetragonal deformation (3.11) have opposite signs and the
magnitude of the principal value along the tetragonal
axis is the greater of the two, i.e., η (η + δ) < 0, the
average characteristic deformation for a given domain
composition a0 satisfies Eq. (4.2), i.e., is an invariant-
plane deformation, e.g.,

(0 0 0\
δ= ( Ο

0 0
0 =4(

where n 1 ) 2 = /{η + δ)/(—δ )J + -

(4.14)

, and-δ)Κ, s 1 ) 2 =sn 2 ,
s = -δ. Combined in pairs, the domains €? (3.11) (the
index i shows the direction of the tetragonal axis) give
six variants of the invariant-plane deformation, each of
which corresponds to two polysynthetic crystals, with
normals ru and n2. The scheme shown in Fig. 14 indi-
cates the macrodeformations εψ- (i / k, i, k = 1, 2, 3) of
the polysynthetic crystals, where the indices i and k
indicate the domains from which the crystal is com-
posed, the first being the index of the domain of the
greater relative proportion. (We note that the first index
coincides with the position of the deformation e" (e2) and
the second with the position of the zero.)

The formation of a many-domain plate with normal n
(4.14) does not lead to the appearance of a macrofield
inside the plate, except for an edge field equivalent to
the field of an enriccling dislocation with Burgers
vector SH. For Δμ? = Δμ° = Δμ°, i.e., for σ^ = 0 or
e° · σ*-- = ε" · o^, such a plate is the equilibrium shape
and its formation is accompanied by a change of thermo-
dynamic potential equal to

Φ = -Δμ°αν·£
2// + (Γ

(4.15)

The linear dimensions Ho and Do are determined by the
relations (3.6), (4.6).

A similar type of breakdown into domains, leading in
the absence of external fields to the formation of an un-
distorted new phase in the form of a polysynthetic twin,
is highly characteristic for many martensitic1-33'34-1 and
nonmartensitic'-35'36-' transformations: ordering1-37-1,
including antiferromagnetic ordering[ 3 8 ] , formation of
interstitial phases [ 3 9 ] , Jahn-Teller transitions[ 4 0 ] , etc.
The absence of uniform macroscopic elastic fields in the
phase being formed enables us to reduce the problem of
determining the equilibrium domain composition and the
orientation of the interdomain boundaries and habit faces
of a many-domain plate to the purely geometrical prob-
lem of finding the invariant planes. The solution of this
geometrical problem does not depend on the elastic
properties of the phases and can be obtained even if we
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FIG. 13. Many-domain plates composed of domains with tetragonal
deformation, (a) First-order domain structure formed by domains 1 and
2, and 1 and 3; (b) second-order domain structure formed by domains 1,
2 and 3.

FIG. 14. Possible forms of polysynthetic crystals in a cubic-tetragonal
transformation. The microdeformations of the domains are written in the
small circles, and the macrodeformations of the crystals in the large cir-
cles. The lengths of the arrows are inversely proportional to the fraction
of domain of the given form.

do not invoke the assumption that the characteristic
deformations are small. Thus, if the tetragonal
deformation (3.11) describes the fcc-bcc transformation
(1.3), we can find the equilibrium structure. From these
standpoints the crystallographic aspects of martensitic
transformations based on ixoa.^3'4^ have been studied in
detail.

The number of possible many-domain structures is
substantially increased because of the fact that the char-
acteristic deformations in the domains can differ by a
translational displacement, i.e., domains can arise for
which

e»=^+g", (4.16)

where €? (i = 1, 2, 3) are the minimum characteristic
deformations (3.11), and § = gmp is the translational
displacement (g, ρ and m are the magnitude, direction
and plane of the displacement). In certain cases confir-
mation of the presence of such translational domains has
been obtained t42-1. If the domains differ only by a dis-
placement they degenerate into glide planes, and the
phase being formed has a monocrystalline structure1 2'.

The tendency of the thermodynamic potential (4.15)
to be lowered on account of the decrease in the energy of
the edge field (e L ~ Gs2) can lead to the formation of a
second-order structure from the domains (3.11). For

example, a combination of a polysynthetic "phase" (1; 2)
with a polysynthetic "phase" (1; 3) having the average
deformation

/0 0 0 \

£;,=(i-a)£;+«;= ο η ο , a=-J-, (4.17)
\0 0 η+δ/ η

gives crystals with a second-order domain structure,
in which the characteristic macrodeformation equals

/0 0 0
έοι2,ΐ3 = (1-α)έί3+αέ°12= 0 0 0

\0 0 2η+δ/ (4.18)

=i(s°n+nos) for c t = - - l ,

where n = k, s = sk, and s = 2rj + δ.

The second-order domains are contiguous over the
bisector planes between the axes j and k (Fig. 13b). An
example of such a structure, arising in ordering, is
shown in Fig. 15a. The magnitude of the macrodisplace-
ment vector s directed along the normal to the plate is
equal to the volume effect Δν/ν in the transformation,
and the energy of the edge field is correspondingly lower
than for two-domain plates and equals zero if the trans-
formation is not accompanied by a volume change13'. The
formation of a many-domain plate whose characteristic
deformation is a uniaxial expansion or contraction along
the normal to the plate (equal to the volume effect of the
transformation) corresponds to the maximum possible
decrease of the edge energy as a result of breakdown
into domains. Therefore, for transformations with a
significant volume effect, subdivision into domains with
formation of higher-order structures is relatively in-
effective.

In the above investigation of equilibrium many-domain
structures it was not taken into account that the charac-
teristic deformations and free energies can be variable
quantities even under constant external conditions
(T, a^, and also Lo). Therefore, in analyzing nonmarten-
sitic transformations it is necessary to supplement the
above treatment by allowance for the dependence of these

FIG. 15. Higher-order domain structures arising in ordering in the
alloy Cu—Al [37] (a), in a martensitic transformation in Cu-Al (b), and
in the transformation of the tetragonal structure into a monoclinic struc-
ture in NbTe2 [43] (the microdistortions at the boundaries of the domains
are visible) (c).
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phase characteristics on the order and composition
parameters. In particular, in ordering with the forma-
tion of two phases (which, in particular, may differ only
in their orientation), the supplementary conditions
(2.6)—(2.7) must be fulfilled, and these, together with
Eqs. (4.9)—(4.12), determine the equilibrium degrees of
order in the phase 1 and phase 2 forming the polysyn-
thetic phase that is in equilibrium with the given initial
phase. We note that, in this case, the orientation m of
the domain boundaries can turn out to depend on the posi-
tion on the equilibrium line *

In transformations in many-component systems, reg-
ions of stable phases may serve as domains. The case,
often encountered in practice in metallography, of a
domain structure arising in the breakdown of a cubic
solid solution into two isomorphous solutions was treated
in'-44-1. It was assumed that the characteristic deforma-
tions are associated only with change in the composition,
with e£ = wl (Co — c^), i = 1, 2, 3, i.e., a linear relation
between the concentration changes and the lattice param-
eters (the Vegard rule) is fulfilled. It was also assumed
that the average concentration in the region that has
broken down is_equal to the initial concentration (c = Co)
(accordingly, e° = 0), and that, as in the case treated
above of formation of a three-domain phase with zero
volume effect, the stimulus for the many-domain region
to have a plate-like shape disappears. The crystallo-
graphic orientations of the faces of the many-domain
region that has broken down coincide with those of the
interdomain boundaries^and^are determined by the mini-
mum of the expression 1 · G*(n) · Ϊ and do not depend on
the composition of the phases.

As an interesting case of breakdown into virtual
phases, we can point to the stratification of the solution
that is formed in a solid when the concentration depen-
dence of the characteristic deformation of the solution is
not described by the Vegard rule. If the concentration of
the solution separating out is close to that at which the
volume effect is extremal, stratification of the solution
into domains with concentrations greater and less than
the initial concentration can lead to a decrease of the
total volume effect and, consequently, to a decrease of
the elastic interaction with the initial phase. Under the
condition that this lowering of the elastic energy exceeds
the increase in the self energy of the inhomogeneous
phase, this stratification into concentration domains will
be thermodynamically favorable. Another case of possi-
ble realization of virtual phases in a many-component
system is the formation of ordered phases in a region
in which the disordered phase is stable in the isolated
state (i.e., above the Curie temperature). Since ordering
leads to lowering of the symmetry, when the ordered
instead of the disordered phase is formed there arises
the additional possibility of reducing the elastic energy
by breakdown of the ordered phase into domains.

It is obvious that a combination of the possible ways
in which domains can be formed in one-component sys-
tems with the ways that can be realized by redistribution
of components should lead to a large variety of domain
structures in heterophase many-component systems1 4'.

5. ELASTIC INTERACTION OF CRYSTALS AND
FORMATION OF ENSEMBLES OF PLATE-LIKE
CRYSTALS

There exists another way of decreasing the stress
fields in the matrix of the initial phase besides making
the internal structure of the regions of new phase being

formed more complicated, namely, by combining these
regions into groups or colonies. The long-range field of
a crystal can be reduced on account of interference with
the fields of other crystals, and this possibility is real-
ized in the formation of ensembles of regularly distribu-
ted crystals of the new phase inside the initial phase. In
order to determine which systems of crystals are ener-
getically optimal, it is necessary to calculate the energy
of the stresses for crystals of arbitrary shape, arbitrar-
ily distributed in space, and then minimize the free en-
ergy of the system with respect to the shape and internal
structure of each crystal and with respect to the mutual
arrangement of the crystals. The problem formulated
is extremely complicated, but it is possible to obtain an
approximate solution of it that is sufficiently effective to
describe real cases, if we neglect the influence of the
interaction of the crystals on the equilibrium shape and
structure of each crystal, i.e., if we disregard the per-
turbation induced in the structure of the given crystal by
the elastic fields of the other crystals. This perturba-
tion is small if the crystals are thin, i.e., if H/L <C 1.
Then, energetically favorable systems can be "built"
from the many-domain plates described in the preceding
section, which are the optimal "bricks" for constructing
a heterophase structure.

The procedure for determining the structure of the
optimal groups formally reduces to the problem, consid-
ered in Sec. 4, of the equilibrium structure of a many-
domain plate, if we regard the whole group as a "super-
crystal" inside the initial phase, the role of the domains
in the initial phase being played by plates of the new
phase and regions of the initial phase. If the crystals
are arranged in an ordered manner, so that, the average
characteristic deformation of a group, ¥ " = Σ/ (3j i^

(βί and €;° are the volume fractions and characteristic
macrodeformations of the crystals belonging to the
group), is uniform, the fields of the crystals cancel to
the maximum extent if the group has a planar shape with
the normal determined by a relation analogous to (4.2).
In the absence of incompatibility of the characteristic
deformations on the interphase surfaces, the structure
of the optimal groups is determined entirely by the
geometrical requirement

Nx2M5xN=0, or 2 β;έ" = 4-(8Ν+\8), (5.1)

from which there follows the relationship of the volumes
of the crystals belonging to the group, their relative
thickness and length, and also, for a given maximum
size of the group, the absolute dimensions of its struc-
tural components.

As an illustration, we shall consider the possible
optimal groups of crystals in the transformation of a
cubic phase into a tetragonal one (3.11)[46-1. Crystals
with the deformation e ^ (cf. the scheme in Fig. 14) can
form groups satisfying Eq. (5.1) with crystals whose
characteristic deformation c ^ n is not linked to ej^ in the
scheme, i.e., one of the types of domain should be differ-
ent in the crystals combining into the group, and the
common type of domain should not be simultaneously
preponderant in both crystals. For example, polysyn-
thetic crystals with the macrodeformation € ^ = i°3 in
combination with crystals with macrodeformation e^n
= cSi, c?2, €?3 form truss-like groups (Fig. 16a). The
field produced by the vertex of the dihedral angle at
which neighboring crystals come together is equivalent
to the field of a dislocation with Burgers vector Β = sH
+ e'H', lying along this vertex. If B2 < (sH)2 + (s'H')2,
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£'
(5.2)

FIG. 16. Energetically favor-
able groups of polysynthetic crys-
tals in a tetragonal deformation.

the energy of the resultant field of the combination of the
two crystals is less than the sum of the energies of the
edge fields of each crystal, and a combination of this
type is energetically favorable. A pairwise combination
of the same types of crystal with formation of either an
acute or an obtuse dihedral angle between the habit
planes will be favored, depending on the relative orienta-
tion of s and s'.

Besides the above-mentioned short-range order effect
in the arrangement of the crystals, a long-range order
effect occurs in the groups considered. Interference of
the fields of the pair combinations forming the surface
of the group leads to the cancellation of these fields at a
distance of order Q from this surface: Β ιι Ν, and the
field of the group is equivalent to the field of two parallel
vertical walls of edge dislocations. A long-range order
effect is clearly also realized in the formation of a
packet of parallel identical plates, arranged in such a
way that their edges perpendicular to s lie in one plane,
with normal Ν = s/s (Fig. 16b)15).

For the cubic-tetragonal transformation, the four
cases considered encompass all the possible groups,
formed from crystals of one or two orientations, that
obey Eq. (5.1). Groups of such types are a characteristic
element of the structures arising in different phase
transformations in the solid state. The "truss-like"
groups are a typical morphological feature of marten-
sitic transformations in a number of alloys based on
iron and nonferrous metals. Systems of parallel crystals
are especially characteristic for the so-called massive
transformations '-47-1, and also for the structure of an
isothermal martensitic transformation'-48·1. Analogous
groups are observed in ordering, ferroelectric transi-
tions, etc.

The stability of a group, and also the probability of
its formation, are determined by the difference between
the stress energy per crystal in the group and the en-
ergy of the field of the isolated crystal. The elastic en-
ergy of each of the groups considered is made up of the
energy of the short-range stresses, concentrated in a
layer ~9 at the surface of the group, and the energy of
the long-range field of the group. In estimating the rela-
tive energetic favorability of one group or another, it is
necessary to take into account that the dimensions of the
group, i.e., primarily, the greater of yand.27', are limi-
ted by the grain sizes in the polycrystal, the distance
between the crystals that have been formed earlier, de-
fects, etc. This circumstance imposes certain limita-
tions on the optimal compactness of the groups. For
example, the change in the free energy on formation of a
group from crystals of one form (see Fig. 16b) equals
(to within numerical and logarithmic factors)

where Γ is the surface energy of the plane faces of the
crystals, and ρ = Ί/9 is the number of crystals in the
group. It follows from (5.2) that, for given dimensions
(L, L') of the crystals and length L of the group, there
are a definite number of crystals

X (5.3)

and crystal thickness Ho = V(F/Gs2)L corresponding to
the minimum of Φ. If ρ is constant, the energy has a
minimum corresponding to certain values Lo and Ho; an
increase in the quantity of the new phase on account of
the growth of each crystal leads to an increase in the
free energy of the system. The thickening of each crys-
tal leads to an increase in the space factor of the
"supercrystal," and elongation leads to an increase of
its thickness; both these effects are associated with an
increase of the energy of the long-range peripheral field
of the "supercrystal," which, in competition with the
volume decrease of free energy that accompanies the
formation of the stable phases, leads to the establish-
ment of thermoelastic equilibrium of the "supercrystal":
the equilibrium of the structure of the group as a whole
and of each crystal belonging to the group depends on
the deviation from the phase-equilibrium point. The
limiting size for an individual crystal is determined by
the elastic interaction of the crystals in the group. This
state may be metastable compared with an equilibrium
continuous crystal with dimensions equal to the maxi-
mum length of the group. However, the relative stability
of these states can vary as a function of the quantity
Δ μ °, and the transition from one state to the other is
associated with a considerable energy barrier. Thermo-
elastic equilibrium of systems of parallel crystals has
been repeatedly observed experimentally t49-1 (Fig. 17).
An analogous thermoelastic equilibrium should also oc-
cur for other groups.

The above treatment can be generalized to the case
when the incompatibility at the interphase boundaries is
not equal to zero. In particular, putting cj = 0, c2 = c°,
m — η and η — Ν in (4.5), we obtain the expression

)β(8», n)-fa»e(e°> N)\SfXX' (5,4)
- a) 2 esVSe)ill\ XX'-\-a?eL (ε·) &g* (X+X1),

which describes the potential of a planar packet of
parallel crystals of the new phase (see Fig. 15b). Since
e(€°, n) = min e(c°) = e0, two cases are possible:

a) Δβ = e(c°, N) - e(c°, n) > 0. In this case, even for
arbitrarily large Jf and if, if jf/sc < 1 and the packet is
surrounded by the matrix, the minimum of the thermo-
dynamic potential corresponds to a = (Δμ°-βο)/Δβ. For

Heating

J.
** Cooling

FIG. 17. Reversible change of the sizes of the crystals in heating and
cooling in the alloy Cu-Al-Mn I 4 9 ] .
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θ ο < Δ μ ° < β ο + Δ β , the stable state is a two-phase state
in which the amount of the new phase (a) increases in
proportion to the deviation from the point of equilibrium
of the coherent phases (Δμ° = e0). With decreasing jf
and '£, the two-phase region, like the hysteresis of the
transformation, is displaced toward larger deviations
from equilibrium.

b) Δβ = 0. This case is possible if, by virtue of the
symmetry of the crystal and of the tensor c°, there are
several planes η ensuring a minimum of e(e°, n). Then,
if the conditions of the formation of the structure permit
variation of the plane ΚΓ, the packet of crystals occupies
a position corresponding to the minimum interaction en-
ergy between the packet and the surrounding matrix.
Then e(e°, N) = eo, and the minimum energy of the edge
field of the packet as a whole (the last term in (5.5)) is
attained as a result of variation of the amount a of the
new phase. In fact, minimizing Φ with respect to a, we
obtain

1 |(Δμ° — «οΙ/^ζ,Ι— V &€<jl$@ /c o \
OLQ / ^ -ψ , ^r==^ ' \^·^/

where .f0 = 8egr/e^. For a given magnitude of .t, i.e.,
a given length of the crystals making up the packet, if
{.Wa/tYk < (Δμ° - eo)/eL < 2.w/!£- (ta/r)lh, a0 in-
creases from zero to 1 with increase of Δμ°. For
.·/? 3> jf0, the presence of the initial phase in the many-
domain region is favored (a0 < 1) when (Δμ°- eo)/e^
< 2jf/y, i.e., under the condition that the width .#"of the
region is greater than the equilibrium thickness of a
single-domain crystal of length yfor the same deviation
Δμ°ΪΓοηι phase equilibrium. Corresponding to the
change of a0, there is a change of the period (/, or of
the equilibrium number and thickness of the crystals.
For (Δμ° — βο)/β^ > 2.jf/&, the crystals coalesce into
one crystal. More complicated ensembles of crystals or
polysynthetic plates of crystals can be treated in an
analogous way.

It should be emphasized that the equilibrium ensem-
bles and the internal domain structure of an individual
crystal are obtained as solutions of the same variational
problem on the optimal structure arising as a result of
a transformation in a bounded region of the initial phase,
enclosed in an elastic matrix. Here, structures that are
formed in regions having the shape of a parallelipiped
with a small ratio of the thickness to the other linear
dimensions correspond to the minimum free energy.
The internal structure of this region depends on its
dimensions and orientation. If the thickness of this reg-
ion is less than a certain limiting thickness ( H j ^
~ 7Mo), the breakdown of the region into domains in the
transformation is energetically unfavorable. Conversely,
with increase of the relative thickness of the region (for
H/L > ~e o /e L ), the presence of the initial phase in the
equilibrium structure becomes favorable, i.e., an en-
semble, or colony, of crystals corresponds to a meta-
stable state. It is obvious that the crystals in an ensem-
ble retain their individuality—in particular, the charac-
teristic equilibrium shape for an individual crystal, if
their interaction energy is small compared with their
self energy. (Note added in proof: If the distance be-
tween the crystals is much greater than their sizes, they
may be arranged at the sites of a regular space lattice.
The "direct" elastic interaction between the crystals
leads to the establishment of a two-phase equilibrium,
and prevents their coalescence.) In the opposite case,
which is realized when the distance between the crystals
is sufficiently short, the crystals coalesce, being trans-

formed into domains of polysynthetic regions. If the en-
sembles are formed by polysynthetic plates, second-
order domain structures are formed when these coal-
esce. For example, on coalescence, the second-order
domain structure described by the expression (4.18) is
formed from the group (c°3; e?3).

The groups of crystals can serve, in their turn, as
elements of higher-order structures. This should lead
to the formation of a textured structure and, as a conse-
quence, to anisotropy of the properties of the disperse
systems that are formed in transformations in mono-
crystals or coarse-grained polycrystals. Experimental
structural confirmation of such anisotropy has recently
been obtained[ 5 0 ].

6. CONCLUSION

Thus, as a result of the self-consistent development
of the transformation, a hierarchy of structures of in-
creasing scale (domains—polysynthetic regions—ensem-
bles of regions) is formed in a certain region of the ini-
tial phase. The extent of the structural hierarchy and the
scale of the structure are determined by the relationship
of the elastic and surface effects, and also by the maxi-
mum linear dimensions of the system; specifying these,
together with the thermodynamic characteristics of the
phases and interphase surfaces, determines the equili-
brium parameters of the structure in all stages of the
structural hierarchy. The maximum linear parameters
of the system are determined by the real structure of the
initial phase or by the kinetic parameters of the trans-
formation; on the relationship between the rates of
nucleation and growth of the crystals depends the size
of the region of self-consistent development of the trans-
formation, which is limited by impact with crystals de-
veloping from independent neighboring centers. In prin-
ciple, for each specific case it is possible to indicate the
optimal combination of processes of differentiation of the
structure (breakdown into domains) and integration of
the structure (combination of crystals into groups) that
ensures the minimum free energy of the heterophase
system.

The appearance of many-phase metastable states
characterized by a regular spatial arrangement of the
phases is one of the noteworthy features of the formation
of a heterophase structure in phase transformations in
solids. Once again, the thermodynamic nature of the dis-
persity of the heterophase systems considered, which is
associated with the tendency to reduce the elastic energy
of the internal stresses, should be noted. The individual
structural elements of the heterophase system can be
interpreted as elastic domains, in complete analogy with
magnetic or electric domains.

The presence of elastic domains is a factor that de-
termines many of the physical properties of crystalline
solids. This applies not only to properties which are
traditionally regarded as structurally sensitive and
which are due to processes of scattering of electrons,
phonons, etc. at structural boundaries or due to the in-
teraction of the latter with dislocations or with the
boundaries of magnetic and electric phases (e.g., mech-
anical hardening, magnetic hardness, the hardness of
type-Η superconductors, etc.). In a finely dispersed sys-
tem of elastically interacting phases, because of the
relatively large specific volume of the interphase boun-
daries, and also because of the considerable elastic
deformation of the phases, essentially all the physical
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properties should differ appreciably from the additive
sum of the properties of the isolated phases. This fact,
like the possibility, considered in Sec. 4, of formation
of domains of phases that do not exist in the isolated
state, makes it possible to look forward to the creation
of heterophase materials with qualitatively new and un-
expected properties.

The theoretical analysis of the structure of hetero-
phase systems is a necessary stage in the study of the
physical properties of real crystalline materials. The
ideas described enable us to treat a wide class of prob-
lems associated with structural transformations from
unified standpoints, and to construct a quantitative theory
of real structures. In the framework of this theory, for
each specific transformation and for a given small num-
ber of initial parameters, the spatial distribution and
deformation of the phases can be found, and the phase-
equilibrium diagram in a real heterophase system, which
is substantially different from the equilibrium diagram
of the isolated phases, can also be calculated. From this
point of view, it is necessary to carry out a systematic
analysis of the existing experimental data.

Transformations accompanied by formation of elec-
trically or magnetically ordered phases can evidently
serve as a possible sphere of application of the theory.
In certain cases (e.g., for large magnetostriction and
small magnetization), the elastic energy of the internal
stresses that arise from the incompatibility of the stric-
tional deformations at the interphase boundaries may be
comparable with the energy of the magnetic (or electric)
fields, and may have an important influence on the char-
acter of the magnetic (electric) domain structure. In
particular, the elastic energy can lead to the formation
of an equilibrium domain structure in antiferromagnets
or antiferroelectrics.

In considering the prospects for development of the
theory, and its possible applications, we cannot fail to
note a certain limitation of the theory. Lying at the basis
of the effects considered are stress-relaxation proces-
ses resulting from redistribution of the characteristic
deformations under the condition that the continuity of
the crystal lattice is conserved1β>. We have not taken
into account the possibility of relaxation as a result of a
change in the connectivity of the crystal due to the form-
ation of fractures or to change in the number of disloca-
tions and displacement of dislocations. In real cases,
phase transformations, as a rule, are accompanied by
creation (or destruction) and migration of defects, and
the shaping of the structure is the result of the self-
consistent development of two mutually connected sub-
systems of the heterophase system: the "phase" and
"defect" subsystems. A systematic solution of this self-
consistent problem, incorporating an analysis of the evo-
lution of the dislocation structure, is hardly possible at
the present time. Fortunately for the theory, the univer-
sal mechanism of plastic relaxation is quite frequently
found to be unable to compete with specific relaxation
mechanisms in the phase subsystem. First, for suffi-
ciently dispersed systems, the energy of the incoherent
fields of the microdistortions arising in the formation of
new dislocations is greater than the energy of the micro-
distortions accompanying the formation of elastic
domains (cf., e.g., the footnote12*, and also1-51-1).
Secondly, the dislocation mechanism of relaxation, being
a secondary process relative to the development of the
transformation, is less favorable kinetically than break-
down into domains. Moreover, the role of plastic relaxa-

tion can be important in the formation of the large-scale
elements of the structural hierarchy, and also in the re-
moval of stresses remaining in the domain structure.
Evidently, in the future the theory should be supplemen-
ted by a study of the relation between plastic deformation
and processes of dispersal of the structure. On the other
hand, it is clear that the formation of elastic domains
under certain conditions can serve as an effective mech-
anism of relaxation of stresses in a stable heterophase
system, i.e., a system consisting of phases that are in-
capable of mutual transformation.

In conclusion, it is appropriate to characterize, if
only in a few words, the place of the theory described in
the total complex of the physical disciplines devoted to
the study of real crystals. In its methodology, the theory
of heterophase structures presented is a component part
of the physical theory of internal s t resses [ 5 ' 6 : i . In this
connection, the central idea of the work on elastic do-
mains can be regarded as being the development of a
magnetostatic analogy for dislocation theory. On the
other hand, the theory is based on the results of the
study of structural transformations—primarily, those
transformations in which the effects of internal stresses
are manifested most prominently, namely, martensitic
transitions and twinning. The study of these phenomena
has long-standing fruitful traditions in our country,
where considerable progesss has been achieved in
understanding the physical nature of martensitic trans-
formations (the work of G. V. Kurdyumov and his school,
S. S. Shtefnberg, V. D. Sadovskii, et al.) and twinning
(the experimental investigations of I. V. Obreimov, R. I.
Garber, V. I. Startsev, M. V. Klassen-Neklyudova, et al.,
and the theoretical work of I. M. Lifshitz, V. L. Inden-
bom, and A. M. Kosevich and co-workers).

It is a pleasure to end the article with deep thanks to
G. V. Kurdyumov for his constant interest and support
in the work, and to V. L. Indenbom for numerous useful
discussions on fundamental points.

" in the case of martensitic transformations the matrix U° connects not
only the sites of the lattices but also the positions of the atoms them-
selves in the initial and final phases.

2 ' ln the article we use an abbreviated notation for tensors and tensor
operations: a is a vector, a is a tensor of rank 2,1 is a tensor of rank 4,
and a°b «—• ajb^; tensors standing side-by-side are contracted with
respect to one inner index, and, if there is a dot between them, with
respect to two (e.g., ab *-* a^by, a-b *-* a ^ b ^ ) ; a X b <-<• eykaybj
(eyk is the antisymmetric unit tensor).

3)The condition (1.6) is equivalent to the requirement that the full de-
formations on the phase boundaries are compatible (n X (e2 —e, Χ η
= 0), which is a particular case of the compatibility of the full defor-
mations at all points of the crystal (v X e X V = 0) [ S | 6 ] . Accordingly,
the surface incompatibility of the characteristic deformations, ij = η Χ
(έ2 — e,) Χ η, is a source of internal stresses in a heterophase system.

4>The effective elastic modulus G(n)(Gi'jcim= G j ^ n ^ ( a ^ G ^ ^ nK)~l X
'VG'P51m~Giklm> Οά'δ^δβ = δαβ) vanishes on contraction over any
index with the vector n. Therefore, in e = ee-o/2 = ( e - e°) · σ/2
= (s-n + e °-e o )-a/2,( s-n)-5 = 0.

s*By a phase in this case we mean a singly-connected region of the solid,
within which the internal parameters characterizing the phase vary in
a continuous manner, and experience a discontinuity at the boundary.

"For a microscopic crystal such a parameter exists: for a crystal size
R ~ Γ/Δμ°, the configurational force is balanced by the surface-tension
forces. This equilibrium is unstable and corresponds to the intermediate
state through which a two-phase system passes in the process of nucle-
ation of the new phase.

7)The thin-crystal approximation is effective if we are considering an
interphase surface that is almost parallel to some plane (with normal
n). It is assumed that this surface is composed of plane terraces, normal
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to n and separated by vertical steps. The length of each terrace is much
greater than the height of a step. Furthermore, by analogy with the
laminar growth of a crystal from the uncondensed phase [ 2 3 ] , it is
assumed that tangential displacement of the steps along the surface
occurs more easily than normal displacement of the terraces. Then the
condition for equilibrium of the interphase surface reduces to the con-
dition for equilibrium of the steps. It is usually assumed that all the
steps have monatomic height. In this case they can be interpreted as
certain dislocations of the phase transformation [ 2 4 ] . If e° = V4(s°n
+ n°s), the mechanical part of the configurational force e° · σ = son
acting on a step coincides with the component, normal to η and to the
step, of the force acting on a dislocation with Burgers vector s, in ac-
cordance with the usual Peach-Koehler definition [ 2 0 · 2 5 ] , and the
steps of the dislocation are the only source of stress on the interphase
surface. If we neglect variation in the heights of the steps, (3.1) goes
over into the equation for the equilibrium of a thin crystal, and the
problem of the equilibrium of twins ( s i n ) [2! ] and fractures (s || n) [22]
reduces to the problem of the equilibrium of a planar pile-up of disloca-
tions (cf. [20] and p. 174 in the (second) Russian edition of f 5 ] ) . In
certain cases the steps can be identified with real defects of the crystal
lattice. For example, in twinning in fee crystals or in the fec-hep trans-
formation, the twinning dislocations or transformation dislocations are
Shockley partial dislocations. In the general case, however, the theoret-
ical justification of the step structure of an interphase surface requires
a microscopic analysis of the boundary.

8)We are led to an analogous conclusion about the plate-like equilibrium
shape of a region of the new phase by studying the question of the
optimal shape and orientation of a crystal when its volume is fixed.
The corresponding problem was solved for the two-dimensional case [ 2 6 ],
and then for the three-dimensional case I 2 7 ) . The solution of the vari-
ational problem of the minimum elastic energy of a doubly-connected
region with the supplementary condition indicated is an infinitesimally
thin plate oriented along the plane of optimum union of the phases;
the corresponding elastic energy is e(no)V, where V is the volume of
the new phase [ 2 7 ] . Allowance for the surface energy makes it possible
to determine the dimensions of the plate, of which one is microscopic,
Η ~ Γ/F, and the other is determined by the total volume of the plate:
L ~ V/H2.

*If the initial phase is characterized by a certain distribution N(L0) of
defectless regions over a length Lo, then in the initial stages of the
transformation

— xayllgLl f iV(/,o)f;Lo/i-> f iV (L0)dLQ.
1 J / J

1 0 )In the thermodynamic potentials μ = f - e-o we have omitted the terms
e*- · oc/2, which are the same in all phases for phases with equal moduli.

' " in accordance with the generalized Clapeyron-Clausius equation, 5f°
= q5T/T°=-e°-a&c.

l 2 )This degenerate case of translational domains is equivalent to a uni-
form plastic deformation, leading to violation of the coherence at the
interphase boundary and to relaxation of the stresses. The study of
the conditions under which a combination of a uniform slip or twinning
with the characteristic deformation of the transformation gives a
macrodeformation with an invariant plane is the subject of the phenom-
enological theory of martensitic transformations [ 3 3 · 4 1 ] . We note that,
despite the universality of slip as a mechanism of relaxation of stresses,
it may turn out to be less energetically favorable than breakdown into
domains, because of the large energy of the microdistortions. For ex-
ample, comparing ΔΓ0 ~ (G(£?-e?)2 a2yliy2 for twinning domains
(i.e., when e(e?-e?, m) = 0) with the minimum energy of the micro-
distortions in slip (ΔΓ0 ~ Gbg) and taking into account that the macro-
deformation is the same in both cases and corresponds to the minimum
of the energy (4.1), i.e., e° = e? + α(έ?- έ°) = e° + g, we obtain the cri-
terion for the transition from domain-twins to slip: Η > ~ Gb2/7. This
fact may provide one of the reasons for the observed two-zone structure
of polysynthetic crystals: the central zone is formed by alternation of
twins, and signs of slip are observed in the regions adjacent to the faces.
The physical nature of this effect is analogous to the branching of fer-
romagnetic domains at a surface.

I 3 'ln this case, there is no macroscopic field and the optimal shape of the
region of new phase is not necessarily a plate: the most favored shape
is determined by the anisotropy of the effective interphase surface
energy.

""The domain structures described are quite frequently observed in
natural minerals that have been formed as a result of phase transforma-
tions in the earth's crust (cf., e.g., [ 4 5 ]).

l s ) For the best cancellation of the stress fields, it is clearly necessary
that 1" > L, where !l" is the length of the crystals along the joined
edges (see Fig. 16a), i.e., that the crystals have the shape of "racks"
along <J".

l 6 )No fundamental difficulties are encountered when relaxation as a result
of redistribution of vacancies is included in the treatment; if the num-
ber of vacancies in the system is conserved (the condition of unchanged
continuity), they can be treated as an additional component of the
solid solution.
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