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The review is devoted to the present status of theory and experiment in the region of surface optical

oscillation (SO) in ionic crystals. Results are presented of a phenomenological analysis of the SO, and

a microscopic theory of SO is developed. Results of recent experiments on the observation and

investigation of SO by the methods of electron and infrared spectroscopy are reported and analyzed.

The conclusion deals briefly with other types of surface excitations (surface plasmons, magnons, and

excitons.)

CONTENTS

1. Introduction , 305
2. Phenomenological Method of Calculating Surface Oscillations in Ionic Crystals 306
3. Microscopic Theory of Surface Oscillations 309
4. Interaction of Electrons with Surface Phonons 313
5. Spectroscopic Investigations of Surface Oscillations in Shallow Crystals 315
6. Optical Investigations of Surface Oscillations in "Semi-Infinite" Crystals and in Thin

Films 317
7. Interaction of Surface Phonons with Surface Plasmons. Mixed Plasmon-Phonon Surface

Modes 319
8. Conclusion 320
Bibliography. . . 322

I. INTRODUCTION

The influence of the surface on the elementary-exci-
tation spectrum has been under study for many years.
Calculation of the spectra in crystals is usually based
on the use of cyclic boundary conditions of the Born-
von Karman type1'. The presence of a surface disturbs
the translational symmetry of the crystal, and leads in
final analysis to the appearance of surface states1'. The
presence of the surface leads, on the one hand, to a
weak deformation (in terms of the parameter S/V,
where S and V are the surface area and the volume of
the crystal) of the spectrum of the volume excitations
obtained with the aid of the cyclic boundary conditions,
and on the other hand to the appearance in the spectrum
of surface excitations whose number is small in com-
parison with the number of volume excitations, in terms
of the same parameter S/V. These surface states ap-
pear in the spectra of electrons (Tamm levels), pho-
nons, plasmons, excitons, magnons, etc.

A very important role in the behavior (and in the
method of description) of surface excitations is played
by their characteristic dimension, which is the distance
over which the amplitude decreases with decreasing
distance from the surface. If this decrease is slow
enough, over distances much larger than microscopic
(for example, the characteristic microscopic dimension
for phonons is the lattice constant a), then such excita-
tions can be described phenomenologically[2J. We shall
arbitrarily call them surface oscillations of type I—SO-I
(this terminology was first used for surface phonons).
Surface excitations whose amplitude decreases rapidly,
over distances comparable with the microscopic ones,
will be called surface oscillations of type II (SO-II).
The SO-II can be investigated only within the frame-
work of the microscopic theory, which was first formu-
lated in[ 3 J (see also[ 4 J).

One form of SO-I are Rayleigh waves, i.e., surface
oscillations in acoustic phonon modes, and have been

known for a very long time. Rayleigh waves are de-
scribed theoretically within the framework of elasticity
theory (see, e.g./5')· Their amplitude decreases expo-
nentially away from the surface over distances on the
order of the wavelength, which can appreciably exceed
the lattice constant, and this indeed is the reason for
the success of the phenomenological method. Rayleigh
waves have by now been sufficiently well investigated
both theoretically and experimentally (see, e.g.,[6>7])
and have found rather extensive practical applications.

If a dipole moment, and consequently also an electric
field, is produced in the course of type-I oscillations,
then it is obvious that the phenomenological solution of
the SO-I problem must be sought with the aid of Max-
well's equations. The first such approach was used to
develop a theory of surface plasmons in metals ' 8 ' 9 ' 2 1 ,
It is obvious that SO-I can arise also in the case of
lattice vibrations of an ionic crystal. Inasmuch as sur-
face phonon levels (bands) are component parts of the
spectrum of the natural oscillations of the macroscopic
dipole moment, it follows that they can also be obtained
from Maxwell's equationsC11"14'. In the theory of surface
excitons, these waves are called surface Coulomb ex-
citons[ 2 > 1 5 J.

Ordinary electrodynamics without allowance for
spatial dispersion yields only surface oscillations cor-
responding to a very slow damping of the amplitudes
with increasing distance from the surface. The depend-
ence of the frequency ω\ of SO-I on their wavelength
λ is determined in this approximation by two dimen-
sionless parameters, L/λ and c/ωχολ, where L is
the characteristic linear dimension of the sample and
ωχρ is the frequency of the transverse optical pho-
non'-12"14'. The dependence of ω' on the third dimen-
sionless parameter a/λ cannot T>e obtained in this ap-
proximation. On the other hand, the calculation of the
corrections to the spectrum in terms of the parameter
a/λ, at a/λ « 1, within the framework of electrody-
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namics with allowance for weak spatial dispersion, en-
tails certain difficulties (see below), and this problem
has been solved so far only within the framework of the
microscopic approach, in which account is taken not
only of the short-range inter-ion forces, but also the
Coulomb long-range forces[ l e > 1 7 ) .

A method that makes it possible to determine sur-
face oscillations on the basis of a microscopic theory,
when the effective radius of the interatomic forces is
small (on the order of several lattice constants), was
first formulated in [ 3 ) (see also1-4''1) and was called the
Green's-function method. This method is used success-
fully in the calculations of the surface on local oscilla-
tions in homopolar crystals. A review of studies of this
type can be found in t 7 ] .

The first attempt to calculate the surface-oscillation
spectrum within the framework of a microscopic theory
for ionic crystals, where long-range Coulomb forces
are significant, was made in[ 1 8 1 . However, only the
case λ — °° was investigated there. A microscopic
study of surface oscillations in ionic crystals at arbi-
trary λ was carried out in [ i e ' 1 7 ' 1 9 1 . A unified scheme
for describing SO-I and SO-II, proposed in [ l e > 1 7 ] , has
made it possible to generalize the Green's-function
method to include the case of long-range forces.

Although the fraction of the surface oscillations is
small in comparison with the volume oscillations in
crystals having macroscopic dimensions, the ratio of
their contribution to the experimentally measured
quantities to the contribution due to the volume oscilla-
tions turns out as a rule to be of the order of \ 0 /L
(λ0 is the wavelength of the "probing" radiation—elec-
trons or light), which is close to unity even at micro-
scopic sample dimensions. Therefore the surface
oscillations in ionic crystals can be relatively easily
observed in experiment. An intensive experimental
study is presently being made of surface phonons in
ionic crystals by electron-beam diffraction and infrared
spectroscopy methods.

Surface optical phonons were observed in a study[ 2 0 ]

of the passage of fast electrons through an LiF plate.
In optical experiments, SO-I were first observed in
powders [ 2 1"2 3 ] and later in plate[ 2 4 1. A detailed review
of these and other experimental studies is given below.

2. PHENOMENOLOGICAL METHOD OF CALCULATING
SURFACE OSCILLATIONS IN IONIC CRYSTALS

It was noted in the introduction that SO-I constitute
a certain fraction (~S/V) of the natural oscillations of
the macroscopic dipole moment of the sample, and are
accompanied by the onset of a macroscopic electric
field, so that they can be described with the aid of
Maxwell's equations1 2'1 1"1 5·2 5"3 4 1. Oscillations of the
SO-I type are produced not only in dielectrics of the
ionic type, but also in all other crystals in which long-
range forces are present. These are surface plasmons
in metals and semiconductors (see, e.g.,[8 1 0 '3 5 > 3 6 )) or
surface excitons in semiconductors and in molecular
crystals (see, e.g./2' 1 5 ' 3 7 ' 3 8 1), surface magnons in fer-
romagnets and antiferromagnetst 3 9'4 0 ], etc. The concept
of the unity of all these phenomena is most clearly de-
veloped in the monograph121, where all the surface exci-
tations of the SO-I type are called surface excitons.
The distinguishing feature of any particular surface
excitation is manifest only in the concrete form of the
dielectric constant of the crystal ε(ω) (or its magnetic

permeability μ (ω)). Since the basic dispersion equa-
tions for surface excitations can be expressed in terms
of €(ω), the problem of finding the form of the disper-
sion curve for a particular type of surface excitations
reduces only to a substitution of the required form of
e(w) in the dispersion relations and to solving this
equation with respect to co. As already noted, it is pos-
sible to determine in this manner ω§ for arbitrary
L/λ, c/coTOx. b u t a / x ~* °-

Detailed phenomenological calculations of the SO-I
spectra as applied to ionic crystals were carried out
in[ 1 2"1 4 > 3 0"3 4 1. Since these calculations are described in
sufficient detail in the review1-331, we present here only
the main ideas of the calculations and the final results.

We assume henceforth that the crystal is isotropic
and that its magnetic susceptibility is equal to unity
(some results for anisotropic crystals are given below).
The electric and magnetic fields Ε and Η inside the
crystal are then described by the Helmholtz vector
equations

)4) Ε= )^-) Η-0. (2.1)

We assume for simplicity that the dielectric constant of
the surrounding medium is eM = const (ω) in the fre-
quency region of interest to us. Outside the crystal, the
fields Eyi and TAyi are described by the equations

To determine the spectrum of the natural oscillations
from (2.1) and (2.2), one uses the condition that no elec-
tromagnetic wave is incident on the crystal, the usual
boundary conditions for the conservation of the normal
component of the induction D and the tangential com-
ponent of the field E, and also the continuity condition
for H.

The variables in (2.1) and (2.2) can be separated in
six coordinate systems^411: rectangular, spherical,
circular-cylindrical, parabolic-cylindrical, elliptic-
cylindrical, and conical. By now, the solutions of (2.1)
and (2.2) have been investigated in the rectangular,
spherical and circular-cylindrical coordinate systems,
so that dispersion relations were obtained for SO-I in
a plate[12"141, a sphere[ 3 1 ], and a cylinder132'. In addition,
SO-I in a wedge were investigated in [ 3 4 ] without taking
retardation into account.

Since Ε and Η are solenoidal vectors, the solution
of Eqs. (2.1) and (2.2) can be expressed in the form of
a superposition of two solutions Μ and N:

Μ = rot (aw Ψ), Ν = rot rot (aie Ψ), (2.3)

where Φ is the solution of the scalar Helmholtz equa-
tion

-I ε(ω)ω2/<:2 in the crystal,
eM(os/el outside the crystal. (2.4)

For rectangular and cylindrical coordinates we have
in (2.3) a = e z and w = 1, and for spherical coordinates
we have a = er and w = r (e is a unit vector).

The modes for which Ε ~ Ν and Η ~ Μ are called
electric (E modes), and those with Ε ~ Μ and Η ~ Ν
are called magnetic (H modes). We present here the
results of the calculations for a plate, sphere, and
cylinder.

a) Plate1-12"141. We direct the ζ axis along the normal
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to the surface of a plate of thickness L, and place the
origin at the center of the plate. We use periodic bound-
ary conditions in the (x, y) plane, by virtue of which the
solution for (2.4) is

= exp(iqxx)

α, exp ( - κοζ), ζ > — ,

α2 exp (— κζ) -f- a3 exp (κζ),

α4 exp (κ,,ζ), ζ < — L · . ;

-|-, (2.5)

we have introduced here a two-dimensional wave vector
qi lying in the (x, y) plane parallel to the surface,
while the χ axis is directed along q 1 ( so that qv = 0,

/ « ω2 \i/2 / „ ω 2 . , \ ' / 2 in a\
κ ο = ( ? * - — F M ) . « = (?ί ΪΤε(ω)) • ( 2 · 6 )

The coefficients aj in (2.5) must be determined from
the boundary conditions.

1) Electric modes (Ε ~ Μ, Η ~ Ν). These modes for
a plate are also called p-polarized, since Ε lies in the
(x, z) plane. Using (2.3) and (2.5), we set up four homo-
geneous equations for aj. Solving the corresponding
characteristic equation, we obtain the following disper-
sion relations for the frequencies of the natural oscilla-
tions :

β (ω) (2.7a)

(2.7b)

The dipole moment (and the electric field) produced in-
side the plate in the case of Ε modes, depends on the
coordinates in the following manner:

Pz ~ ch (κζ) exp (iqxx), Px ~ sh (κζ) exp (iqxz), (2.8a)

Pz ~ sh (κζ) exp (iq^x), Px ~ ch (κζ) exp (iq^x), (2.8b)

and outside in the plate

Ex, Ez~exV{iqxx + y.oz). (2.9)

2) Magnetic modes (Ε ~ Ν, Η ~ Μ) (or s-polarized
modes (H in the (x, z) plane)). The dispersion relations
for these modes are

1 = — — cth (τ)·

(2.10a)

(2.10b)

The coordinate dependence of the dipole moment is
given by

a) Py ~ ch (κζ) exp (iqxx), b) Pv ~ sh (κζ) exp (iq^x), (2.11)

and the dependence of Ey on the coordinates outside the
plate is given by (2.9).

To analyze the dispersion equations it is convenient
to use an ω—qx diagram1-13', such as shown in Fig. 1
for the case of simple ionic crystals, when

ε (ω) = ε» +
(e 0 —6

(2.12)

There are two principal regions on the diagram—radia-
tive R, to the left of the light line, and nonradiative L,
to its right. In the region L, the quantity K0 is real,
corresponding in accordance with (2.9) to an exponential
decrease of Ε along the ζ axis outside the plate. In the
region R we have imaginary κο, and the field outside
the plate constitutes an electromagnetic wave propagat-
ing away from the plate. It follows therefore that the
oscillations whose dispersion curves lie in the nonradi-
ative region of the spectrum are stable, since they are
not accompanied by radiation of electromagnetic energy

into the surrounding space. In the region R, the oscilla-
tions are unstable (virtual[14]) and are accompanied by
radiation.

Xhe SO-I in the region L have been investigated in[ 1 3 J .
In this region there exist, in turn, two types of oscilla-
tions. The first exist in the region L2 of Fig. 1, which
κ2 > 0. These oscillations are always p-polarized and
are described by the dispersion relations (2.7). Accord-
ing to (2.8), they correspond to a dipole moment that
decreases away from the surface, so that these modes
have a typical surface character. The dispersion de-
pendence for them is shown in Fig. 2.

In crystals in which ε (ω) is described by formula
(2.12), there appear two such modes, the lower of which
will be designated o>- and the upper w,. The mode ω+
corresponds to P z oscillations (2.8a) that are sym-
metrical relative to the center of the plate, and the
dispersion relation for this mode is given by (2.7a). The
mode ω- corresponds to antisymmetrical P z oscilla-
tions (2.8b), and the corresponding dispersion relation
is (2.7b). The functions o>±(qx) are determined by two
dimensionless parameters, qxL and qx/qT, where qx
= ωχο/c (the third parameter q̂ ja — 0). If qxL » 1
and q x /qx » 1, then the dispersion curves tend to a
common limit ω«ο = ωχο[(εο + e i i )/( £ * + eM)]1/2, de-
termined from the relation e(a><») = —e.M· At qxL » 1,
the curves for ω. and ω+ merge into a single curve
(ω~ = ω* = o>s). The dispersion relation for ω8 is
given by the relation ε(ωδ)κο = -€M* o r

^ 4 = . 8 / ω ' ' ^ . (2.13)

We note that in thick crystals, when q>pL· » 1, the in-
equality qxL » 1 is satisfied for all permissible ςχ,
inasmuch as qx s qx for the considered modes.

In the case of thin plates (qTL « 1) and sufficiently
large qx, the dispersion relations (2.7) take the form

( ^ ) . Ρ (ω)= -εΛΙ cth (2.14)

and determine surface modes without allowance for
retardation. We note that when the retardation is not
taken into account the dispersion curve for ω- lies be-

FIG. I

3 5 7

FIG. 2

FIG. 1. ω—qx diagram for an ionic-crystal plate. The form (2.12) was
used for e(o>). The radiative modes are located in the regions R, and the
nonradiative ones in the regions L. In the regions Ν there are no natural
oscillations of the plate.

FIG. 2. Dispersion curves for SO-I. Solid curves-with allowance for
the retardation, dashed—without retardation. The calculation was made
for LiFin vacuum: ω χ ο = 5 - 7 8 x l o ' ! s e c " ' . e o =9.27,e 0 0 = 1.92, ejyj
= 1. Curve l - q T L = 0.1 (L « 0.57/0; 2-q T L = 0.2 (L » 1.14/i;3-qTL
>2(L> 11.4/0.
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tween ωχο and ω*,, while ω, lies between ω Λ and
ωΐχ). Allowance for the retardation does not change the
region of existence of ω., but deforms quite strongly
the mode ω+.

For the second type of oscillations in the nonradia-
tive region of the spectrum, κο = -1η is imaginary. As
shown by an elementary analysis of Eqs. (2.7) and (2.10),
these modes exist in the regions In and Ι.Ί (see Fig. 1),
and they correspond according to (2.8) and (2.11) in the
region of the plate to oscillating values of P. According
to (2.7) and (2.10), the dispersion relations for these
modes take the form

Px = εΜ [k*Rji {k'R))' re, ( M ) - e (ω) [K>Rn, (k°R)]' j , (k'R). (2.17)

ε(ω)

Λ η ί T\L· \
(2.15)

These are in essence not surface modes, but correspond
to an electromagnetic wave propagating inside the plate
and "trapped" in it, since its angle of incidence on the
boundary between the ionic crystal and the medium ex-
ceeds the total internal reflection angle. Numerical cal-
culations of the dispersion relations for these modes
are given in [ 1 3 ] .

Both types of oscillation modes in the nonradiative
parts of the spectrum are characterized by the fact that
they do not interact directly with the external electro-
magnetic wave (with the light), since their dispersion
curves lie in a region in which it is impossible to
satisfy simultaneously the energy conservation law
ω = Ω ( Ω is the frequency of light) and the momentum
conservation law qi = kx (k is the wave vector of the
light). Indeed, by combining these two conditions, we
have ω = (c/VeM)(k| +q\)1/z. But since ω < cqx/VeM,
for nonradiative modes, this condition cannot be satis-
fied at k | > 0, as can be clearly seen from Fig. 1. The
light line on this figure corresponds to the limiting case
kz = 0 (the vector k is parallel to the surface of the
plate). At all other incidence angles (k z * 0) the light
curves fall in the region R. Therefore the nonradiative
oscillation modes, which lie entirely in the region L,
do not intersect the light curves at any value of q x or
k z . It is possible, however, to produce artificially elec-
tromagnetic fields that attenuate along the ζ axis (in
this case k | < 0) and to investigate these modes in op-
tical experiments (see Chap. 6).

In1·141 they investigated the roots of the equations
(2.7) and (2.10) in the radiative region of the spectrum
R, where κο = -ίηο, κ = -ίη :

·,-\ . η /ηΜ (2.16)

As already noted, these modes are unstable, and the
oscillation frequencies obtained by solving (2.16) are
complex quantities even if the lattice anharmonicity is
not taken into account. The interference of light on pass-
ing through a thin plate can be described in terms of
these modes. They are in fact volume polaritons per-
turbed by the surface (see also Chap. 3). A calculation
of the coefficients of reflection on absorption of light
when light passes through a thin plate under conditions
when € depends strongly on ω is given in'2 7 1.

b) Sphere1-31'. A rather detailed calculation for a
sphere is given also in [ 3 3 ' , and we confine ourselves
here only to a cursory exposition of the results.

The dispersion equation for the electric modes is
P; = 0, where

Here ty(x) and ty(x) are spherical Bessel and Neu-
mann functions, respectively (I = 1, 2 , . . . ) , and the
primes in (2.17) denote differentiation with respect to
the argument, while R is the radius of the sphere and
k4 = ω Ve (w)/c, k° = ω V € M / C

The equation for magnetic modes is Sj =0, where

(2.18)

The solution for the electric modes (2.17) exist in all
three frequency intervals 0 < ω < α>Τ0ι ω τ θ < ω < WLO
and ω > WLO, but at ω > u>LO their number is small,
and they do not play an important role in that region in
the case of interaction with light. At ωτο < ω < WLO
these are SO-I modes, and at k^R, k°R « 1 Eq. (2.17)
becomes

β(ω)=-εΜ(! + 1)/ί. (2.19)

The amplitude of the / -th surface mode is proportional
to r^~l (r is the distance from the center of the sphere).
The frequency un (at 1=0) corresponds to the
spherically-symmetrical state1-26'. At ω < ωχο the
solutions of (2.17) constitute a spectrum of volume
oscillations deformed by the surface. The magnetic
modes (2.18) exist only at ω < ωΤΟ and likewise con-
stitute a deformed spectrum of volume polaritons. The
oscillation spectrum for a sphere is shown in Fig. 3.

The cross sections for absorption and scattering by
a sphere were calculated back in [ 4 3 ] (see also formulas
(49)-(60) of[ 3 1 ]). It is shown in [ 3 l ] that in the harmonic
approximation the absorption peaks coincide with the
frequencies determined from the equations Ρ;(ω) = 0
and Sj(cu) = 0, i.e., they coincide with the natural fre-
quencies of the sphere. The same reference contains
the numerical calculation of the absorption spectra for
spherical NaCl crystals at R = q^ « 10 μ and R = 0.1
qij1 № 1 μ · The results of the calculation for R = q^1 are
shown in Fig. 3. We used in the calculation the expres-
sion

ε (ω) - _ i y ( ω / ω τ 0 ) ( ω / ω τ ο )
(2.20)

where γ is the damping function.

It is thus shown in1-311 that the natural oscillations of
spherical ionic crystals can be experimentally investi-
gated by infrared spectroscopy methods (see Chap. 5).

Qa,un. ofirR1

0.7 0.9 ωη 1.1.

FIG. 3. Frequency dependence of the absorption cross section Q a for
a spherical NaCl crystal in a vacuum at R = 1 Iqj « 10μ. The dielectric
constant is used in the form (2.20): ω Τ ο = 3.1 Χ 101 3 sec'1 (164 cm"1),
e0 = 5.934, ex = 2.328. Solid curves-frequency-dependent γ(ω/ωτοΜ 4 2 1 ,
dashed—7 = 0.02. The vertical lines mark the positions of the natural
modes of the oscillations; E—electric modes, H—magnetic modes.
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The problem of the SO-I spectrum in a cylinder with
allowance for retardation is solved in[ 3 2 ] , where the
optical spectra are also calculated for scattering of
light by a cylindrical ionic crystal. In [ 3 0 ] there is also
a calculation of the SO-I spectra without allowance for
retardation, for ionic crystals in the form of cylindrical
and spherical shells.

The phenomenological calculations have shown that
the frequency of optically active oscillations is essen-
tially connected with the crystal configuration. The
table indicates the frequency regions in which absorp-
tion of light takes place at different crystal configura-
tions. The plus sign stands for the presence of absorp-
tion.

A theoretical study of the influence of metallic coat-
ings on the SO-I spectrum was recently initiated1·38>173J.
It was shown that the presence of a contact with the
metal leads, owing to the image forces, to a radical
change in the SO-I spectrum at frequencies that are
small in comparison with the plasma frequency of the
metal.

3. MICROSCOPIC THEORY OF SURFACE
OSCILLATIONS

The phenomenological theory of surface oscillations
in ionic crystals, which had been successfully developed
by 1969, is nevertheless unable to answer a number of
fundamental questions:

1) Justify the phenomenological approach and to as-
certain the limits of applicability: a) in the limit as
qxa —- 0 (phenomenology without allowance for spatial
dispersion); b) in the region of small qx (q^a « 1)—
phenomenology with allowance for effects of weak spatial
dispersion.

2) Find the surface-oscillation spectrum in the en-
tire range of variation of the two-dimensional wave
vector qx, and not only at qxa « 1, for macroscopic
bodies whose linear dimensions greatly exceed a.

3) Determine the oscillation spectrum of micro-
scopic bodies whose linear dimensions do not greatly
exceed the lattice constant a.

4) Find the damping of the surface waves,

A solution of these problems would yield a number of
results of importance to the interpretation of experi-
ments in which the surface plays an important role,
namely, describe correctly optical experiments and data
on electron diffraction, find the thermodynamic functions
for samples of small dimensions at arbitrary tempera-
tures, calculate the square of the amplitude (and of the
velocity) of the surface-atom oscillations, explain the
specific of the Mossbauer effect in finely-dispersed
systems, etc.

Answers to these questions can be provided only by a

Crystal shape

Cy Under

Sphere
Plate:

normal
incidence

oblique
incidence

Dimension

qTH«i

Ξ:

«S"TO

J

ω Τ Ο < ω <
<<"LO

+

co > <o L O

microscopic theory of the lattice vibration in a finite
ionic crystal. Problems (1) and (2) have been considered
in' 1 6 - 1 8 ' " ! , and problem (3) i n [» ,«-*]» .

a) Formulation of problem. In all the references
cited here, they considered a plane-parallel plate of an
ionic crystal of the NaCl type, and the normal to the
surface (the ζ axis) was directed along the [100] axis.
A model of pointlike undeformable ions is used, and it is
assumed that the non-Coulomb forces act only between
the nearest neighbors (the Kellermann model[1]). Follow-
ing'3', it is assumed that the presence of a free surface
leads only to removal of the interaction forces between
the ions located on opposite sides of the surface, but in
contrast to [ 3 ] this change is not limited to only several
atomic planes closest to the surface. It is assumed that
the binding forces for the ions on one side of the surface
are the same as in an infinite crystal. Cyclic boundary
conditions are used in the surface plane of the plate, so
that it is possible to introduce a two-dimensional wave
vector qx, with respect to which the equations of motion
are diagonal[16>19j. A solution to the problem of the
oscillation of two parallel diatomic chains was obtained
in'1 8 1 and has made it possible to find the surface oscil-
lations only at qx = 0. In general form, the problem of
oscillations in an ionic-crystal plate was first formu-
lated in the independently performed studies[ I 6 ' 1 9 J,
where the equation of motion was expressed in the form

- 2 (3.1)
β, ,

here u a ( £ J is the projection on the α axis of the
displacement of the ion of type k from the equilibrium
position (k = +, - in a diatomic lattice) situated in an
atomic layer η = 1, 2 , . . . , Ν ; M^ is the mass of the ion
of type k, and D is the dynamic matrix in the (qx, n)
representation.

To find D κ*1' ,nj it is necessary to sum the contribu-
tions corresponding to the interactions between the
given ion and all the ions located in a certain selected
plane. Owing to the presence of Coulomb forces, the
corresponding series converges extremely slowly. We
recall that in ionic crystals of infinite dimensions there
appears in the (qx, q z ) representation a term that is
singular at q = 0. This term is eliminated from the
equations of motion by introducing a new dynamic vari-
able, the electric field E, which satisfies Maxwell's
macroscopic equations[1]. This approach finds its justi-
fication in the microscopic theory in Ewald's method,
where in the lattice sums are transformed into rapidly
converging series. The appearance of a new dynamic
variable Ε in the equations of motion of the lattice
leads to a whole number of interesting phenomena: the
splitting of the longitudinal a>LO and transverse ωΤΟ
frequencies of the optical phonons at q = 0 in accord-
ance with the Lyddane-Sachs-Keller relation, the ap-
pearance of piezoelectric properties in crystals without
an inversion center [ i i , a non-analytic dependence of the
frequencies of the longitudinal and transverse optical
phonons in the region of small q[ 5 3 > 5 4 ], etc. The infinite
growth of the radius of the inter-ion-interaction as
q — 0 has suggested to many workers that the phonon
spectrum of an ionic crystal of finite dimensions ex-
periences significant changes in the region qL ~ i£55-S9i#

It is universally accepted at the present time that the
boundaries of the ionic crystal lead not so much to de-
formation of the volume-oscillation spectrum (although
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this effect is quite appreciable in the polariton region),
as it does to the appearance of surface phonons of the
SO-Itype.

It is obvious that in the presence of boundaries the

dynamic matrix ^αβΓ^' ΐτ ' ) should contain a contribu-

tion D L that decreases slowly at the function of n; this
contribution corresponds to the presence of a macro-
scopic electric field, but now with the boundaries taken
into account. To separate this field they used, both in [ e 0 ]

and in t l 9 ] , the method of θ functions in two-dimensional
x, y space (the analog of Ewald's method). It turned out
that for η * 0 we have (see also (23) and (24) of[ i e ])

(3.2)
V k, k ' l a 2 «χ

where e^ is the charge of the ion of type k, and

In addition, a contribution D , which decreases
rapidly over distances of several lattice constants, was
separated in [ l e > 1 9 ] . This contribution contains the true
short-range interaction, renormalized to allow for the
Coulomb forces (as in Ewald's method for infinite
crystals1 1 1).

We discuss now the question of the methods used to
solve the equations of motion (3.1). For a diatomic
crystal it comprises a system of 6N linear homogeneous
equations, and the determination of the spectrum re-
duces to a solution of a determinant of order 6N χ 6Ν
(Ν is the number of atomic layers in the film). Two
methods were developed for solving this problem, a
numerical one with the aid of a computer1-19'45"5214' and
an analytic one [ i e > 1 7 ] .

b) Results of numerical calculations for thin films.
It is obviously reasonable to use the numerical method
of calculating the spectrum from Eq. (3.1) for suffic-
iently thin films. It is then possible to obtain the dis-
persion relations WJ (qj.) (j = 1 , 2 6N) for all 6N
modes, some of which have a surface character (the
amplitude of the oscillations decreases with increasing
distance from the surface), and some are of the volume
type. The spectrum has been calculated by now for
Ν = 7[ 5 2 1 and for Ν = 15[ 1 9 *™\

In [ 1 9 ] , the calculation was carried out for NaCl with
qi along the [010] axis. Six surface modes of the opti-
cal type were observed (Fig. 4), and two surface modes
of the acoustic type having the character of Rayleigh
waves. No low-frequency surface modes of the SO-I
type were observed in that reference51, and consequently
the authors concluded that as q — 0 the phenomenolog-
ical devices used in[12~14] lead to an incorrect result.

A more detailed investigation of the spectra j
in the entire two-dimensional Brillouin zone was car-
ried out in [ 4 5 > 4 e l for Ν = 15 and in[ 5 2 ] for Ν = 7, with
additional surface modes of the SO-II type observed in
the corners of the zone[ 4 s > 4 e ) . It was established for the
first time in [ 4 5 ] that the SO-I, having an appreciable dis-
persion with respect to qi (with respect to the parame-
ter qj.L), cross the volume modes in the long-wave
region. Near the crossing points, mode repulsion sets
in and mixed surface-volume modes are produced,
called quasisurface modes (Fig. 5). Thus, depending on
the magnitude and direction of the vector qi, the same
mode can be both of the surface and of the volume type.
In Fig. 5, for example, the mode a at the smallest q x

is of the volume type, and then on the section where it

0,2π OM &6ic Ma x

FIG. 4 FIG. 5

FIG. 4. Optical volume and surface modes in an NaCl plate 15 atomic
layers thick [ l 9 ] . The dashed lines show the dispersion relations for the
surface modes, each of which is doubly degenerate. The dispersion curves
of the volume modes lie in the region between the two solid curves.

FIG. 5. Schematic representation of the effect of mode "repulsion"
upon intersection of SO-I and volume modes of the oscillations in thin
plates of thickness on the order of several lattice constants. I and 2-SO-I
modes without allowance for retardation. The set of volume modes cor-
responds to different values of q z and is discrete in a thin plate. Only the
long-wave part of the spectrum (q^a < I) is shown. The dashed lines show
the surface in volume modes without allowance for their interaction ("re-
pulsion").

coincides with the dashed line it goes over into a sur-
face mode, after which it again becomes a volume mode.

The results of the calculation[52] agree with those
οί [ 1 9 ] with respect to the number of surface modes and
their positions. A thorough analysis of the behavior of
the surface modes in the long-wave region has shown,
however, that both modes of the SO-I type (the high-
and low-frequency modes) are present in the spectrum,
but owing to the interaction with the volume modes they
become so strongly deformed that the less detailed cal-
culation in [ 1 9 ] is not in a position to identify them cor-
rectly1^. As a result it is concluded in [ 5 2 ] that the phe-
nomenological analysis of SO-I is valid accurate to the
interaction with the volume modes. Since the calcula-
tions have shown that the influence of this interaction is
quite strong, the question of the validity of the phenom-
enological approach was in fact again raised in'5 2 ', in-
asmuch as this approach does not take into account the
interaction of the SO-I with the short-wave volume
spectrum (more accurately, with the phonons in the
region qj_a « 1, but with arbitrary qza).

Let us dwell briefly on other numerical calculations
of the oscillations of the ion lattice in thin films. In [ 4 7 ]

they calculated the square of the amplitude of the ion
oscillations in an NaCl film, and in [ 4 9 ] the thermody-
namic functions were calculated for the same objects.
The frequency spectra for RbF and RbCl films was
obtained in t 5 1 ] . A microscopic analysis of the oscilla-
tion modes in an ionic crystal in the form of a rectangu-
lar parallelepiped was carried out in [ e 3 ] . The numerical
calculation was carried out for MgO crystals having
4 x 4 x 4 and 6 x 6 x 5 ions along the edges. Since the
phenomenological method has not yet yielded the SO-I
levels in crystals of this shape, this calculation is of
interest, all the more since one measures in the experi-
ment the absorption of light by crystals whose shapes
are closer to parallelepipeds than to spheres (in the
interpretation of the experimental data for small parti-
cles it is customary to use the results of the calcula-
tion for a sphere^311). In t 5 2 ] they calculated the absorp-
tion spectra for light passing through a thin film
(< 100 A) of an ionic crystal. It was shown that a number
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of peaks appear in the absorption spectra in the interval
between ωχο and o>LO- An approximate method of
calculating the absorption spectra for thin films was
also developed in [ I 7 4 ] , based on the use of the dielectric
tensor with allowance for spatial dispersion.

Thus, in spite of the obvious accomplishments, the
numerical methods have not yielded answers to ques-
tions (1), (2), and (4) formulated at the start of this
chapter. We note in conclusion that the thicknesses of
good films that can be prepared at the present time are
such that Ν > 102, and the numerical calculations are
in this case utterly useless (the resultant determinant
is of too high an order). However, the presence of a
small parameter 1/N = a/L in the problem enables us
to find a good analytic solution for thick films (or for a
semi-infinite crystal).

c) Analytic method of investigating surface oscilla-
tions'1 6 1 7 ] . Were it not for the presence of the contribu-
tion D*-· (3.2) in (3.1), as is the case in homopolar
crystals, then the problem could be solved by the usual
procedure[ 3 ], in which the problem of finding the sur-
face-oscillation levels is reduced to a system of alge-
braic equation whose order is equal to the number of
atomic planes affected by the surface-perturbation
forces. The use of this procedure with the contribution
(3.2) taken into account is, however, not very produc-
tive, especially at q^a « 1. A different procedure was
therefore proposed in [ 1 6 ] , namely a Fourier transforma-
tion with respect to η (q z representation). If we use
cyclic boundary conditions along the ζ axis (i.e., if the
two surfaces of the plate are short circuited by each
other), then (3.1) becomes diagonalized following the
transition to the q z representation, instead of the
cyclic boundary conditions, one uses here, however,
the condition that the surfaces are free, so that (3.1) is
not diagonal in q z . In this representation, however, it
is possible to separate in D the contribution correspond-
ing to the dynamic matrix C under the cyclic boundary
conditions, which is diagonal in the q z representation:

P. *' Ρ, ft', ύ

β, ft', ι.

(3.3)

where q = {q l r q z }, q' = {qlt q z }, qz = 27m/L, η
= 1, 2 , . . . , Ν. The matrix C coincides with the dynamic
matrix of an infinite crystal. In (3.3) are separated two
terms that are not diagonal in qz and describe the in-
fluence of the surface. The first, with kernel Γ, is
connected with the contribution from the surface long-
range forces, and the second, with kernel Λ, is con-
nected with the contribution from the surface short-
range forces. Both kernels are sums of products of two
functions, one of which depends only on q z , and the
other on q z :

(3.4)
] j ')

+ «iP(qx)/*(q)/*(q')l;

(I: Λ e x p (iq'a) ( 3 · 5 )

The coefficients R, A, and A'were obtained in [ 1 6 ) 1 7 ) .
The concrete form of Λ (3.5) is connected with the
chosen model of the short-range part of the inter-ion
forces (interaction between the nearest neighbors only).
When the interaction forces with the more remote

neighbors are taken into account, terms of the type

A" ( .Λ exp (2iqza) etc. appear in the expression for

Λ; these terms, however, have the same structure,
namely the product of a function of qz by a function of
Qz-

The equation in the form (3.3) has a number of ad-
vantages over (3.1). In the case of thin plates, when Ν
is not too large, the spectrum wj(qx) can be obtained
from (3.3) with the aid of a 6Nx 6N determinant (q z

takes on Ν values), similar to what is done with the aid
of (3.1). Here, too, however, the calculations are easier
than in (3.1), since the matrix C is well known for many
crystals, and Γ and Λ are expressed in' 1 6 ] in terms of
simple analytic expressions. At large N, however, when
the equation of motion (3.1) is utterly nonproductive, the
spectrum can be obtained only from (3.3).

In the limit as 1/N = a/L — 0, Eq. (3.3) becomes an
integral equation in q z with a degenerate kernel. Inas-
much as Γ and Λ contain four different products of
functions of qz by functions of qz, and each product
involves six variables (inasmuch as a takes on values
and k two values), the total number of obtained homo-
geneous algebraic equations is 24. It is shown in [ 1 7 ]

that the 12 variables stemming from the kernel Γ can
be reduced to two, so that the system can be reduced to
14 equations. It is much simpler to obtain a spectrum
from a 14-th order determinant, especially at large N,
in comparison with (3.1).7) It must be particularly em-
phasized that the principle described above, of reducing
the problem of determining the spectrum of the surface
waves during an investigation of a 14-th order deter-
minant (in lieu of the initial 6Nx 6N determinant) re-
mains valid also for finite N, but the corresponding de-
terminant elements are then expressed in terms of
sums (and not integrals) over qz.

It is convenient to rewrite (3.3) in a somewhat dif-
ferent form[ 1 7 ], which makes it easier to compare it
with the equation of motion for an infinite lattice of an
ionic crystal. The dynamic matrix C in (3.3) contains
contributions from the short-range part of the interac-
tion and from the macroscopic electric field Ε without
allowance for the boundaries. Following1·1J, we separate
from C the contribution due to E, and designate by C
the remaining part of the matrix, which describes only
the short-range interaction in the infinite crystal:

Μ? £)
(

The term eij<?a(q) is the sum of the contributions from
Ε and from the term integral in qz of (3.3), which de-
scribes SO-I (with kernel Γ ) . As shown by analysis'-17],
S is the macroscopic electric field with allowance for
the crystal boundaries and satisfies Maxwell's equa-
tions with the ordinary boundary conditions on the inter-
face between the crystal and the surrounding medium.
Allowance for retardation in (3.6) affects only the form
of £, which must be determined from the complete
system of Maxwell's equations. The term integral in
qz in (3.6) describes the perturbing action exerted by
the surface on the short-range forces. Although Eq.
(3.6) was derived rigorously in'1 7 1 only for the case of
a plate, it seems to retain the same form for an arbi-
trary crystal shape. It is necessary here to use Max-
well's equations for the corresponding surface configu-
ration, and the term that describes the perturbation of
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the short-range forces will generally speaking be inte-
gral not only in qz (this is a distinguishing feature of a
plate) but in all three projections of q. The equation of
motion in homopolar crystals with defects (a surface is
a particular case of the defect) takes the form (3.6) if
the term ek<?a(q) is omitted.

d) Results of analytic consideration. The investiga-
tion of Eqs. (3.3) and (3.6) has yielded the following re-
sults : In the long-wave part of the spectrum (as qia
— 0 but at arbitrary q^L and qic/coTO) the character-
istic equation for the surface modes of the SO-I and
SO-II type becomes uncoupled, and the 14-th order de-
terminant breaks up into a product of determinants of
second and 12-th order. The most determined from the
second order determinant are SO-I (they are connected
with the presence of an integral term with kernel Γ in
(3.3)). On the other hand, the modes obtained from the
12-th order determinant are SO-II (they are connected
with the integral term with kernel Λ). As shown in^18],
the equations of motion and the dispersion relations for
SO-I coincide as qxa — 0 with the phenomenological
equations (both without and with allowance for the re-
tardation)81. Thus a complete answer to question la that
must be answered by the microscopic theory is con-
tained in [ l e ] .

Reference 16 contains also a calculation of the dis-
persion of SO-I with respect to qxa at qxa ~ 1. It is
shown that in the absence of an intersection of the SO-I
with the volume modes the dispersion relations for
ω± (qx) can be represented in the form

ω± (?l) = ω (0) + Au>±qLa. (3.7)

The quantity Δω±, in particular, depends on the inter-
action between SO-I and SO-II, i.e., on the model of the
surface. Since the SO-II amplitude decreases at dis-
tances on the order of a, the behavior of SO-II depends
on the microstructure of the real surface of the crystal.
In the real situation, therefore, the position of the SO-II
levels has a statistical scatter, forming a two-dimen-
sional phonon spectrum similar to the spectrum of a
disordered system. For the same reason, the disper-
sion curves for SO-I also have a certain statistical
scatter, the width of which tends to zero as qxa — 0.
At qxa ~ 1, the principal difference between SO-I and
SO-II disappears, for in this case the SO-I amplitude
decreases away from the surface at distances l/qx ~ a.

It was noted earlier that a numerical calculation with
the aid of (3.1) has shown that a mode repulsion effect
takes place at the intersection of SO-I with the volume
spectrum. With increasing plate thickness, the density
of the volume modes increases, and the spectrum of the
volume oscillations becomes continuous. Increasing hy-
pothetically the volume-mode density in Fig. 5, we note
that the surface mode constitutes in this case a trail
made up of infinitesimally small influctions of the
volume-oscillation modes. The ω-qx diagram of Fig. 6
shows the intersection of SO-I with the continuous one-
dimensional volume spectrum corresponding to differ-
ent values of q z in the entire Brillouin zone (the dis -
persion of the volume modes with respect to qxa can be
disregarded, since the SO-I exist in the region qxa
<;< 1). Since the numerical calculations in[ 4 5 > 5 2 ] do not
make it possible to identify the parameter with which
the mode-repulsion effect is connected, an analytic cal-
culation of the quasisurface modes was carried out
in [ I 7 ] . It was shown that the corresponding directions
are small in terms of the parameter qxa. In other

FIG. 6. Intersection of SO-I with the continuous spectrum of the
volume oscillations in the long-wave region q^a ^ 1 . 1 , 2 ) surface modes
without allowance for retardation, 1', 2') the same modes with allowance
for retardation. The shaded regions are occupied by the continuous spec-
trum corresponding to the volume-oscillation frequencies at q z ranging
from—ff/a to π/a and at q^ = 0; 3) optical branch ω = cq^. The lower
limit of the transverse volume oscillations is drawn with allowance for
retardation and corresponds to the equation ω2ε(ω) = c 2 q | .

words this interaction can be disregarded in the limit
as qxa — 0 (corresponding to the phenomenological ap-
proach without allowance for the spatial dispersion).
Taking into account the corrections small in qxa, the
equation for the SO-I frequencies in the presence of in-
tersection takes the form[ l 7 ] (cf. (2.7)):

ft* \-2 1Τ
-π/α

(ίίίΛ _» 1,
V 2 / e u (g z ) J

-cth(-^2

(3.8)

Here en = e z z , ε χ = εχχ are the components of the
dielectric tensor with allowance for the spatial disper-
sion (at qx = 0). Thus, to obtain corrections that are
small in qxa to the dispersion law obtained on the basis
of the phenomenological approach without allowance for
the spatial dispersion it is necessary to know the func-
tion e(w, qz) in the entire Brillouin zone (but at small
qxa), i.e., these corrections cannot be obtained by tak-
ing into account only the corrections to ε(ω) that are
small in qa. We note also that the factor sin"2(aqz/2)
in (3.8) cannot be obtained in the continual approxima-
tion, since it is entirely due to the periodicity of the
lattice. All the foregoing, however, must not be taken
to mean that attempts at any phenomenological descrip-
tion of SO-I with allowance for spatial dispersion are
unreasonable. The right-hand side of (3.8) is neverthe-
less expressed in terms of e(qz, ω) (although at arbi-
trary qza), and the appearance of the factor
sin"2(aqz/2) can be easily understood and can be
readily accounted for by modifying our analysis to take
the discreteness of space into account[17].

The main positive result of the investigation of (3.8)
was the observation of a broadening of the SO-I levels
due to intersection with the continuous volume spectrum.
This result becomes understandable if it is recognized
that the quasisurface oscillation goes over into a vol-
ume oscillation without absorption or emission of en-
ergy quanta. A similar situation, as is well known (see,
e.g.[e4]) arises also for quasilocal oscillations. The
harmonic broadening is determined almost completely
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by the density of the one-dimensional (i.e., qx = 0,
q z * 0) volume spectrum ct>j(qz) at the point of inter-
section with SO-I. Near the van-Hove singularity,
where dcoj (qz)/dqz = 0, the density of states is maxi-
mal (in the one-dimensional spectrum the density of
states at this point has a root singularity), and the line
width is of the order of o)TO(qia)^3· For wavelengths
on the order of optical this broadening is
~(10"2 - 10 ' 3 )ωτο, i-e., it becomes comparable with
the anharmonic broadening and can be observed in ex-
periment. Far from the van Hove singularities this
broadening is ~wTOqj_a ~ 10~4a>TO and becomes very
weak. This situation recalls the broadening of the en-
ergy levels of a bound electron-phonon state in a quan-
tizing magnetic field near their intersection point[85J.
It is also shown in [ 1 7 ] that the virtual modes that appear
in the phenomenological approach1"1 can be interpreted
as a result of the intersection of the SO-I with volume
polaritons.

A recent paper i l 7 5 ] is also devoted to the dispersion
of the SO-I modes with respect to the parameter q^a at
q^a « 1, and also to their broadening as a result of the
intersection with the volume-oscillation spectrum.
In [ 1 7 5 ) they actually used a phenomenological method of
calculation, Maxwell's equations with allowance for
weak spatial dispersion in the expression for the die-
lectric tensor. Neglect of the role of SO-II and allow-
ance for only the weak spatial dispersion has led in[ 1 7 5 J

to results that differed somewhat from[ 1 6 > 1 7 ]. First, no
splitting of the SO-I modes as a result of the dispersion
with respect to q^a was found (according to^1 7 5^ Δω+
= Δω- in formula (3.7)). No increase was observed in
the broadening of the SO-I levels near the van Hove
singularities (if only weak spatial dispersion is taken
into account, the frequency of the volume phonons
varies like q2 and there are no van Hove singularities
in the spectrum). It should be noted that there is no
universally accepted procedure at present for taking
the boundaries into account within the framework of
crystal optics with allowance for weak spatial disper-
sion, and this question is under lively discussion in the
literature (see, e.g.,[ 1 7 6 ]).

We note in conclusion that in spite of the consider-
able progress in the construction of the macroscopic
theory of surface oscillations in ionic crystals, ques-
tion (4) formulated at the start of this chapter has not
been investigated at all to date. It is necessary to take
the SO-I damping into account in phenomenological
calculations of light absorption by crystals of finite
dimensions. Anharmonic effects are usually taken into
account by introducing an imaginary part of ε(ω) (see
e.g., (2.20)), and the anharmonic constants are assumed
equal to the corresponding values for massive crystals.
However, the use of e of the massive sample is justi-
fied in the macroscopic theory only in the harmonic
approximation. In some cases, the experimental line
width turns out to be larger than the calculated one.

Since anharmonic effects are generally speaking due
to the interaction of the SO-I with volume phonons of
any wavelength (including short-wave phonons), the
mechanical use of complex e of a massive sample in
the calculations is hardly justified for crystals with
finite dimensions. The microscopic theory is therefore
faced at present with the very pressing problem of
finding the SO-I level width due to lattice anharmonicity.

4. INTERACTION OF ELECTRONS WITH SURFACE
PHONONS

The study of the interaction of electrons with surface
optical phonons is of interest for two reasons.

First, surface phonons can be observed in experi-
ments on electron-beam diffraction[20'66'67'.

Second, the interaction with surface phonons should
influence the kinetic coefficients in small-size samples
and in thin films. By way of example of such an experi-
mental situation, we can mention, for example, magneto-
phonon resonance in semiconducting films or the influ-
ence of surface oscillations on the high-frequency elec-
tric conductivity of finely-dispersed systems based on
polaron superconductors1-1791.

The diffraction of fast electrons can be calculated
with the aid of standard phenomenological procedures
using the equations of electrodynamics. The first such
calculations (without allowance for retardation) was
carried out for the losses of fast electrons passing
through a thin metal plate[ a ] (see also[ 6 8 1). The results
for surface plasmons can be easily generalized to in-
clude the case of surface phonons, by representing
e(a>) in the form (2.24). According to [ 8 J , the probability
that an electron with momentum fiki in the plane of the
plate loses an energy Κω is

Ρ (kx, ω) = Pv

where

Ps(k±, ω) =

ω) + Ps (k±, ω),

1 — 6 (ω)

(4.1)

ε(ω)

(ω/κ)2 ε (ω)
(4.3)

Here ν and e are the velocity and charge of the elec-
tron and L is the thickness of the plate. The loss func-
tions P y and Ps are connected with the interaction of
the electron with the volume and surface phonons, re-
spectively. Ps(kioj) contains poles that coincide with
the positions of the surface-phonon frequencies u>+ and
ω-, which are defined by formulas (2,14) (see also
Fig. 2). In experiment one usually determines the inte-
grated loss function

Ρ (ω) = 2π f dk± kxP (kj., ω), (4.4)

where fik = 6(2mE)1 / 2 is the uncertainty of the momen-
tum ( θ is the electron scattering angle relative to the
primary axis, and m and Ε are the electron mass and
energy). In the calculations it is also taken into account
that one measures in the experiment a characteristic
that is integrated not only with respect to kx but with
respect to u>:

Ι ο7>(ω'). (4.5)~

Expressions (4.1) and (4.2) were numerically inte-
grated in [ e e ] (see also[ 8 e ] with respect to kx and ω for
the parameters of LiF (e» = 1.92, e0 = 9.27, o>TO
= 5.78 χ 1013 sec"1, γ = 0.045) and the experimental
conditions prevailing in the study of the passage of fast
electrons through an LiF platet 2 0 ], namely Ε = 25 keV,
θ = 10"4 rad, and Η Δ = 0.01 eV. The experimental and
calculated relations for the loss function are shown in
Fig. 7. The frequency averaging of (4.5) over the inter-
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FIG. 7. Experimental (a) [ 2 0 ] and theoretical (b) [ 6 6 ] spectra of the
energy losses Ε of fast electrons (25 keV) on passing through an LiF plate
240A thick.

val 2 Δ (ΒΔ is the accuracy with which the energy is
determined when the losses are measured) leads to a
complete "smearing" of a narrow beam at a volume-
phonon frequency u> = coLO·

In [ 7 0 > 7 1 ] the integration with respect to kx in (4.4)
was carried out analytically for the case of weak damp-
ing (γ —· 0), and in [ 7 1 ' account was taken of the addi-
tional pole of the function Ps(ki, ω) at e = 0, i.e., at
the frequency ω = wLO- The presence of this pole in
PS decreases the amplitude of the peak connected with
the interaction of the electron with the volume polariza-
tion oscillations at ω = wLO. This phenomenon is
called in the literature the limitation (Begrenzung)
ef fect^.

In1·7"1 they also calculated the losses of the fast elec-
trons with allowance for retardation. It was shown that
in this case a peak appears in the frequency region
ω ί, ωτθ> due to Cerenkov radiation. However, the
amplitude of the Cerenkov peak is lower by three orders
of magnitude than the peak at ω =

The classical method used in [ 8 ] to calculate the loss
in a beam of fast electrons, cannot be employed for a
theoretical investigation of many physical situations,
such as the calculation of kinetic coefficients with allow-
ance for the interaction of the electron with the SO-I, of
the electron scattering cross sections with allowance
for multiphonon processes, etc. It is most convenient
to formulate such problems from the very outset in the
quantum-mechanical approach, and to this end it is
necessary to determine the quantum-mechanical expres-
sion for the Hamiltonian of the interaction between the
electron and the SO-I.

Ιη[ 7 1~7 3' a quantum-mechanical expression was ob-
tained independently for the Hamiltonian of the interac-
tion between an electron and lattice vibrations in an
ionic-crystal plate. It was shown that this Hamiltonian
(which we shall designate Hint) receives contributions
from both volume and surface modes of the SO-I type.
A canonical transformation that makes it possible to
decouple completely the contributions from the surface
and volume modes, by representing them in additive
form, has been obtained in[ 7 3 1 .

The form of Hint (see formulas (3.4) ofC71] and (36)—
(38) of[731) is quite similar to the Frbhlich Hamiltonian
for the electron-phonon interaction in an infinite
crystal1·7 4 1 9'. The constants for the electron-phonon in-
teraction in the plate (including also the constants for
the electron interaction with the SO-I) and in an infinite
crystal are of the same order of magnitude (see
formula (39) of1™3).

It was noted in[ 7 1"7 3 1 that in the region outside the
plate the SO-I produce an electric field that decreases
slowly away from the surface, and consequently an
electron located outside the plate interacts with the

surface phonon oscillations. The volume modes produce
no field oscillations in the space outside the plate, so
that these modes interact only with the electrons inside
the plate.

It was noted in [ 7 3 ] that the field produced by the vol-
ume oscillations orthogonalized to the surface oscilla-
tions is not a purely periodic function of the coordinate
ζ (as is always the case in the spatially-homogeneous
case of an infinite crystal), but has a contribution that
decreases away from the surface; this contribution is
responsible for the limiting effect that appears in the
electronic-loss spectra at the frequency ω =

The diffraction of slow electrons reflected from the
surface of a crystal was calculated in1-751 (for plasmons)
and[ 7 e l (for phonons) with the aid of the Hamiltonian for
the interaction of an electron with SO-I. This is accom-
panied by absorption or emission of surface phonons as
a result of the interaction of the SO-I field with the
electron outside the crystal. As noted above, the fields
produce no volume oscillations in this region, so that
the diffraction spectra have no singularities in the case
of reflection of a beam of slow electrons from the sur-
face of the crystal at the frequency of the volume
polarization oscillations ω = ωΐ£>.

The energy spectrum of slow electrons (1—100 eV)
following reflection from a flat surface of single-
crystal ZnO was measured in t e 7 ] . The experimental
curves (Fig. 8) show peaks of no-phonon reflection, of
reflection with emission of 1, 2, and 3 phonons, and a
peak with absorption of one phonon; the latter, as ex-
pected, decreases rapidly with decreasing temperature.
The measured frequencies of the one-phonon peaks
turned out to be 68.8 MeV and 67.6 meV for reflection
from the faces (1Ϊ00) and (0001), respectively, i.e., a
weak anisotropy was observed. These frequencies coin-
cide, within the limits of the measurement accuracy,
with those calculated from the condition €j.(w) = - 1 ,
where ej. is the dielectric-tensor component normal to
the surface10'.

The experimental results obtained in[e7] were com-
pared in[7ei with the results of calculation for single-
phonon processes. The experimental and calculated
data for the corresponding peak are in good agreement.

The question of quantum-mechanical calculation of
the scattering cross section in the collision between an
electron and a surface phonon was raised in recent
papers177'781 U ) . Inasmuch as in the calculations
οί[ 7 ι > 7 5 > 7 β ] the electron is assumed to be a classical par-

FIG. 8. Spectrum of energy losses Ε of the slow electrons (7.5 eV)
upon reflection from the surface of single-crystal ZnO [6 7] at tempera-
tures 286°K (a) and 127°K (b). I and I o are the intensities of the reflected
and incident electron fluxes, respectively.
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t ide , the authors of[78) hope that their approach is more
consistent when it comes to calculating electron diffrac-
tion. Incidentally, the results obtained in1-78' for the
single-phonon scattering cross section practically coin-
cide with[76]. The same agreement with[76] was observed
also for multiphonon processes, a quantum mechanical
calculation of which is given in[ 8 0 J . In [ 1 7 7 ] there is also
a calculation of the diffraction of slow electrons with
allowance for their penetration into the interior of the
crystal.

A study of bound states of an electron in a crystal
with surface phonons was recently initiated with the aid
of a Hamiltonian obtained for the interaction between
the electron and the surface phonons. A theoretical in-
vestigation of the large-radius surface polaron, with
allowance for SO-I, is carried out in [ 8 1 > 1 7 8 ] . The absorp-
tion of light due to small-radius surface polarons was
calculated in [ 1 7 9 ] and the results have shown that the
absorption peak for small-radius surface polarons is
shifted towards shorter wavelength relative to volume
polarons. It is reported in [ 1 7 8 ] that this effect was ob-
served experimentally in small T1O2 crystals.

5. SPECTROSCOPIC INVESTIGATIONS OF SURFACE
OSCILLATIONS IN SMALL CRYSTALS

It appears that the first manifestation of surface
oscillations were distinctly observed in the infrared
spectra of small crystals. The object of the investiga-
tion in this case is, of course, a conglomerate of such
crystals, placed on some substrate or pressed into a
matrix made of a material that is transparent in the
given region of the spectrum. The standard procedure
used in infrared spectroscopy for the investigation of
powders employs precisely such objects (KBr tablets
pressed in polyethylene, suspensions in mineral oil,
etc). This method is widely used in particular, to de-
termine the oscillation frequencies in those cases when
the production of sufficiently large single crystals is
difficult. Many investigators have noted long ago that
the lattice-oscillation frequencies obtained by this
method do not have good reproducibility, depend on the
crystal dimensions and on the method of pellet prepara-
tions, etc. These "anomalies", as shown by a compari-
son i-32' of the oscillation frequencies obtained for pow-
ders and single crystals of various substances, are due
to a considerable degree, if not entirely, to the surface
(size) effect. It appears that this effect was first used
in [ 8 2 ] to explain the observed discrepancy between the
frequencies obtained from the powder spectrum and the
reflection spectrum of UO2 single crystals.

As already indicated, surface polaritons in crystals
in which at least two dimensions are small in compari-
son with (ωτο/c)'1 (sphere, thin cylinder) are radiat-
ing and should therefore become manifest in the ab-
sorption spectra. Calculations performed in [ 3 1 ] for the
cross section for light absorption by spherical particles
at wTOR/c = 1 and 0.1 (R = 10 and 1 μ respectively
for NaCl) show that in this interval one should expect a
noticeable decrease of absorption at the volume modes
(ω < ωτο) a n d simultaneous appearance of absorption
on the surface modes in the region ω χ ο < OU < a>LO·
According to (2.19), in the limiting case of minute
crystals of spherical shape (ωΤθΚ/c « 1), the position
of the first ("Frohlich") mode (I = 1) is determined
from the condition e(o>i) = -2eyi, i.e.,

Inclusion of the anharmonicity leads to the appearance
in the absorption spectrum of a band with a position
corresponding to

ε' (ω) = Ree (ω) Λ> — (5.2)

ω, = ω τ ο - J - 2ε ν

(5.1)

The absorption due to modes of higher order
(I = 2, 3, . . . ) can be neglected in this case, although at
larger particle dimensions this is not generally the
case.

For a quantitative calculation of the absorption
spectrum it is necessary to know the optical constants
of the investigated crystals, i.e., e'(w) a n d e"(w), in
a wide frequency interval, it is also useful to make a
more detailed comparison with theory for simple cubic
crystals with one dispersion oscillator. This is the
reason why many such investigations were performed
with alkali-halide crystals and also with MgO.

The situation is more complicated with the crystal-
lite shape, which usually differs from the spherical
shape assumed in the calculation. Crystals obtained by
evaporation of a saturated aqueous solution[21>83] have
usually the shape of cubes or parallelepipeds and those
obtained by pulverizing larger crystals have irregular
shapes. First of all, it is difficult to estimate the error
due to this circumstance. One can hope that in the limit-
ing case of very small crystals (in all three dimensions)
their shape does not play an important role. A compari-
son of spectra obtained in f 8 4 ] for cubic and spherical
KBr particles seems to favor this hypothesis, as do
also results obtained in [ 8 5 ] for NaCl particles with
dimensions ~70A, introduced into porous glass.

There are many experimental investigations of the
absorption spectra of minute alkali-halide
crystals[21>86~S7]. In[ 2 1>8 6 ], minima were observed in the
transmission spectrum between ωτο and u>LO (see
Fig. 9) of KC1 and NaCl crystals with dimensions 5—10
μ, pressed into polyethylene. In[ 8 7 ) , the spectrum shown
in Fig. 9 was compared with calculation for spherical
particles, assuming R to be 8 μ. The discrepancy be-
tween the positions of the calculated and experimental
peaks amounted in this case to about 10 cm"1.

An investigation of the infrared spectra of NaCl and
KBr particles, with linear dimensions d from 40 to
2 μ, pressed into paraffin, was undertaken in [ 8 3 ] . This
range of dimensions includes both the case ωτοά/ο < 1
and the transition region ωτοά/ο ~ 1, where a "spill-
over" of the absorption intensity from the volume to
the surface modes could be expected. Analogous meas-
urements for KBr crystals in polyethylene were carried
out in t 8 4 ] . Fig. 10 shows the corresponding spectra for
NaCl, For the largest crystals (curve 1), the spectrum
was characterized by two broad bands of approximately
equal intensity: low-frequency, adjacent to ωτο °η the
long-wave side, and a band between ωΤΟ and U>LO
(approximately 175 cm' 1 ) . The decrease in the crystal
dimensions leads to a relative attenuation of the low-

FIG. 9. Transmission spec-
trum of minute NaCl crystals
pressed into polyethylene at 7°K
(solid curve) and 29O°K
(dashed) [8 6]). The vertical lines
mark the positions of ω-j-Q at
these temperatures (1 75 and
164 cm"1, respectively).
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FIG. 10. Transmission spectra of

NaCl crystals of different dimensions d
(in microns) pressed in paraffin [ 8 3 ] :
1-d = 20-40, 2-d = 10-20, 3-d = 7 -
15,4-d < 3 , S - d < 2 . T h e positions of
the limiting frequencies U>JQ and COTJ3

are indicated. The secondary structure
at 235 and 254 cm"1 is apparently due
to two-phonon processes with participa-
tion of short-wave phonons, whose fre-
quencies do not depend on the crystal
dimensions.
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frequency band, and subsequently to a complete vanish-
ing12' at d < 3 μ. The position of the high-frequency band
shifts in this case towards higher frequencies, and
reaches 191 cm'1 at d ~ 2 μ. Similar results were ob-
tained also for KBr both in[ 8 3 ] and in[ 8 4 ] . The limiting
value at d ~ 3 was 126 cm"1 according toC 8 3 ]. In [ 8 4 ] is
given a somewhat higher frequency—130 cm"1 (d = 9
(d = 0.3 μ). A quantitative comparison with the theory
was carried out in[ 8 3 ] for particles that were "mono-
chromatized" with respect to the dimensions, d = 10
± 2 μ. The position of the peak in the absorption spec-
trum (184 cm"1) turned out to be somewhat lower than
the calculated value for spherical particles of the same
diameter (190 cm"1). The expression for the dielectric
constant used in these calculations was of the form
(2.20) with a frequency-dependent damping function
y(u>) determined in1·421. The limiting value for small
NaCl particles (191 cm"1) is compared in[ 8 3 ] with the
position of the Frohlich frequency (203 cm"1 at €M = 2).
This discrepancy practically vanishes if the position of
the peak is determined from (5.2) and account is taken
not only of the damping but also of the anharmonic
shift Δ(ω), introducing it into the expression for e(w)
(see, e .g . ,^) :

ε (οι) =
(e0 — f.

ω -̂j-2ωοΛ (ω)— ω2+ίωοΓ(ω)
(5.3)

where Γ(ω) = γ(ω)ω, and ω0 has the meaning of the
harmonic TO frequency. A similar procedure for taking
anharmonicity into account was carried out recently
in[ 8 9 1 using the functions Δ(ω) and Γ(ω) determined
from reflection experiments.

However, the experimentally obtained widths of the
bands exceed noticeably (by 2—3 times) the calculated
values. We shall discuss this circumstance later on.
We note here only that so strong a broadening seems
to prevent observation of the theoretically-predicted
fine structure of the spectrum.

The application of the theoretical concepts developed
above to conglomerates of minute crystals calls for the
preparation of research samples with sufficiently small
particle concentrations, so that the distance between
particles exceeds the wavelength of the light. A notice-
able influence of particle interaction on the optical
spectra was observed in

[ 8 3 ' 9 0 > 1 8 0 ] . An increase in the
particle concentration shifts the absorption band
towards lower frequencies.

In[ 9 0 > 9 1 ] they investigated samples made up of minute
MgO crystals. The use of the functions e'(co) and
e"(o>) from[921 has made it possible in[ 9 0 1 to obtain

satisfactory agreement between the positions of the
calculated peaks and the experimental ones. To explain
the widths of the peaks, however, it was necessary to
assume that Γ is eight times larger than the corre-
sponding volume quantity. A similar result was obtained
for NiO in[ 1 8 1 ] .

Absorption by NaCl particles with dimensions of
several dozen Angstroms was investigated in[ 8 5 ] . When
the transparency is measured for such small crystals
it is certainly possible to neglect the scattering of light
in comparison with the " t rue" absorption. The result
obtained in[ 8 5 ' namely the agreement between the ab-
sorption band and the value calculated from the phe-
nomenological theory, is in itself not trivial for such
small particles. Let us dwell briefly on results ob-
tained with anisotropic crystals. One of the first stud-
ies [ 2 3 ] in which the discussed effect in infrared spectra
was investigated at all was carried out on minute AlN
crystals with wurtzite lattice. Figure 11, which is taken
from[23], illustrates clearly the dependence of the sur-
face-mode frequencies on the matrix dielectric con-
stant CM, which ranged in[ 2 3 ] from 1 to 4. The investi-
gated mixture consisted of both long needle-like crystal-
lites and of crystals of cubic shape. This together with
the presence of two IR active frequencies was the
reason for the appearance of three surface modes in the
spectrum.

The limiting case of minute TiO2, SnO2, and BaTiO3

crystals was investigated in1-22'931. In the presence of
several (n) dispersion oscillators we have in place of
(5.1)

\ J eo + 2ew (5.4)

The positions of the peaks in the calculated and experi-
mental spectra are close, but the widths of the peaks in
experiment are again much larger. For the left- and
right-hand sides of (5.4) the values obtained for SnO2

were 1.40 and 1.47. The agreement is somewhat worse
for TiO2, viz., 2.45 and 2.98.

We note also a number of investigations of the infra-
red spectra of minute crystals. The appearance of
surface oscillations in the thermal-radiation spectra of
a number of crystals was observed in[ 9 4 ] . Calculations
in which the scatter of the dimensions of spherical or
cylindrical particles is taken into account are com-
pared with experiment in[ 9 5 ' 1 8 0 1 . The influence of the
formally introduced additional damping (in comparison
with the volume damping) on the form of a spectra and

(Οίο

700

S00

500
1

FIG. 11. Positions of the minima in the transmission spectrum of
minute AlN crystallites vs. the dielectric constant of the medium [ " ] .
The frequencies corresponding to curves 1 and 5 (965 and 610 cm"1)
correspond to a volume mode and do not depend on ej^. Curves 2-4
correspond to surface modes.
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on the widths of the bands is illustrated by the results
of numerical calculations in[ 1 S 2 1. The influence of the
crystallite dimensions on the position of the lines in
Raman-scattering spectra was noted and discussed

[9698183]

Summarizing, we can state that the qualitative picture
of the optical properties of minute crystals agrees with
the predictions of the theory. In a number of cases,
there is also good quantitative agreement. The quanti-
tative comparison of theory and experiment becomes in
itself possible only if the form of the function e(o>) is
sufficiently well known, since the positions of the bands
in the spectra are quite sensitive to variation of the
real part of this function. A more complicated question
is that of the nature of the observed additional broaden-
ing of the bands. It is still not clear whether the latter
is connected to some degree with the anharmonic inter-
action of the surface and volume modes or is due to the
large number of defects in the crystals investigated so
far. Some light could be cast on this question by meas-
urements in a wide range of temperatures using parti-
cles that are carefully "monochromatized" with re-
spect to dimensions. An additional source of broaden-
ing for particles of cubic or near-cubic shape may be
the appearance of several surface modes of close fre-
quency even at crystallite dimensions that are extremely
small in comparison with the wave length[184J. These
frequencies, not being resolved, can produce in experi-
ment a single broadened spectral distribution.

Finally, a last remark. It must be borne in mind that
the determination of lattice-vibration frequencies in
ionic crystals from spectra obtained with powders
should be approached with great caution1-13'. For binary
crystals one can use in first-order approximation the
Frohlich formula (5.1) in the region where it is valid
(i.e., at d « λ), working with strongly diluted composi-
tions.

6. OPTICAL INVESTIGATIONS OF SURFACE
OSCILLATIONS IN "SEMI-INFINITE" CRYSTALS
AND IN THIN FILMS

As already mentioned in Chap. 4, surface oscillations
in plates and in films of ionic crystals were observed
experimentally in the analysis of the energy-loss spec-
tra following electron scattering. However, the resolu-
tion of the electron-spectroscopy methods is lower by
approximately two orders of magnitude than the resolu-
tion of standard grating spectrometers for the far infra-
red region. Thus, for example, in [ 6 7 ) the resolution was
approximately 160 cm"1, practically equal to the entire
dispersion width of the surface phonons in the investi-
gated crystal. At the present time this limits strongly
the capabilities of the procedure when it comes to meas-
uring phonon damping, to plotting the dispersion curves,
etc. Naturally, it seemed attractive to perform the cor-
responding investigations by infrared-spectroscopy
methods. The interpretation of such experiments in
plate geometry would be free of a number of factors that
complicate it in the case of minute crystals (the shape
factor, interaction between particles) and would yield a
noticeably large volume of information.

However, unlike the case of minute crystals, surface
modes in a plate are nonradiative, i.e., they do not in-
teract with light in experiments on absorption and re-
flection (this, of course, does not include the possibility,
in principle, of manifestation of surface phonons in

Raman-scattering spectra c 3 7 ' 1 0 < i ) . The absence of inter-
action with light is due to the fact that, as already noted
above (Chap. 2), ω < cqx over the entire dispersion
curve (the phase velocity of the surface waves is lower
than the velocity of light and the dispersion curves

do not cross the light line ω = ckx) (Fig. 12).

It was shown in Chap. 2 that the energy and momen-
tum conservation laws in the interaction of surface pho-
nons with light, on the one hand, and the form of the
dispersion curves on the other, do not contradict each
other only if the electromagnetic wave attenuates along
the ζ axis in the space surrounding the investigated
plate. Such an inhomogeneous wave propagating along
the interface in the plane of incidence and attenuating
exponentially in the direction of the optically less dense
medium is produced in the case of total internal reflec-
tion. This wave is not transverse, since the component
of Ε in the propagation direction differs from zero (see,
e.g.,[ 1 0 1 J). A few years ago, a modified method of per-
turbed total internal reflection (PTIR) was proposed[ 1 0 2 a i

for the investigation of surface plasmons in metals."1

It was recently used also for the investigation of surface
phonons[24). The geometry of the experiment and the
employed notation are explained in Fig. 13. An electro-
magnetic wave with "decreased" phase velocity c/n
χ sin φ propagates in a gap between a total-internal re-
flection prism and the investigated sample (n is the re-
fractive index of the prism). This wave corresponds to
the dashed line of Fig. 12, which crosses the dispersion
curves of the surface oscillations, thereby ensuring the
possibility of direct interaction of the light with the
surface phonons. Minima appear in the reflection spec-
trum R = Ι(ω)/ΐο(ω), and their positions are deter-
mined by the frequencies of the surface phonons at the
given qx. The value of qx is connected with the inci-
dence angle of the light: qx = (w/c)n sin φ . Variation
of ψ makes it possible to plot the dispersion curves
<x)(qx), The incident light wave is polarized in the inci-
dence plane (p polarization). No interaction with the
surface waves was observed for s polarization, owing
to the polarization of the surface waves (see Chap. 2).

Figure 14 shows the dispersion curves for a thick
(semi-infinite) NaCl crystal^104'. A comparison of
curves 1 and 2 in Fig. 14 illustrates clearly the depend-
ence of the surface frequencies on eM·

Calculation of the PTIR spectra and of the dispersion
curves for NCI and other alkali-halide crystals, with a
function έ(ω) that includes the frequency-dependent
damping constant Γ(ω) (but without allowance for the
anharmonic shift Δ (ω)) has led to a certain disparity
with the experimentally measured frequencies, reach-
ing 15—30 cm"1 for various crystals. Thus, for NaCl at
φ = 48°, the calculated and measured values are 234 and
215 cm, respectively. In [ 1 0 4 ] , a two-pole approximation
was used for e(a>) in NaCl, with an additional pole at

FIG. 12. Dispersion curves of surface
oscillations ω + and ω_ for a thin film
and ω 5 for a semi-infinite crystal. The
dashed line corresponds to the light wave
in the PTIR method. Light absorption
takes place at the frequencies correspond-
ing to the points of intersection of this
line with the surface modes.
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FIG. 14

FIG. 13. Geometry of experiment aimed at observing surface modes
by the PTIR method. 1—Silicon prism, 2—gap (vacuum or non-absorbing
dielectric), 3-investigated crystal, R(w) = Ι(ω)/Ι0(ω).

FIG. 14. Dispersion curves of surface oscillations for a "semi-infinite"
NaCl crystal [ 1 0 4 ] . 1—Vacuum gap between prism and samples (ejyj = 1)
(solid curve-calculation); 2-gap filled with paraffin ( e ^ = 1.96).

247 cm"1. Using this approximation, which to a certain
degree takes into account not only the damping but also
the anharmonic shift, the discrepancy between theory
and experiment does not exceed 4—5 cm"1 (see Fig. 14).
Perhaps more consistent is allowance for anharmonicity
and the use of ε(ω) in the form (5.3), which explicitly
includes the functions Γ(ω) and Δ(ω). This was done
in [ 8 9 ] using the experimentally determined Γ(ω) and
Δ (ω), and the agreement with the experimental data was
excellent110*1. Good agreement between theory and ex-
periment was noted also in an investigation of surface
modes in plates of a number of other crystals, CaF2 )

CdFf4, GaP1 0 5 (Fig. 15) and CaMo04

[ l o e ] . In the above-
mentioned cases, the experimental values of ws were
close to the calculation results even in the harmonic
approximation, i.e., the anharmonic corrections were
small. For NaF, to the contrary, a noticeable contribu-
tion of anharmonic corrections was noted in1-1861 in ac-
cord with1-10*1. A certain discrepancy (~10 cm"1) be-
tween the calculated harmonic and experimental values
of u>s was obtained also in measurements performed
in f187!

A splitting of the peak in the PTIR spectrum was ob-
served with decreasing plate thickness, corresponding
to the presence of two surface modes ω+ and ω- (cf.
Fig. 12). Surface oscillations in a polycrystalline NaCl
film 2 μ thick was investigated in greater detail by the
PTIR method in1-10'1. The film was deposited by vacuum
evaporation on a polyethylene substrate. The gap be-
tween the prism and the film was filled with paraffin.
The PTIR spectrum were calculated for such a sand-
wich. Fig. 16 shows the PTIR spectra of an NaCl film
for three angles of incidence, i.e., three values of ςΐχ.
The strongest peaks in the spectrum correspond to two
surface-oscillation branches. The dispersion curves
constructed from the positions of the minima in the
PTIR spectra at different incidence angles are com-
pared in Fig. 17 with the calculated relations. The dis-
crepancy between the theoretical and experimental
values of the frequencies lies in the range 5—10 cm"1,
i.e., not much larger than for a "semi-infinite" crystal
with the same form of e(w). The experimental spec-
trum (Fig. 16a) shows a singularity in the low-frequency
region at ω ~ ω τ θ · This additional peak is interpreted
in [ 1 0 7 ] as a result of interaction of the light with the
nonradiative polariton modes located in the region Li
on the (ω—ςΐχ) plane (see Fig. 1).

Thus, the use of the PTIR method has made it possi-
ble to investigate in detail the dispersion curves of pure

400
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FIG. 15

FIG. 15. Dispersion curve of surface oscillations for a "semi-infinite"
GaP crystal [ 1 0 5 ] . Solid curve-calculation, circles-experiment.

FIG. 16. PTIR spectra for NaCl film 2μ thick with φ = 56° (a), 36°
(b), and 31° (c) [ 1 0 7 ] . The dashed lines shows the position of the saturated
peak in the spectrum of the "semi-infinite" crystal.
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FIG. 17. Dispersion curves of surface oscillations in an NaCl film 2μ
thick [ " " ] . Solid curves-experiment, dashed-calculation.

surface modes both in a plate and in a thin film, and
also to observe the exchange polariton modes in the
nonradiative region of the spectrum. The result of these
investigations have shown, in particular, that if the
frequency-dependent complex e(co) is known with suf-
ficient accuracy the position of the surface frequencies
of the SO-I type can be predicted with good accuracy
from phenomenological calculations. On the other hand,
the noticeable sensitivity of u>s to the values of £(ω)
makes it possible, in principle, to use measurements of
the surface frequencies to solve the inverse problem,
i.e., to determine the optical constants of crystals. We
note in this connection that, at least for alkali-halide
crystals and probably for many others, the position of
the surface frequencies is practically independent of the
damping Γ(ω) at realistic (i.e., comparable with the
widths of the bands observed in the spectrum) values of
Γ(ω) for the given frequency range and, to the contrary,
is very sensitive to the anharmonic shift Δ(ω). This
circumstance suggests a relatively simple method of
determining the frequency dependence of Δ (ω).

One of the modes of the surface oscillations (ω.)
was recently observed in Raman-scattering spectra of
a thin (2500 A) GaAs film epitaxially grown on a sap-
phire substrate[188l (see also the calculation in t l 8 9 ] ) . The
scattering was observed at small angles (1—12°) in a
"transmission" geometry, with excitation by an argon
laser (4880 A).

In anisotropic crystals, the surface modes should
have a number of interesting features[ 1 5 > 1 0 8 > 1 0 9 ]. The
dispersion relations for a semi-infinite anisotropy
crystal, obtained in[ 1 0 8>1 0 9 ), can be expressed in the
following form, which facilitates the analysis:

f (e,,'e,U(<;»g'Ao2)-e,| y/i
(6.1)

It is assumed here that the ζ axis is normal to the
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crystal surface (qy = 0), and the dielectric tensor is
diagonal in the axes x, y, and z. At ex = ez Eq. (6.1)
goes over, naturally, into the dispersion relation for an
isotropic crystal.

It follows from (6.1) that the surface modes of the
oscillations can exist in two cases: 1) e x < 0, ez < 0;
2) £χ < 0, (qx/(o>/c))2 < e z . In the first case the sur-
face modes are preserved also at large qx and can be
obtained by theoretical analysis of the problem without
considering retardation, allowance for which merely
deforms their dispersion curve in the region of small
qx. In this sense they are analogous to the previously
considered surface modes in an isotropic crystal. In
the second case, the surface oscillations exist only at
sufficiently small qx. This mode has a pure polariton
character and has no analog in isotropic crystals. Ex-
perimentally, these two surface-oscillation modes were
observed[110] in uniaxial MgF2 crystals with rutile
structure. For an MgF2 plate cut in such a way that the
fourfold axis C4 is perpendicular to the plane of the
plate (C« ii Oz), a polariton branch was observed in the
region 250—300 cm ', i.e., in the region of dipole reso-
nance polarized perpendicular to C4 (in this case εχ
= εχ < 0, but e z = en > 0), and in a limited interval of
small qx (Fig. 18a). When qx becomes equal to
(w/c)/e^ i.e., the phase velocity of the surface wave
becomes comparable with the phase velocity c/-fez of
the volume polariton, strong radiative broadening sets
in. At this point e x = 0 in accord with (6.1), i.e., the
point of intersection of the dispersion curves of the
surface and volume polaritons corresponds to the fre-
quency of the longitudinal phonon propagating along the
Ox axis. The minimum in the PTIR spectrum then
vanishes. When Ct lies in the plane of the plate and is
parallel to the Oy axis, we have e x = e z = ei < 0. Sur-
face phonons of the ordinary type were observed in this
case in the entire investigated interval of qx (Fig. 18b).
The dispersion curves for the same orientations are
shown in Fig. 19. At d n Ox we have ex = en > 0, and
no surface waves are produced even though €χ = ey < 0.

The spectrum of the surface phonons in α-quartz was
recently investigated in detail in a number of studies'1 9 0 '.
In view of the complexity of the volume vibrational
spectrum of a-SiO2, the surface-phonon spectrum is
also very rich: it contains a large number of disper-
sion modes of both the first and of the second type in
accordance with (6.1).

From among the few studies of the manifestations of
surface phonons in transport phenomena, we note the
observation of frequency oscillations of the photocon-
ductivity of ZnO, with a period equal to the surface-
phonon frequency'191'. The observed effect is obviously
due to scattering of hot electrons with emission of sur-
face phonons.

7. INTERACTION OF SURFACE PHONONS WITH
SURFACE PLASMONS. MIXED PLASMON-PHONON
SURFACE MODES

The investigation of surface plasmons in metals has
been the subject of many theoretical as well as experi-
mental studies. In Chap. 2 above we referred to some
of them. Surface plasmons were recently investigated
also in semiconductors: in' 1 1 1 ' they plotted the surface-
plasmon dispersion curve for InSb.15) The electron con-
centration exceeded 10l a cm"3, so that the greater part
of the dispersion curve for the plasmons was located

250
a), cm"1

FIG. 18. Orientation of MgF2 crystals in the experiment aimed at
observing surface oscillations and the PTTR spectra [ u 0 ] . a) C 4 || Oz, b)
C4 II Oy. The direction of the C 4 axis is shown hatched. qxc/cj is equal
to 1.98 and 1.85 for the solid and dashed curves, respectively; the last
figure exceeds-y/e^ in this region (\/e^ « 2.8), i.e., ω / ς χ

300

275

250

C«0z

1 1,5 2.0 2.5 \/i2 3.0 qx/co

FIG. 19. Dispersion relations of surface modes in MgF2 crystals [ n o

The abscissas represent the values of qxc/w -\Jez

 a t which the surface
waves vanish at the orientation C 4 || Oz.

above the region of the phonon frequencies. However, if
the frequencies of the surface plasmons and of the sur-
face phonons turned out to be close, then one can expect
the formation of mixed plasma-phonon surface
modes'1 1 3"1 1 5 1. This effect was indeed observed

We assume that the contributions of the phonons and
plasmons to the dielectr ic constant a r e additive. In the
long-wave limit, when qvjr << u> ( v p is the velocity on
the F e r m i surface), i .e., when there is no static s c r e e n -
ing of the long-range forces by the conduction e lect rons,
and neglecting damping, we have

ε(ω) = ε ' E°~~ E°° "'" (7.1)

where ωρ = (4irnefm*)1/z is the plasma frequency and
m* is the effective mass.

The solution (7.1) for e = 0 yields the well known
mixed "volume" longitudinal modes[ 1 1 9 > 1 2 0 ]. A joint
solution of (7.1) and (2.13) yields the dispersion and
concentration dependences of the surface plasma-pho-
non modes. The results of these calculations are com-
pared i n ' l l e i with the experimental data obtained by the
PTIR method with InSb plates at η from 101 6to 1018

cm"3, i.e., precisely in the range in which the frequency
of the surface plasma oscillations is close to the fre-
quency of the surface phonons (about 190 cm"1)1 7 1 . Fig-
ure 20 shows the dependence of the frequencies of the
surface plasmon-phonon modes on the carrier density.
In the absence of interaction, the plasmon and phonon
modes intersect. The interaction lifts the degeneracy.
In the vicinity of the intersection point, the modes ac-
quire a mixed character. At low densities, the lower
branch is plasmon-like and the upper phonon-like, and
at higher densities the situation is reversed. In [ 1 1 ? 1 we
also obtained dispersion relations for mixed plasmon-
phonon modes and investigated their damping. The half-
width of the peak in the PTIR spectrum, corresponding
to the surface phonon in undoped InSb, was 3 cm"1, which
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FIG. 20. Dependence of the frequencies of plasmon-phonon surface
modes on the free-carrier concentration η or on ω* = 4ττηβ2/ΐϊΐ* in
InSb [ 1 1 6 ] . The curves were obtained by the PTIR method: φ = 23°,
q x = (co/c)n sin φ. Solid curves-calculation, circles-experiment, dashed
curves-"bare" plasmon and phonon branches (without interaction).

is close to the damping of volume phonons. However, in
the plasma region of the dispersion curves the widths of
the peaks are several times larger than the correspond-
ing values for the volume excitations. The reason for
this additional broadening of the surface-plasmon peak,
i.e., for the increase in the rate of their decay is still
unclear. The exponentially damped amplitude of the
surface excitations contains, generally speaking, har-
monics with arbitrarily large q, including those close
to the limiting Fermi momentum, and this can lead to a
broadening due to the Landau damping^1211. In the con-
sidered case of long waves however, the corresponding
contribution can apparently be neglected. Another addi-
tional damping mechanism may be connected with the
presence of a surface barrier (there is usually a de-
pleted layer on the n-InSb surface1-1221). In such a plasma
with inhomogeneous concentration there can occur an
enhanced transfer of surface-plasmon energy to that of
volume plasmons[ l 2 3 ] . In any case, this interesting
question calls for further research, both theoretical and
experimental (the influence of the surface potential, of
surface scattering, etc.).

The energy-spectrum of a system of coupled phonon-
plasmon surface modes becomes more complicated in
an external magnetic field if the cyclotron frequency we
is close to the surface-excitation frequencies. A theo-
retical investigation of this question was recently car-
ried out in [ 1 2 4 ' 1 8 2 ] (see a l so [ u 3 ] ) . The calculated disper-
sion curves contain many additional singularities that
appear when the magnetic field is turned on (for exam-
ple, gaps appear in the energy spectrum of the surface
modes, the positive and negative directions of qx be-
come nonequivalent at Η ιι qx). At uic > ω τ θ a new
surface mode is produced, located between ωτθ and
WLO a n d having a pure phonon character. The appear-
ance of such a mode with small damping was recently
observed in InSb at Η = 43 kG[ 1 9 3 ] . Even in weaker
fields, a broadening of the peaks in the PTIR spectra,
due to the intersection of the surface modes with the
volume spectrum, was observed in1·193'.

Mixed plasmon-phonon modes in minute crystals
were considered in [ 1 9 4 ] . In this geometry, just as sur-
face phonons, they turn out to be radiative and are ob-
served in the infrared absorption spectra1 1 8 5 1.

8. CONCLUSION

In the concluding part of the review we shall de-
scribe briefly some other types of surface waves in
solids and compare the degree of the understanding of
the problem with that of surface phonons. Naturally, the

corresponding bibliography will not be as complete as
in the main part of the review.

a) Surface plasmons in metals181 The presence of
the boundary leads to the appearance of surface plas-
mons (SP) in the plasmon spectrum. Since the interac-
tion in the plasma is long-range, SP of the SO-I appear
in the spectrum (SO-II modes in a plasma have not been
discussed). The first theoretical investigation of
SP1-8'8 '3 5 '3 6 ' were carried out by a phenomenological ap-
proach using the same methods as for surface phonons
(see Chap. 2). The dispersion dependence of the SP
frequency u>sp on the dimensionless parameters qiL
and qic/ωρ was obtained t9·3 6). A study was initiated
recently of the dependence of coSp on a third dimension-
less parameter qikjr, where fikF is the Fermi quasi-
momentum. For metals we have kF ~ l/a, so that this
problem is related to the study of the frequency disper-
sion of surface phonons with respect to qj.a, and the
construction of the corresponding theory calls for the
use of a microscopic approach, different methods being
employed: a) hydrodynamic equations of motion for a
charged liquid[125>12e]; b) random-phase approxima-
tion1 1 2 7"1 2 9 1; c) self-consistent field approximation11301;
d) Boltzmann equation and the system of Maxwell's
equations^31"1331 (see also[ 1 3 4 ' 1 3 5 1). At q i / k F « 1 (but
qĵ L — oo and qj_c/u>p -*·»), the following was obtained:

(0) (At + iA2) qjkr
(8.1)

The numerical values of Ai and A2) and even the sign
of Ai, depend strongly on the microscopic model of the
surface (the form of the potential at the boundary or of
the electron density[12S~130]). We note that this situation
is similar to the influence of SO-II in phonon spectra on
the dispersion of the SO-I modes with respect to the
parameter qia. In particular, for electrons specularly
reflected from the surface, the following dispersion
equation was obtained in[ 1 3 1 1 (qxL —•*>, qic/ωρ — *>):

_ . i . - 2 « L F •*».
π J <«i + «J_)e(q, ω) '

and reduces at small qj./k]r to the form

(8.2)

1 + ε->(0,ω) = - ^ J d3l(^-p[e-i(0, ω)-ε-(ς,ω)]. (8.3)
—to

If we let c —• °° and L — ·*> in (3.8) we obtain a formula
similar to (8.3). The difference in the integration limits
is due to the finite character of the Brillouin zone, and
the presence of a2[sin (aqz/2)]~2 in (3.8) in place of
(qz/2)~2 is due to the periodicity of the lattice. An ex-
pression of the type (8.3) with allowance for retardation
has been obtained in[ 1 3 3 ] , and can be reduced, with ana-
logous stipulations, to the form (3.8). The condition of
specular reflection from the surface is equivalent to
ignoring the role of SO-II in the theory of surface pho-
nons, so that the obtained dispersion relations are quite
similar. The microstructure of the surface and its im-
perfection are usually taken into account in the boundary
conditions for the reflection of the electrons from the
surface (the fraction of diffuseness). Obviously, this is
a poor approach if the typical dimensions of the rough-
nesses on the surface are comparable with the charac-
teristic length over which the amplitudes of the SP at-
tenuates.

Surface plasmons were first observed in the investi-
gation of the characteristic losses of fast electrons
passing through a metallic foil[136], and the radiation
predicted in t 9 ] , which occurs when radiative surface
plasmons generated when a foil is bombarded by fast
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electrons (particular case of transition radiation'1381)
was later observed in [ 1 0 ' 1 3 7 ] . Similar radiation is pro-
duced also when bulky samples with non-ideal surfaces
are bombarded with electrons (natural roughness, arti-
ficially produced grating), owing to the decay of the non-
radiative (tangential) surface plasmons[139~1411.

Recent studies of elastic (ELEED) and inelastic
(ILEED) diffraction of slow electrons have uncovered
new possibilities for the investigation of SP. Thus,
in1-142' an attempt was made to reconstruct the disper-
sion relations and the damping at qi > 105 cm"1 from
ILEED data. The interpretation of the angular depend-
ences and of the absolute values of the intensities of the
reflected beams was based on a microscopic approach
(see, e.g.,[130>143], where an extensive list of references
is given), since it is impossible to describe fully all
these effects within the framework of the phenomenolog-
ical theory[ 8 ].

Direct optical excitation of SP was effected by various
methods. One of them, the PTIR method[ 1 0 2 a I, was al-
ready discussed in Chap. 6. Other methods are based
on the fact that the interaction of the nonradiative SP
with the radiation field can be effected on a nonideal
surface1 1 1 2 144-M6J. The reflection coefficient has a dip
near ωρ/·/~2ίΜ7\ the depth of which depends strongly
on the quality of the surface, illumination of a nonideal
surface excites SP that decay and emit light1144'148>149J.
An analogous effect is observed upon illumination of a
smooth surface on which a diffraction grating is pro-
duced[ 1 1 2 ). The spectral dependence of the photoemis-
sion produced by illumination of a nonideal surface has
a clearly pronounced maximum near ωρ//2~.(·1501

In the tunnel effect, SP produce a hump on the
d2I/dV2 plot against V near e V m a x = Κωρ/2~[ 1 5 1'
(see[ 1 5 2 ] for the theory). These experiments can yield
the value of Im wspf^i), which turns out to be 10—20
times larger than the theoretical value. We note that
to describe many of these phenomena it is necessary to
know the Hamiltonian of the interaction of the electrons
with the SP (see, e.g.,[ 1 5 3 )).

b) Surface magnons (SM). They are produced in the
magnon spectrum of ferromagnetic and antiferromag-
netic crystals in the presence of a boundary. As in the
case of phonon spectra, the boundary causes the ap-
pearance of SM that decrease slowly in amplitude away
from the surface—SO-I (magnetostatic surface modes)
and microscopic surface modes of the SO-II type. Modes
of SO-I type, which are due to the long-range magnetic
dipole interaction, can be described in the phenomeno-
logical approach, the calculation method being remines-
cent in many respect of that developed in Chap. 2 for
surface phonons. SM of the SO-I type were obtained in
connection with a study of ferromagnetic and antiferro-
magnetic resonances in an ellipsoid1391 and in a plate[ 4 0 1

(see also[ 1 5 4 1). The influence exerted on the SO-I by
their intersection with the volume-magnon spectrum
was recently calculated ίη^ 1 5 5 ) 1 5 β ] . The calculations were
performed with the aid of magnetostatics with allowance
for weak spatial dispersion. Although the same pro-
cedure is used in both papers, the conclusions of the
authors are different. It is stated in [ 1 5 6 ) that the SO-I of
ferromagnets vanish when the spatial dispersion is
taken into account. It seems to be more consistent to
speak of a broadening of the SO-I lines as a result of
the intersection with the volume magnon spectrum'1 5 5 1

(compare with the analogous situation for surface pho-

nons, as described in Chap. 3). Although the qualitative
conclusions concerning the influence of the intersection
of the SO-I with the continuous spectrum are correct,
nevertheless, as emphasized in Chap. 3, the phenom-
enological approach with allowance for weak spatial
dispersion can hardly yield good guantitative results,
since we are dealing here, generally speaking, with in-
tersection with the shortwave part of the volume spec-
trum. In particular, this method cannot be used to ob-
tain the sharp increase of the line width near the van
Hove singularities in the spectrum. An extensive bibli-
ography on SM can be found in [ 1 5 7 ] .

Besides SO-I, a study was also made of SO-II (see,
which appear in the magnon spectrum as a[158-16

e.g.,
result of perturbation of the exchange-interaction
forces near the surface. Since this interaction has a
short-range character, the surface perturbation sub-
tends over only several surface atomic layers, and the
calculation can be carried out with the aid of the stand-
ard Green's function method^1, initially developed for
the calculation of the SO-II levels in phonon spectrum.

At present there is no unified microscopic theory for
SM, within which SM of both types can be obtained in
analogy with the result for phonon spectra. Allowance
for the influence of the exchange-interaction forces on
the SO-I spectrum within the framework of the phe-
nomenological approach, with weak spatial dispersion
taken into account (see, e.g.,[161]) calls in our opinion,
for the reasons cited above, for an additional justifica-
tion. Since the Hamiltonian that describes the magnon
waves in an infinite crystal is known in the entire
wave-vector range (see, e.g,,[154]), such a microscopic
theory can be constructed by the same methods as were
used to calculate surface phonons (see Chap. 3).

We note that one usually deals with low-frequency
SM. On the other hand, high-frequency SM, which can
be investigated by optical methods, exist in antiferro-
magnets and ferrimagnets.

c) Surface excitons (SE). Surface states are pro-
duced also in molecular crystals. Since the Hamiltonian
describing a molecular crystal contains, generally
speaking, both a long-range contribution from the
dipole-dipole interaction and a contribution from the
short-range forces, this situation is quite similar to
that encountered by us in the analysis of surface pho-
nons in ionic crystals and SM. A theoretical micro-
scopic investigation of SE was carried out in[162~1651,
with only the interaction with the nearest neighbors
taken into account in [ l f f i ' 1 6 3 J , and the long-range Coulomb
contribution completely ignored, so that only SE of the
SO-II type could be considered. Ι η

[ 1 6 4 ' 1 β 5 ] the SE spectra
were calculated with allowance for the dipole-dipole
interaction forces, but a transition to the continual ap-
proximation was used from the very beginning in the
Hamiltonian, so that it was impossible to describe in a
unified manner the SE of both types. A phenomenologi-
cal theory for SE of the SO-I type was developed in[ 2 J ,
where the unity of the surface excitations of the type
SO-I in polarizable media was emphasized. A phenom-
enological theory with allowance for weak spatial dis-
persion, developed in [ 2 ' 1 5 1 , made possible a considera-
ble step forward in the study of surface excitations in
polarizing media. In particular, a study was made of
SE of SO-I type, for which Ε = 0 but D * 0, called sur-
face polarization waves, which can be obtained only
when account is taken of spatial dispersion and addi-
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tional boundary conditions are used for Maxwell's
equations. From among the recent theoretical results,
we note the study of SE on the boundary between a
molecular crystal and a metal1-3"1, where new surface
states are produced in the spectrum. The interaction of
SE with light was studied in [ 1 6 e ] , starting with an experi-
mental investigation of SE. In particular, it was noted
that SE exert an influence on the spectra of light re-
flection from the surface of a molecular crystal1 1 6 7 1

and on the luminescence spectra [ i e 8 ] in these crystals.

Among other types of surface excitations, we point
to surface piezoacoustic waves in piezoelectrics[ 1 6 9"m ],
and also surface helicons in conducting crystals'1 7 2 1.

1 6 )It appears that some manifestations of the interaction of surface
plasmons with phonons were observed in [ u 8 ] , but the imperfect ex-
perimental procedure made the interpretation of the results obtained
there difficult.

17)The width of the dispersion of the surface phonons in InSb is small
because CJJQ is close to CJLQ (i.e., e 0

 i s c l o s e t 0 e°°)> a n l * amounts to
only 10 cm"1.

l8)Certain investigations for SP in semiconductors are described in Chap. 7.

HIn addition, adsorbed atoms can be present on the surface and can make
their own contribution to the surface-excitation spectrum. We shall, how-
ever, neglect this circumstance and discuss only chemically pure surfaces.

2)Surface plasmons have by now been sufficiently well investigated both
theoretically and experimentally, and the pertinent bibliography con-
tains hundreds of papers (see, e.g., the review [10] and also Chap. 8 of
the present article).

3)There seems to be an error in [**] (see [4 S]).
4)Similar methods were used in t 6 0 " 6 2 ] to calculate the spectra in non-

ionic crystal plates.
^According to [ " ] , the low-frequency surface modes on Fig. 4 decrease

rapidly in amplitude and pertain to SO-II.
6)The intervals of q^ used in the calculations of ["] were too large, so

that it was impossible to observe the mode repulsion at small q^, inas-
much as at Ν = 15 the region where the SO-I have a strong dispersion
is of the order of 1 /15 of the value of qĵ  at the boundary of the Bril-
louin zone.

7'When the interaction with the more remote neighbors is taken into ac-
count, the order of the determinant increases as a result of the appear-
ance of additional variables that come from the contributions of the
type A ^ ( J k , ) exp (2iq'za) etc. to Λ.

8)This result follows directly from (3.6) if the term integral in q z is dis-
carded and the matrix C is replaced by its long-wave limit.

"The quantity q z in a plate (normal along the ζ axis), which enters in
expression (38) of [ 7 3 ] , is not a wave vector in the true sense of the
word. In particular, the momentum conservation law is not satisfied
for q z in the case of interaction with a free electron, owing to the ab-
sence of spatial homogeneity along the ζ axis. However, in analogy
with the case of an infinite crystal, q z = 2irn/L, η = 0, 1, 2 , . . . , N - l .

10)More accurately, one should write |£|(ω)€||(ω)| = 1, where both e^
and 6M should be negative. For a detailed analysis for anisotropic crys-
tals see Chap. 6.

u ) I n [78] they considered, in addition to ionic crystals, also the case of
homopolar crystals (silicon). The diffraction of electrons reflected
from the surface of silicon was experimentally investigated in [ 7 9 ] .

ι α Ί η [ 8 4 ] , the band near CJ^Q was present in the transmission spectrum
of KBr alongside the surface band up to d ~ 0.3μ. The reason for this
disagreement with the theory was not explained.

'®This distinguishing feature is completely neglected in certain most re-
cent works on the dynamics of ionic crystals ["]. The frequencies of
the minima in the transparency spectra of powders of a number of
crystals (CaF2, MgO, ZnS) receive a patently incorrect interpretation
by the authors of these papers.

14)The method proposed in [ l m ] differs from the usual PTIR proce-
dure [ l 0 3] in the presence of a gap between the prism and the investi-
gated crystal. This plays an important role in the investigation of non-
radiative modes. The size of the gap in the experiment should be large
enough to reduce to a minimum the perturbing action of the prism on
the surface-mode characteristics (for details see [ 1 0 4 ] ) . This fact, which
is of importance for the experimental procedure, is analyzed in [18S]
by means of a response function introduced there for the surface modes.

l 5 ' ln analogy with surface phonons, surface plasmons in a plate are non-
radiative and therefore do not interact directly with light on a smooth
surface. In [ m ] and in some other studies of surface plasmons (see,
for example, [ l l 2 ] ) a periodic grating was deposited on the surface of
the sample, with a distance d between the lines (grooves). Then the
condition for momentum conservation in interaction with light takes
the form q x = (ω/c) sin φ + η (27r/d) (η is an integer), i.e., the momen-
tum is conserved accurate to the "reciprocal lattice vector."
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