
Renormalizable models of the electromagnetic and weak
interactions1)

A. I. Valnshtein and I. B. Khriplovich

Nuclear Physics Institute, Siberian Division, USSR Academy of Sciences

Usp. Fiz. Nauk 112, 685-709 (April 1974)

This review examines the renormalizability of various theories of vector fields. A discussion is given

of how renormalizable theories in which the mass of a vector field arises from spontaneous symmetry

breaking are used to construct models of the weak, electromagnetic, and strong interactions. Certain

specific schemes and the experimental bounds on the parameters of these schemes are analyzed.
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1. INTRODUCTION

In 1934 Fermi C l ] proposed a description of the β
decay of the neutron in terms of a point interaction of
two vector currents (ργμϊί)(βγμΐ>). The analogy of this
model with quantum electrodynamics is obvious. The
current local variant of weak-interaction theory differs
from the original version mainly in that it allows for
parity non-conservation, i.e., it makes use of a linear
combination of vector and axial-vector currents [2,3]

Moreover, the current theory describes not only β
decay, but also a large number of other weak processes,
an important circumstance being the universality of the
weak interaction. The effective coupling constant turned
out to be precisely the same for such diverse weak re-
actions like β decay, muon decay and muon capture by a
proton. The simplest way of explaining universality is to
assume that the weak interactions are mediated by a
charged vector boson which has the same coupling con-
stant with all the currents, in the same way that the
electric charge-the coupling constant of the photon with
the electric currents of different particles-turns out
to be the same. Although the intermediate vector boson,
unlike the photon, must be massive (indeed, long-range
weak interactions do not exist), there is no doubt that the
theory involving an intermediate vector boson is similar
to electrodynamics. In this respect, it seems very na-
tural to endeavor to construct a unified theory of the
weak and electromagnetic (WEM) interactions [ 4~6 ].

Weinberg :71 and Salam C8] proposed a scheme in
which one starts with a Lagrangian for massless vector
fields of the Yang-Mills type. The masses of the vector
particles are due to their interaction with scalar fields
having non-zero vacuum averages. Such a mechanism
for the origin of the mass was first considered by
Higgs [ 9 ] (see also [ 1 0»"3).

There has recently been a rapid proliferation in the
number of models of this type which describe the WEM
interactions [ 1 2 - 2 4 ] . The development of this approach
was stimulated by the success of the theory of gauge
fields and, in particular, by the work of G.'t Hooft ,
who proved that such models are renormalizable.

The essence of the matter is that, in the ordinary
four-fermion theory of the weak interaction, the am-

plitudes in the Born approximation grow as a power
of the energy, resulting in a violation of the unitarity
condition at energies exceeding a few hundred GeV
(in the c.m.s.). Moreover, the fact that the Born am-
plitudes grow with energy makes it impossible to calcu-
late the radiative corrections, even for low-energy
processes. The higher the order of perturbation theory,
the higher the degree of divergence; in other words, the
theory is nonrenormalizable (see the review C 2 6 ] ) . The
introduction of the intermediate vector boson does not
in itself render the theory renormalizable. Although it
is possible that the difficulties in nonrenormalizable
theories are merely a reflection of our inability to go
beyond the framework of perturbation theory, renor-
malizable theories nevertheless seem preferable.

There are now numerous renormalizable models of
the WEM interactions of leptons and hadrons. With these
models, one can calculate higher-order effects (of
course, without allowance for the strong interactions)
by making an expansion in the small constant α/π, as
in ordinary quantum electrodynamics.

The present review is devoted to the study of these
models. The renormalizability of various vector theo-
ries is discussed in Sec. 2. The criterion for renormal-
izability which we use is that the Born amplitudes in the
asymptotic energy region must not exceed the unitarity
limit 2 7 ] . It is shown that the theory of a massive Yang-
Mills field is nonrenormalizable if the mass is intro-
duced as input and is renormalizable if the mass results
from spontaneous symmetry breaking. It is explained
why an additional scalar particle must be introduced to
render the theory renormalizable. Variants of the re-
normalizable electrodynamics of vector bosons are also
considered here.

In Sec. 3 we describe models of the WEM interactions
of leptons. This section begins with a discussion of what
symmetry such schemes must possess and what additional
particles must be introduced in them.

We then discuss Weinberg's model C73, which involves
neutral weak currents, and the model of Georgi and
Glashow 1 5 ] , in which such currents are absent. We
give the constraints on the parameters of these theo-
ries which follow from the experimental data.
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In Sec. 4 of the review we discuss the incorporation
of hadrons in the renormalizable schemes. Strong ex-
perimental constraints on the neutral strangeness-
changing hadronic currents imply that the symmetry
of the strong interactions must be higher than SU(3).
We discuss a generalization of Weinberg's model to the
case of hadrons t l 2 " 1 4 ]

; when these requirements can be
satisfied at the cost of introducing a fourth quark C28].
At the present time, this model is at the verge of being
incompatible with the experimental data on the neutral
strangeness-conserving hadronic currents. Neutral
weak currents are generally absent in schemes for the
WEM interactions of hadrons Cl5>19>20] which generalize
the Georgi-Glashow model. At the end of the section, we
give a brief discussion of the utilization of renormaliz-
able vector theories in giving a unified description of the
strong, electromagnetic and weak interactions of
hadrons t 2 2 ] .

The Appendix contains a prescription for obtaining the
Feynman rules for the Lagrangians of the vector fields
considered in the review.

This review is not intended to provide a comprehen-
sive exposition. In particular, we do not consider the
complications connected with anomalies in the diver-
gence of the axial-vector current [ 2 9 3 . Such anomalies
occur when allowance is made for the diagrams with
fermion loops, and they generally lead to the nonre-
normalizability of the theory. However, in many
models1 1 3 ' 1 5"2 2 ' 3 0"3 2 3 there are cancellations among the
anomalous contributions of different fermions. More-
over, for certain physical processes, these complica-
tions appear only in high orders of perturbation theory.
It is mainly because of this last circumstance that we
do not discuss the foregoing set of problems.

Another interesting problem which is not discussed
here is the possibility of calculating relations among the
masses of elementary particles in renormalizable
theories [ 2 3-3 3"3 6 ] .

In addition, we do not consider the theoretical
papers [ 3 7~4 4 ] devoted to various proofs of renormaliza-
bility, the derivation of Ward identities, and the con-
struction of gauge-invariant methods of regularization
for vector fields.

To conclude the introduction, we call the reader's
attention to the rather detailed review U 5 ] , which contains,
in particular, information about the problems that are
not considered here (see also t 4 e>4 7 ]).

2. RENORMALIZABLE VECTOR THEORIES

a) Our criterion for renormalizability is the fulfill-
ment of the unitarity condition for the asymptotic be-
havior of the Born amplitudes for real processes in the
energy region bounded by the condition (α/π) ln(E/m)
< 1. It is easy to see that this criterion is equivalent to
the usual one. In fact, from the Born amplitudes one can
reconstruct the Lagrangian in terms of the fields that
describe the physical degrees of freedom. In the case of
"good" Born amplitudes, this Lagrangian is renor-
malizable, as can be seen from a dimensional analysis.

The radiative corrections can be expressed directly
in terms of integrals of the Born amplitudes by using
the conditions of analyticity and unitarity for the closed
loops. A good asymptotic behavior of the Born ampli-
tudes then guarantees that the number of subtraction
constants is finite.

Vector theories are characterized by the existence
of relations that follow from gauge invariance. The re-
quirement that these relations are satisfied in higher
orders leads to the problem of gauge-invariant regulari-
zation in the Lagrangian approach. This problem does
not arise in the approach based on unitarity and analy-
ticity, since the Born amplitudes are known to be deter-
mined unambiguously. In this case, however, it is as-
sumed that the gauge-invariant tensor structures can
describe not only the imaginary part of the amplitude
(which is obvious in the case of diagrams with one
closed loop), but also its real part. The latter turns out
to be impossible for fermion diagrams that give
anomalies in the divergence of the axial-vector cur-
rent : 4 8 ] . The anomalies violate gauge invariance and,
when they appear, this leads to the nonrenormalizability
of theories of vector fields with spontaneous mass gen-
eration (see, e.g., [ 1 3 : ) .

We shall first consider the renormalizability of
massless vector fields of the Yang-Mills type . We
recall that conserved currents provide the sources of
the vector fields in such theories. The corresponding
charges are the generators of the symmetry group of
the Lagrangian.

In particular, the group SU(2), which has three gen-
erators, corresponds to a triplet of vector fields bμ,
whose Lagrangian has the form2)

-=-iAvi 1>μν Ι>ν] .

The fields describing particles with definite charges
are related to the hermitian fields bμ as follows:

(1)

(2)

Let us check that the criterion for renormalizability
is satisfied for the elastic scattering amplitude for vec-
tor particles. In the case of the process b+b~ — b*b~,
this amplitude is described by the diagrams shown in
Fig. 1. It is easy to obtain from the Lagrangian (1) the
following expressions for the vertices:

fc-K-6rt(ft_-fcoV-fi)iu(*<>-fc+)vl. (3a)

Γμνΐί" V (2δμ As - ( 3b)

In writing Eqs. (3a) and (3b), we regard all the particles
as outgoing. As to the propagator of the vector field,
its longitudinal part cannot be determined without im-
posing supplementary conditions, as in the case of the
photon propagator in quantum electrodynamics. How-
ever, this part drops out of the expression for the Born
amplitudes if the external particles are real. In fact,
it follows from (3a) that

= 2g [(ft! - kl) δμν - ft+μΛ+ν + fc-μΛ-,] βμ (ft+) 8ν (ft.) = 0 ,

provided that
(4)

(4a)
The conditions (4a) are known to be satisfied for real
states.

Thus, the amplitude for the process b+(ki) +b"(k2) —
b+(k3) +b"(k4) can be represented in the form
Λί = εμ(Αι,)εν(Α:2)ε«(/£3)ελ(&4) ΓΓ+ΓΡ° (-*2, - * „ *i + fe)

I-

x rfe" (fe, K, - k3 - kt)+r+ro° (ft,, - ft,, ft, - ft,)
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Since the three-dimensional transverse polarization
vectors of massless particles do not grow with energy,
the asymptotic behavior of the amplitude Μ corre-
sponds to a renormalizable theory. We note that the
partial amplitudes in this case contain a divergence due
to the exchange of a massless particle, but this diver-
gence has no bearing on the high-energy behavior.

It is easy to see that all the Born amplitudes have a
good high-energy behavior (the same behavior as in the
electrodynamics of scalar particles, for example), so
that the theory is renormalizable. The renormalizability
is preserved when allowance is made for an interaction
with fields of spin 0 and l/2, provided that a minimal
coupling is introduced as an interaction with the isospin
current.

A massive vector boson differs from a massless one
by the presence of a state with zero helicity. The corre-
sponding polarization vector has the form

|k| (6)

grangian of a Yang-Mills field leads to nonrenormaliza-
bility, it is natural to turn to theories [ 9 ) 1 1 ] in which the
mass of a vector field arises from spontaneous sym-
metry breaking.

Let us consider a gauge-invariant Lagrangian de-
scribing the interaction of a Yang-Mills triplet bμ with
a doublet

where ni/ = (l, 0, 0, 0). The growth of £„ with energy
in the general case can lead to a growth of the Born
amplitudes that is inadmissible for renormalizable
theories.

In the case of a neutral vector field, the term k^/μ
in Eq. (6) for ev does not contribute to the amplitudes
for physical processes if the current is conserved. In
the case of mutually interacting vector fields, it is also
natural to expect that the high-energy behavior of the
amplitudes is best in theories of the Yang-Mills type, in
which the currents are conserved. However, if a mass
is introduced in the Lagrangian (1) in the usual way by
adding to it a term (ΐ/ΐ)μ2\)μ -b^, then current conser-
vation, while giving a partial reduction in the rate of
growth of the amplitude, does not guarantee renormali-
zability :so-»2].

To prove nonrenormalizability, it is sufficient to con-
sider the elastic scattering amplitude of charged quanta
of zero helicity (see Fig. 1). The propagator of a massive
vector particle has the form - ί ί δ μ ^ - ^ μ ^ / μ 2 ) ] ^ 2 - μ2)"1.
However, the terms proportional to kμkί, do not con-
tribute, as in the massless case, by virtue of the rela-
tions (4) and (4a). Therefore the expression for the Born
amplitude can be obtained from (5) by making the sub-
stitution l/k2 — l/(kz-M2). Using Eq. (6) for the polari-
zation vectors, we find that in the asymptotic region
the Born amplitude grows quadratically with energy (in
the c.m.s.):

Μ : (7)

If the interaction were not of the Yang-Mills form, this
amplitude would grow like the fourth power of the en-
ergy, but in our case there is a cancellation among
such contributions from different diagrams. However,
a quadratic growth is sufficient for the renormaliza-
bility of the theory.

b) Since the usual introduction of mass in the La-

9 =

of scalar fields:

(8)

in this equation

Ομφ = 3 μ φ — ig (τ1)μ) φ , ( 8 a )

and r are the Pauli matrices. The Lagrangian (8) is anand r are the Pauli matrices. The Lagrangian (8) is
invariant of the following gauge transformations t 4 9 : l :

(9)

where S is a unitary unimodular matrix depending on
the coordinates, and bμ = τ · b μ .

We note that the mass term of the field φ has the
opposite sign to the usual one. Owing to the "wrong"
sign, the solution φ(χ) = 0 does not correspond to the
minimum of energy when the fields are regarded as
classical fields. This minimum is given by x-indepen-
dent solutions for which φΙφο = ΐα2/2ί2. The orientation
of the axes in isotopic space can always be chosen so
that

1/2/ \ 1 / V 1 U '

We shall take the " t r u e " field to be the difference <p(x)
— ψο, which can be represented in the form

where σ and φ are hermitian fields.

We note that all considerations relating to the field
<p(x) may be omitted and that one can avoid attaching
any physical significance to this field, but instead re-
gard as fundamental the Lagrangian of the fields bμ, σ
and φ that results when (11) is substituted in (8). This
Lagrangian is, as before, gauge invariant. Gauge trans-
formations of the fields σ and φ can be obtained by
substituting (11) in (9). To ascertain what particles are
described by the theory, it is convenient to choose a
gauge in which φ(χ)= Ο. In this case, the Lagrangian has
the form

L = - 1 i g2 (-f- + cr) σ - mV - /mô  _ JL o*

(12)
This Lagrangian describes a triplet of vector fields bμ
with a mass μ = gm/f (in the ordinary Proca formal-
ism C53]) and a scalar field σ with a mass m/2. The
above-mentioned mechanism of generating the mass of
a vector field as a result of its interaction with a scalar
field having a non-zero vacuum average is known as the
Higgs phenomenon.

What would spontaneous symmetry violation give if
the interaction with the vector field bμ is switched off?
Substituting (11) in (8) and putting b^= 0, we find the
well-known Lagrangian of the σ model C 5 4 : ,
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11. (13)

This Lagrangian describes a field σ with mass m/2 and
a triplet of zero-mass fields φ. The statement that
spontaneous symmetry breaking leads to the appearance
of mass less part icles is the essence of the Goldstone
theorem C 5 5 ' 5 6 ] .

With spontaneous symmetry breaking in the presence
of a mass less vector field, the fields φ may be inter-
preted as the zero helicities of a vector field which ac-
quires a m a s s , so that no mass less particles remain in
the theory. This is a result of the Higgs phenomenon.

We shall now discuss the renormalizability of the
foregoing theory of vector fields. Let us examine the
high-energy behavior of the elastic scattering amplitude
of two charged zero-helicity quanta in this theory. For
this process , the Lagrangian (12) gives, in addition to the
diagrams of Fig. 1, new diagrams (Fig. 2) connected with
the introduction of σ part icles (indicated by dashed lines).
It is easy to derive the following expression for the
matrix element corresponding to the diagrams of Fig. 2:

( e ' e a ) ( 8 3 e < > (e'e3) ( e ' e 4 > 1

Substituting €i in the form (6), we see that there is a
cancellation between the part of Μ which grows with
energy (see (7)) and ΔΜ, so that the amplitude M + ΔΜ
does not exceed the unitarity limit.

For the general discussion of processes involving
zero-helicity quanta C573, it is convenient to go over to
the Coulomb gauge, in which the field bμ satisfies the
three-dimensional transversality condition 9mbm = 0 and
describes quanta with helicities ±1, while zero-helicity
quanta are described by the fields φ. A standard analy-
sis of the Lagrangian that results when φ(χ) from (11)
is substituted in (8) indicates that all the Born ampli-
tudes have a good asymptotic behavior (the same be-
havior as in scalar electrodynamics, for example), so
that the theory is renormalizable.

From our point of view, a major feature of the
scheme is the fact that, owing to the non-zero vacuum
average of the field φ , the scalar fields φ may be
interpreted as the zero helicities of the vector fields.
The renormalizability of the theory itself is obvious.
The point is that neither the masses of the particles
nor the shifts in the fields that are proportional to these
masses show up in the high-energy behavior of the Born
amplitudes corresponding to the Lagrangian (8). In
other words, the amplitudes behave asymptotically in
the same way as in a renormalizable theory of a mass-
less Yang-Mills field interacting with a doublet of
scalar particles.

Although the Coulomb gauge enables us in principle
to ascertain the renormalizability of the theory, it is
inconvenient for concrete calculations, owing to its
lack of covariance. The Proca gauge, in spite of its

ev(k2)

covariance, is also inconvenient for calculations of
the radiative corrections, as the contributions of the
individual diagrams in this gauge are highly divergent.
The Feynman rules for vector fields of the Yang-Mills
type in "good" covariant gauges have been constructed
by De Witt [ 5 8 ] , Faddeev and Popov [ 5 9 3 and Fradkin and
Tyutin C60] using a functional integration method. We
give a prescription for obtaining these rules in the
Appendix at the end of this paper.

c) We would like to indicate, from a somewhat differ-
ent point of view [ 6 1 3, why it has been found to be nec-
essary to introduce an additional scalar particle in order
to obtain a renormalizable theory of massive vector
fields3'.

Vector theories are characterized by the presence
of a symmetry group related to the local gauge trans-
formations. In order to study the consequences of this
symmetry, it is convenient to transform to the Coulomb
gauge by means of the substitution

-1θμ£/. U-ήυ, δμ = (15)

where b^ satisfies the condition 3 m b m = 0 (m= 1, 2, 3)
and describes quanta with helicities ±1, and U is a
unitary unimodular matrix determined by three fields

[ / ] [ / ] 1

The fields ζ(χ) correspond to zero-helicity quanta.
Gauge invariance for the fields b^x) and £(x) leads
to invariance with respect to coordinate-independent
transformations

(16)

For the fields ζ, these transformations are obviously
not the same as the isotopic transformations. As a re-
sult, the full symmetry group of the theory in question
is SU(2) ®SU(2), and the fields ζ form a nonlinear re-
alization of the (l/2, l/2) representation of this group,
in analogy with pions in chiral SU(2) ® SU(2) symmetry.
For this reason, when mass is introduced in the usual
way in a vector theory, the Lagrangian of the zero-
helicity fields has the form c

_ J _ ^μξ̂ μζ
2 [1 - (Π)

in agreement with the well-known Lagrangian for
pions t 6 2 ] . The essential nonlinearity of Eq. (17) leads
to the nonrenormalizability of the theory.

However, if there is an additional scalar particle
in the theory, it is possible to have a linear realiza-
tion of the (1/2, l/2) representation of the group
SU(2)®SU(2). In this case, it is no longer necessary
for the Lagrangian to be essentially nonlinear.

The renormalizable and SU(2)®SU(2) invariant
Lagrangian of four hermitian fields σ and φ has a
uniquely determined form C 5 1 ]:

L = -i- Sp [όμΦ*5μΦ + »ι2Φ*Φ - f (Φ+Φ)2];

here the matrix Φ is given by

(18)

(18a),

This quantity behaves like a spinor in each of the in-
dices individually, in accordance with the SU(2)®SU(2)
symmetry of the Lagrangian. It is easy to see that the
Lagrangians (18) and (13) coincide if we take into ac-
count the relation cr=(m/f) + a.
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We note that the Lagrangian (12) of the physical
fields bμ and σ possesses only isotopic symmetry.
These fields are singlets with respect to the spontane-
ously broken subgroup of the symmetry. However, at
large momenta, when all the masses can be neglected,
we recover the original SU(2)®SU(2) symmetry: the
field σ and the zero helicities of the fields bμ are again
grouped into a quadruplet. The theory in question can
therefore serve as an example of the realization of an
asymptotic symmetry.

d) Bearing in mind the description of the electromag-
netic interactions, let us indicate how to incorporate a
massless vector field in the scheme under consideration.
We must introduce in the Lagrangian (8) a singlet aμ,
which interacts with the hypercharge current of the
field φ . To do this, we must add to (8) the Lagrangian
of the free field aμ and define Όμψ as follows:

£>μφ = όμφ - ig (τ!>μ) φ + ig'a^ φ . (19)

As a result, the Lagrangian of the vector and scalar
particles has the form

L= - | (20)

here aμI,= 9μa^.-^^yaμ.

It is easy to see that, owing to the spontaneous sym-
metry breaking (the non-zero vacuum average of the
field φ), the linear combination of neutral vector fields

?'«μ) (21a)

acquires a mass μζ = (Vg2 + g'2/f)m, while the field

Ve2 he'2
(21b)

remains massless.

On the other hand, one may construct a theory in
which there is only a triplet of vector fields and a mass
occurs only for the charged particles. To construct
such a scheme, one must use, instead of the doublet φ ,
a Hermitian triplet of scalar fields, whose neutral
component has a non-zero vacuum average. The re-
maining components of the triplet describe the zero
helicities of the charged vector fields. The explicit form
of the corresponding Lagrangian is given below (see
Sec. 3c).

These schemes may be regarded as renormalizable
models of the electrodynamics of vector bosons.

3. MODELS OF THE WEAK AND ELECTRO-
MAGNETIC INTERACTIONS OF LEPTONS

a) In the models under consideration, the weak inter-
actions are mediated by massive vector bosons. We
know that some of them must be charged in order to
describe the known weak processes. In order to make
the electromagnetic interactions of vector bosons re-
normalizable, it is necessary, as we have seen, to
introduce a neutral scalar particle.

Now the interaction of the vector bosons with leptons
must be introduced in such a way that the currents —the
sources of the vector fields-are conserved, as before,
otherwise the renormalizability will be violated. The
charges corresponding to these currents are the gener-
ators of the group SU(2) in the case of three vector fields
and the group SU(2)®U(1) in the case of four vector

FIG. 3 FIG. 5

fields. The leptons must therefore be combined into
multiplets of the group SU(2), which we shall call iso-
topic multiplets (in analogy with the hadrons).

If the model involves only the three vector fields
\Υμ, W^ and the electromagnetic field Αμ, they interact
with the isospin current of the leptons . In this case,
the electric charge coincides with T3, the third projec-
tion of the isospin, so that the average charge of the
leptonic multiplets must be equal to zero. If the con-
servation of muonic charge is taken into account, then
the known leptons (e, ue and μ, ί̂ μ) can be grouped only
into singlets and doublets, and the average electric
charge of the doublets is non-zero. To construct multi-
plets with zero average charge, we must introduce
two new charged leptons - partners to the e, ve and to
the μ, νμ. Moreover, to describe parity non-conser-
vation, we must introduce two more neutral heavy
leptons. We shall return to the discussion of this model
below (Sec. 3c).

If, on the other hand, we do not introduce any new
leptons, we must attribute hypercharge to the leptons in
order to obtain the correct relation between the electric
charge and the isospin projection. An additional iso-
scalar vector field interacts with the hypercharge cur-
rent (see Sec. 2d).

The need to introduce an additional neutral vector
boson or new leptons in a renormalizable theory may
be illustrated by the following example [ 4 5>6 3 ] . Let us
consider the process vevG — W+W~. In the ordinary
weak-interaction theory involving an intermediate vector
boson, this process is described by a single diagram
(Fig. 3). In the case when zero-helicity quanta are pro-
duced, the corresponding amplitude grows quadratically
with the energy. When additional particles are incor-
porated in the theory, this growth is compensated by the
contribution of the diagram involving a neutral vector
boson in the s-channel (Fig. 4) or by the contribution of
the diagram involving a fermion pole in the u-channel,
corresponding to a new charged lepton (Fig. 5).

b) In this subsection we shall discuss the model of the
WEM interactions of leptons proposed by Weinberg t 7 ] .
In this model, there are no new leptons, while the known
leptons are grouped into a doublet

and a singlet R = eR, where ZL,R = [(1 ± ys)/2]l. The muon
and the muonic neutrino are incorporated in the theory
in analogy with the e and ve. Therefore we do not
write out the corresponding expressions explicitly in
what follows.

Defining the hypercharge Υ by the relation Q = T3

+ (Y/2), we find that Y=-l for the doublet and Υ =-2
for the singlet.

The Lagrangian for the interaction of the leptons with
the vector bosons is constructed from the free Lagrangian
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(22) tral currents. It follows from the bound (29) that [65]

as in electrodynamics by extending the derivatives

(23)

where T are the isospin matrices, and Υ is the hyper-
charge of a particle. Specifically,

L, (23a)

-m,
(25)

The leptonic part of the Lagrangian (see (22) and
(23a)), expressed in terms of these fields, can be writ-
ten in the form

L, = ν,ίγμ -

= =
(26)

, ,.μβγμ β + -4=- [ « > , ν μ (1 + V») β + WS«Yn (1 + Υ») ν.1

+ 4 - V F ^ f F * Ζμ Γεγμ ( v r f ^ - - Y s ) e + *«Υμ(! + Υ») v * l

+ («]-»• μ, ν,-»-νμ).

It follows from this expression that the electric charge
e and the weak-interaction constant G are given by

=-s=2gsin6,

As a result, we have the following bounds:

(27)

(28)

The existence of neutral weak currents is character-
istic of the model. We note that they do not have the
V-A structure for electrons and muons.

The neutral currents as well as the ordinary charged
currents contribute to the scattering of ve and Pe by
the electron. At the present time, there exists the ex-
perimental bound (with 90% confidence)

(29)σ (v,e - e) < 3,0σν_Α (vee -»- v«e),

where σγ_Α is determined by the standard V-A theory
of the weak interactions [ 2 ] , in which there are no neu-

(30)

As to the electron mass, its conventional inclusion
in the Lagrangian would violate the symmetry and hence
the renormalizability of the theory. However, if we
introduce a renormalizable interaction of the type

—h (LyR + Rtp+L), (24) here

then the electron mass appears as a result of the c-
number part of φ, the doublet of scalar fields. At the
same time, there is also an interaction of the field σ
with the electron.

This mechanism of producing the electron mass, like
that of producing the mass of a vector field, represents
a spontaneous symmetry breaking. The symmetry is
recovered in the region of large momenta.

We have already considered the form of the interac-
tions of vector particles with each other and with the
scalar field σ (see (20)). As we pointed out in Sec. 2d,
there is a definite mass for the fields

w ± u± b'n Ψ 1& g '

Other leptonic processes that are crucial for testing
Weinberg's model are the reactions of scattering of νμ
and Ρμ by the electron, which proceed purely as a result
of the neutral currents [ 6 5 ' 6 6 ] . The existing experimental
data lead to the following bounds on the cross sections
and the mixing angle[67>68]:

σ (νμβ

σ(νμε -

0.1 < sin2 θ < 0.6; J
(31)

)= 1 ·6Χ10" 4 1 cm2

As to the interaction of the scalar field σ with the
leptons, the corresponding constant

(32)

is very small (2x 10"6 for the e and 4x 10"4 for the μ).

We note that the weak-interaction contribution to the
g-factor of the muon in the scheme under consideration
is of order t 6 9 ]

1/2 8π2
- ΙΟ"8,

while the existing experimental accuracy is ~3 x 10"7

(see t 7 0 ] ) . Although the radiative corrections may be
~α/ττ in the general case (when μ·ζ,~μψ~πή, the con-
tribution to the g-factor contains the square of the
lepton mass. The point is that the original interactions
conserve helicity in the limit of zero lepton mass.
Consequently, the helicity-flip weak-interaction con-
tribution to the anomalous magnetic moment is equal
to zero in this limit, so that

* * - • £ >

c) We now turn to the discussion of the model in
which the only neutral current is the electromagnetic
current and the vector fields form a triplet bμ:

As we pointed out in Sec. 2d, the charged fields Wμ
acquire a mass as a result of the interaction with the
triplet of scalar fields φ. The corresponding Lagrangian
has the form C 2 5 ]

Lv=-4- γ (<VP - e\ Χ <ρ) (3μφ - e\ Χ φ) + -

(33)

here bμl, is defined by Eq. (1) with the substitution
2g—-e. As in the model discussed in Sec. 2b, the
neutral component of φ has a non-zero vacuum average,
<p3 = m/f + a. As to the fields φ±, they can be eliminated
by a choice of the gauge. The mass of the fields W^ is
equal to μ-\Μ = {β/ί)ηι; of course, the electromagnetic
field Αμ remains massless.

In this model, the leptons must be grouped into a
multiplet with an average electric charge equal to zero
(see Sec. 3a). The number of new particles is then
minimal if the leptons are combined into a triplet Ε:

(- V2
(34)
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here X*, ν' and e~ are four-component spinors, e" de-
scribes the electron, and X+ is a new charged lepton,
whose mass must be sufficiently large to avoid a contra-
diction with experiment. As to ν', this spinor cannot
describe only the electronic neutrino, since it has four
components. The two "ext ra" components describe a
right-handed state, so that the theory contains a new
neutral lepton X°. If the mass of the X° were equal to
zero, this lepton would simply be a right-handed neu-
trino with exactly the same interaction as the ordinary
left-handed one. In other words, parity would be con-
served. However, this was to be expected, since the
weak currents and the parity-conserving electromag-
netic current appear in a single multiplet. Thus, parity
is not conserved only because of the non-zero mass
of the X°.

The spinor v' can be represented as follows:

v' = vj.sinp + XlcoSp + X&, (35)

where Χ^^ = (ΐ/2)(1±γ5)Χ°, and β is the mixing angle
of the X^ and 1^. The combination that is orthogonal
to I>L is

s L =—v t cos β H-XL sin β (36)

and is a singlet of the group. The invariant Lagrangian
of the leptons can be written
Li --- Εί'γμ (<3μΕ — e ^ μ , Ε]) + SLiy^s,,

— η?0ΕΕ + ίΛ,φ[Ε, Ε] — λ 2 φ (EsL + ^.Ε")•

(37)
The μ, ν μ and the two heavy leptons Υ*, Υ° c o r r e -

sponding to them are incorporated in the theory in pre-
cisely the same way, so that all our considerations refer
equally to the muonic multiplets. We note only that
μ-e universality is not a necessary consequence of the
scheme under consideration and is achieved only with
identical mixing angles in the electronic and muonic
multiplets.

Unlike Weinberg's model, the symmetry group in
this scheme does not contain parity-changing transfor-
mations. This allows us to introduce an " i n p u t " lepton
mass in the Lagrangian (the term -moE -E in (37)). The
last two t e r m s in (37) split the lepton masses , as a re-
sult of the non-zero vacuum average of the field (φ)0

= (0, m/f, 0). For the mass t e r m s of the leptons to be
diagonal, it is necessary that

2m*o cos β = m**-f me. (38)

We now give the explicit form for the interactions of
the leptons with the vector fields:

Moreover, the effect of the weak interactions on the
g-factor of the muon turns out to be conspicuously large.
The corresponding contribution is given by C71~73]

'ΔίΓμ am^myj , . „ ,
— = 2^T < 4 2 '

We have given the result under the assumption that
ray0 = my*/2 cos |3 « μ\ν ~ m^. Experimentally [ 7 0 ] ,
- 3 x 10"7 < AgM/2 <9x 10"7 (with 95% confidence). Taking
into account the experimental bound C74] m y ' >2.4 GeV
and the inequality (41), we find that

i i n t.,. _ e
1 sin β [ ν 7 μ (1 + ? 5 ) e _ Χ + γ μ (1 + Ϊ 5 ) ν]

+ h.C. + βΑμ (e-y№e- - Χ^Χ+) + (β-+μ, ve-* νμ, Χ+· ° - Υ+· °).

The weak interaction constant G in this scheme is given
by

G /2sin2ft _ ezsin2P

^ 2 ^m2 ^!ltv

from which we obtain for

1/ V2TO „,.
52.8 GeV.

In contrast with Weinberg's model, the interaction of
the field σ with the leptons may be appreciable. The
appropriate constant for electrons is equal to

/

2.4 GeV <mYl< 8 GeV, 28 GeV. (43)

(40)

(41)

It is easy to estimate the lifetimes of heavy leptons.
The widths of their leptonic decays are found from the
Lagrangian (39), for example Γ(χ+ — leptons)
= 10u(mx*/GeV)2 sec"1. If the total probability of had-
ronic decays is of the same order of magnitude, then
the lifetime is τ χ £ ΐ θ " 1 1 sec for ηιχ~1 GeV. A de-
tailed theoretical discussion of the properties of heavy
leptons can be found in [ 7 5 ] , and the experimental situa-
tion on the search for such particles is described in
the review C763.

With this we conclude the description of the WEM
interactions of leptons. The scope of the discussion has
excluded the models of C l 6>1 7 ]

> which incorporate both a
neutral boson and heavy leptons, without the term
vy μζΙ + Τ'*) in the neutral current. We have also not
considered models Ε23>24: involving a larger number
(>4) of vector bosons.

4. DESCRIPTION OF THE WEAK AND ELECTRO-
MAGNETIC INTERACTIONS OF HADRONS

a) We turn now to the problem of including hadrons in
the foregoing schemes. Like the leptons, the hadrons
must realize a representation of the symmetry group of
the weak and electromagnetic interactions (SU(2) in the
case of three vector fields, and S U ( 2 ) L ® U ( 1 ) in the case
of four vector fields). Consequently, the full symmetry
group of the strong interactions must include the above-
mentioned symmetry as a subgroup. To preserve the
renormalizability, this subgroup of the symmetry need
not be violated by the strong interactions, but may be
violated only spontaneously by the electromagnetic and
weak interactions. Since strangeness is not conserved
in the weak interactions, this subgroup of the hadron
symmetry is not the same as the isotopic group. The
strong interactions must therefore possess a very high
symmetry. The question of what structure it has is
closely related to the problem of neutral currents.

This problem is significantly more acute for the
hadrons than for the purely leptonic interactions. In
particular, there are experimental indications that
there are no strangeness-changing neutral currents.
The strongest bound follows from the data ί"171 on the
KL — μ+μ" decay probability,

Γ^κΖμχ; =(4:;:;)·ιο-. (44)

However, in a renormalizable theory it is possible to
have a neutral current with AS = 1, while preserving the
usual structure of the charged weak currents based on
the SU(3) symmetry of the hadrons. In fact, by virtue of
the SU(2) symmetry of the WEM interactions, the neu-
tral current is related to the charged current by the
equation

/!(*) = [jdj7;(y),/S(*)]. (45)
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The current ίμ must coincide with the electromagnetic
current of the hadrons in a model with three vector
fields, and with a linear combination of the electromag-
netic current and the neutral weak current in models
involving four vector fields. The usual SU(3) structure
of the charged weak current (for clarity, we use the
ρ, η and λ quarks)

/• = ργμ (1 + γ5) (η cos θ + λ sin θ)

leads to

(46)

(47)

so that the strangeness-changing neutral current is of
the same order as the charged current.

In order to overcome this difficulty, we must enlarge
the symmetry of the strong interactions i2Sl, which cor-
responds to an increase in the number of quarks. This
enables us to modify the structure of j * and hence that
of ]μ. In the following subsections we shall discuss how
this is done concretely.

Further conditions on the structure of the weak cur-
rents 3μ appear when one considers the higher-order
contributions of perturbation theory. The point is that,
owing to these contributions, the ratio (44) is generally
of order (α/2π)2~ 10"6, even in the absence of neutral
currents with I AS I = 1, which is a clear contradiction
with experiment. The structure of ίμ must therefore
ensure that an additional higher-order contribution is
added.

We note that the structure of the weak currents must
also be modified in nonrenormalizable theories C 2 8 ] in
order to suppress the higher-order contributions to the
Κ]_, — 2μ decay amplitude. Otherwise, the limiting
momentum below which the theory is applicable turns
out to be very low llB}.

b) In a model with four vector fields, the neutral
current with I AS I = 1 can be eliminated by introducing,
for example, a supercharged fourth quark p ' C l 2 " 1 4 1 . The
quarks are grouped according to the SU(2)L subgroup of
the WEM interactions into the doublets

(48)

and the singlets PR, HR, P R and XR; here

η — η cos θ + λ sin θ, λ = — η sin θ + λ cos θ.

The electric charges of the ρ and ρ' quarks are equal
to each other and exceed the charge of the η and λ quarks
by unity, but otherwise they may be chosen arbitrarily.
The Lagrangian of the WEM interactions is constructed
from the free Lagrangian in the same way as in the
case of leptons (see (23)).

Owing to the introduction of the p ' quark, the inter-
action of fermions with vector bosons is invariant under
the transformation ρ "-"ρ ' , η —— λ, i.e.,

fact, the ordinary isotopic symmetry of the strong inter-
actions allows us to mix the ρ and η quarks, and the
transformations of the group SU(2)L take PL into
η]_, cos 0 + \ L sin θ and PL into —nL sin Θ + XL COS Θ.
With a combination of these transformations, allowing
for parity conservation, we may mix all four quarks.

To preserve the renormalizability, the SU(4)L® SU(4)R
symmetry of the strong interactions must be violated only
as a result of the interaction with a scalar field φ hav-
ing a non-zero vacuum average. In particular, the
quark masses appear as a result of an interaction of
the following form:

- {mn [(L,<f) cos θ — (L2tf) sin θ | (nR cos θ — "hR sin Θ)

+ m%
sin 0 -f (L2cp) cos Θ] (nR sin θ + λΗ cos θ) (49)

(L,q>c) pR + (pc) p'R + h.C.}

where φ° = ϊτ2φ*. We recall that

<Po =
eVz

It should be noted that there exist as yet no experi-
mental indications of SU(4) symmetry of the strong in-
teractions. In particular, supercharged partners of
the known hadrons are not observed, although the
masses of these partners need not be very large, as is
shown by considering the higher-order contributions to
the KL ~~ 2μ decay amplitude and to the KL~KS mass
difference.

Let us consider this point in greater detail. As we
have already mentioned, the higher-order contribution
to the KL -* 2 μ decay amplitude must be further sup-
pressed. To estimate this decay amplitude, let us con-
sider the process ηλ — μ+μ" without allowance for the
strong interactions. The suppression occurs because
of a mutual cancellation of the contributions of the ρ
and p' quarks, which is clear from the example of the
diagrams shown in Fig. 6.

The complete calculation t 7 9 ] , allowing also for dia-
grams involving the Ζ boson that are not shown in
Fig. 6, yields the following expression for the matrix
element for the process (under the assumption that
m p « m p '

Μ(ηλ ->· μ* μ") = —
*, cos θ sin θ — —
^-JZi λγμ (1 + γ5) ημγ μ γ 5 μ. (50)

We retained here only the axial-vector current of the
muons, since only this current contributes to the decay
KL ~*μ+μ~· Comparing Eq. (50) with the amplitude for
the allowed process ρλ — μ+^μ

Μ(ρλ- λγ - [- γ 5 + γ5) μ

and taking into account the fact that

(01 % (1 + γ5) η Ι Κ") -= (0 Ι λγμ (1 + γ5) ρ | Κ*) = /κΛμ,

we find
Γ(Λ',-* i i+[t- l G 2 m', cos2 θ

• ρ , η • • λ, θ- - θ .
Γ(Α+->-μ+νμ) ' 2.Τ1

As a result, it follows from (53) and (44) that

(51)

(52)

(53)

Therefore the η and λ quarks appear in the neutral
currents in the combination

• - nn + λ λ = ηη + λλ,

so that the transition with I AS I = 1 does not occur.

What is required of the strong interactions in this
model? To preserve the renormalizability of the theory,
they must have the symmetry group SU(4)L® SU(4)R. In
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• cioGev. (54)

The free-quark approximation used for this estimate
can be justified if it is assumed that the strong inter-
actions are unimportant for momenta of the virtual W
bosons q » m p .

Transitions with I AS I = 2 can be estimated in a simi-
lar way (by considering the process ηλ — λή). In particu-
lar, such an estimate gives for the K L - K S mass dif-
ference

mL — ms = - -Γ(λ--*μ*νμ).

This gives

lGeV.

(55)

(56)

This estimate is less reliable than (54), since it does
not allow for the contributions of the intermediate
states W*+W~+hadrons.

Let us turn to the discussion of weak non-leptonic
processes with AS = 0, ± 1 . The danger is that the cor-
responding amplitudes in a renormalizable theory might
be of order α/π, in sharp conflict with experiment.
However, if the Feynman integral that defines the rele-
vant amplitude Μ converges, it is easy to obtain for
it one of the following estimates, depending on the rate
of convergence:

GE2

or M>
GE'

here Ε is the energy of the process or a characteristic
hadron mass, and it is assumed that Ε « μψ·

If the above-mentioned integral diverges, however,
then the Lagrangian must contain a counter-term which
cancels this infinity. Strictly speaking, the magnitude
of the effect remains indeterminate in this case, al-
though it is natural to assume that it is of order α/π.
The possible types of counter-terms are determined by
the symmetry of the theory. In particular, transitions
with I AS I = 1 are forbidden in the limit of zero quark
masses in the scheme under consideration, since the
order of magnitude of the counter-terms and hence of the
effect is ~(α/ττ)τη2/ μψ ~ Gm2/4ir2.

As to transitions with AS = 0, they are distinguished
from electromagnetic processes only by the effects of
parity non-conservation. Whether these effects can be
of order a/it (owing to the counter-terms) depends on
the form of the strong interactions. In particular, in a
model in which the strong interactions are mediated by
a neutral vector field whose source is the baryon
charge, there are no parity non-conservation effects
of order ~a/it.

What is most crucial for this scheme is a comparison
of its predictions with the experimental data on neutral
currents with AS = 0. As can be seen from the accom-
panying table (taken from the review [ 4 5 ] ) , this scheme is,
at the present time, on the verge of being in conflict with
experiment (but perhaps also on the verge of experi-
mental confirmation).

c) If we interpret the experimental data as an indica-
tion that there are no weak neutral currents (not only
with I AS I = 1, but also with AS = 0), it is natural to turn
to models such as the Georgi-Glashow scheme, in
which the only neutral current is the electromagnetic
current.

σ (νρ -• vp)

a (vn ->• μ-ρ)

a (vp->- vnn+)
σ (νρ -• μ-ρπ*)

σ (νρ ->- νρπΟ) -f- σ (vn -*- vnji0)
2σ (vn -*• μ~ρπθ)

Experiment

0.12 + 0.06 80

0.08 ±0.04so

<0.1482

Theory

0.15-4-0.2512

/ > 0.03 81
\ 0 . H "
f >0.683
I > 0.4 84
I > 0.1981

However, effective neutral currents appear in such
models as a result of higher approximations t 8 5>8 6 } and
are of the order (G/-f2)(a/it) in the amplitude. This is,
of course, compatible with the experimental data for
processes with AS = 0. However, to suppress the KL
— 2μ decay amplitude, as in the model with four vector
fields, we must introduce additional quarks, so that the
total number of quarks must be at least eight. By the
same arguments as for Weinberg's model, the mass dif-
ferences between the ordinary and supercharged quarks
must be of the order of several GeV .

A relatively elegant scheme for the strong interac-
tions that contains such an abundance of quarks is the
SU(3)'®SU(3)" symmetric model of Han and Nambu : s 7 : .
This model is based on three triplets of quarks with
integral charges. Such a scheme is employed for the
construction of models of the WEM interactions of
hadrons in Cl9>2°>88>89]. However, the model of C l 9 ] does
not ensure that the higher-order contribution to the
KL -—2μ decay amplitude is suppressed.

We recall that the weak currents in schemes like
the Georgi-Glashow model do not have the V-A struc-
ture. Consequently, such schemes generally lack the
predictions for the Κ —- 2t and 3π decay amplitudes (see
the review [ 9 0 ]) which follow from partial conservation
of the axial-vector current and the assumption that the
weak-interaction hamiltonian has a V-A structure.

We note also that the exchange of scalar σ particles
can be important in such models for non-leptonic decays.
In particular, the assumption that this exchange dom-
inates over the exchange of W bosons is used in C913 to
explain the ΔΤ = l/2 rule. After a Fierz transformation,
this mechanism would lead to a V-A structure for the
interactions of ordinary particles if they were much
lighter than the supercharged particles. However, it is
difficult to reconcile this last assumption with the
above-mentioned bounds on the mass differences.

To conclude this subsection, let us briefly consider
the magnitude of the radiative corrections to the ex-
perimentally observed processes. It is of the greatest
interest to calculate the renormalization of the ratio
G^/G^ of the vector constants for β and μ decay,
since this ratio is not renormalized by the strong in-
teractions and is determined experimentally with good
accuracy. We recall that the electromagnetic correc-
tion to Gj/G^ diverges logarithmically in the
local four-fermion theory (see, e.g., i92i). The introduc-
tion of an intermediate vector boson renders this quan-
tity finite, even in the framework of the ordinary non-
renormalizable theory. In this case, the cut-off
parameter is replaced by the mass of the W boson l921.
It can be shown that the transition to renormalizable
theories does not affect the terms ~{a/it) In (μ^/m),
which, as before, are given by the electromagnetic
corrections. Allowance for a neutral vector boson leads
to corrections ~a/tt. But the contribution of a neutral
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scalar field is ~(aA)mp/Vw and is negligibly small.
(We have put μ^~ μζ ~n% >:>nip in the foregoing esti-
mates.) However, the uncertainty in the calculation due
to the presence of strong interactions is of order α/π.
It is therefore clear that, in going over to renormaliz-
able theories, the situation regarding the calculation of
radiative corrections to the ratio G Y / G ^ is actually

the same as in the ordinary theory involving an inter-
mediate vector boson.

d) In this approach to the problem of including the
WEM interactions of hadrons, we do not, in essence,
consider the strong interactions; it is assumed only that
they have a very high symmetry.

Attempts to describe the strong interactions within
the framework of renormalizable vector theories seem
attractive. An example C25] is provided by the Lagrangian
(12), in which the field b^ is identified with the p-meson
field, while the field σ describes a neutral scalar meson.
The interaction of the ρ mesons with the other hadrons
can be introduced with a minimal coupling (see (23)) as
an interaction with the isospin current.

A renormalizable strong-interaction scheme with
broken U ( 3 ) L ® U ( 3 ) R symmetry was considered in C943.
This scheme contains nonets of vector (ρ, Κ*, ω, φ),
pseudovector, scalar and pseudoscalar (π, Κ, η, η')
mesons, as well as the nonets of scalar and pseudo-
scalar particles that are required for renormalizability
(the analogues of the σ field).

We shall illustrate the inclusion of the electromag-
netic and weak interactions in such an approach by means
of the simple example : 2 5 ] of the electrodynamics of n
and ρ mesons. Let us construct a strong-interaction
Lagrangian by adding to (8) a pion part:

-i- (5μπ + 2g(v Χ π) (3μπ+ 2gPll χ π) _ 1 ,Β£Η».

We introduce the electromagnetic field aμ as an iso-
scalar field interacting with the hypercharge, which is
equal to zero for ρμ and π and unity for ψ. The hy-
percharge for the electron is Y=—1. Then

,μ χ π) (3μΛ + 2#ρ μ χ π) — 1 mjst2

» + e Ι'Υμ (5μ — ίβαμ) — me] e,

- -ΪΓ f^ii^t Τ ^"6fu Λ "*/ \"μ'»~Τ" *-δΓμ ^ - 1 / ^

, - (57)

where
— ig (τρμ) φ

The electromagnetic current of the hadrons in this
model, jj^·, is given by

In the gauge in which

we obtain

* ' = - •

(58)

(58a)

(59)

Strictly speaking, it is not the fields ρμ and aμ, but
linear combinations of them, that have definite masses.
In this case, both linear combinations interact with the
leptons. In writing the current in the form (59), it is
assumed that allowance is made for the mixing of ρ μ

and Λμ according to perturbation theory.

Although the expression (59) is very reminiscent of
the electromagnetic current in the vector dominance
model [ 9 5 ] , the dependence of jf̂  on the field σ leads to
commutators which correspond more to the algebra of
currents than to the algebra of fields, with all the re-
sulting experimental consequences.

An interesting scheme which includes the strong and
WEM interactions of hadrons in such an approach was
proposed in [ 2 2 3 . The authors started from the above-
mentioned model of the strong interactions C94]. Neutral
currents with I AS I = 1 are eliminated here at the cost
of introducing additional scalar particles, and not by in-
creasing the number of quarks.

5. CONCLUSIONS

Let us summarize the situation. The renormalizability
of the models that we have discussed leads to small val-
ues for the radiative corrections in the amplitudes for
weak processes. However, in order to satisfy the
bounds on the effective neutral currents with I AS I =1
and the transitions with I AS I = 2 that follow from the
experimental data, we must introduce a special mech-
anism to suppress the corresponding amplitudes. These
same processes have also been a basic stumbling block
for nonrenormalizable theories, and it is in the frame-
work of these theories that the foregoing mechanism was
first proposed C 2 8 ]. Thus, in this respect there is no
advantage in going over to renormalizable theories.
Nothing essentially new in comparison with the ordinary
theory involving the W boson appears in calculating the
radiative corrections to the known processes and, in
particular, in calculating the renormalization of the
ratio of the vector constants for β and μ decay.

From a general point of view, however, the discovery
that it is possible to unify the weak and electromagnetic,
and perhaps also the strong, interactions within the
framework of a renormalizable theory seems extremely
attractive, although it is difficult to call the concrete
models elegant or economic. Nevertheless, it is by virtue
of their ineconomy that these models lead to an appre-
ciable number of experimental consequences.

Let us enumerate the experiments that are crucial
for the models in question.

a) Searches for new particles. 1) A feature common
to all the models is that they involve charged vector W
bosons and a neutral scalar σ particle. Bounds on the
W-boson masses are given by Eqs. (28), (30) and (43).
In Weinberg's model there is another neutral vector
boson with a mass that is bounded by the conditions
(28) and (30).

2) The schemes of C l 5" 1 7 ] predict the existence of both
charged and neutral heavy leptons. In the Georgi-
Glashow model the mass of the charged lepton is
bounded by the condition (43). Its lifetime does not
exceed 10"11 sec.

Stronger constraints on the mass of the heavy lepton
may result if the magnetic moment of the muon is meas-
ured more accurately.

3) All known schemes that guarantee a small Κχ, ~~ 2μ
decay amplitude (whether or not they are renormalizable)
predict the existence of supercharged hadrons which de-
cay purely as a result of the weak interactions. The
masses of these particles apparently need not exceed
several GeV (see (53) and (54)).
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This bound does not hold in the model of t 2 2 : , in which
only scalar supercharged particles are required. The
absence of a bound is connected with the fact that, in
contrast with the other models, the masses of the non-
supercharged partners of these hadrons are unknown
here.

b) Searches for neutral weak currents.

1) vee and Pee scattering;

2) ι>μβ and ϊ>μβ scattering;

3) elastic and inelastic neutrino-nucleon scattering:
v(v) + Ν —• v(v) + hadrons.

The processes 2) and 3), as well as a deviation of the
cross sections for the processes 1) from the predictions
of the ordinary V-A theory, occur only in Weinberg's
model. A comparison of the predictions of the model
with the existing data (see Sees. 3b and 4b) indicates
that it would be extremely crucial for this model to ob-
tain experimental data that are several times more ac-
curate.

In conclusion, we stress that, although the main virtue
of renormalizable models of the WEM interactions is
the possibility of correctly calculating the radiative cor-
rections, the study of higher-order effects is not likely
to enable us to discriminate between the various schemes.
It seems more realistic to suppose that such a choice
will be made on the basis of an experimental test of the
predictions concerning new interactions and new particles.

The authors are grateful to B. L. Ioffe, Ν. Ν. Nikolaev,
L. B. Okun' and V. V. Sokolov for useful advice and
remarks.

APPENDIX

We shall outline here a method of constructing the
Feynman rules for Lagrangians of the Yang-Mills type
in covariant gauges. These rules have been derived and
rigorously established by a functional integration
method C 5 8-6 0>9 6 ] . We shall not give this derivation here,
but confine ourselves to convincing, although non-
rigorous , arguments formulated in the language of the
ordinary Lagrangian formalism.

One of the covariant gauges for a massive vector
field is the Proca gauge considered in Sec. 2b. However,
it is inconvenient to use this gauge, since the correspond-
ing propagator of a vector field does not fall off at large
momenta, and the increasing divergences cancel only
in the sum of the diagrams. We shall describe below the
construction of the Feynman gauge, in which the propa-
gator of a vector field has the form -i

The propagator of the field b^ is therefore independent
of the gauge. To determine its form, we make use of the
Proca gauge, in which φ ± = 0 and the field b* coincides
with b * . It is then clear that

For definiteness, let us consider the Lagrangian (33),
which describes interacting triplets of vector and scalar
fields bμ and φ :

ν1>μν + -ί(

here

(*•·£- -)

(Α.1)

(Α. la)

and μ is the mass of the vector field, M=(e/f)m. In the
quadratic approximation in the fields, the fields b^ and
φ ± appear in the Lagrangian only in the combination

(A.2)

.

f>-(0)|0> = i- (A.3)

We wish to transform to the Feynman gauge, in which
the propagator of the field bμ is given by

(A.4)

Since the Green's function of Βμ is given by Eq. (A.3),
the fields φ*- must be non-zero in this gauge. If we
assume that φ ± and b^ are independent, so that

*ΪΦ-=Ο,

then it follows from (A.2)-(A.5) that

(A. 5)

'"r-jr-j • (A.6)

The Lagrangian which leads to the Green's functions
(A.4)-(A.6) is obtained from (A.I) by adding to it AL:

where <po = (0, μ/e, 0). The term-(l/2)^bj±) 2 guaran-
tees the Feynman form for the propagator of the mass-
less field b?,:

If the fields

satisfied the free equations

(A.8)

(A.9)

(A. 10)

then the Lagrangian L + AL would be equivalent to L.
This is the situation which occurs in electrodynamics
and in the theory of a neutral vector field when the mass
is included in the usual way.

Let us see what equations follow from L + AL for £.
Variations in bμ and φ lead to

-3ν?"0, (A. 11)

£ φ 0 Χ ζ=^ 0. (A.12)

By applying the operator T>v (see (A.la)) to Eq. (A.11)
and making use of (A. 12), we obtain

<VU-Apox[<pxSl-o· (A.13)

In deriving (A. 13), it is useful to make use of the relation

(ΒμΒν_βν/3μ)... = _ ^ μ ν χ . . . (A.14)

It follows from (A. 13) that the fields ζ interact with
the fields bμ and φ , so that the Lagrangian L + AL
is not equivalent to the original one. In other words, the
Lagrangian L + AL leads to the emission of pairs of
unphysical particles and hence to a violation of the
unitarity condition.

Correct results can be obtained in using L + AL,
provided that we subtract this unphysical contribution
from the cross sections for the processes. To avoid
carrying out this operation "by hand," we introduce
in the theory fictitious scalar particles [ 5 8-6 0>9 7 : l de-
scribed by the fields η. Since the probability of emit-
ting pairs of the fictitious t\ particles must be negative,
the fields η must be assumed to be non-Hermitian and
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must be quantized according to Fermi statistics. Clearly,
the field ?7L must satisfy the same equation as the field
ζ, Eq. (A.13). This equation is obviously given by the
following Lagrangian:

for brevity, we have introduced here the isovectors

+ 'Κ Χ 1βμ1* Χ Ι) — Φ σ (1*1- +1^1+) + «№ Wif- + 1!Φ+)·
(Α.15)

The full Lagrangian of the system in the Feynman
gauge is given by L+ AL + LTJ. It describes the fields
1)μ, ο, φ±, η and η*, of which the physical degrees of
freedom correspond to the four-dimensional trans-
verse part of b ^ , the three-dimensional transverse
part of the massless field b3^ and the field σ; the re-
maining fields are auxiliary fields.

The propagators of the fields are determined by Eqs.
(A.4)-(A.6), (A.8) and

·4ι* = -ρζ^τ. (A.17)

**-£· (Α. 18)

The form of the vertices is found from the Lagran-
gian in the usual way. Some of the vertices were given
earlier (see Eq. (3) in the main text). Since the field η
is quantized as a fermion field, we must include a factor
(-l) n in the amplitude, where η is the number of closed
loops involving η particles.

We note that, instead of summing over the physical
polarizations of the vector particles, we can use the
formula

|ε«ε<')=_6μν. ( Α - 1 9 )

In this case, however, we must add to the cross section
the cross sections for the processes in which the vector
quanta are replaced by the 7}± and η3 particles, their
antiparticles, and the φ ± particles (for each quantum,
we must take into account all the replacements that are
allowed by electric charge). We stress that the η par-
ticle is produced in pairs, each such pair contributing a
factor (-1). In addition, owing to the non-hermiticity of
LTJ, we must use the matrix element for the process in
which the η particles are replaced by their correspond-
ing antiparticles instead of taking the complex conju-
gate matrix element. These remarks must also be borne
in mind when employing the unitarity condition.

The Lagrangian (A.I) considered above describes
bosons in the Georgi-Glashow model. To describe the
interaction of bosons with leptons in the Feynman gauge,
we must add to L + AL + LTJ the Lagrangian Li (see
(37)), in which the fields bμ, <P$ and σ appear together
with the leptons. As to the fields η, they do not interact
directly with the leptons.

We now quote the expressions for AL and Lrj which
must be added to the Lagrangian of Weinberg's model to
transform to the Feynman gauge. We recall that this
Lagrangian is given by Eq. (20) (taking into account (11)
and (21)). It depends on the fields W±, Ζ μ , Α μ , σ and ψ:

= δμΤΐί3μ1-τ 3μηί£>μη+ - μ ^ (t]fη_ — ηίη

< Α · 2 2 >
The expressions for the propagators and vertices can be
derived from the Lagrangian in the usual way.

A more detailed description of the Feynman rules in
various models and gauges can be found in C 7 2 ].

Note added in proof. There have recently appeared
experimental data on the neutrino-nucleon interaction
which indicate that neutral currents exist (see [ 9 8 ] ) .

"An expanded text of a review presented at the scientific session of the
Nuclear Physics Division, USSR Academy of Sciences (October 1972).

2)We note that one often uses a definition of the constant g which is ob-
tained from ours by the substitution 2g -» g.

3'The reader may omit this subsection without loss of understanding of
the following material.

(A.20)
ι 1

'_ηϊ —ψ+η!) — h . C . J

— 2ίΐ>μ [3μη· χ ηΐ + 2βμη·Ί> [η* >; η]; ( Α . 2 1 )
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