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Improper ferroelectrics are considered in the review from a unified point of view on the basis of the
phenomenological Landau theory of phase transitions. In such ferroelectrics, in contrast to the
ordinary ones, the order parameter of the phase transition is not the polarization but another
physical quantitiy whose transformation properties are different from those of the polarization.
Spontaneous polarization arises in the phase transition as a secondary effect. Therefore, the dielectric
anomalies in the improper ferroelectrics are significantly different from the dielectric anomalies in the
ordinary ferroelectrics. In particular, the temperature dependence of the permittivity does not obey
the Curie-Weiss law, an electric field does not suppress the phase transition, etc. The dielectric
anomalies are derived by analyzing a definite form of the thermodynamic potential with a
two-component order parameter. Such an analysis turns out to be sufficient for the discussion of the
available experimental data. The domain structure of the improper ferroelectrics also possesses specific
properties: In particular, there exist domains which do not differ in their polarizations. Since the loss
of stability in an improper ferroelectric phase transition occurs not with respect to polarization, the
soft mode in the nonpolar phase is inactive in the infrared spectrum. Other distinctive features of the
phonon spectrum in the phase-transition region are also considered. The experimental data on
improper ferroelectrics are discussed. For the rare-earth molybdates, the theory is in quantitative
agreeement with experiment. In certain other improper ferroelectrics the phase transitions are of first
order and nowhere near to being of second order. The quantitative description of such transitions
requires additional experimental data and further development of the theory.
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1. THERMODYNAMIC THEORY
a) Definition. The phenomenological Landau theory of

phase transitions Cl], which was first applied to ferro-
electric transitions by Ginzburg i21, has been successfully
used to explain the dielectric anomalies and other
characteristics of quite a number of ferroelectrics
(see, for example, >4:J). The role of order parame-
ter in the Ginzburg theory is played by polarization.
There can, however, be ferroelectric phase transitions
for which the polarization is not the order parameter.
This possibility was first pointed out by Indenbom C5].

A phase transition is called ferroelectric if spontane-
ous polarization arises in the transition. But it does not
still follow from this that the polarization should be the
order parameter of the ferroelectric transition-as a
matter of fact, a quantity which is not the order para-
meter can arise in a phase transition. For example,
the transition of barium titanate from the cubic to the
tetragonal phase is accompanied by spontaneous
deformation of the crystal. The order parameter here,
however, is polarization, since its appearance com-
pletely accounts for the reduction in symmetry that
accompanies the phase transition, while the appearance
of the strain only partially accounts for this reduction.
Indeed, if we polarize the cubic phase along a cubic edge,
we obtain a tetragonal phase of the same symmetry as
the experimentally observed phase, even when the crys-
tal is clamped. If, on the other hand, the cubic phase is
deformed, we obtain a tetragonal phase of higher sym-
metry: any uniform deformation preserves the center
of inversion, which is absent in the tetragonal phase of
barium titanate, since the phase is polar (Fig. 1). The
spontaneous strain that arises in barium titanate is a
consequence of the spontaneous polarization, and is a
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FIG. 1. Schematic representation of the unit cell of an ordinary ferro-
electric (barium titanate): a) The initial cubic phase: b) after a distor-
tion describable by a polarization order parameter: c) after its deforma-
tion; d) the tetragonal phase.

second-order effect (the components uij of the strain
tensor and the polarization vector Pi are connected by
relations of the form u z z ~ P z ) .

It is also natural for spontaneous polarization to
arise in a phase transition as a second or higher order
effect accompanying a more complicated change in the
crystal (or magnetic) structure of a substance. The
order parameter in this case is not the polarization,
but a quantity having another physical meaning. If now
we polarize the initial phase of the crystal in the requi-
site direction, we obtain a polar phase of symmetry
higher than that of (and therefore structurally different
from) the phase that arises in the phase transition
(Fig. 2). In other words, the transition is not to the
maximal polar subgroup of the space group of the
initial phase t5].
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FIG. 2. Schematic representation of the unit cell of an improper

ferroelectric ( the phase transition C^, ** C,): a) The initial phase: b)
after a distortion describable by the order parameter: c) after its
polarization along the χ axis; d) the asymmetric phase. The order para-
meter is proportional to the ionic displacements in Fig. b). The pattern
of possible displacements is simplified. The ions are assumed to be un-
deformable. The phases in Figs, a) and c) have a higher symmetry than
the phases in Figs, b) and d). When we go over from the coordinate
system (x, y) to the system (x', y') (which is equivalent to choosing a
different unit cell), the signs of the ionic displacements along the y
axis change, while those of the displacements along the χ axis remain
unchanged. It follows from this that the polarization is proportional
to the square of the order parameter.

Ferroelectric phase transitions for which the order
parameter is not the polarization, but a quantity having
another physical meaning and possessing other trans-
formation properties (see Sec. b), are called improper
ferroelectric phase transitions. Ferroelectrics with
such transitions are called improper1' ferroelectrics.
Improper ferroelectrics differ significantly in many of
their properties (dielectric anomalies, characteristics
of the phonon spectrum near the transition point, the
nature of the twinning, etc.) from the ordinary ferro-
electrics.

Notice that if the polarization and some other quantity
are linearly related, then they can arise in a phase
transition as effects of the same order. Which of the
quantities in this case can be appropriately regarded
as the order parameter is usually determined from
additional considerations. Even if such a quantity does
not turn out directly to be the polarization-for ex-
ample, in potassium dihydrophosphate it is the degree
of proton ordering-the phase transition should not be
classified as an improper transition. Indeed, the quan-
tity playing the role of order parameter possesses the
same transformation properties as the polarization,
the transition is to the maximal polar subgroup of the
symmetry group of the initial phase, and the dielectric
anomalies and the other properties are essentially the
same as in the case when the role of order parameter
is played directly by the polarization.

The existence of improper ferroelectric phase
transitions was theoretically predicted relatively long
ago i5i. An example of such a transition can actually
be found in Lyubarskii's book C 7 :, although the distinc-
tive features of the transition are not pointed out.
In C5] the main attention was given to the problems of
symmetry. The thermodynamic theory of the dielec-
tric anomalies of improper ferroelectrics was devel-
oped in C 8 ]. The first ferroelectric which, on the

basis of experimental data, could safely be classified
as an improper ferroelectric was gadolinium molyb-
date C9> 2 ) . At present, quite a number of improper
ferroelectrics are known. It is therefore quite oppor-
tune to consider their basic properties in greater detail
and to compare the theoretical results with the experi-
mental data. It is natural in doing this to lay emphasis
on the phenomenological theory, which is based on the
Landau theory of phase transitions : i ] - i t enables us to
consider from a unified standpoint the most character-
istic properties of the improper ferroelectrics 3>.

b) The order parameter. The crystal and magnetic
structures of a crystal are respectively determined by
the charge- and current-density functions p(r) and j(r).
In a phase transition, the symmetry of the crystal
changes, i.e., the symmetry of the function p(r) or J(r)
changes. The order parameter in the Landau theory is
the quantity that characterizes the change in either
function. It is convenient to represent a change in crys-
tal structure 4> as the result of a sublattice displace-
ment (a displacive type of transition), or as some or-
dering (an order-disorder type of transition). The
(order) parameter of the transition is then the quantity
characterizing the sublattice displacement (see Chap.
2) or the degree of ordering.

However, in the phenomenological theory of phase
transitions, the specific physical meaning of the order
parameter is not important, i.e., it does not matter
which atoms are displaced or ordered and in what man-
ner. Only the transformation properties of the order
parameter (i.e., how it transforms under the symmetry
operations of the initial phase) are important.

The order parameter transforms according to one
of the irreducible representations of the symmetry
group of the initial phase of the crystal. The number
of components of the order parameter is equal to the
dimensionality of the corresponding representation. The
irreducible representation in question, if it is multi-
dimensional, can, generally speaking, be responsible for
transitions to several phases (of different symmetries).
Actually, the phase that corresponds to the minimum of
the thermodynamic potential at the given values of the
crystal constants is realized.

Notice that in all the presently known improper ferro-
electric phase transitions the translational symmetry
of the crystal changes. This means that the (order)
parameter of the phase transition is not invariant under
certain translations, i.e., it transforms according to
one of the irreducible representations of the space
symmetry group of the initial phase. There are, how-
ever, improper ferroelectric phase transitions that do
not change the translational symmetry of the crystal t 5 3 .
The order parameter in this case transforms according
to one of the irreducible representations of the point
group of the initial phase of the crystal, i.e., it is a
tensor quantity.

c) The thermodynamic potential. The Landau phenom-
enological theory is based on the expansion of the ther-
modynamic potential in a power series in the components
of the order parameter and other physical quantities.
The thermodynamic potential can depend only on the in-
variant combinations of the indicated quantities. The
specific form of these invariants is determined by the
transformation properties of the order parameter and
the other quantities, i.e., by those representations of
the symmetry group of the initial phase of the crystal
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according to which they transform. Let us first con-
sider the possible dependence of the thermodynamic po-
tential on the components of the order parameter.

The case of the one-component order parameter is,
from the point of view of the improper ferroelectric
phase transition, uninteresting (see Sec. d). Let us dis-
cuss in detail the case of the two-component order
parameter (which transforms according to a two-dimen-
sional irreducible representation). Let us denote the
components by η and ξ. To describe the presently
available experimental data on the improper ferro-
electrics (see Chap. 3), it is in practice sufficient to
consider the two forms of the thermodynamic potential
respectively investigated in [8>12>13:l:

= f (η2
χf χ τ τ τ

(2)
In the expressions (1) and (2) we give the invariants

essential to what follows - in particular, we give only
one sixth-order and one eighth-order (1) invariants. Al-
lowance for the other sixth- and eighth-order, as well
as for higher order, invariants will practically not
change the results.

Let us explain how the expressions (1) and (2) are
obtained. There are no first-order invariants in η and
ξ, since by implication the order parameter cannot be
an invariant quantity t l ] . There is only one second-order
invariant for any irreducible representation C l 3: if + ξ2.
There can be one, two (1), and three (2) forth-order in-
variants in η and ξ.

To show this, let us consider the representation ac-
cording to which the three quantities rf, 2η ξ, and ξ2

transform. This is a three-dimensional representation
(called the symmetrized square of the original repre-
sentation), which is reducible, since it must contain the
unit representation according to which the quantity η2

+ ξ2 transforms. To the unit representation corresponds
the fourth-order invariant in η and ξ: (η2 + ξ2)2. The re-
maining two-dimensional representation (its basis func-
tions are 2ηξ and η 2 -ξ 2 ) may be either irreducible
or reducible. If it is irreducible, then to it corresponds
one invariant (2τ)ξ)2 + (η2-ξ2)2 = (η2 + ξ2)2, which coincides
with the previously obtained invariant. Thus, there is
only one fourth-order invariant in r\ and ξ. This case
(to it corresponds several different possible forms of
the thermodynamic potential ί141) will not be considered
below (see Sec. d). If the two-dimensional representation
is reducible, then it is reducible into two one-dimen-
sional representations, which may be different or equiva-
lent. If they are different, then to one of them will
correspond the invariant (2ηξ)2, and to the other the in-
variant (η2- ξ2)2. In all, however, there will be two
linearly independent fourth-order invariants in η and
I, see the expression (1). If the one-dimensional
representations are equivalent, then there will clearly
be another invariant 2ηξ(η2- ξ2), giving in all three
linearly independent fourth-order invariants in η and
ξ (see the expression (2)). This exhausts all the pos-
sible cases for the fourth-order invariants.

As can be shown, the two thermodynamic potentials
(1) and (2) cannot contain odd-order-in particular,
third-order - invariants.

Order parameters having three or more components
will not be considered here. Although improper ferro-
electric phase transitions with six-component order

parameters are known, these transitions can in fact be
described with the aid of two-component order parame-
ters (see Sec. b of Chap. 3).

d) Mixed invariants. In order to investigate the
dielectric anomalies peculiar to the improper ferroelec-
trics, it is necessary to take into account the dependence
of the thermodynamic potential on the components Pi
of the polarization vector. The most reliable experi-
mental data available are for those improper ferro-
electric phase transitions that give rise to spontaneous
polarization along only one crystallographic axis.
Therefore, we shall henceforth restrict ourselves to
the consideration of only one polarization-vector com-
ponent Pi (e.g., P z , which will be denoted by P), which
transforms according to a one-dimensional representa-
tion of the symmetry group of the initial phase of the
crystal.

The second-order invariant in Ρ has the form P2; in
contrast to the ordinary ferroelectrics, the higher-order
invariants are not important here. Let us disciiss in
greater detail the mixed invariants, which simultane-
ously depend on Ρ and the components of the order
parameter. Of primary interest are those invariants
into which Ρ enters linearly—they are precisely the
terms that are responsible for the appearance of the
spontaneous polarization in the phase transition 5 ) .

Let us first show that an improper ferroelectric phase
transition cannot have a one-component order parame-
ter. Indeed, otherwise the combination ηΡ, where η is
the order parameter, will be the only possible mixed
invariant linear in P. The presence of such an invari-
ant will imply that η and Ρ transform according to one
and the same one-dimensional representation, i.e., that
they possess the same transformation properties. The
ferroelectric phase transition will, consequently, not
be an improper transition (see Sec. a).

Let us consider the two-component order parameter
(η, ξ). There are no mixed invariants linear in )) or ξ.
(The contrary would imply that η and ξ transform in the
same way as the components Pi of the polarization vec-
tor.) The mixed invariants that are quadratic in η and
ξ may have the form 2ηξΡ and (ΐ)2-ξ2)Ρ.

In the case of the thermodynamic potential (1), when
the quantities 2τ)ξ and if— ξ2 transform according to
different one-dimensional representations, we can have
only one of these invariants-either 2ηξΡ or (ί?2-ξ2)Ρ.
The two possibilities are equivalent, since the corre-
sponding thermodynamic potentials are transformed into
each other by making the change of variables: η'+ ξ'
= /2?j and η ' - ξ ' = /2ξ .

Thus, to allow for the dependence of the thermody-
namic potential on Ρ and Ε, we must add to the ex-
pression (1) the terms

•f Ρ2 + 2αηξΡ - ΡΕ + ±- Q"- + α' (η2 - ξ2) Q, (3)

where Ε is the strength of the electric field along P,
and Q is some tensor component (the introduction of Q
is necessary for what follows). In particular, Q can be
another component of the vector Pj, the other com-
ponent being, of course, P.

In the case of the thermodynamic potential (2),
when the quantities 2τ;ξ and η2- ξ2 transform accord-
ing to equivalent one-dimensional representations, the
presence of the mixed invariant 2τ)ξΡ implies at the
same time the presence of the mixed invariant (η2- ξ2)Ρ.
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Thus, it is necessary to add to the expression (2) the
terms

(4)

In the case of the thermodynamic potential (1), it
may also be that there are no mixed invariants that are
quadratic in η and ξ, but there is one that is of fourth
order in η and ξ: 2ηξ(η2- ξ2)Ρ. The corresponding
improper ferroelectric phase transitions will not be
considered.

When the quantities 2ηξ and η 2 - ξ2 transform ac-
cording to a two-dimensional irreducible representa-
tion (one invariant that is of fourth order in TJ and ξ;
see Sec. 2), the mixed invariant that is quadratic in η
and ξ can only be of the type 2?)ξΡχ + (η 2 - i|2)Py. It
exists if the components P x and P y transform accord-
ing to the same two-dimensional irreducible representa-
tion. Spontaneous polarization arises in the correspond-
ing ferroelectric transition along two crystallographic
axes. Such a case, as has already been noted, will not
be considered.

e) The phases and phase diagrams. It is convenient,
when investigating the thermodynamic potentials (1),
(3) or (2), (4), to go over in the (η, ξ) plane to the polar
coordinates ρ and φ :

η = ρ cos φ, ξ = ρ sin φ. (5)

Then the expressions (1), (3) and (2), (4) assume re-
spectively the following forms:

Φ = τ Ρ 2 + - τ Ρ* si"2 2 < Ρ + 4 Ρ' cosa 2 ( Ρ + 1 Ρ * + τ Ρ" s i n 4 2<Ρ

αΡρ2 sin2<p —ΡΕ+-^-Qi + a'Qp* cos2<f, (6)

(7)4 - i Ρ 2 + β ι Ρ ρ 2 sin 2φ + ο2Ρρ2 cos 2φ — ΡΕ.

Let us consider in detail the thermodynamic poten-
tial (6) [ e ] , neglecting, for the time being, the eighth-
order invariant (it will be taken into account below, in
Sec. g). The equilibrium values of ρ, φ , and Ρ are
determined from the conditions for a minimum of the
thermodynamic potential (6). The system of equations
θφ/θρ = 0, 3Φ/3(̂  = 0, and 8φ/8Ρ = 0 has three different
types of solutions, which correspond to three phases-
the initial 0 and two asymmetric phases 1 and 2:

0 P = 0, P = 4 £ > <?=0;

-4ν(ατί)] 1 ' ! } . βίη2φ = τ1 (η =

κ * κ Ι ^ [Μ-4ν(ο ± e)]"2'

W 2 } . 8ΐη2φ=—gif

(8)

( £ ) τ^τ) £
here we have used the notations

(ID
The expression for the dielectric susceptibility χ = dP/dE
is given only in (9); it is obvious in (8) and (10). The
phase 1 is polar, while the phase 2 is nonpolar. The
phase 2 could also be polar (see the text after the
formula (3)). Such a case is considered in C l 5 ] .

Which of the solutions (8)-(10) corresponds to the
minimum of the thermodynamic potential, i.e., which

of the phases is stable, is determined by analyzing the
second derivatives of the thermodynamic potential (6).
Such an analysis leads to the following inequalities,
which characterize the limits of stability of the phases:
0

β<β_,

(12)

where

Notice that the number of different solutions in the
phase 1, (9), and in the phase 2, (10), is equal to four
(<ρ = π/4, 3π/4, 5ττ/4, and 7ττ/4 in the phase 1 and
φ = 0, π/2, π, and 3π/2 in the phase 2 for Ε = 0). Each
of the four solutions corresponds (for E = 0) to the
same value of the thermodynamic potential (6). This
means that in the asymmetric phases 1 and 2 the
crystal can be divided into four types of domains.

Let us consider the thermodynamic potential (7) Cl3: l.
In contrast to the thermodynamic potential (6), there
will now be two different types of solutions, which cor-
respond to two phases-the initial phase (8) and one
asymmetric phase. The solutions for the asymmetric
(polar) phase have for Ε = 0 the form

ρ 2 = ^ { - β + Ι β - 4 ν α 1 ' / 2 } · ( 1 3 a )

β = βι sin2 2φ + β2 cos2 2<p + β3 sin 2φ cos 2φ, (13b)

tg4cp= » _„ , P = — — p2sin2<p—— p2cos2<p, (13c)

where

&=&-•£. h=K-%, β 3 = β ; - ^ .

It is impossible to obtain the solutions for Ε * 0 in
explicit form. In all, there are eight different solutions
to (13). However, the number of stable solutions to (13)
for any fixed values of the coefficients of the thermody-
namic potential (7) is equal to four. Thus, in the asym-
metric phase (13), there can be four different domains
(as in the phases 1 and 2).

Let us emphasize that the thermodynamic potentials
(6) and (7) do not have the same number of asymmetric
phases. In the case (6) there are (as will be shown
below in Sec. g) several-three: 1, 2, and 3, to be exact-
asymmetric phases, while in the case (7) there is one.
The latter is due to the fact that the two-dimensional
representation according to which, in the case (7), the
components η and ξ of the order parameter transform
is mathematically reducible and decomposes into two
one-dimensional complex conjugate representations.
Notice that since different forms of the thermodynamic
potential (e.g., (6) and (7)) correspond to different types
of irreducible representations, the number of phases
could be found not from the thermodynamic potential,
but directly by analyzing the properties of the matrices
corresponding to the irreducible representations. Such
an approach was essentially used in [ 1 4 ] .

f) The dielectric anomalies. Let us consider the di-
electric anomalies arising in the ferroelectric phase
transition 0 —·• 1. This transition is a second-order
transition if βχ >0 (11), and a first-order transition if
βι<0. When the transition is of second order, we can
neglect in the thermodynamic potential (6) the sixth-
order invariant. The expressions (8) for p2 and χ then
get simplified and assume the form
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ρ·=—' (14) :•' Ι ι·/' * ί ΐ 1 Α / Β ' \ τ = -
~ ϊ + ϊ ~ ) ΐ Γ + 1 - Ι ι π / 1

(15)

Figure 3 shows the temperature anomalies in Ρ and
χ given by (14) and (9). They were obtained under the
usual assumptions made in the Landau theory C l ] that
only one coefficient a in the thermodynamic potential
(6) depends on the temperature Τ and, besides, linearly:
α = α(Τ-θ). Figure 3, like Figs. 4 and 8 below, does not
show the metastable solutions (14) and (9) for Ε ^ 0 . The
dependence of Ρ on Ε in the phase 1 {a <0) has the
form of a hysteresis loop whose maximum width is de-
termined by the value Ε = Ι καβ/2&β21.

It can be seen from Fig. 3 and the relations (14) and
(9) that the phase transition under consideration differs
from the usual ferroelectric transition in possessing
the following peculiarities. The spontaneous polariza-
tion P s depends on the temperature Τ not as IT-0l1 / 2,
but linearly: ~IT—01. In an electric field E, the transi-
tion is not smeared out, but maintains its sharpness,
shifting toward the higher-temperature region. The di-
electric susceptibility χ changes discontinuously at the
transition temperature Θ, and does not obey the Curie-
Weiss law.

Let us explain these properties. The linear dependence
PS(T) follows (as has already been noted in ΐ 5 ]) simply
from the fact that the mixed invariant τ)ξΡ in the ther-
modynamic potential (6) is linear in Ρ and quadratic
in η and ξ. Therefore, Ps~77sls> and both η8 and ξ8

vary with temperature as IT-0I 1 / 2 (i.e., as, according
to the Landau theory, the components of the order
parameter of any second-order phase transition vary).
The phase transition maintains its sharpness in an
electric field, since in the improper ferroelectrics, in
contrast to the ordinary ones, the field does not re-
move the difference in symmetry of the phases (see
Sec. a). The dependence of χ on Τ does not obey the
Curie-Weiss law, since χ is not determined, as in or-
dinary ferroelectrics, by a coefficient α that vanishes
at the phase transition point. The discontinuous in-
crease of χ at the transition point is due to the fact
that η and ξ, under the action of E, do not change
in the initial phase, but change in the polar phase,
making an additional contribution to the polarization.

Let us emphasize that the above-considered dielec-
tric anomalies in the improper ferroelectrics are sim-
ilar to, for example, the elastic anomalies in the or-
dinary ferroelectrics that are not piezoelectric in the
initial phase. Indeed, the thermodynamic potentials
contain mixed invariants ηξΡ and, for example,
PxPyUXy, respectively, that are identical in form.

It follows, in particular, from this that the complex
dielectric susceptibility in the polar phase 1 is de-
scribed by an expression similar to the Landau-
Khalatnikov formula C l 6 ] :

where ω is the frequency, r the relaxation time, and u
the coefficient of friction, i.e., the coefficient in front
of dp/dt in the equation of motion. In deriving the
formula (15) we neglected in the equations of motion
the inertial terms ~d2p/dt2 and ~d2p/dt2 (the formula
(14) is valid for not too high frequencies), as well as the
dissipative term ~dp/dt. At low frequencies (ω « ί/τ)
the dielectric losses χ" are proportional to the relaxa-
tion time τ, which increases, as we approach the transi-
tion temperature 0,as I T - 0 l ~ l C l 7 ] .

The dependence on ω and Τ of the complex elastic
compliances corresponding to those strain tensor com-
ponents that enter linearly into the mixed invariants that
are quadratic in η and ξ is similar to (15).

Allowance for fluctuations in the order parameter
(see Sec. h) leads to an additional temperature and fre-
quency dependence of χ. Near 0, in first-order per-
turbation theory, the variation of χ" with Τ for low fre-
quencies (ω«1/τ) has the form χ"~ ΙΤ-0Γ 3 ' 2 in both
phases [ 1 7 \

For β1 <0, (11), the phase transition 0 -— 1 is a
first-order transition. The temperature anomalies of
Ρ and χ and the dependence P(E) at different Τ
are shown in Figs. 4 and 5.

Let us emphasize the difference between such anom-
alies and the anomalies that arise in first-order phase
transitions in ordinary ferroelectrics. The spontaneous
polarization Pg depends on Τ in the same manner as
P s depends on Τ in the ordinary ferroelectrics. The
discontinuity in Ps at the transition point remains un-
changed in an electric field, or, more precisely, it
changes slightly, depending on Ε only quadratically
(this variation can be found by allowing in the thermo-
dynamic potential for mixed invariants of higher order
in P, e.g., for invariants of the form (η2 + ξ2)Ρ2). Simi-
larly, the thermal hysteresis depends only weakly

FIG. 3. The dependence of Ρ and χ on Τ (α = α (Τ - θ)) for the
second-order (β, > 0) phase transition 0 ·» 1 (0 < 0). The dashed lines
represent the dependences for Ε Φ 0 ; α 0 = [e|, P o = |Ε|/κ 0 , χ = 1/κ,

θα,

FIG. 4. Dependence of P and χ on Τ (α = α (Τ - θ)) for the first-order
(0, < 0) phase transition 0 ** 1 (0 < 0). The dashed lines represent the de-
pendences for Ε Φ 0; ol = β,2/4α, a0 = |e | , a'o =<x + a 0 , Po = |Ε|/κ, P' =
Μ Ι/2κγ, χ0 = 1/κ, χ, = [1 + (Δ/0,)]/κ.

£> ε

FIG. 5. Dependence of Ρ on Ε at different T for the first-order (0!
0) phase transition 0 «• 1 (β < 0) (see Fig. 4): a) a < (7/8)a'; b) (7/8)a'
< α < α ' ; c) ex' <a, a' =0, 2/4γ, Ea =κα/2 la Ι, Ε'α= κ(α - a')/2|a|, E, =
«I0K-02 + [ft2 - 47α]'Λ)/4|3|γ, Pa = EJK, P'a = E'JK, Ρ, = Ε,/κ, and P' =
|30,|/2κγ.
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(quadratically) on Ε. As the temperature Τ increases,
the double hysteresis loop in the phase 0 (see Fig. 5)
does not vanish, but shifts toward the region of higher
Ε values, slightly changing in width in the process.

The χ(Τ) dependence does not, in general, exist in
the initial phase 0, and in the polar phase 1 the closer
the transition is to being a second-order phase transi-
tion, i.e., the smaller the coefficient β1 is, the more
important this dependence is. Near the tricritical point,
where the first- and second-order phase transition lines
meet, χ - Ι Τ - Θ Ι " 1 ' 2 and P - l T - 0 1 1 ' 2 in the polar phase.
The temperature dependence of χ in the polar phase will
also be pronounced in the case of a second-order phase
transition if the transition is nearly of first order, i.e.,
if the coefficient βι is small but greater than zero (the
dependence χ(Τ) shown in Fig. 3 was computed without
allowance for y, i.e., for large values of βι).

The dielectric anomalies arising in the ferroelectric
transition between the phases (8) and (13)-a transition
which is described by the thermodynamic potential (7)-
are similar C l 3 ] to the above-considered anomalies aris-
ing in the phase transition 0 —- 1. Therefore, the results
of the corresponding computations, which, moreover, are
very unwieldy, are not given here (see ).

The dielectric anomalies were considered above be-
cause they are precisely the properties that typify
ferroelectric phase transitions. The anomalies in the
other quantities are not typical of these transitions.
Only the obvious difference between the electric-field
(polarization) dependences of these quantities in the
ordinary and improper ferroelectrics is of interest.
Indeed, in the ordinary ferroelectrics the field directly
influences the order parameter, i.e., the polarization
(it is a force conjugate to the order parameter), while
this is not so in the improper ferroelectrics. There-
fore, the relation between the quantities (e.g., those
characterizing the elastic or optical properties) and
the polarization induced by the field in the paraelectric
phase, and the relation between the spontaneous values
of those same quantities and the spontaneous polariza-
tion in the polar phase in the improper ferroelectrics,
in contrast to the ordinary ones, are different. This
circumstance can serve as an additional experimental
confirmation of the fact that a given ferroelectric is
an improper ferroelectric.

For example, the components of the strain tensor
ujj and the polarization vector Pj are connected in
the paraelectric phase by relations of the form u= λΡ
+ qP2, where λ and q are the corresponding piezo-
electric and electrostriction coefficients. In the ordinary
ferroelectrics, the same relations remain valid for the
spontaneous values us and P s in the polar phase. In
the polar phase of the improper ferroelectrics, the
quantities ug are, in the final analysis, determined by
the spontaneous values of the components of the order
parameter. It is possible here to express u s in terms
of P s , but this relation will be different from u s = XPS

+ qPg. If the component u is linearly related to P:
u = XP + R;7£, then in the paraelectric phase, in which Ε
induces Ρ and r\= ξ = 0, we shall have u= λΡ; in the
polar phase, u s = XP S + RT] S ? S , P s = (2lal Α)?;8ξ8, and
therefore u s = \ ' P s , where λ' = X + KR/21 al. If the com-
ponent u is not linearly related to P: u = qP2 + R'(»j2+ ξ2),
then in the paraelectric phase u = qP2, while in the polar
phase u s = qPs + R'ifJs + ξ|) = qPs + λ "Ρβ > where
.\" = fcR'/lal.

Similar relations are clearly valid for the permittivity
tensor ejj (in place of uy), which describes the optical
properties of the crystal.

As another example, we can cite the anomaly in the re-
laxation sound absorption coefficient Γ , which is propor-
tional to τ, the order-parameter relaxation time. In the
ordinary ferroelectrics, τ~χ and, consequently, Γ~χ.
For the improper ferroelectrics, such a relation does
not exist between Γ and χ.

g) Phase transitions between asymmetric phases.
The theory of the ordinary ferroelectrics with several
polar axes (e.g., barium titanate) considers transitions
not only from the paraelectric to a polar phase, but be-
tween the various polar phases as well. Similarly, it is
expedient in the theory of the improper ferroelectrics
to consider transitions between different asymmetric
phases.

The phase transition 2 -— 1 is a ferroelectric transi-
tion (the phase 2 is nonpolar), but it differs in its prop-
erties from the ordinary (and from the improper) fer-
roelectric transitions. Let us consider it in greater
detail.

Let us point out that the solutions (9), sin2<p = :?l,
corresponding to the phase 1 cannot be arrived at from
the solutions (10), sin2<p=0 (for E = 0), corresponding
to the phase 2 by an infinitesimal change in the quantity
φ . The phase transition 2 -— 1 can only be a first-
order transition. It also follows from this that the
symmetry group of the phase 1 is not a subgroup of
the symmetry group of the phase 2, and vice versa.
Therefore, we cannot introduce a characteristic
parameter for the phase transition 2 —~ 1, i.e., we can-
not consider it on the basis of the Landau theory with
the phase 2 or 1 as the initial phase. We can, however,
as the initial phase for the transition 2 -~ 1, take the
phase 0 (the phase 0 may not be experimentally ob-
servable) .

The quantity φ changes discontinuously in the phase
transition 2 *— 1. The thermodynamic potential (6) with
up to sixth-order (in the order-parameter components
η and ξ) invariants contains only sin22<f>. Therefore, it
is natural to take into account the eighth-order invari-
ant with the coefficient δ (see (6)), which contains
sin4 2φ. And, consequently, allowance for this invari-
ant will significantly affect the results.

If in the thermodynamic potential (6) the coefficient
δ >0, then besides the solutions (8)-(10) corresponding
to the phases 0, 1, and 2 there will be come more solu-
tions corresponding (for Ε = 0) to a new asymmetric
(polar) phase 3 C l 2 ] :

3 Ρ2-^{-β
(16)

) ; ~ _ pi c o s £((

Figure 6 shows the boundaries of stability of the
phases 0, 1,2, and 3 for second-order (ft. >0) transitions
from the phase 0 in the case when E = 0. As can be seen
from Fig. 6, the phase transition 0 —- 3 can occur at only
one point. For such a transition to occur, it is necessary
for two quantities, ρ and ψ, to become different from
zero at once. For this to happen, it is, in its turn,
necessary for two coefficients, a and β, of the thermo-
dynamic potential (6) to simultaneously change their
signs, which determines the point in the (α, β) plane
and, consequently, the point in the pressure-tempera-
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ture plane. For the first-order (/32 < 0) transitions from
the phase 0, there is a line of demarcation between the
phases 3 and 0.

Thus, the phase 3 is wedged between the phases 1 and
2. The number of different solutions (16) is equal to
eight, i.e., there can be eight different domains in the
phase 3. The dielectric anomalies for the 0 ~ 3 phase
transition are similar in nature to the dielectric anom-
alies for the 0 ~~ 1 transition that are shown in Figs.
3-5.

In Fig. 7, for clarity, we represent the solutions
(8)-(10)and (16) for E = 0 by points. As can be seen
from this figure, the phase 3 can be reached from the
phases 0 , 1 , and 2 through any arbitrarily small change
in the quantities ρ and φ . It follows from this that the
symmetry group of the phase 3 is a subgroup of the
symmetry groups of all the remaining phases 0 ,1 ,
and 2, i.e., the phase 3 is the most asymmetric of the
phases. By varying the coefficients of the thermodynamic
potential (6), we can pass through all the points in the
(ρ, φ) plane that correspond to the four phases 0, 1, 2,
and 3. Therefore, allowance for higher-order invari-
ants will not lead to the appearance of new phases.

The phase transition 2 —~ 3 is an ordinary ferroelec-
tric transition. The order parameter for it, if as the
initial phase we take the phase 2, is the component P.
The phase transition 1 — 3 is a transition from a polar
phase to a polar phase (the order parameter is the
quantity Q).

If the coefficient δ <0, then the phase 3 is unstable.
Therefore, passing the phase 3, the ferroelectric phase
transition 2 — 1 will inevitably occur as a first-order
transition. Notice that the obvious requirement that
the thermodynamic potential should not have a minimum
at p —°° is also satisfied when δ<0 if δ + δι>0 and
δι + δ2 >0, where δι and 62 are the coefficients attached
to two other eighth-order invariants: δ,(?)2 + ξ2)4/8 and
δ2(τ)2-|2)4/8.

The dielectric anomalies arising in the 2 -—1 (δ <0)
transition are shown in Fig. 8. They are practically
similar to the dielectric anomalies in the phases 2 and
1 arising in the transitions 2 *— 3 *-* 1. The dependence
P(E) for different Τ has a form similar to that shown
in Fig. 5. If we set δ = 0, then the thermal hysteresis and
the double hysteresis loop in the phase 2 will vanish in
the transition 2 -— 1.

h) Applicability of the Landau theory of phase transi-
tions. It is well known that the Landau theory of phase
transitions1"1·1 is valid only in a limited temperature
range. It is not applicable both in the immediate neigh-
borhood of, and far from, the transition point. In this
theory, the thermodynamic potential is represented in
the form of a power series in the order parameter η of
the phase transition. It follows from the very fact of
the existence of the phase transition that the coefficient
a attached to η2 changes sign at the transition point 0.
All the coefficients α, β, γ, etc. of the thermodynamic
potential are expanded in power series in (Τ — Θ), and
only the first terms of the expansions are considered,
i.e., the simplest temperature dependence is assumed
for these coefficients.

It is clear that at a point sufficiently far from the
transition point we cannot limit ourselves to the first
terms of the power-series expansions in (T-0) of the
coefficients α, β, γ. Furthermore, in the asymmetric

0.1

FIG. 6 FIG. 7

FIG. 6. Stability boundaries of the phases 0,1,2, and 3 (E = 0) in
the (α, β) plane for the second-order (β2 > 0) transitions, a" = (βγ/δ) -
(ΙβΙ^/δ)* and α" = 0,2/47.

FIG. 7. The solutions (8) — (10) and (16) corresponding to the
phases 0, 1,2, and 3 in the (77, £) plane.

FIG. 8. The dependence of Ρ and χ on Τ through β = β (Τ - θ) for
the phase transition 2 ** 1 (ot < 0). The dashed curves represent the de-
pendences for Ε Φ 0. It is assumed that β2 > 0, γ = 0, and δ < 0. β' =

|δ|α2/|32

2, β0 = (Δ/δ|Ε2/2κ)>\ β'ο = β'+ Αβι |E|/|aa|, Ρο = |Ε|/κ, Ρ" =
|aa|/K/32, and χ 0 = 1/κ.

phase, in which the spontaneous value of η increases
with I T—01, we cannot restrict ourselves to only a few
terms in the expansion of the thermodynamic potential
in a power series in η. Therefore, we cannot, in par-
ticular, describe on the basis of the Landau theory pro-
nounced first-order phase transitions, i.e., transitions
in which the atomic displacements are comparable to the
interatomic distances and the transition temperature Tc
is, generally speaking, far from the point θ where the
symmetric phase loses its stability. How wide the tem-
perature range in which the Landau theory is valid is,
strictly speaking, determined by the specific properties
of the interaction in the crystal, and may be of the
order of Θ, or of the order of another characteristic
temperature. Thus, in describing first-order transi-
tions (or second-order ones in a sufficiently wide range
of temperatures), we must take into account the specific
properties of the concrete substance.

For second-order phase transitions, or for the first-
order ones that are nearly of second order, the Landau
theory makes definite inferences about the symmetry
change that occurs in a transition; namely, the change
in symmetry is described with the aid of one irreducible
representation of the symmetry group of the initial
phase C l 1. For a pronounced first-order phase transition,
the change in symmetry can, generally speaking, be de-
scribed by several irreducible representations. In other
words, as a result of the loss of stability with respect
to one representation, there arise such large displace-
ments that stability with respect to another representa-
tion is lost. Such cases are apparently encountered
in the improper ferroelectrics (see Sees, b and c of
Chap. 3).

The Landau theory is also inapplicable in the immedi-
ate neighborhood of the transition point. This neighbor-
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hood is different for different types of phase transitions.
For example, it is negligibly small for transitions to the
superconducting state, and encompasses in transitions to
the superfluid state the entire temperature region that
is of interest ilal. For phase transitions with a change
in crystal structure, to which ferroelectric transitions
pertain, the temperature range in which the Landau
theory is invalid can be considerable.

The physical cause of the inapplicability of the Lan-
dau theory is the spatially inhomogeneous fluctuations
in the order parameter (i.e., the correlation
effects) t l 8 j l 9 : . They grow as the transition point is
approached because of the increasing pliability of the
crystal with respect to those distortions of its struc-
ture that arise in the phase transition.

Because of the fluctuations in the order parameter,
the temperature dependences of the coefficients α, β, γ
turn out to be more complicated than in the Landau
theory. In the temperature region where the fluctuations
are large, all the coefficients of the thermodynamic
potential essentially depend on the temperature. At the
second-order phase-transition point itself, they vanish
(or become infinite). In other words, the thermodynamic
potential cannot be validly expanded at the phase transi-
tion point in a power series in the order parameter, i.e.,
it is singular at the point itself C l 1.

The fluctuations in the order parameter can also lead
to a marked temperature dependence of the other coef-
ficients of the thermodynamic potential. Correspondingly,
the anomalies in the various physical quantities will
change in the temperature region where the fluctuations
play a major role. In the Landau theory, such quanti-
ties as, for example, the specific heat or the compressi-
bility undergo a discontinuity in a second-order phase
transition, remaining constant as the transition point is
approached I l ] . Allowance for the fluctuations in the
order parameter leads to the growth of these quantities
according to a weak power or logarithmic law (see,
for example, l201). As has already been noted, in im-
proper ferroelectric transitions the anomaly in the
dielectric susceptibility is similar to, for example,
the anomaly in the compressibility. The fluctuation-
induced changes in the anomalies of these quantities
will also be similar in nature.

In crystals, spatially inhomogeneous fluctuations in
the order parameter also lead to a situation in which a
second-order phase transition becomes impossible; it
is transformed into a first-order transition [ 2 i : . This
circumstance is due to the special role played by the
inhomogeneous shear strains that arise as a result of
the inhomogeneous fluctuations in the order parameter.
For second-order phase transitions, the coefficient β
in the thermodynamic potential should, upon allowance
for the fluctuations, vanish at the same point as the
coefficient a. Allowance for the shear strains leads to
a case in which the coefficient β passes through zero
earlier than the coefficient a. Thus, β becomes nega-
tive and, consequently, the phase transition becomes a
first-order transition. The wider the temperature range
in which the fluctuations are substantial, and the
stronger the coupling between the strains and the order
parameter, the stronger such an effect. In some cases,
e.g., in ferromagnets, it is practically negligible; in
others, it is important C 2 i : . Notice that all the known
improper ferroelectric phase transitions are first-
order transitions. It is not impossible that this will,

in a number of cases, be due to the fluctuations in the
order parameter (see Sec. a of Chap. 3). The elucida-
tion of this connection will require a more complete and
thorough investigation of the improper ferroelectrics.

1) The domains. As was noted above, the polar phase
1 contains four different domains corresponding to the
four equivalent (with the same value of the thermody-
namic potential) solutions (9). These domains differ
in the spontaneous values of the order-parameter com-
ponents η and ξ (see Fig. 7). Furthermore, two of the
domains differ from the other two in the sign of Ρ. It is
clear that any domain can be transformed into another
by the action on it of one of those symmetry elements of
the initial phase that are lost in the transition to the
polar phase. Therefore, for each twin arising in the
phase transition, we can find a symmetry element of the
initial phase that transforms one domain of the twin into
another (there may be several such elements for a given
twin).

If the components of the order parameter are not
tensor quantities, i.e., if they transform according to
an irreducible representation of the space (and not the
point) group of the initial phase, then the set of sym-
metry elements lost in the phase transition will contain
a translation. This translation is a twinning element for
the domains with identical Ρ (domains that differ in the
signs of both η and ξ corresponding to them). Such do-
mains (they are called antiphased domains) do not differ
in any of their tensor, i.e., macroscopic, properties. A
given domain forms two twins with domains whose po-
larizations Ρ differ in sign. The corresponding twinning
elements act in like manner on Ρ and differently on η
and ξ. The energy and thickness of the boundaries of
these two twins are different, and can, generally speak-
ing, coincide only when the boundaries have certain
orientations in the crystal. All the foregoing is valid
for the phase (13). The phase 3, (16), contains eight
different domains. These domains form translational
twins (if η and ξ are not tensor quantities), twins which
differ in the sign of P, in the sign of Q, and in the signs
of both Ρ and Q (in this case all the domains differ in
the spontaneous values of η and ξ; see Fig. 7).

The equilibrium domain structure in ferroelectrics
is, as is well known, determined by a relation between
two energies —the energy of the electric field produced
by the spontaneous polarization and the energy of the
domain walls. The temperature dependence of the spon-
taneous polarization and, consequently, of the electro-
static energy (when the crystal is not short-circuited)
in the ordinary ferroelectrics is different from the de-
pendence in the improper ferroelectrics. The temper-
ature dependence of the domain-wall energy, on the
other hand, is the same in both cases (it is the same for
any twin boundaries that arise in second-order phase
transitions); whence the equilibrium domain widths in the
ordinary and improper ferroelectrics will vary differ-
ently with temperature.

Let us estimate the electrostatic energy for a plane-
parallel plate, whose thickness is L and which is divided
into domains of transverse dimension /. If I « L , then
the electric field Ε produced by the spontaneous polari-
zation Ps penetrates the plate to a depth ~l, and has a
magnitude Ε —4;rPs· Hence we obtain for the energy per
unit plate-surface area the expression

u^PiEl~Pli~Mi~{?-m2l. (17)
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For the energy per unit domain-wall surface area,
we obtain

Uz ~ Φ,ά — | ce J pl
Pi

Ι α Ι3

(18)

where d~(a/l a\)1/2 is the effective thickness of the
domain wall and σ is the coefficient attached to gradient
terms of the form σ[(νη)2 + (νξ)2] in the thermodynamic
potential. The equilibrium domain dimension l0 is de-
termined from the condition for a minimum of the total
energy UI + (U2L/Z) per unit plate-surface area1"173:

υ a. \i/2l«~ \ThiT)

l/4Ll/2

-1 r—e (19)

As a similar estimate shows, in the ordinary ferro-
electrics, l0 does not depend on temperature. It follows
from this, in particular, that it is more complicated to
obtain the equilibrium domain structure in the improper
ferroelectrics than in the ordinary ones, since in order
to maintain it in the improper ferroelectrics as the tem-
perature is lowered, it is necessary that new domains
be continuously formed.

As can be seen from the relation (19), l0 increases
without restriction as we approach the transition tem-
perature Θ, and although this relation is valid only when
la « L , we can draw from it the conclusion that in con-
trast to the ordinary ferroelectrics, the improper
ferroelectrics can become unstable with respect to the
transition to the single-domain state C 8 :. Let us explain
this further in the following manner. In an ordinary
ferroelectric, a second-order phase transition occurs
when the coefficient a in the term aP2/2 of the thermo-
dynamic potential becomes equal to zero. If the crystal
is not electrically short-circuited, then there arises an
electric field (called a depolarization field) equal in the
case of a homogeneous polarization in the plate to —4πΡ.
It is then necessary to add to the thermodynamic poten-
tial the long-range dipole-dipole interaction energy
-ΡΕ/2 (the electrostatic energy), and, consequently, the
coefficient in front of P2/2 will not be a, but a + 4π.
This coefficient does not vanish. Therefore, the phase
transition cannot be to the single-domain state, but to
a polydomain state in which the depolarization field is
weak.

In the improper ferroelectrics, the energy of the de-
polarization field -PE/2 leads to a change by 4π not in
the coefficient a, but in the coefficient κ in the term
KP 2 /2 of the thermodynamic potential (6). Therefore, the
appearance in an electrically open crystal of a single-
domain state is possible upon a change in sign of a. This
state is metastable, since the partition into domains is
energetically advantageous.

The process of polarization reversal in the improper
ferroelectrics, in comparison with the ordinary ones, does
not possess obvious specific properties. Indeed, as is
well known, polarization reversal occurs on account of
the motion of the domain boundaries. The resistance to
the boundary motion is due largely to the difference in
the spontaneous deformations of the neighboring domains
and the existence of inhomogeneous strains at the domain
boundaries, which interact with the defects of the crystal
lattice. These and the other strains have similar charac-
ter in ordinary and improper ferroelectrics. Notice that
the spontaneous polarization Ps in an improper ferro-
electric is, as a rule, weaker than the polarization in an
ordinary ferroelectric (i.e., it is a quantity of higher
order in smallness), and that the force exerted by the

electric field on a domain boundary is proportional to
Pg. This must be taken into account when comparing the
mobility of the domain boundaries of different ferro-
electrics.

2. THE VIBRATIONAL SPECTRUM OF A CRYS-
TAL NEAR THE PHASE-TRANSITION POINT

a) Normal coordinates and the order parameter. Re-
maining in the framework of the phenomenological theory,
we not only can describe the anomalies in the thermody-
namic quantities, but also determine the nature of the
changes that occur in the spectrum of the elementary
excitations of the crystal in the neighborhood of the
phase transition. For this purpose, we must relate
the components of the order parameter to the change
that occurs in the positions of the atoms in the crystal
lattice during the phase transition. The physical mean-
ing of the order parameter is elucidated at the same
time. With that end in view, let us use the approach in
which the phenomenological theory of phase transitions
is expounded in the language employed in the dynamical
theory of the ideal crystal lattice. By this token, we
shall consider only the displacive-type phase transitions:
the changes in the vibrational (phonon) spectrum of the
crystal in the neighborhoods of the critical points of
such transitions are experimentally the most notice-
able. The indicated approach to the description of
ferroelectric phase transitions was used by Ginzburg
in his papers 2 J , and subsequently more fully by An-

derson and Cochran (see, for example, ).

A change in structure occurs in a displacive-type
phase transition as a result of the displacement of the
ions (atoms) in the crystal lattice. We shall, for sim-
plicity, consider the ionic displacements corresponding
to only the optical (and not the acoustic) branches of
the vibrations, i.e., we shall neglect the deformation of
the crystal, fixing the positions of ions of the same
kind (i.e., of ions forming a Bravais lattice).

If the translational symmetry of the crystal does not
change in the phase transition, then the resulting ionic
displacements are the same in all the unit cells (i.e.,
correspond to the wave vector k = 0). The structure of
the crystal can then be described with the aid of 3N- 3
(N is the number of atoms in a unit cell) coordinates Xi,
which are conveniently measured from the equilibrium
positions of the ions in the initial phase.

The thermodynamic potential is a function of the co-
ordinates xi of the ions. However, the variables xi are
inconvenient, since they are all coupled to each other:
because of the interaction between them, the displace-
ment of one ion leads to the displacement of the rest.
By means of a linear transformation we can go
over to new variables—normal coordinates qj, which,
in the harmonic (quadratic in qi) approximation,
are not coupled to each other. The thermodynamic po-
tential in the variables qj is a diagonal quadratic form:
it does not contain terms of the form qiqj with different
i and j .

The coordinates xj form a basis for the representa-
tion of the point group of the initial phase, i.e., they
transform into each other under the symmetry opera-
tions. The transition to the new basis qj leads to the
decomposition of the representation into irreducible
representations. In other words, the qj break up into
separate sets and transform into each other only
within each such set.
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The thermodynamic potential can be represented in
the form

The normal coordinates q n r with a given η transform
according to one irreducible representation (the num-
ber of different r is equal to the dimensionality of the
corresponding representation).

In the initial phase, all q n r = 0 6 ) . The stability con-
dition for this phase amounts to the requirement that all
coefficients a n

> 0 . We shall for definiteness henceforth
speak of second-order phase transitions. In order for
the transition to occur, the initial phase should become
unstable, i.e., one of the coefficients atn (let us denote
it by am) should become negative, having passed through
zero at the transition point itself. Some of the qmr be-
come different from zero when a m <0. The ionic dis-
placements corresponding to these qmr arise in the
phase transition, changing the symmetry of the crystal.
The components of the order parameter in the Landau
theory for the displacive type of transitions are, by their
physical meaning, the normal coordinates qmr·

In order to not only describe the loss of stability,
but also find the coordinates of the ions in the asym-
metric phase, it is necessary to take into account in
the thermodynamic potential invariants of order in
l inr higher than the quadratic (i.e., allow for anhar-
monicity). In this case there will also appear mixed
invariants in the form of products of powers of qmr
and other q n r . The ionic displacements corresponding
to those normal coordinates qnr that enter into the
mixed invariants linearly (let us denote them by q/r) can
also arise in the phase transition.

The above-considered order-parameter components
η and ξ have the meaning of normal coordinates q m i
and qm2· The role of the coordinate q; (r = 1), which
transforms according to a (one-dimensional) representa-
tion that is different from that according to which qmr
transforms, was played by P, which entered linearly
into the corresponding mixed invariant

The foregoing analysis can easily be extended in its
entirety to the case when the translational symmetry
of the crystal changes in the phase transition. In such
transitions, the ions in neighboring unit cells are not
displaced equally. Therefore, we must consider normal
coordinates with wave vectors k different from zero.
For those normal coordinates that play the role of
order-parameter components, the wave vectors can
terminate only at certain points of the Brillouin zone.
This is connected with the requirement that the phase
transition lead to a homogeneous, and not a layered,
crystal C l ] .

b) The normal modes. In the equations of motion that
describe the normal modes of the crystal lattice, the
role of the potential energy is played by the thermody-
namic potential, which depends on the normal coordi-
nates. Therefore, definite conclusions about the vibra-
tional spectrum of the crystal in the phase-transition
region can be drawn in the frame-work of the phenom-
enological Landau theory. Thus, for example, the van-
ishing of the frequency of the soft mode at the second-
order phase transition point follows from the following
simple arguments. The coefficients an in the thermody-
namic potential have the meaning of "elastic" constants
for the normal coordinates qn r . Therefore, if the damp-
ing is weak, then ωη~ αη> where ω η is the frequency of

the corresponding normal mode. The coefficient am

vanishes at the phast-transition point; therefore, the
frequency o>m of the normal coordinate qmr also van-
ishes. It is this vibration that is called the soft mode.

Let us consider the vibrational spectrum of a crys-
tal that undergoes an improper ferroelectric phase
transition. In the ordinary ferroelectrics, the soft
modes in both phases are active modes in the infrared
spectrum, i.e., their vibrations are accompanied by
polarization oscillations. In the improper ferroelectrics,
the soft mode in the initial phase is inactive in the infra-
red spectrum (the quantities η and ξ are not polariza-
tion-vector components). In the polar phase, we should
in considering the crystal-lattice vibrations reckon η,
ξ, and Ρ not from zero, as is done in the initial phase,
but from the spontaneous values η 8 , ξ8, and Pg. In this
case the deviations η' = η-η8, ξ = ξ - ξ 8 ^ η ΰ P ' = P - P S

will not be normal coordinates, since the corresponding
quadratic form will not be diagonal. Indeed, because of
the presence of the mixed invariant ?)ξΡ, there will ap-
pear terms of the form Ρ3?7'ξ' + |sf]'P' + %i;'P'· The
normal coordinates will now be some linear combina-
tions of the quantities η', ξ', and Ρ' . In other words,
all the three quantities η', ξ', and Ρ' will, generally
speaking, participate in any of the three normal vibra-
tions. However, the coefficients attached to the mixed
terms TJ'P' and ξ'Ρ' vanish at the transition point and
are consequently small near this point in comparison
with the coefficient attached to P' 2 . Therefore, it makes
sense to speak of η' and ξ' modes with an admixture of
the P ' mode. This admixture (the oscillator strength)
thus decreases as we approach the phase-transition point
and vanishes at the point itself C 2 4 : .

The computation performed for the thermodynamic
potential (6) with the coefficients y= 6 = 0 leads to the
results shown in Fig. 9 for the temperature dependence
of the normal-mode frequencies near the second-order
phase-transition point. In the initial phase the mode
corresponding to the polarization vibrations has a fre-
quency α φ = κ/μ', where μ' is the coefficient attached
to Py 2 in the expression for the kinetic energy (a co-
efficient that plays the role of a generalized mass). The
two other modes (which are inactive modes in the infra-
red spectrum) have the same frequency ω^ = ω | = α/μ,
where μ is the coefficient attached to (if + ξ2)/ζ (the
soft mode is two-fold degenerate). In the polar phase one
of the two soft modes is inactive in the infrared spec-
trum, its frequency being given by ω\= 21 α 11/31/0! μ,
while the other mode, whose frequency in the vicinity
of the transition point for I a I μ' « κ μ is ct>l = 21 a I /μ,
is an active mode; the frequency of the third mode is
given by ω! = (κ/μ') + (2Ι α Ι Α/β1β). The dielectric
susceptibility x = dP'/dE is determined by the relation

(1/μ')-2Α|α|/βιχμ , 2 | g | Α/Ρ,χμ / 2Q)
χ ~ ω | — ω 2 ~*~ ω ί · — ω 2 ' * '

from which it can be seen that the oscillator strength
of the soft-mode vibrations, which is equal to
21 α Ι Δ/β^κμ, decreases according to the law ~IT—01
as we approach the transition temperature Θ.

For a first-order phase transition, the square of the
soft-mode frequency does not vanish at the transition
point, the varies linearly with temperature in the initial
phase and according to a more complicated law in the
polar phase C25:l.

In the phase transition 2 —* 1, the vanishing of the
frequencies of the soft modes occurs in both phases at
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FIG. 9. The temperature dependences of
the frequencies of the various vibrational
modes in the vicinity (Μμ' «̂  κμ) of the
second-order (Pt > 0) phase transition 0 •** 1
03< 0).

the points where these phases lose their stability Let
us emphasize that the soft modes correspond to differ-
ent branches of the phonon spectrum. In the phase 2
the soft mode is the oscillation of the polarization com-
ponent P, while in the phase 1 the soft mode is the
oscillation of another tensor quantity Q (3).

In the case of the thermodynamic potential (7), the
nature of the temperature dependence of the normal-
mode frequencies will be similar to that of the tem-
perature dependence shown in Fig. 9, except that now
in the polar phase both soft modes will be active in the
infrared spectrum.

If the phase transition occurs without a change in the
number of atoms in the unit cell, then all the frequencies
represented in Fig. 9 correspond to oscillations with
k = 0. If the transition occurs with a change in the trans-
lational symmetry of the crystal, then the two frequen-
cies in the initial phase correspond to ν and ξ vibra-
tions with a non-zero wave vector k. In the polar phase
all the frequencies correspond to k = 0. The number of
branches in this phase naturally increases, which is not
shown in Fig. 9.

Notice that Fig. 9 essentially shows the temperature
dependences of the "elast ic" constants an of the normal
modes. The squares of the frequencies have similar de-
pendences only in the case when the damping of the vi-
brations is weak. If the damping is not weak, then we
cannot, strictly speaking, use the normal-mode language.
However, the form of the thermodynamic potential, on
the basis of which all the results are obtained, does not
depend on the presence of damping and, consequently,
the entire analysis can be carried out in the same way
as was done above. Naturally, the results obtainable here
will be different. For example, when the damping is so
strong that instead of vibrations we have relaxation, then
what will vanish at the phase-transition point is not the
frequency, but the inverse relaxation time.

We have assumed above that P~q;, i.e., that Ρ arises
as a result of the ionic displacements corresponding to
one normal mode of the initial phase of the crystal.
Contributions to Ρ can, however, be made by the ionic
displacements corresponding to several normal modes
(i.e., corresponding to coordinates q/ with different I,
but transforming according to one irreducible repre-
sentation), as well as by purely electronic displacements.
Allowance for this will not change any of the above re-
sults, since they were essentially obtained on the basis
of a phenomenological analysis (only the microscopic
meaning of the coefficients κ and a of the thermody-
namic potential will change).

The most complete data on the frequencies of the
normal modes-in particular, the soft modes-of a
crystal can be obtained from inelastic neutron scatter-
ing experiments. This method allows us, in principle,
to measure the frequency of any vibration of the crystal.

The method of (first-order) Raman light scattering
allows us to investigate only those normal modes which

have small wave vectors k (of the order of the wave
vector of the light wave), and for which the refractive
index (or, more precisely, each component of the per-
mittivity tensor ê j at optical frequencies) varies in pro-
portion to the corresponding normal coordinates. In the
initial phase of an improper ferroelectric, the com-
ponents of the tensor €jj are quadratic in the normal co-
ordinates of the soft mode, e.g., η and ξ. Therefore, the
soft mode does not contribute to the Raman light scatter-
ing. In the polar phase the quantities η and ξ have the
spontaneous values % and £s· Therefore, the relation
between the change in ejj and η', ξ'-the deviations of η,
ξ from η 8 , ξβ~becomes linear.

If the long-wave normal modes of the crystal lattice
are accompanied by oscillations of the electric dipole
moment Ρ, then they give an absorption line in the in-
frared region of the spectrum (i.e., they are active in
the infrared spectrum). In the improper ferroelectrics,
as was noted above, the soft modes can be active in the
infrared spectrum only in the polar phase. The infrared
absorption lines corresponding to the soft modes shift
toward the low-frequency region, and their intensity de-
creases as we approach the transition point.

3. DISCUSSION OF THE EXPERIMENTAL DATA

a) The rare-earth molybdates. Let us now proceed
to discuss the experimental data. We did not find it
expedient to give here a complete review of the large
number of papers on the improper ferroelectrics. We
do not cite papers containing experimental data that are
insufficient for their unique interpretation, or that es-
sentially duplicate results obtained by other methods,
or that bear no direct relation to the above-expounded
theory.

Let us begin the discussion with gadolinium molyb-
date Gd2(MoO4)3, since the data for it are the most com-
plete and reliable. The other rare-earth molybdates
have similar properties. Gadolinium molybdate under-
goes at T = 159°C a ferroelectric phase transition in
which its space group changes from D2d(P42im) to
C2v(Pba2). The reconstruction of the structure in the
transition is such that the volume of the unit cell is
doubled-certain translations in the plane perpendicular
to the polar axis are lost (see, for example, C 2 6>2 7 : |)7 ).
The latter fact implies that gadolinium molybdate is an
improper ferroelectric (the phase transition is a first-
order transition that is nearly of second order-see Sec.
h of Chap. 1).

The irreducible representation of the symmetry group
of the initial phase D d̂ that is responsible for the transi-
tion to the polar phase CUv was found in [ 2 8 ] . The ther-
modynamic potential corresponding to this representa-
tion has the form (2), (4), or (7) . In the paraelectric
phase, gadolinium molybdate is a piezoelectric, the
piezoelectric modulus coupling P z and uxy (the ζ axis
is directed along the major axis, while the χ and y
axes are directed along the two-fold axes) being differ-
ent from zero. In other words, Pz and uxy possess
the same transformation properties, i.e., they enter into
the thermodynamic potential in similar fashion. Let us
add to the expression (7) terms depending on uxy= u:

- 1 ^ 2 + λΡ» + 2δ,η|Μ + δ2(η2-Ι3)«. (21)

The anomalies in the dielectric properties of gadolin-
ium molybdate (Fig. 10) E 2 9 ] are well described by the

209 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 A. P. Levanyuk and D. G. Sannikov 209



o.kHz

T.'C

FIG. 10. Experimental data on the rare-earth molybdates. Depend-
ences for gadolinium molybdate: a) e3 3(T),C6 6(T),C6 6~co[2 9] and
b) # 2 (T)[ 2 7 ] , P(T) (MC/cm2), u^CT), u^ ~ 0[2 9], and c) the dependence
of the frequency ω of the soft mode with k = (Vi, Vi, 0) on Τ for terbium
molybdate: ω 2 = A(T - 0) (0 = 149 °C, T c = 159 °C, and A= 0.0165
meV/deg) ["].

above-expounded theory (see Figs. 3 and 4). It is pre-
cisely this circumstance that allowed in its time the
classification of gadolinium molybdate as an improper
ferroelectric C 9 ]. Indeed, the anomaly in the permittivity
e33 is relatively weak. In the paraelectric phase, £33
does not obey the Curie-Weiss law and is almost temper-
ature independent.

For a mechanically compressed crystal, there is
practically no anomaly in €33. This means that the co-
efficients ai and a2 attached to the mixed invariants in
the thermodynamic potential (7) are very small: ai = 0,
a2~0. The appearance of the spontaneous polarization
in the phase transition is thus due not to the direct
coupling of Ρ to the order-parameter components
η and ξ, but to the coupling of Ρ to u and u to η
and ξ.

The temperature dependences of the spontaneous
values of p2, P z , and u x y (Fig. 10) are identical, which
is evident from the form of the thermodynamic potential
(7), (21). Similarly, the anomalous parts of the elastic
modulus Cee and the inverse dielectric susceptibility
XsV have the same temperature dependence. Numerically,
the anomaly in Ce 6 is quite high.

Two types of twin boundaries-ferroelectric and
translational or antiphase—arising in the phase transi-
tion in gadolinium molybdate have apparently been ob-
served (with the aid of the method of selective etching)
i n

[30]

The quantitative comparison of the experimental data
with the theory can be done on the basis of a simplified
thermodynamic potential obtained by setting in (7), (21),
β3 =a2 = b2 = 0, since the anomalies for the thermodynamic
potentials (6) and (7) practically coincide (see Sec. f of
Chap. 1). The experimental data presented in Fig. 10
allow us to determine the following combinations of the
coefficients of the thermodynamic potential: a = 0, «=1.5,
λ/««2χ105 cgs esu, \2/CK~0M, bl/3jl cy« 10'3, fi/αγ
«20 deg, and b2/cl&l « 1. It is significant, for example,
that the last value can be obtained from the discontinuity
in C and the magnitudes of, and discontinuity in, χ . The
coincidence to within the limits of experimental error of
these two values attests not only to the qualitative, but
also to the quantitative agreement of the theory with
experiment (see also C 9 ] ) . The complete determination
of the coefficients of the thermodynamic potential re-
quires experimental data on the anomalies in other
quantities, e.g., the specific heat. The accuracy of such
data is not yet sufficient.

The soft mode in terbium molybdate has been investi-
gated by the inelastic neutron scattering method C251. In
the paraelectric phase, the square of the frequency of the
mode with the Brillouin-zone-edge wave vector ls. = (lA,
V2, 0) was found to have a linear temperature dependence
(see Fig. 10). This experiment directly indicates that
the ferroelectric phase transition in terbium molybdate
is an improper one. In the polar phase one scattering
peak was observed which corresponds to two merged-
as a result of damping-soft modes. The peak moved
slowly and broadened with increasing temperature. The
weak dependence of the frequencies of the soft modes
on temperature may be due to the fact that the transition
is of first order. However, the experimental data on
the polar phase near the transition temperature are
not sufficiently accurate for their unique interpreta-
tion t 2 5 ] .

In the experiments C31] on Raman light scattering in
the polar phase of gadolinium molybdate, a peak having
approximately the same frequency as the one in [ 2 5 ] was
observed which was apparently connected with a soft
mode (the peak decreased in intensity and frequency as
the temperature increased).

In the experiments C32] on infrared light absorption in
the polar phase of gadolinium molybdate, two weak peaks
were observed which, as the temperature was increased,
decreased in intensity and frequency, and broadened,
merging at room temperature. By their appearance,
these peaks correspond to soft modes. The weak in-
tensity of the peaks can easily be explained if we allow
for the fact that the infrared absorption is determined
by the contribution of the soft-mode vibrations to the
imaginary part of the permittivity of the clamped crys-
tal, since the frequencies at which the absorption occurs
are substantially higher than the piezoelectric-resonance
frequencies. In gadolinium molybdate, this contribution
is very small, to which corresponds the smallness of
the coefficients ai and a2 in the thermodynamic poten-
tial (7).

From the experimental data on the dielectric
anomalies and the dependence o>(k) for the soft mode : 2 5 1 ,
we can estimate the role of the fluctuation effects in the
phase transition. Such an estimate C33] shows that this
role can prove to be fairly important. Therefore, it is
precisely the fluctuations (see Sec. h of Chap. 1) that,
possibly, make the phase transition in the rare-earth
molybdates a first-order transition.

b) The boracites. The majority of the boracites -
compounds with the formula Μβ3Β7Οΐ3Χ, where Me is a
divalent metal and X is a halogen-are ferroelectrics
(see, for example, C 3 ] ) . The ferroelectric phase transi-
tion occurs with a change in the space group-from
Td(F43c) to CzV(Pca)-and a doubling of the (primitive)
unit-cell length in the plane perpendicular to the spon-
taneous polarization axis [ .

The irreducible representation responsible for the
Tfl "—Civ transition with a doubling of the unit-cell
size has been determined in t 3 5 3 . This representation is
six-dimensional, and to it correspond many other asym-
metric phases. The sequence of phase transitions Ta
—Civ —-Cs —-Civ t3<n (the space group of the C s phase
has not been reliably established) has been experimen-
tally observed in a number of boracites. The indicated
irreducible representation is responsible not only for the
transition to the phase Civ, but also for the transitions
to the phases C|(Bb) and C3v(R3c) with a quadrupling
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of the unit-cell size as compared to that of the initial
phase Tg C35J. This, however, does not mean that the
entire chain of phase transitions in the boracites can
be described on the basis of one irreducible represen-
tation. Although such a possibility is alluring, it is by
no means obligatory, and does not agree with the avail-
able experimental data l3i:>, according to which the unit
cells of the Civ and T^ phases contain the same num-
ber of atoms.

The expression for the thermodynamic potential,
which depends on six order-parameter components (η,
η', ξ, ξ', £, £') is quite unwieldy [ 3 6 ] , and it is not ex-
pedient to give it here. Notice that this expression con-
tains third-order invariants of the form τ)ξ£-η'ξ'ζ'.
Therefore, any transition from the T ĵ phase should be
a first-order transition. The mixed invariant containing
the components of the polarization vector has the form:
OT'Px+££'Py + ££'Pz· The CiV phase corresponds to a
solution of the type ζ = ±£', η = η'= ξ= ξ' = 0. It follows
from this that the coefficients attached to the third-
order invariants do not enter into the expressions for
the dielectric anomalies arising in the phase transi-
tion Ta -—Civ· It follows from the form of the mixed
invariant and the form of the solution for the C2V phase
that the phase transition T | — C v̂ gives rise to P x or
Py, or P z (for a single-domain crystal). Therefore, the
description of the dielectric anomalies could have
been carried out for each component of the polariza-
tion vector separately on the basis of the thermodynamic
potential (6). However, such a treatment does not allow
the description of the observed anomalies, since the phase
transition in the boracites is a pronounced first-order
transition (see Sec. h of Chap. 1). Figure 11 shows a
typical-for the boracites-anomaly in e due to the
Td * * C l v phase transition l M . It is characteristic that
e undergoes a discontinuity downwards in the transition
to the polar phase. We can attempt to qualitatively ex-
plain such behavior of e if we take into account in the
thermodynamic potential higher-order invariants in P,
e.g., the invariant d(if- ξ2)Ρ : 3 5 ] . To be able to do this,
however, we must make special assumptions about the
sign of the coefficient d and assume that this coefficient
is anomalously large, or that the other coefficients of
the thermodynamic potential are anomalously small.

Let us emphasize that such an explanation is by no
means the only one possible. In the case of strongly
pronounced first-order transitions it is generally im-
possible to state with certainty that the appearance of
polarization in a ferroelectric phase transition that oc-
curs with a change in the translational symmetry of the
crystal is necessarily a second (and not a first) order
effect. The change in the translational symmetry may
be the result of the appearance of the spontaneous po-
larization-a spontaneous-polarization induced change
in the lattice constant that is so large that structural

ε
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300 T,°C ico 200 T,°C

FIG. 11. The dependence e(T) for: a) the Ni-I boracite at 48 MHz in
the [100] direction and b) the Co-Br boracite at 100 kHz in the [11 Π
direction [38].

changes corresponding to η and ξ become energetically
advantageous (see also Sec. h of Chap. 1).

To find out whether the order parameter in the
boracites is Ρ or the two-component quantity (η, ξ), we
must investigate experimentally the Tg phase under
strong supercooling, i.e., close to the temperature at
which this phase loses its stability.

Of special interest is the ferroelectric phase transi-
tion in the Ni-I boracite at T« 64 °K, as a result of which
simultaneously with the spontaneous polarization arises,
according to the data of [ 3 4 ' 3 9 ]

> spontaneous magnetization.
Judging from the anomaly in e, the phase transition can-
not be an ordinary ferroelectric transition. However,
the experimental data on the Ni-I boracite are not yet
sufficient for a unique description of the phase transi-
tions that are observed in it.

c) Rubidium and sodium trihydroselenites. In rubid-
ium trihydroselenite RbH3(SeC>3)2, the anomaly in e due
to the ferroelectric phase transition (T»-119 °C) is
weak (Δε~ 1, e~ 10), and the spontaneous polarization
is very small (Ps~0.01 μϋ/αη2)1402. The anomaly in e
is similar in form to the anomaly observed in gadolin-
ium molybdate. The space group of the paraelectric
phase of rubidium trihydroselenite is D4 (P2J.2J21) [ 4 1 ] .
It is shown in C42] that the only possible improper ferro-
electric (second-order) phase transition from the group
D4 occurs to the group Cl (P2i) with a doubling of the
unit-cell length in the plane perpendicular to the spon-
taneous polarization. The thermodynamic potential has
the form (7) t 4 2 : .

A curious characteristic of rubidium trihydroselenite
is the substantial decrease in the € anomaly and the
magnitude of Ps on the deuterization of the crystal,
while the transition temperature practically remains
unchanged. No e or P s anomaly is observed in the
completely deuterized rubidium trihydroselenite.
Allowing for experimental error, we can assume that
these quantities are at least an order of magnitude less
than the values in the undeuterized substance. The in-
dicated characteristics attest apparently to the fact that
the phase transition is not directly connected with proton
ordering: the ordering arises as a secondary effect,
which is the cause of the spontaneous polarization C4o:.

Ferroelectric phase transitions accompanied by a
change in the translational symmetry of the crystal lat-
tice are observed in sodium trihydroselenite NaH3(SeO3)2.
These transitions are strongly pronounced first-order
transitions. The spontaneous polarization arises dis-
continuously, practically does not vary with temperature
in the polar phases, and its magnitude is substantial
(P s ~5 MC/cm2) C43]. In the paraelectric phase, e is
found to grow, but apparently not according to the Curie-
Weiss law. The temperature-percentage deuterization-
pressure phase diagram has a rather complicated
shape :44]. Several phases are observed: besides the
paraelectric phase, whose symmetry group is
Clh(P2i/b) t45], there are two polar phases in the sym-
metry classes Cs(m) and Ci(l) and a nonpolar phase
whose structure has not yet been established. Transi-
tions from the phase CUh to all the enumerated low-
symmetry phases are observed at different degrees of
deuterization and different pressures. The transition
to the Cs phase is found to be accompanied by a doubling
of the unit-cell length along the two-fold axis, while the
transition to the Ci phase leads not only to a doubling of
the unit-cell length along the two-fold axis, but also to
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a doubling of the length along the glide direction in the
symmetry plane t 4 6 3 .

A quantitative description of the anomalies and the
phase diagrams on the basis of the Landau theory is not
possible, since the discontinuities in the quantities at
the phase-transition points are large (see Sec. h of Chap.
1). We can, however, say something about the symmetry
changes that occur in the transitions. The space group
of the Cs phase is found to be C | (Pb) if it is assumed
that the phase transition C2h~"C| is described by the
two-dimensional irreducible representation of the sym-
metry group Cih of the initial phase. The structural
distortion that occurs in the phase transition Clh —*Ci
clearly cannot be described on the basis of one irreduci-
ble representation of the symmetry group of the Clh
phase, since there occurs in this transition a doubling of
the lattice constants along inequivalent axes, i.e., axes
that do not transform into each other under any of the
symmetry operations of the initial phase Clh· If such a
transition were of second order, it would be realizable
only at an isolated point on the phase diagram. In fact,
the phase transition C2h -—Ci is found to be realizable
along a line in the temperature-percentage deuteriza-
tion diagram. The symmetry group of the nonpolar
phase can be uniquely established: Cj(Pl), since this is
the only nonpolar subgroup of the symmetry group of
the Clh phase.

The strong influence that deuterization has on the
transition temperatures is indicative of the decisive
role played by proton ordering in the phase transitions.
In an attempt is made to make quantitative estimates
for sodium trihydroselenite with the aid of a phenom-
enological Hamiltonian in which the distinctive features
of the specific structure change that occurs in the phase
transition and the distinctive features of the interac-
tions are taken into account.

d) Other Improper ferroelectrics. A ferroelectric
phase transition is observed in the ammonium Rochelle
salt NaNH4C4Oe · 4H2O at Τ =109 °K [ 4 8 3, The space
group of the crystal changes in the transition from
Di(P212i2i) to Cl(P2i), and there occurs a doubling of
the lattice constant along one of the screw axes

C52:

[491

[49]The thermodynamic potential has the form (6) , the
quantity P= P z , and the quantity Q^Py. The phase
transition is, however, of first order. The spontaneous
polarization has the magnitude Ps~0.2 MC/cm2, and
practically does not vary with temperature. The com-
ponents of e undergo a discontinuity downwards
(Δ£~2, e~ 10) at the transition point [ 4 8 ] .

Ferroelectric phase transitions with weak anomalies
in the permittivity e are observed in two compounds
with the langbeinite structure-dicadmium diammonium
sulfate Cd2(NH4)2(SO4)3 and dicadmium dithallium sulfate
Cd2Tl2(SO4)3. In dicadmium diammonium sulfate, the
quantity Ps~0.7 MC/cm2, and practically does not change
with temperature; in the single-domain crystal, e un-
dergoes a slight discontinuity downwards (Ae~ 1,
e~ 10) C 5 0 ]. The symmetry group of the paraelectric
phase is T4(P2!3) t 5 0 ] . The only irreducible represen-
tation of this group that can be responsible for the im-
proper ferroelectric phase transition to the space
group C2(P2i)-a transition that is accompanied by a
doubling of the lattice constant in the plane perpen-
dicular to the spontaneous polarization—has been de-
termined in C 5 1 ]. This transition is necessarily a
first-order transition (there is a third-order invari-

ant). The representation in question is six dimen-
sional, and there are phases of different symmetry
corresponding to it. These phases are, possibly, ob-
served in dicadmium dithallium sulfate, in which a
series of several phase transition has been observed

The translational symmetry of ammonium fluoroberyl-
late (NH4)2BeF4 in the polar phase (T <-96 °C) is differ-
ent from the translational symmetry at room tempera-
ture C481. This impelled investigators to treat it as an
improper ferroelectric t l l ] . Such a treatment did not,
however, allow the explanation of the observed C53: di-
electric anomalies. Subsequently, a specific-heat anom-
aly revealed a phase transition at Τ «-90 °C t 5 4 ] . The
structure of the phase in the temperature range -96 °C
<T <-90 °C is unknown. It is possible that the change in
the translational symmetry occurs during the phase
transition with Τ «-90 °C. In [ 8 3 it was proposed that
the ferroelectric phase transition at Τ«-96 °C be de-
scribed as a transition between the asymmetric phases
2 and 1 (see Sec. g of Chap. 1). The anomalies arising
in the transition 2 — 1 (see Sec. h of Chap. 1 (Figs. 8
and 5)) are qualitatively similar in nature to the anom-
alies experimentally observed in ammonium fluoro-
beryllate. However, it has not been possible to attain
a quantitative agreement.

Furthermore, if the phase above Τ =-90 CC is the
phase 0, then there should be an appreciable anomaly
in e at the transition temperature Τ «-90 °C, but
this has not been observed [ 5 4 3 . It is possible that
this transition is described by another irreducible
representation. Thus, the situation is not yet clear,
and we must first of all determine the structure change
that accompanies the phase transitions in ammonium
fluoroberyllate.

4. CONCLUSION

The purpose of the present review was to consider
from a unified standpoint-on the basis of the phenom-
enological Landau theory—the improper ferroelectric
phase transitions. It turned out that to discuss the exist-
ing experimental data it was sufficient to consider only
the simplest variants of the theory. Consideration of
other forms of the thermodynamic potential, of other
mixed invariants, would have led to other types of
dielectric anomalies, to other forms of the phase dia-
grams. Computations of this sort may stimulate the
corresponding experimental investigations.

The development of the phenomenological theory of
improper ferroelectricity may prove to be useful for
the theory of ordinary ferroelectricity. For example,
it is suggested in [ 1 2 3 that the series of phase transitions
that occurs in Rochelle salt could be treated as transi-
tions of the type 1 — 3 —·· 2 (see Sec. g of Chap. 1) on
the basis of the thermodynamic potential of the phase 0
(which cannot be experimentally observed) that contains
a mixed invariant of the form ηξ(τ}2-ξ2)Ρ (in this case
the phase 3 is polar, while the phases 1 and 2 are non-
polar). Such an approach allows us to comparatively
simply explain the dielectric anomalies observed in
Rochelle salt, although it is not yet clear to what ex-
tent it agrees with the structural data for the low-tem-
perature phase. There exists quite a number of ferro-
electrics with close phase-transition temperatures.
They could be treated in similar fashion.

From the point of view of the microscopic theory,
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ferroelectric transitions are not different from non-
ferroelectric transitions that are accompanied by
changes in crystal structure. This, of course, does not
mean that the microscopic theory cannot lead to inter-
esting results for the improper ferroelectrics. However,
such a theory makes sense only when it is applied to
specific substances or groups of similar substances. If
the phase transition is of second order, or nearly of
second order, then the role of the microscopic theory
amounts to the determination of the coupling constants
that figure with the microscopic parameters in the
phenomenological theory and to the elucidation of the
temperature dependence of the constants in the region
far from the transition point (thereby establishing one
of the limits of the region of applicability of the Landau
theory). Thus, for example, for gadolinium molybdate,
one of the problems of the microscopic theory is to ex-
plain the extreme smallness of the constants a! and a2

of the thermodynamic potential (7).

Pronounced first-order transitions are experimentally
observed in many improper ferroelectrics. Such transi-
tions can, apparently, be described only on the basis of
the microscopic theory, since the phenomenological
Landau theory is practically inapplicable in this case.
Notice that the existing microscopic theory is, as a rule,
semiphenomenological in nature. In it is used a phe-
nomenological Hamiltonian whose constants are not
calculated, but are determined by comparing the theory
with experiment. The computation of these constants
is the object of a more detailed microscopic theory. As
applied to specific improper ferroelectrics, the devel-
opment of the microscopic theory is only just beginning.

In conclusion, the authors with to express their deep
gratitude to V. L. Ginzburg and I. S. Zheludev for as-
sistance in the writing of this review, to K. S. Alek-
sandrov, B. A. Strukov, A. M. Shirokov, and L. A. Shuva-
lov for useful comments, and to V. L. Indenbom for
fruitful discussions.

"This name was suggested by Dvorak I6].
2'The first ferroelectric that was tentatively considered to be an improper

ferroelectric was ammonium fluoroberyllate [ n ] (see Sec. d of Chap. 3).
3'For the limitations of this approach, see Sec. h.
4*The improper ferroelectric phase transition that is accompanied by a

change in the magnetic structure of the crystal occurs, possibly, in only
one substance (see Sec. b of Chap. 3). Therefore, we shall, for definite-
ness, speak only of a change in crystal structure.
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