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The review is devoted to an investigation of the behavior of vortex filaments in hard

superconductors. The analysis is carried out in the region of weak magnetic fields, where linear

electrodynamics is applicable. This permits a simple physical interpretation of both the properties of

isolated vortices and of interactions of vortices with one another and with the surface of the

superconductor. A number of examples of the influence of the superconductor outer boundary on the

vortex structure are analyzed. It follows from these examples that the vortex lattice is stable relative

to a transverse transport current even in an ideally homogeneous sample. Estimates are presented of

the maximum transport current at which the vortex structure still remains stable. The role played by

the internal surfaces in a superconductor is also illustrated with the interaction of a vortex with a

cylindrical cavity or with an interface between two different superconductors as an example.
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1. INTRODUCTION

If a type-II superconductor is placed in a sufficiently
strong magnetic field, superconducting vortices (or vor-
tex filaments) are produced in it. Such a vortex com-
prises a thin non-superconducting core around which an
undamped superconducting current circulates.

The existence of vortices gives rise to many inter-
esting and important (from the applied point of view)
properties of type-Π superconductors. The desire to be
able to have at ones fingertip the facts that take place
with vortices is therefore natural. This turns out to be
possible. In moderate fields, when the London approxi-
mation of superconductivity theory can be used, a linear
electrodynamic situation arises wherein the principle of
superposition of the currents and fields can be exten-
sively used. The vortices can then be regarded as inde-
pendent objects and their interaction with one another
and with the surfaces of the superconductor can be taken
into account. This makes it possible to study, the magne-
tization curves of type-Π superconductors and their de-
pendence on the shape of the sample, and to understand
how the vortices interact and are pinned by inhomogenei-
ties of the material.

We consider the last item to be particularly impor-
tant, since vortex pinning by inhomogeneities is the cause
of irreversible effects in the magnetization of supercon-
ductors, because of the residual magnetic flux, and fin-
ally, the cause of the existence of a sufficiently large
critical current in inhomogeneous type-Π superconduc-
tors (hard superconductors).

In this review we consider first a single vortex, its
magnetic flux, its interaction with the boundary of the
superconductor and with the extraneous current flowing
around it, and the pinning of this vortex by an internal
cavity and a superconductor. We then investigate a sys-
tem of vortices that interact with one another, with the
boundaries of the superconductor, and with certain de-
fects. This enables us to investigate the mixed state in
bounded type-II superconductors. Moreover, it explains
how even an ideally homogeneous type-Π superconductor,
when in the mixed state, still retains the ability of pass-

ing a finite transport current in a direction perpendicu-
lar to the magnetic field.

* * *
Vortices in superconductors are investigated by the

method of the theory of Ginzburg and Landau (GL)C 1 ].
Although this theory has been detailed in a number of
reviews and monographs (see, e.g.,'-2'3'11-'), we con-
sider it appropriate to mention here its fundamental
premises.

It is known from experiment that at a critical tem-
perature T c there occurs in a superconductor a transi-
tion from a normal state to a superconducting state, and
that this transition is a second-order phase transition.
The order parameter, which is equal to zero at Τ > T c

and is small at T c - Τ -C T c , is the so-called effective
wave function of the superconducting electrons φ(τ). The
quantity \φ | 2 can be treated as the density of the super-
conducting electrons, i.e., the number of metal electrons
per unit volume in the condensate (contained in the
Cooper pairs). If the Landau theory of second-order
phase transitions is applied to a superconductor T c , then
the expression for the density of the free energy of the
superconductor in the magnetic field takes the form

here F n is the density of the free energy of the normal
phase, Η is the intensity of the magnetic field inside the
superconductor, a(T) and β are constants that depend on
the material, m is the electron mass, and e is the elec-
tron charge. The last term is the density of the kinetic
energy of the superconducting electrons in the presence
of a magnetic field whose vector potential is A.

Integrating F s over the volume of the superconductor
and equating to zero the first variations of the free en-
ergy with respect to φ * and A, we obtain the well known
GL equations, to which Maxwell's equations should be
added:

(1)

(2)
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(3)

It follows from these equations that the magnetic field
and the current can vary significantly in a superconduc-
tor over distances on the order of

where Hc m is the thermodynamic critical field and is
given by t'he relation

l - V Γ6π<*|α| '

This quantity is called the depth of penetration of the
weak magnetic field.

The distance over which the order parameter φ can
vary significantly (as follows from (1)) is equal to the
so-called coherence length

V2m|a| "

The parameter κ of the GL theory is equal to

*. = — .

In the absence of a magnetic field, the equilibrium value
of \φ\2, as follows from (1), is |ψο|

2 =—α/β. Derivation
of the GL equations from the microscopic theory'-5-1 has
made it possible to express the coefficients a and β (and
consequently λ and ξ) in terms of the electronic charac-
teristics of the material. We present the final results.

For a pure superconductor
,1/2

For a dirty superconductor

here λ^Ο) = 3c7(87re2VpN(0)) is the London depth of
penetration, | 0 = 0.18hvF/(kgTc), Vp is the electron
velocity on the Fermi surface, N(0) is the density of
states at the Fermi level, and I is the electron mean
free path. A superconductor is regarded as dirty if
/ < ί ο .

If κ > 1/V2", then the energy of the boundary between
the normal and superconducting phases (the n—s boun-
dary) is negative. The n—s boundary can be in the equili-
brium state only when the superconductor is in an ex-
ternal magnetic field and the η and s phases are in
equilibrium. The magnetic field then passes through the
η phase. Let λ 3> ξ. This means that in the region of
the n—s boundary there is located a layer (of thickness
~λ) in which both a magnetic field and a superconducting
condensate are present. It is clear that the free-energy
density in this field is smaller than the free-energy den-
sity of the η phase, by an amount released upon conden-
sation (pairing) of the electrons of this layer. This
means that the energy of the n—s boundary is negative
in this case. Superconductors with κ > 1/V5"are called
type-Π superconductors.

Superconductors with κ < l/VZ"have a positive n—s
boundary energy and are called type I superconductors.

On the basis of the GL theory, Abrikosov t6-1 devel-
oped the theory of type-II superconductors. Let a type-Π
superconductor be in so strong a magnetic field that it
has certainly gone over into the normal state. We start
to decrease the external field. It turns out that at a cer-
tain field H c 2 (the second critical field) the so-called
mixed state sets in, wherein the homogeneous normal
sample becomes laminated into alternating regions of
normal and superconducting phases. Here

lic2 = V2xHc.m,

III r - = Fn-F,.

This lamination is energywise favored, since the n—s
boundary has a negative surface energy in our super-
conductor. Abrikosov'-6·1 has shown that this lamination
should be realized in the form of a vortex lattice, i.e., a
two-dimensional periodic structure of vortex filaments
parallel to the external magnetic field and permeating
through the entire body of the superconductor.

With decreasing external field, the period of the vor-
tex lattice increases and the number of vortices inside
the superconductor decreases. Finally, in afield Hc^
(the first critical field) the stay of the vortices inside
the superconductor becomes energywise unprofitable and
the last vortex leaves the sample.

2. MAGNETIC FLUX OF VORTEX, ITS MAGNETIC
FIELD AND FREE ENERGY

We now explain what the nature of a single vortex is.
This can be done conveniently by assuming that λ S> ξ.
Then Eqs. (1) and (2) are easy to analyze. Let the center
of the vortex be at the origin. Then ψ(0) = 0. It is easy
to showC6] that |^(r)|2 ~ (r/ξ)2 at r < ξ. At r > ξ , on
the other hand, we have r 3> ξ \φ\2 =φ2

0 = -α/β, since ξ
is the distance over which the order parameter changes
appreciably; the growth of the order parameter {φ | 2 from
zero to φ2

0 occurs over a length ~ξ.

A microscopic analysis'-7'8-1, has shown that the spec-
trum of the elementary excitations in this region of the
vortex differs little from the spectrum of the elementary
excitations of a nonsuperconducting metal. Therefore at
λ 3> ξ one frequently employs the following model of the
vortex: the core of the vortex, of radius ξ, is assumed
to be a normal metal, and all the remaining space is as-
sumed to be superconducting. The vortical superconduc-
ting current producing the magnetic field of the vortex
flows around the normal core and occupies a region of
radius λ. At distances r ^§>λ the vortex current attenu-
ates exponentially. Figure 1 shows schematically ^(r)
and the filament field Η(r) at λ > ξ.

We now determine the magnetic field of a single vor-
tex situated in an unbounded superconductor. The center
of the vortex will be assumed as before to be at the
origin. We draw a circle of radius R > λ ina plane
perpendicular to the filament axis. The flux density of
the vortex on this circle is equal to zero, and the modu-
lus of the ordering parameter has long ago passed to the
level ψο· Representing the order parameter in the form
φ = φοβ^θ, where θ is the phase of the GL wave function,
we rewrite (2) in the form

j = ii.,f=T0—^-,p;A. (4)

We now integrate this equation along the contour of our
circle of radius R. We consider first φ ν θ dl. This

R

\P\'

FIG. 1. Dependence of \φ\2 and
of Η on the distance r to the isolated
vortex.
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integral is obviously equal to the total change of the
phase of the wave function after going around the closed
contour. We stipulate the natural requirement that the
wave function be unique. Then the total change of the
phase on going around the closed contour can be only a
multiple of 2π. If the contour surrounds one vortex fila-
ment, then the multiplicity is minimal1' and

Η + λ2 rot rot Η = Φοεδ (r — r0); (6)

Recognizing now that φ j dl = 0 and that the total mag-

R

netic flux of the vortex is equal to Φο = f A dl, we read-

ily obtain from (4) ^
ch

This quantity is called the magnetic-flux quantum.

We emphasize right away that the vortex filament
carries a magnetic-flux quantum Φο only if it is far from
the surface of the superconductor. If the filament is
close to the superconducting surface, then its magnetic
flux is smaller than Φο. We shall return to this question
later on.

We now proceed to calculate the magnetic field of the
filament.

Taking the foregoing into account, we assume the core
of the vortex, of radius ξ, to be a normal metal. What is
important here is that for the calculations it suffices to
know only the order of magnitude of the radius of the
core, since it will be shown later on that the radius of
the core enters under the logarithm sign in the expres-
sions for the field of the filament and for its energy.

We now define the region of applicability of our calcu-
lations. It is necessary to stipulate here, besides the in-
equality λ » ξ , that the modulus of the order parameter
|ψ| be constant outside the core. This requirement is
satisfied when the cores of the vortices are far from
one another, i.e., when the external field Ho satisfies the
inequality H c l < Ho < HC2· The last condition means
that the center of the vortex should be far enough (in
comparison with | ) from the surface of the superconduc-
tor, for otherwise the variation of |ψ| cannot be neglec-
ted. To derive the equation for the field of the vortex
filament, we start from the GL equation (4), which is
valid everywhere outside the core of the vortex. We now
impose the boundary conditions. The magnetic field of
the filament H(r) — 0 as r — ». This is the first boun-
dary condition. The second condition can be obtained
from the requirement that the phase of the wave function
ψ change by an amount 2ir on going around the center of
the vortex filament. We draw a circle of radius ξ around
the center of the filament. We integrate (4) along this
circle. Neglecting the magnetic flux surrounded by the
integration contour, i.e., the magnetic flux of the core,
we obtain

where

| rot Η 1 , . ^ - (5)

This is our second boundary condition. In the derivation
of (5), we used Maxwell's equation curl Η = (4TT/C)J,
which connects the field of the vortex with its current.
The condition (5) can be satisfied automatically by taking
the curl of both sides of (4) and rewriting the equation
for Η in the form

here Po is the radius vector of the center of the vortex
filament, specified on a plane perpendicular to the fila-
ment, and β is a unit vector directed along the filament.
Let us in fact integrate (6) over the area of a circle of
radius ξ with center on the vortex axis. Again neglecting
the flux Γ HdS through the core, we obtain immediately
the condition (5). For a single vortex filament, Eq. (6)
has the following solution that falls off at infinity:

where Ko(0) is a Hankel function of zero order and
imaginary argument. We recall the asymptotic forms of
this function: K0(z) ~ ln(2/yz) at ζ <C 1, where γ = e c

* 1.78, and K0(z) ~ V7r/2ze~z at ζ > 1.

Thus, the magnetic field of the vortex filament de-
creases exponentially at |r - po | > λ, and increases
logarithmically on approaching the core of the filament.
To find the field at the center of the filament, we substi-
tute |r -Pol = ξ in (7), i.e., we cut off the logarithmic
divergence at the radius ξ. Then

We now find the free energy of a single filament.
Inasmuch as λ > ξ by assumption, we neglect the en-
ergy change due to the change of the condensation energy
in the normal core of the vortex. The free energy of the
isolated filament then takes the form

The integral is taken over the entire volume of the sam-
ple. It would be more correct to integrate only over the
volume of the superconductor without the region occupied
by the core of the vortex. However, since ξ < λ and
since the calculations are carried out with logarithmic
accuracy, the integration in (9) can be extended over the
entire volume of the sample. The first term in (9) yields
the energy of the magnetic field of the filament, and the
second term yields the kinetic energy of the vortex cur-
rents.

The free energy per unit length of the vortex e0 is
obtained by integrating (9) over a plane-parallel layer
of unit thickness, located perpendicular to the filament.
Substituting in (9) (curl H)2 = Η curl curl Η
+ div [Η χ curl Η], and recognizing that

f div IHxrot H] dV = § [Hxrot H] dS = 0

(S is the outer surface of the superconductor, which is
located at infinity), and using (6), we get

( Φ η \ 2 ,Λ f\\

"ΐϋ") 1 η κ · ' '
This agrees with logarithmic accuracy with the result
eo = (Φο/4πλ)2 (In κ — 0.18) of Abrikosov's numerical
calculationt6-1. Thus, if a single vortex is located in a
type-Π superconductor, then the free energy of the
superconductor (per unit length of the vortex) increases
by an amount e0. Why do vortices appear then in a
type-Π superconductor? The point is that if the super-
conductor is an external homogeneous magnetic field Ho,
then the energy that is minimal in the equilibrium state
is not the free energy &, but the Gibbs free energyC 1 2 ],
the density G of which is given by

a— c_ HOH
(11)

where the density of the free energy is
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(14)

FIG. 2. Vortex filament in transport
current. The vortex current is added to
the transport current at point a and is
subtracted at point b.

A2(curl H)2]; here Η is the local mag-
netic field in the superconductor. The origin is assumed
to be the energy of the superconductor without the ex-
ternal field and without the vortex filament.

We integrate (11) over the entire volume of a super-
conductor containing one vortex filament. Then we ob-
tain per unit filament length

F = (1/8π) [Η2

ι GdV-- Φ0//ρ
4π

Equating the right-hand side of this equation to zero, we
obtain immediately the external field Ho at which the
penetration of the first vortex filament in the super-
conductor becomes energy wise favored, i.e., the first
critical field

^ = ^ = ^ T l n x . (12)

Comparison of (8) and (12) shows that the field at the
center of the filament is approximately double the first
critical field.

3. FORCE OF INTERACTION BETWEEN THE VORTEX
AND THE CURRENT

We now can proceed to the study of a very important
practical problem, that of the interaction force between
a vortex and the transport current flowing around it,
i.e., the current produced by some external source.
This force is usually called the Lorentz force. We con-
sider first the qualitative picture. Figure 2 shows a vor-
tex with transport current flowing around it. It is easy
to see that the superfluid velocities of the transport cur-
rent and of the vortex are added together on the left of
the core and oppose each other on the right. This means
that, according to Bernoulli's law, the pressure is lower
to the left of the core than to the right. Consequently a
Lorentz force acts on the core of the vortex, as shown in
the figure.

We emphasize that this force is applied to the boun-
dary of the vortex core, and therefore the very name
"Lorentz force" seems to us inappropriate. Indeed, the
Lorentz force is taken to mean the force exerted by the
magnetic-field source on a charge moving in this field.
Yet in the volume of the superconductor all the forces
acting on the charges are balanced. To explain this, we
turn to the book by F. London^13-'. The general expres-
sion for the density of the volume force acting on the
moving charges is

f = j[i,H], ( 1 3 )*

where J is the current density. This is the density of the
force customarily called the Lorentz force. This force
can be represented in the form of a divergence of the
stress tensor of the electromagnetic field (— T), which in
the stationary case (when there is no electric field) is
given by

i.e.,

or
f = — Divf (H). (15)

This can be easily verified by substituting in (13)
Maxwell's equation J = (c/4j7)curl Η and, recognizing that
div Η = 0, represent f in the form

f = -^-( — [ H , rotHJ) .

Elementary calculations show that the right-hand side of
this formula can be written in the form -Div Τ(Η), where
the tensor Τ^(Η) is defined by (14). So far we have made
no use of the fact that our arguments apply to a super-
conductor. We now take this circumstance into account.

For a superconductor we have the London equation

rot(Aj)=-±H,

(16)

This equation is easily obtained from (6) by using
Maxwell's equation for j .

We now substitute (16) in (13). The density of the
force f can now be expressed already as the divergence
of the tensor AS:

f = Div (AS),

Siu = (jijk — Sik -γ) ·
(17)

This can be easily verified if (recognizing that div J = 0
in the stationary case) we represent f in the form

I = Λ (j div j — [j, rot j]).

Combining (15) and (17), we get the following condition
for equilibrium and stationary flow of current in a
superconductor:

Div (T (H) + AS (j)) = 0. (18)

This means that the forces acting in the superconductor
on a current-carrying volume element are balanced and
the resultant force is equal to zero. In other words, the
true Lorentz force acting on the volume element of the
superconductor with current (—Div T) is exactly bal-
anced by the inertia forces (-Div A£5). Equation (18) can
be regarded as the law for the conservation of the mo-
mentum in a superconductor in the stationary state.

However, there is one extremely important differ-
ence between the tensors T(H) and §(J). On the boundary
between a superconductor and a dielectric, T(H) remains
continuous while S(j) experiences a discontinuity, inas-
much as S = 0 in the dielectric. The balance (18) is
therefore violated on the boundary and the surface of
the superconductor is acted upon by a force usually in-
terpreted as magnetic pressure. Let us explain the
foregoing with a simple example. We consider a super-
conductor occupying the half-space χ > 0. The plane
χ = 0 is its boundary with vacuum. A magnetic field Ho

along the Oz axis is specified on this surface. It is well
known that in a layer ~λ next to the surface there is
produced a Meissner current in the direction of the Oy
axis, j = (ο/47Γλ)Ηοβ~χ'λ. The magnetic field intensity

in the same layer is H z = Η ο β ~ χ / λ . Thus in the layer
~λ next to the surface there flows a current j in a field
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Η . This means that this current is acted upon by a true
Lorentz force (l/c)jxH, which in our case is directed
along the Ox axis and is equal to (Ηο/4πλ) ε~2Χ'λ . Why
does the current flow directly along the Ox axis? Why
is not the motion of the superconducting electrons dis-
torted by this force? The answer is that the distribution
of the superfluid velocities in the considered layer λ is
such that the superconducting electrons are acted upon
by a Bernoulli force in the negative Ox direction, and
this force exactly balances the force (l/c)jxH. This can
be easily verified by calculating Div(—Λ§) for our case.

We turn now to a vortex around which a transverse
transport current flows. We replace the core of the vor-
tex in our model by a nonsuperconducting cylinder of
radius ξ. The superfluid velocities on the boundary with
the core at the points a and b (see Fig. 2) are different,
and consequently the pressure on the boundary from the
normal core at the point a will be larger than at the point
b. Their difference produces the resultant force of in-
teraction between the vortex and the transport current,
which is usually also called the Lorentz force. We shall
use this term frequently, always taking it to mean the
force of interaction between the vortex filament and the
current.

We now find a quantitative expression for this force.
This is easiest to do by considering the interaction of two
parallel vortex filaments. Let the coordinates of the
centers of the filaments be Γι and r2. We calculate the
free energy (9) of this system. The same transforma-
tions as used in the derivation of (10) yield in this case

1: (1 9)

FIG. 3. For use in the proof that the field
of the vortex is zero on the surface S. The
thick line shows the core of the vortex. The
circles are the directions of the vortex cur-
rents.

here H(ri) and Η(Γ2) are the total fields at the centers of
the first and second vortices. We consider the first vor-
tex. The total field at its center consists of its proper
field (formula (8)) induced at the point Γι, and the field
Η2ΐ(Γι) induced by the second vortex at the center of the
first.

Since we have to calculate the force of interaction be-
tween vortices, we are interested in this calculation only
in that part of Ρ which depends on the relative distance
between the vortices r = |Γι - r a | . Leaving out the part
that does not depend on r, we get

where H12 is the field produced by the first vortex at the
center of the second. Recognizing that this field is
directed along the Oz axis, we can easily show that the
vortex current j (r) produced by the first vortex at the
point corresponding to the center of the second vortex is
equal to

This yields immediately

(20)

On the other hand, the force acting on the vortex is, by
definition,

*-

Substituting here formula (20) we obtain finally the force
on a unit length of the second vortex:

»=|υ,Φο], (21)

where Φο = Φοβ and j is the current produced by the first

L.
ύ

vortex at the center of the second vortex. This is the
formula for the Lorentz force, or the force of interaction
between the vortex and the extraneous current flowing
around it.

We have considered a particular case when the cur-
rent flowing around the vortex is produced by a second
vortex in the vicinity of the first. It can be shown^14'15-1

that formula (21) is valid in the general case. We shall
make extensive use of this formula, since the concept of
the Lorentz force as the force of interaction between a
vortex and an extraneous current flowing around it is
very fruitful and makes it easy to understand the phys-
ics of the situation.

4. VORTEX NEAR A SUPERCONDUCTOR BOUNDARY

So far we have considered vortices in an unbounded
superconductor. A much more realistic and interesting
case is a vortex in a bounded superconductor.

In the general case a vortex filament located near the
surface of the superconductor produces a magnetic field
outside the superconductor. To calculate the field dis-
tribution it is necessary to solve simultaneously Eq. (6)
for the region inside the superconductor, and the equa-
tion curl Η = 0 for the external space. The last equation
is simply the condition under which there are no cur-
rents in the external space. For an arbitrary sample
geometry this is a complicated problem. We confine
ourselves therefore to the case when the vortex filament
is parallel to the generator of an infinitely long super-
conducting cylinder of arbitrary cross section. In this
case the vortex does not produce a magnetic field in the
external space and the field of the vortex on the surface
of the conductor is equal to zero. Let us prove this.

Figure 3 shows a vortex filament placed near the sur-
face of a superconductor and parallel to the surface, as
well as the contour abdc, the segments ab and cd being
parallel to the superconductor surface. It follows from
the symmetry of the problem that

Hoifl = f H oJ
b

f H o d l .
J
dc

On the other hand, this integral is equal to zero, since
no electric current flows through the area abed.

Hence

(22)

here and throughout Hv is the magnetic field produced
by the vortex filament. It is clear from physical consid-
erations that if the section is moved very far from the
superconductor surface then we have there Hy = 0 and

f Hv dl = 0. Then, by virtue of (22) we have / H y dl = 0,
ab cd
and, taking the symmetry of the problem into account,
we get H v | ccj = 0. Placing the segment cd on the surface
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S of the superconductor, we obtain ultimately

H o I» = 0. (23)

a) Magnetic flux of a vortex situated near the bound-
ary of the superconductor. In Chap. 2 we have estab-
lished that in an infinite superconductor the vortex car-
ries a magnetic flux equal to the quantum Φο» We now
find the magnetic flux of a single vortex, when the vortex
is near the outer boundary of superconducting space and
is parallel to this boundary. Let the vortex filament be
in a given superconducting cylinder of arbitrary cross
section, let it be parallel to the cylinder generator, and
let its center pass through the point r 0 . The magnetic
flux Φγ carried by such a filament is defined by

o r = JH0dS, (24)

where the integration is carried out over the cross sec-
tion area of the cylinder. It is shown in1-16-1 that this ex-
pression can be represented in the form

Φ. = «Do (1 - eh (r0)), (25)

where h(r) is the field that would be present inside the
cylinder if there were no vortex at all in the cylinder,
and if the cylinder were placed in a unit magnetic field
parallel to its generator. In other words h(r) satisfies
the equation h + λ2 curl curl h = 0 with boundary condi-
tion η | σ = e on the surface σ of the cylinder; e is, as
before a unit vector directed along the vortex.

It is easily seen that when the center of the vortex
approaches the surface of the cylinder we have h(r0) — β
and Φν — 0. To the contrary, when the vortex moves
away into the interior of the superconductor we have
h(ro) — 0 and Φν —· Φο.

It is frequently more convenient to calculate the flux
in accordance with formula (25) than by direct integra-
tion of (24). For example, for a round cylinder of radius
R with a vortex parallel to its axis we have

" " \ /ο (Λ/λ) Ι '

where ro is the distance from the center of the vortex to
the cylinder axis and Io(z) is a Bessel function of imag-
inary argument. For a plate of thickness d with a fila-
ment parallel to its surface, we have

(26)ch ll2xa-d)/2X\
cli (ΐί/2λ) }•

where x0 is the distance from the center of the vortex to
the surface of the plate. For the superconducting half-
space χ > 0, the boundary of which is the plane χ = 0, we
have

Φ0 = Φ0(ΐ-β-χ°'λ), (27)

where x 0 i s the coordinate of the center of the vortex.

This variation of the magnetic flux of the vortex can
be explained by using the method of images . This m e -
thod i s eas iest to apply and i s most lucid in the case of
a superconducting half-space. Inasmuch as the vortex
field Hy in the superconductor i s determined by the
solution of Eq. (6) with the boundary condition H v l x = o
= 0, a field of precise ly the same type i s produced by
virtue of the l ineari ty of Eq. (6), in the region χ > 0 in
an unbounded superconductor in which there a r e two vor-
t ices para l le l to the plane χ = 0 and pass ing through the
points χ = x 0 and χ = —Xo, with the direct ions of both
vor t ices opposite to each other . Indeed, by virtue of the
symmetry of the problem, the magnetic field of the vor-

t ices at the plane χ = 0 is equal to zero . The vortex at
the point χ = —x0 will be called the image. Since it is of
opposite sign, i ts magnetic flux in the region χ > 0 can-
cels out part of the magnetic flux of the f irst vortex.
When the vortex e m e r g e s to the surface of the super-
conductor, i t s image e m e r g e s to the same place. Total
compensation s e t s in and Φ γ = 0.

b) F r e e energy of a vortex in a bounded superconduc-
t o r . We now find the free energy of the vortex if it i s
located inside a superconducting cylinder and i s para l le l
to the generator :

fcF = -5T j[H? + X2(rotHD)2]iiF. (28)

The integration i s over the volume of the cylinder and is
r e f e r r e d to a unit of the cylinder length. The field H y ( r )
satisfies Eq. (6) with the boundary condition Η ν Ι σ = 0.
Therefore, using the identity a c u r l b = b cur l a
- divfaxb] and the Gauss theorem, we easily obtain
from (28) an express ion for ^161

- Φ°Η» fro)!
Si

(29)

Strictly speaking, the representation of the filament en-
ergy in the form (29) is incorrect, inasmuch as H v — «
as r -• To, but this logarithmic divergence can be cut off
at a distance | r - r o | ~ ί· It is in this sense that Hy(ro)
should be understood. It is easily seen that formula (29)
goes over into the well known expression for the energy
of a single filament in an unbounded superconductor if
the vortex is moved into the interior of the cylinder to a
distance much larger than λ from the surface. On the
other hand, if the vortex approaches the surface, then
,Ψ~ — 0, since Hyig = 0. All this can be easily explained
in the language of the Lorentz force, and we shall do so
when we consider the surface barrier.

We now take into account the interaction of our vortex
in the cylinder with the external magnetic field, i.e., we
find the Gibbs free energy G.

In this section we confine ourselves to the case of a
long cylinder in a longitudinal homogeneous field Ho.
The case of such a geometry makes it possible to avoid
complications connected with introduction of a demagne-
tizing factor.

The field inside the cylinder is now determined by
the solution of Eq. (6) with the boundary condition Η| σ

= Ho. This is understandable, for if there were no vortex
in the cylinder, then the field would be determined by the
solution of the homogeneous London equation

H, + λ2 rot rot H, = 0, H, | e = Ho. (30)

The field H y of the vortex itself is also known to us and
it is determined by Eq. (6) with boundary condition Η ν | σ

= 0. The total field is

Η = Hv + H,. (31)

Reckoning the free energy of the cylinder from its value
in the absence of a magnetic field, we obtain

A2 (rot H)=] dV.

Substituting here (31) we get

~ f [H,1
Ό + X-tot

It i s easy to show that the last integral i s equal to zero .
Indeed,
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j rot Η, rot Hr dV = f Ho rot rot H, dV + j [Hr, rot H,] da,

but the surface integral is equal to zero, since KV\(J = 0.
From this we get, taking (30) into account,

f (H,HC + λ2 rot H, rot HD) dV = f Ho (Hi + λ2 rot rot H,) dV = 0.

Thus, the free energy !f is simply the sum of the free
energies of the vortex in the cylinder without the ex-
ternal field and of the cylinder in the field but without
the vortex. The interaction of the vortex with the field
does not enter in .f. It is therefore clear that in the
thermodynamic-equilibrium state the quantity going
through a minimum will not be .¥ but the other thermo-
dynamic potential, the Gibbs free energy

The integral is taken over the volume of the cylinder.

Reckoning <8 from its value in the absence of the vor-
tex, we obtain

the force determined by the difference between the
Bernoulli pressures on the right and on the left of the
core is applied to the vortex core and always draws the
vortex to the surface. Differently stated, this is the
Lorentz force fg. exerted on the vortex by its image.
The work required to overcome this force is indeed
equal to F.

We now examine the second term of formula (32),
which we designate W. Inasmuch as Φν is given by
formula (25), we have

j ^ _ ΗΟΦ, _ Φο ,jj (χ I _ H 1
4π 4π

where Hi is the field produced inside the superconductor
by the external field Ho, without allowance for the vortex
field. It is then easily seen that

- ^ j - J H0Ho dK,

i.e., using (29) and (24),

e ΦρΗρ (Γρ)
(32)

where Φν is a vector directed along the vortex; its
modulus is equal to the magnetic flux of the vortex.

c) The Bean-Livingston barrier. The physical mean-
ing of formula (32) can be explained by considering a
superconducting half-space as an example. Let the
superconductor occupy the region χ 2 0, let the vortex
be located at the point x0, and let the external field Ho

be directed along the Oz axis. The first term in (32), i.e.,
F represents the self energy of the free vortex £0 and
the energy of the interaction between the vortex and the
current produced by the image of the same vortex. Inas-
much as H v l X o _ o ~~ °> t h e function F increases mono-
tonically (Fig. 4), and consequently the vortex filament in
the absence of an external field Ho is always attracted to
the surface. This can be quite easily explained with the
aid of Fig. 5. The distribution of the vortex current is
distorted by the surface of the superconductor, and the
current lines are denser to the left of the center of the
vortex; consequently, the superfluid velocity is larger
than on the right of the vortex core. We see again that

Vacuum Superconductor

FIG. 5

FIG. 4. Illustrating the theory of the surface barrier..^(xo) is the
energy of attraction of the vortex to the surface. W(x0) is the energy
of the interaction between the vortex and the Meissner current, and
&(x0) is the Gibbs free energy near the surface.

FIG. 5. Vortex currents and Meissner current near the surface. fo

is the force of attraction of the vortex to the surface, due to the asym-
metry of the vortex currents near the surface, fm is the force of the in-
teraction of the vortex with the Meissner current.

= Τ^"·(Γο)·φοΙ.

where

i.e., J m is the Meissner current produced by the external
field Ho· Consequently —VW is the Lorentz force fm ex-
erted by the Meissner current on a unit length of the
vortex filament situated near the surface of the super-
conductor (Fig. 5). If the vortex and the external field
have the same direction, then the force fm is directed
towards the interior of the superconductor. It is clear
that if the vortex moves away from the surface under the
influence of this force, then its energy will be lower by
an amount W(x0), which becomes equal to -Η ο * ΦοΛπ at
χ ο > λ . The Gibbs free energy ^(x0) is equal to the sum
,r(xo) + W(x0). As shown in Fig. 4, the quantity ^(x0) can
be a nonmonotonic function of x0, producing a barrier
for the penetration of the vortices. This barrier is fre-
quently called the Bean-Livingston barr ier i 1 7 ^ . Obvi-
ously, the barrier disappears when the forces ίσ and fm

become equal for the vortex situated on the surface.

So far we have not made use at all of the specific
property that our superconductor is a half-space, so that
everything stated above is valid for a superconductor
cylinder of any shape. We now use the fact that the sur-
face of the superconductor is the plane χ = 0. Then the
force of interaction of the vortex with its image is

where jv(xo) is the current produced at the point x 0 by
the image situated at the point (—Xo). According to (7),
the free-vortex field is equal to (Φ0/2πλ2) K 0 (rA). Then
the vortex current at a distance r = 2x0 is equal to
(c/4i7) (Φο/2πλ3)Κ!(2χο/λ). At ζ < 1 we have Kx(z)
» 1/z. For a vortex close to the surface we therefore
have

The force ia tends to infinity when the vortex approaches
the surface. However, the very procedure used for the
calculation no longer holds as x 0 —• 0, for we can expect
here strong changes in the order parameter φ, and we
have neglected these changes throughout. It is therefore
clear that our analysis should be confined to the region
x 0 > ξ . The limiting case, in which one can no longer
count on the correctness of the numerical coefficients,
but one can be sure of the order of magnitude, is x0 = ξ.
It is this which we mean when we refer to a "vortex on
the surface of a superconductor." The force of interac-
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tion of the vortex with the Meissner current is fm

= (l/c)jm<fr0, where j m = (c/4jr\)H0e~xo/A. At x0 < λ
we have

Equating now the forces iQ and fm on the surface of the
superconductor, we obtain the condition for the deter-
mination of the field H s at which the Bean-Livingston
barrier vanishes:

H, Φρ

Recognizing that according to the GL theory we have
κ = λ/ξ = 2V2>/fic)A2Hc m , we readily obtain

As already mentioned, this formula can claim to be
accurate only in order of magnitude» The field H g is in
essence the maximum superheat field of the Meissner
vortex-free state of a type-II superconductor, so that it
can be calculated "from the other end," by considering
the superheating of the homogeneous superconducting
state. This problem was solved by de Gennes^18^, who
obtained

= //„„,. (33)

The change of the order parameter is taken into account
here, and this formula is already exact.

Thus, it can be stated that to overcome the attraction
of the vortex to the surface (to its image) the vortex
must be acted upon by a force fm produced by the
Meissner current j m = cHc m/4jrA, since it is precisely
this current which flows over the surface when the field
on the surface is equal to Hc m . But this current is
equal to the limiting current 'at which the breaking of the
electron pairs begins.

Thus, the penetration of the vortices into a super-
conductor situated in an external magnetic field becomes
energywise favored even in a relatively weak external
field Ho = Hc^. For many type-II superconductors with
κ ~ 100 we have H c l ~ 100 Oe. This penetration is
hindered, however, by the barrier, which in the case of
an ideal surface vanishes at Ho = H s = Hc m , i.e., in a
field on the order of 103 Oe. Actually, the' surface is
never ideally smooth. The microscopic roughnesses
make this barrier locally lower, and unless special care
is taken to ensure a high-grade surface, the penetration
of the vortices begins at a field close to H c j . The height
of the barrier is characterized by the difference Hg

— Η j . According to the data of[19-1, in the eutectic alloy
Pb - Bi we have Hg = 220 Oe, H c l = 160 Oe, and Hcm

= 900 Oe. The theoretical value of the barrier is Hc m

- H c l = 740 Oe, and the actual barrier is H g - H c i
= 60 Oe, i.e., the barrier is in fact lower by one order
of magnitude than the theoretical value.

If the surface is thoroughly polished, then the pene-
tration of the vortices into the superconductor is greatly
hindered, thus, De Blois and De Sorbo1-20-1 have investi-
gated the magnetization of bulky niobium samples with
0.3 at.% oxygen. The critical parameters were Hc m

= 1360 Oe, H c l = 580 Oe, H c 2 = 7000 Oe (at 4.2°K),' and
T c = 8.8°K. The sample surface was thoroughly polished
electrolytic ally. It turned out that in this case the vor-
tices begin to penetrate into the sample at H g = 1330 Oe.
This agrees well with the theoretical formula (33).

A very elegant experiment confirming the existence
of the surface barrier was performed by Lowell^21-5.
The experimental conditions were the following: The
sample was a plate of very homogeneous Nb + 20 at.%Mo
alloy, with an almost reversible magnetization curve.
The surface of the plate was chemically polished to a
mirror finish. A current was made to flow through the
plate, and the external magnetic field (~Hc2/2) was
parallel to the surface of the plate and perpendicular to
the current. Two types of constantan wire heaters were
secured to the surface of the plate: a, located perpen-
dicular to the current, and β, oriented obliquely to the
current. The critical current was measured as a func-
tion of the power released by the heaters. The experi-
mental results are shown in Fig. 6: the heater perpen-
dicular to the current (position a) is much more effec-
tive than the heater in the position β. This is interpreted
as follows: The heater destroys the barrier locally. In
position a, a lowered-barrier region is produced paral-
lel to the vortices that "wish" to penetrate into the plate.
The vortices overcome this lower barrier, tend to move
into the "doors" opened by the heater, and a resistive
state is produced. The situation is different when the
heater occupies position β. Inasmuch as the nascent vor-
tex filament is perpendicular to the current, as before,
it senses the lowered barrier only in that section of its
length which crosses the heater. Therefore the heater in
position β should be much less effective. This is indeed
observed in the experiment.

d) Vortex interaction with a cavity inside a super-
conductor. So far we have been interested in the behavior
of the vortices near the outer boundary of the super-
conductor. We now consider how the vortex interacts
inside an infinite superconductor with a cylindrical
empty channel parallel to the vortex.

As is well known, the flux carried by a cylindrical
cavity in a bulky superconductor should be quantized,
i.e., consist of an integer number of flux quanta Φο. With
increasing number of flux quanta in the cavity, the field
intensity in the cavity increases and, starting with a cer-
tain number n0 of quanta it may be energywise more
profitable for one flux quantum to become released in
the form of a vortex filament. In other words, it may
turn out that a superconductor with a cavity carrying
n0 + 1 flux quanta has a higher energy than in the case of
the cavity with n0 quanta and with an infinitely remote
vortex parallel to its axis. However, the presence of a
surface barrier prevents the creation of a filament on the
boundary of the cavity and its penetration into the super-
conductor. Therefore the maximum number n s of flux
quanta in the cavity can exceed n 0 . The problem of de-
termining n0 and ng is solved by investigating the inter-
action of a cavity carrying η flux quanta with a vortex
parallel to its axis'-22-1.

Thus, we consider an infinite superconductor with

FIG. 6. Lowell's experiment. | •
Plot of the critical current against 3
the power released by heaters situ- •§
ated in positions and (from [21 ] )· 1
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cylindrical cavity of radius r, having η flux quanta, and
with a vortex parallel to its axis and located at a dis-
tance p 0 away from its center. The field in the cavity
consists of the field connected with η flux quanta of the
cavity and the field produced inside the cavity by the
vortex filament. The latter follows from the fact that the
filament currents flowing around the cavity produce in
the cavity a magnetic field, and it is easy to verify that
this field is constant over the entire volume of the cav-
ity. We denote the total field in the cavity by H o . Then
the distribution of the field in the superconductor is des-
cribed by the equation

Η + λ2 rot rot Η = Φοβδ (ρ — p0) (34)

with the boundary condition Η | σ = Ho on the surface σ of
the cavity. In (34), β is a unit vector along the filament,
i.e., along the cavity axis, and p 0 is the two-dimensional
radius vector of the center of the filament. The solution
H(p) of this equation depends parametric ally on p 0 and
Ho, and the field Ho should be determined in a self-con-
sistent manner. In the limit ί > 1 , the second GL equa-
tion (4) can be written in the form

λ2Γ0ίΗ = -|2-νθ — A,

where θ is the phase of the wave function of the GL
theory and A is the vector potential. Integrating this
equation along the circular contour of the cavity, i.e.,
along a circle of radius r, we obtain

2n

r \ r o t . Η (Ζφ = Φ ο η

Po

This shows clearly the constituents of the field in the
cavity. The first term is the field produced in the cavity
by the vortex filament. This field is not quantized. The
second term is the field determined by the number η of
the flux quanta contained in the cavity. This field is
quantized and is equal to the field that remains in the
cavity if the vortex filament is removed to infinity. It
follows from (35) that Ho increases monotonically as the
filament approaches the cavity. At the instant when p 0

becomes equal to r, the filament vanishes, but Ho be-
comes equal to (Φ0/2ττλ2)(η + l)Ko(rA), i.e., the cavity
acquires one more flux quantum. The free energy of the
superconductor per unit length of the vortex filament
takes the form

Substituting the solution of (34) in this expression we ob-
tain Ho, which is given in the case r <C λ by

f»(x) (35)

2 <r o t H ) 2 ] d V+-L·
In this expression, the integration is carried out over
the volume of a layer of unit thickness perpendicular to
the axis of the cavity; the second term gives the energy
of the field in the cavity per unit cavity length. This en-
ergy is a function of the position p 0 of the filament and
of the number η of the flux quanta of the cavity. The
function ^(Po) for various η is given by the formulas

.Fn(Po)H
, ρο»λ, ηφϋ.

A plot of .^n(p0) is shown schematically in Fig. 7. The
origin of .̂ "n is taken to be the energy of the system with
a vortex filament removed to infinity. It is seen from
the figure that a cavity that is free of flux quanta attracts

FIG. 7. Free energy of vortex lo-
cated near a cavity containing η mag-
netic-flux quanta.

Pa

a vortex filament to itself. On reaching the surface of
the cavity, the vortex vanishes from the superconductor,
and the cavity acquires one flux quantum. This situation
continues until the number of flux quanta in the cavity
exceeds a certain value n0, starting with which the cap-
ture of n0 + 1 quanta by the cavity is no longer energy-
wise favored. Were it not for the surface barrier, n0

would indeed be the maximum number of flux quanta that
the cavity can carry, since it is profitable for a cavity
with n0 + 1 flux quanta to release one quantum in the
form of a vortex filament. The presence of the surface
barrier, however, prevents formation of a filament on
the surface of the cavity and prevents the filament from
penetrating into the superconductor. The flux-quantum
number n s at which the barrier vanishes is the maximum
number of quanta that the cavity can retain. Calculation
shows[ 2 2 ] that n s ~ r / 2 | , whereas n0 ~ 1 at r « λ .
Since it is assumed that r ^> ξ, it is clear that n g 3> n0.

The force per unit vortex length that must be applied
to the vortex on the cavity surface to detach it from the
cavity is obviously

If we substitute in this formula the function ,Fn(Po) de-
termined in^22-1, we obtain

2 n | ι

/ = ^ ( ι _ Μ ) .

Thus, if η = 0, the force of attraction of the vortex to the
cavity is maximal, does not depend on r (at r 2> ξ), and
to overcome it it is necessary to have an extraneous
current

4π 1/2λ '

i.e., again a current of the same order as magnitude as
the current that leads to the breaking of the electron
pairs.

5. MIXED STATE OF TYPE-II SUPERCONDUCTORS

a) Mixed state of unbounded superconductor. We have
considered so far one isolated vortex in an unbounded or
bounded superconductor. We now consider a system of
interacting vortices. We start with the case of unbounded
space, i.e., we consider a system of vortices that are
parallel to one another and are in equilibrium with one
another and with the external magnetic field; we neglect
in this section all effects due to the interaction of the
vortices with the surface of the sample. We increase the
external field Ho. Up to the first critical field Hgi, the
sample is in a pure Meissner state, i.e., there are no
vortices inside the superconductor (they are not favored
energywise), and Meissner current flows over the sur-
face. The field inside the sample is equal to zero. The
magnetic moment increases linearly with the field:

4π
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where M is the magnetic moment per unit volume and Ρ
is the average magnetic field inside the sample; in the
Meissner state we have Β = 0. When Ho reaches the value
H c i the penetration of the vortices becomes energywise
profitable, and as a result of their interaction they begin
to align themselves parallel to one another, forming a
regular two-dimensional lattice. The distances between
the vortices, however, are still large, so that it suffices
to take only the interaction of each given vortex with its
nearest neighbors into account. Calculation of M(H0) in
this field region1-23-1 leads to an infinite value of
(dM/dH0)H =Hci> owing to the exponentially weak inter-
action of the filaments at distances that are large in
comparison with λ. The filaments approach each other
abruptly to distances ~λ. With further increase of the
external field Ho, we arrive at the magnetic-field region
H c i <C Ho <δ! HC2, where it is easy to determine the
equilibrium structure by using the single-vortex-filament
model analyzed above.

In perfect analogy with the derivation of formula (32)
for the Gibbs free energy of a single filament, we can
easily obtain the density of the Gibbs free energy of our
superconductor in the mixed state:

here n is the density of the vortex filaments, the summa-
tion is carried out over the vortex-lattice points, and
the prime at the summation sign means that the term
with | r j | =0 has been limited.

Recognizing that the average field or induction is
equal to

Β = ηΦ 0 ,

we have

( 3 6 )

The equilibrium value of the vortex-structure unit-
cell parameter a corresponds to the minimum value of
G, so that the equilibrium condition is

— = 0. ( 3 7 )
da

From this equation we determine the equilibrium value
of the induction at a given external field Ho. Let us
specify a vortex-lattice unit cell of arbitrary type, say
an equilateral triangle with side a. Replacing the sum-
mation in (36) by integration over the reciprocal lattice,
we obtain the following expression for the induction1^:

(38)

where β is a numerical coefficient that depends on the
type of lattice. To calculate it it is necessary to carry
out exact summation in formula (36). This was done
i n [ 2 4 ' 2 5 ] , and the result is In βΔ = -3.872 and In βα

= —3.852 for a triangular and a quadratic lattice, respec-
tively.

From (38) we get a final expression for the magnetic-
moment density:

(39)Φ»
•2B {IIo) Γ

Thus, in the first-order approximation (B = Ho) the
magnetic moment depends logarithmically on the field Ho

at Ης ι < Η 0 < Hc2o At Ho ~ HC2 the magnetic moment

FIG. 8. Electron-microscope
photograph of the mixed state, ob-
tained by Obst [ 2 8 b ] . A triangular
vortex structure is realized in one
of the grains of the polycrystalline
material, and a quadratic one in
another grain.

of a superconductor with triangular lattice filaments is
determined by the formulac 6' 2ea°

Γι, χ>Λ,β=ΐ-ΐο. (40)

A comparison of G for triangular and quadratic lat-
tices shows that the triangular lattice is energywise
more favored. On the other hand, calculations on the
basis of the GL equations have shown l - 2 6 a · 5 that at arbi-
trary κ > l/\/2~near HC2> the triangular lattice is like-
wise more favored energywise. It is therefore reason-
able to assume that at κ ^§> 1 a triangular lattice is real-
ized in the entire range of fields from H c l to H c 2 . How-
ever, the energy gain of the triangular lattice in com -
parison witfy the quadratic one is very small, and some-
times, owing to anisotropy of the crystal, the quadratic
lattice may be favored. Figure 8 shows a very effective
electron-microscope photograph of the structure of the
mixed state in two neighboring grains of a polycrystalline
sample obtained by Obst[ 2 ] . It is clearly seen that a
triangular lattice was formed in one grain and a quad-
ratic one in the other.

b) Mixed state near the boundary of a superconductor.
Up to now, when speaking of the structure of the mixed
states in a type-II superconductor, it was assumed
throughout that the superconductor was infinite. What
occurs near the boundary? This is not a trivial question.
The vortices interact strongly with the boundary of the
sample (in other words, with their own images), as well
as with the Meissner currents, and in the region ~λ near
the boundary one should expect strong changes in the
structure of the mixed state. The calculation result is
therefore all the more unexpected, namely the mixed-
state structure remains unchanged even in the immed-
iate vicinity of the edge of the superconductor.

Let us consider for simplicity a plane surface of a
superconductor occupying the half-space χ > 0. The
constant magnetic field Ho is directed along the Oz axis,
H c l "^ Ho < HC2· A mixed state is produced in the
superconductor, i.e., a vortex lattice appears. We as-
sume that the vortices are arranged in rows and that the
Z-th row is located in the plane χ = χ^. All the vortices
in the row are parallel to the external field and are lo-
cated at a distance a from one another. The distances
between the rows, however, are not identical. Our prob-
lem consists precisely of finding the equilibrium posi-
tions of these rows.

To this end we write down the expression for the
Gibbs free energy of our sample:

»=·£?· Σ
l,m

.); (41)

here r/ m is the radius vector of the center of the m-th
vortex in the Z-th vortex row, H v is the field produced
by all the vortices without exception (and only by vor-
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tices) at the center of the vortex (I, m), and * v ( r / m ) is
the magnetic flux produced by the vortex (I, m). Form-
ula (41) is obtained in exactly the same manner as form-
ula (32). To calculate the energy y it is convenient to
use the method of images. It is necessary, however, to
determine the field produced by one vortex row at a point
located at a distance χ from this row.

In other words, the question is the following: Assume
that the centers of the vortices occupy the points
(0, ±ma), m = 0, 1, 2, ..., in an unbounded superconduct-
ing space. What field do they produce at the point (0, x)?
This field Hy(x) can be written down immediately by
using the formula (7):

This expression is summed in1-16-1. The final result is
very simple:

#.(*)•=•&«-·*. (42)

This formula is valid accurate to terms
~a[exp(-27ix/a)]A. Since formula (42) will be used
with χ ϊϊ a, it is clear that the omitted terms are negli-
gibly small.

Using now (42) and (27), we write down the energy
(41) for a superconductor strip of unit width along Oy
and of unit height along Oz:

~A 2 ^ Σ e - ^ + const. (43)

The constant in this expression stands for all the terms
that do not depend on xj. The physical meaning of this
formula is quite clear: the first exponential in the double
sum yields the energy of the repulsion of the vortices
from one another, and the second exponential gives the
energy of attraction to the system of images; finally, the
second sum is the energy of interaction of the vortices
with the Meissner current.

The equilibrium position of all the vortex rows is ob-
tained from the condition that r̂  be a minimum

or, using (43),

The exact solution of the system (44) is

x, = bl + *„, Ζ = 0, 1, 2, . . (45)

This can be easily verified by substituting (45) in (44).
We obtain in this case an equation that enables us to de-
termine xo(Ho). It turns out that x0 is also of the order
of b and is practically independent of Ho.

We have thus found that the vortex rows in a semi-
infinite superconductor in the mixed state are equally
spaced relative to one another even in the immediate
vicinity of the edge of the superconductor. The distance
b between the vortex rows obviously corresponds to the
equilibrium state and is uniquely connected with the in-
duction Β in the interior of the superconductor, namely
Β = Φο/ab, with b/a = -/372 for a triangular lattice.

c) Mixed state of film. We now turn to the case when
the superconductor is a film of thickness d and the ex-
ternal magnetic field Ho is parallel to its plane. Let

ξ < d ^ X and let us see what vortex-filament structure
is produced in this film. This was determined by
Abrikosov '-27-1. It turns out that the penetration of the
vortices into the film becomes favored not at the field
H c i , as for an infinite superconductor, but at a field
Hci(d), which goes over into H c j as d —- ». Near this
field, the vortices align themselves along the center of
the film in a linear chain parallel to the field, and the
distances between them are initially very large (much
larger than λ). Then, with increasing Ho, the vortices
start to come close to one another and splitting of the
chain in two, misalignment, etc. set in'-28a-1. The usual
mixed state is produced.

It might seem that the proximity of the edges would
strongly alter the mixed-state structure. This is not so,
however. A calculation similar to that in the preceding
section1116^1 again shows that the distance b between the
vortex rows is the same for any location in the film.

Thus, at d <iC λ the surface of the film exerts an ap-
preciable influence on the vortex structure when Ho
~ Hci(d), and has no effect on the structure at Hci(d)
< Ho < HC2· It turns out that in a plate of arbitrary
thickness (provided that d » i ) a regular triangular
lattice is realized in this range of fields1-25-1. The mag-
netization curve in this field range is described as be-
fore by expression (39). This "insensitivity" to the exis-
tence of the film surface, as shown by calculation1-2, is
attributed to the fact that in relatively strong fields the
interaction between the vortices and the film surfaces is
completely offset by the interaction between the vortices
and the Meissner currents due to the external field.
This makes the lattice parameters independent of the
thickness even in the limit d < \ , and the magnetic mo-
ment per unit volume of the plate coincides with its
value in an unbounded sample.

We turn now to fields close to Hc^(d) and examine the
onset of the mixed state in a film. We have already men-
tioned that the equilibrium structure is a linear vortex
chain aligned along the center of the film. Abrikosov's
calculation1^27-1 shows that near Hc^(d) the vortices in the
chain are very far from each other and their interaction
can be neglected. Let us therefore consider only one
vortex.

The dependence of the Gibbs free energy of a film
with a vortex on the position of this vortex in the film
was investigated i n [ 2 8 b : i . This energy is given by form-
ula (32), which can be rewritten, taking (25) into account,
in the form

3——#„(£(,)+—(Η,ίχΔ—Η )• (46)

here H^r) and Hi(r) are the solutions of Eqs. (6) and
(30), respectively, with boundary conditions Hy | σ = 0 and
HJtj = Ho. The vortex is located at the point (XQ, 0), and
the film surfaces coincide with the surfaces χ = 0 and
χ = d. The external magnetic field is directed along the
Oz axis.

We can verify by simple substitution that the sought
solutions are

Hv(x, y) = 2Φο. it
ik,,

sin (nnxjd) sin (nnjro/rf)

After substituting these solutions in (46), we can easily
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FIG. 9. Gibbs free energy of a
vortex in a film at different values
of the external field.

calculate 1?(xo), the value of which in the limit d <C λ is

FIG. 10. Configuration of vortex current
in film.

• \ ot \ 4πλ / Ink d J ~ 4π \ ch (£ί/2λ) J

where e0 is the energy per unit length of the isolated
vortex, and γ « 1.78.

A plot of 3?(xo) is shown in Fig. 9. At Ho < H', the
vortices in the film are absolutely unstable. Starting
with a certain field H', a potential well for the vortices
is produced at the center of the film, and the vortices
can exist there in stable fashion, but the penetration of
the vortices into the film becomes energywise favored
only starting with the field Hcj(d). All this is illustrated
in Fig. 9.

The field H' is obtained from the condition

(48)

It is natural to call this field the minimum supercooling
field of the mixed state. The field Hcj(d) is determined
by the condition i?(xo)lx =cj/2 = °· Using (47), we obtain
directly Abrikosov's resultC 2 7 : l

ffc, (d) = ^ In (-§-), χ > 1 , ί < λ .

All this is very easily understood. When there is no ex-
ternal field, the vortex is attracted to the film surfaces
and is therefore absolutely unstable. This can be ex-
plained also in the following manner: If the vortex is not
at the center of the film, then its vortex currents are
asymmetrical. If Xo < d / 2 (see Fig. 10), then this
asymmetry is such that the current density to the left of
the center of the vortex is larger than to the right.
Consequently, the difference between the Bernoulli
forces acts on the vortex from right to left, i.e., the
vortex is attracted to the surface. Application of an ex-
ternal field Ho leads to the appearance of a Meissner
current which is so directed that, by interacting with the
vortex, it produces a Lorentz force that tends to move
the vortex to the center of the film.

However, even at Ho = Hci(d) the vortices cannot
penetrate unobstructed into the film—this is prevented
by the surface barrier (see Fig. 9). This barrier de-
creases with increasing field Ho and vanishes at a field
H s given by the condition (9^/θχο)Ιχ =o = 0- O u r calcu-
lations can yield only an estimate of the order of H s :

It is natural to call the field H s the maximum superheat
field of the Meissner state. It is easy to see that in the
case of a thin film the barrier is overcome by the vortex
only when the Meissner-current density on the film sur-
face reaches a value j s = cHc m /4W5TA, i.e., a value at
which breaking of the electron pairs sets in-

6. TRANSPORT CURRENT IN MIXED STATE

We now proceed to a very interesting and very impor-
tant practical question: how does the transport electric

current flow in a superconductor in the mixed state? We
assume here that the direction of the transport current
is perpendicular to the vortices.

It is very frequently stated in the literature that in an
ideally homogeneous type-Π superconductor, the critical
current is equal to zero, in this case, i.e., a nondissipa-
tive transport current is impossible. The reasoning is
very simple: interaction of the transport current with
the vortices generates a Lorentz force, which causes
vortex motion, which in turn is accompanied by energy
dissipation C29~32]. In real type-Π superconductors, how-
ever, the vortices are pinned by different imperfections
of the material (dislocations, inclusions of another phase,
pores, grain boundaries, etc.), and a nondissipative
transport current can flow through the superconductor.

We shall show now that, generally speaking, even an
ideally homogeneous type-Π superconductor in the mixed
state is still capable of carrying a nondissipative trans-
port current.

a) Transport current in a film. We turn to the case
considered in the preceding section, of a thin film
( d < A ) located parallel to the external magnetic field
Ho. Let Ho ~ Hgj^d), i.e., a mixed state has set in in the
form of a linear chain of almost noninteracting vortices
aligned along the center of the film.

What happens if a certain transport current is now
made to flow through the film perpendicular to the mag-
netic field? Let us see what forces act on one of the
vortices of the chain. We know these forces well. These
are the force of attraction to the edges of the film, the
force of interaction with the Meissner currents produced
by the field Ho, and now also the force of interaction with
the transport current. The vortex is in equilibrium when
the sum of all three forces is equal to zero. The sum of
the first two forces was investigated in Sec. c of Chap. 5.
It is equal to the derivative (— 9 5?/8x0), where 5?(x0) is
given by (47) and x0 is the distance between the vortex
chain and one of the film surfaces. This force can be
regarded as a restoring force acting on the vortex loca-
ted in the potential well (see Fig. 9). The displacing
force, which draws the vortex out of the minimum of y
at the center in the film, is the Lorentz force f̂ , i.e.,
the force of interaction between the vortex and the trans-
port current. Each value of the transport current corre-
sponds to a certain equilibrium displacement of the
vortex chains away from the center of the film, a dis-
placement that can be obtained from the equilibrium con-
dition

We thus encounter a case in which both a nondissipative
transport current and a mixed state exist.

Obviously, the equilibrium will exist until the restor-
ing force reaches the maximum value. This occurs when
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Xo coincides with the abscissa of the inflection point of
the function ^(x0). This is the maximum opposition that
the Meissner current can provide for the Lorentz trans-
port current. It is natural to define this transport cur-
rent as the critical current, i.e., the current at which
vortex instability sets in.

A calculation in'-28 -1 has shown that the critical
transport-current density determined in this manner is

Ί^-ϊ/^1-^)]· (49)
where H' is the minimum supercooling field (48) of the
mixed state.

From jc(H0) as given by (49) we get djc/dH0 > 0, i.e.,
in the considered field range Ho - Hci(d) <C Ho the criti-
cal current should increase with increasing external
field. This means that somewhere in the field interval
from H_j(d) to HC2 there should exist a maximum of the
critical current. The so-called peak effect, i.e., the ex-
istence of a peak in the jc(H0) plot, was observed for
very many inhomogeneous materials and was due in
most cases, of course, to entirely different causes. It
seems remarkable to us, however, that in such an ideal
object as a perfectly homogeneous film the peak effect
comes about quite naturally, without any additional as-
sumptions.

The physical explanation of this phenomenon is very
simple. The depth of the potential well ^(x0) increases
with increasing magnetic field Ho (see Fig. 9); conse-
quently, a larger transport current is needed to upset
the stability of the vortex chain.

b) Transport current in a plate. We examine now the
flow of transport current in a plate of thickness d in the
mixed state. The current is perpendicular to the mag-
netic field Ho, which is parallel to the surfaces of the
plate, H c l < Ho < H c 2 and d > λ. The facts we already
know concerning the mixed state of a semiinfinite super-
conductor (see Sec. Β of Chap. 5) enables us to consider,
at least qualitatively, the mechanism whereby the trans-
port current flows through the plate[16:1. Indeed, knowing
nothing for the time being concerning the current distri-
bution in the plate, we stipulate the existence of the
transport current by requiring the magnetic field on one
surface of the plate to be equal to Ho + Hp and on the
other Ho - Hj, where Hj is the field produced on the plate
surface by the transport current. Since d 3> λ, we can
apply the results of Sec. b of Chap. 5 to each of the two
plate surfaces. We know that the vortex lattice has the
same thickness at any point of the superconductor.
Consequently only a homogeneous vortex lattice can
satisfy the initial equations in a current-carrying plate,
i.e., there can be no vortex-density gradient in this case.
This pertains, of course, only to an ideal homogeneous
superconductor without centers to pin the vortices inside
the material. On the other hand, the distance x0from
the first vortex row to the surface with the plate
[Eq. (45)] remains a free parameter determined from
the condition for the minimum of the total Gibbs free
energy, which includes also a term for the interaction
of the vortices with a transport current. Thus, the
equilibrium value of x0 is a function of Hj. This means
that when the current is made to flow through the plate
the entire vortex lattice is displaced as a unit by a cer-
tain distance Δ(Ηχ). We call attention to the fact that the
absence of a vortex density gradient means the absence
of a vortex density gradient means the absence of the
transport current over the section of the plate. The

\without hole f \ /

V /
' C With hole

0 90' WO' 270' 360'
Orientation of magnetic field θ

FIG. 11. Illustrating the experiment of Jones and Rose-Innes. a)
Schematic diagram of the sample; a hole perpendicular to the cylinder
axis was drilled in the sample; b) transport current flows through surface
sections but are almost parallel to the external field (thickened parts of
the circle in the figure); c) plot of the critical current against the angle
between the direction of the filed and the hole axis.

transport current flows over the surfaces of the plate in
a layer on the order of the penetration depth. This fol-
lows directly from the solution of the London equation
for the current under the boundary condition Ηχ|σ = ±Hj.
This result was confirmed by a direct experiment per-
formed by Jones and Rose-Innest33]. A cylindrical sam-
ple was made from a very pure Nb + 50 at.% Ta alloy,
with an almost fully reversible magnetization curve. Its
surface was electrically polished. The sample was
placed in a transverse field Ho, which transform it to
the mixed state. The critical current was investigated
as a function of the field direction (Fig. 11). A trans-
verse hole was then drilled in the sample and the de-
pendence of the critical current on the field direction
was again investigated. The results are shown in Fig.
11. The authors interpret their results as follows: If a
homogeneous cylindrical type-Π superconductor is loca-
ted in a transverse field Ho and has gone into the mixed
state, then the transport current flows along the cylinder
through two strips oriented along the cylinder on diam-
etrically opposite sections of its surface. These strips
are always so oriented that the field Ho in them is always
parallel to the surface of the cylinder. The dependence
of the critical current on the field direction when there
is no hole in the cylinder is determined by different ran-
dom inhomogeneities of the cylinder surface. On the
other hand, if a transverse hole is drilled through the
sample, then at an angle θ = 90° (see Fig. 11) the
current-carrying strips on the surface of the cylinder
assume the directions aa' and bb'. But it is precisely in
this case that a part of the current-carrying surface is
absent (owing to the transverse hole), and the critical
current reaches a minimum value. This is precisely
what is observed in the experiment.

We have thus established that the transport current
flows over the surfaces of the plate when the plate is in
a mixed state, and the entire vortex structure is dis-
placed in this case by a distance A(HJ). This raises the
natural question: how far can the vortex lattice be dis-
placed without upsetting its stability? This is in essence
the question of the critical current. A detailed analysis
of this model for an ideal surface was carried out by
Ternovskif and Shekhata[3i:l.

The real surface of the plate is always rough. It is
precisely because of this, unless special care is taken
with the surface quality, that experiment does not reveal
the hysteresis phenomena that would be expected from
the existence of a surface barrier.

We shall attempt to take the surface roughness into
account in the following manner: If the plate is in an ex-
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II-
FIG. 1 2. Transfer of a vortex from a

position α to a position a' is equivalent
to a rigid-body displacement of the en-
tire vortex structure by a distance b.

ternal field Ho, and the average field (induction) deep in
the interior of the plate is equal to B, then a current Ij^
= (Ho — B)C/4TT flows over the surface of the plate in a
layer on the order of λ. This current is referred to a
unit height of the plate along the Oz axis. In the equili-
brium position, when there is no transport current, the
entire vortex lattice is symmetrically arranged and the
distances of the outermost vortex rows to the surface of
the plate are equal to x0. In Sec. b of Chap. 5 it was
shown that the equilibrium value of x0 is of the order of
the distance b between the vortex rows. We already
know that when transport current flows the entire vortex
lattice as a whole is displaced in the direction of the
Lorentz force. When is the equilibrium disturbed? It is
natural to assume (taking into account the roughness of
the plate surface) that the equilibrium is disturbed when
the lattice is displaced by an amount on the order of b,
i.e., when the extreme right row of the vortices emerges
from the plate and when the extreme left row of the vor-
tices leaves room for a new row. By how much is the
free energy of the entire plate increased following such
a maximal displacement of all the vortices by an amount
b? It is easy to see that this will be precisely the energy
needed to remove the extreme left row from the position
a and for the appearance of a new row in the position a'
(see Fig. 12), with all the remaining vortex rows re-
maining in the same position. To this end, obviously, it
is necessary to perform the work

AS = fb/a,

where f is the force of interaction of one vortex with the
current Ijyj and a is the distance between the vortices in
the row. The energy Appertains to the vortices located
on the unit length of the row. Since the density of the
current I M is I M A, we have

Recognizing, in addition, that 1^ = c|M|, where
Μ = (Β ~ H0)/4TT is the reversible magnetic moment per
unit volume of the superconductor, we have the following
condition for the critical transport current:

|-1/ |Φα_1 / ρ (50)

Indeed, on the left-hand side we have the restoring force
Δίτ/b acting on all the vortices located in a unit section
of the plate along the Oy axis per unit height of the plate
along the Oz axis. In other words, this is the maximum
vortex-pinning force in the considered section of the
plate. On the right-hand side we have the total Lorentz
force that the transport current exerts on the vortices.
Indeed, we have already established that this current
flows in a surface layer of thickness λ. The number of
vortices per unit length of this layer is (Β/φ0), SO that
the Lorentz force acting on these vortices is

In the case of a triangular lattice, the distance a be-
tween the vortices in the row is (2Φ0)

ι/23"ι/4Β l / 2 . Substi-

H, kOe

FIG. 13. Dependence of the magnetic moment of eutectic Pb—Bi on
the external magnetic field. Symbols—results of experiments for samples
subjected to different treatments: 1) one hour, 20°C, 2 mm diameters;
2) 0.5 h, 114°C, 2 mm diameter; 3) 80 min, 114°C, 2 mm diameter, 4)
9 h, 114°C, 0.3 mm diameter. Solid lines-theoretical curve [ " ] .

tuting this expression in (50) and introducing the defini-
tion of the average density of the critical current j c

= Ic/d, we have ultimately

Λ'2 λ'\/Β (51)

This is precisely (apart from a numerical coefficient)
the formula proposed by Campbell, Evetts, and
Dew-Hughestl9]. They checked this formula very
carefully. The experiment was performed on a eutectic
Pb—Bi alloy. Rather large particles (>λ) of nonsuper-
conducting bismuth were uniformly introduced into the
superconducting e phase. The authors regarded their
sample as an aggregate of thin superconducting plates of
thickness assumed to be equal to the average distance
between the bismuth particles. They investigated the ir-
reversible magnetic moment of the samples as a function
of the external field Ho. The same quantity can be calcu-
lated by specifying some dependence of j c on Ho. The
authors, performing an independent investigation of the
reversible magnetic moment M(H0) of the e phase, used
formula (51) to calculate the irreversible magnetic mo-
ment. A comparison of the results of the direct experi-
ment and of the calculation are shown in Fig. 13, where
the solid lines are the results of the calculation.

One more confirmation of the previously-advanced
point of view concerning the flow of transport current in
a plate in a mixed state is a paper by Cardona, Gittle-
man, and Rosenblum1-35-1, who investigated the real part
R of the surface impedance of a flat sample of Pb
+ 17 at.% In alloy in the mixed state. The measure-
ments were performed in the centimeter band. The con-
stant magnetic field Ho was applied parallel to the
surface of the sample. They observed at H c i < Ho

< HC2 the so-called natural hysteresis in the plot of R
against Ho. For each value of Ho there exists a certain
field interval ΔΗ, in which R(H0) varies reversibly and
without hysteresis. The authors offer the following ex-
planation for this phenomenon. The real part R of the
surface impedance is determined by the number of
normal vortex cores located inside the skin layer. A
change (say an increase) of the external field causes the
first vortex rows to move away from the surface into the
interior of the sample, leaving space for the entry of the
next vortex row. But before this new row has entered,
the number of vortices in the skin layer is decreased
and R has also decreased. Such a reversible elastic dis-
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placement of the vortices by the field Ho should be ob-
served in a certain field interval ΔΗ. The lower limit of
this interval corresponds to the emergence of the ex-
treme vortex row from the sample, and the upper limit
to the entry of the new vortex row into the sample.

If we accept this interpretation of[35], then we can
compare its result with the concepts developed above.
Indeed, the field interval ΔΗ just referred to is none
other than our field HL, produced by the transport cur-
rent, inasmuch as it is precisely the field Ητ which
causes a new vortex row to enter from that side of the
plate where the field is equal to Ho + Ητ and causes a
row to leave where the field is equal to H o - Ηχ . Thus,
the initial hypothesis is Hj^ ~ ΔΗ. Then the expression
for ΔΗ takes the form

where a is the side of the triangular unit cell of the vor-
tex lattice, and k is an adjustment coefficient on the
order of unity, necessitated by the fact that we do not
know exactly the critical displacement of the vortex
structure, which we have assumed equal to b. The fol-
lowing parameters of the Pb + 17 at.% In alloy are
given i n [ 3 5 ] : H c 2 = 4.8 kOe and H c l = 0.14 kOe. These
data suffice to calculate the remaining parameters:
κ = 5.3, ξ = 260 Α, λ = 1380 A. Using now the well known
formula (2Φ0)

ι / 23"ι / 4Β"ι / 2 for a, assuming for H o - Β the
logarithmically-accurate relation

r(xLl

and substituting the values of λ and κ determined above,
we obtain ultimately

Aff(kOe) = ft 2 '^ l l in-^g.. . (52)

Assuming in this formula Β = Ho, we can compare this
result with the experiment l 3^ dependence ΔΗ(Η0). To
determine the adjustment coefficient k, we equate ΔΗβχρ
and ΔΗ,.η β 0 Γ at the point Ho = 0.5 kOe. We then obtain
k = 1.85. Figure 14 shows the experimental points and
the theoretical ΔΗ(Η0) curve. The agreement is surpris-
ingly good, when we consider that the adjustment param-
eter is on the order of unity.

c) Pinning of vortices on the interface of two super-
conductors. In the preceding section we considered the
pinning of vortices as a result of their interaction with
the surface of the superconductor, and have established
that the transport superconductor current flows in this
case along this surface, in a layer on the order of λ.

We now consider the case when there is a flat bound-
ary between two different superconductors, and the ex-

τ-ί,ΤΚ

Ho, kOe

FIG. 14. Dependence of ΔΗ on the external magnetic field Ho.
Points-result of experiment [ 3 S ] ; the solid curve was calculated
from formula (52), where k = 1.85.

FIG. 15. Dependence of the vortex
free energy on its distance to the inter-
face between two superconductors. It
is assumed that λι > λ2 and κ, > κ 2 .

ternal magnetic field is parallel to this boundary.

Let us explain first how one vortex interacts with
such a boundaryt3e"1. Let the half-space χ > 0 be occu-
pied by a superconductor with a penetration depth λχ and
a correlation length ξι (λ! > ξι). At χ < 0 we have
respectively λ2 ^> ξ 2. A vortex filament parallel to the
Oz axis passes through the point r L , with x L > 0. The
intensity of the magnetic field produced by the vortex is
determined from the solution of the equations

H, + ?.; rot rot Η, = Φ06ζ (r — r L ) ,

and from the conditions for the matching of the solutions
on the χ = 0 plane, namely, continuity of the tangential
components of the vector potential (AJ.J = A^) and of the
normal components of the current ( j n ^ = jn£) on this
plane. The first condition means physically that there is
no infinite magnetic-field intensity on the separation
boundary, and the second means that the current has no
divergence (div j = 0). Taken together, these two match-
ing conditions mean that the superconducting current
produced by the vortex is refracted by the interface.
Indeed, by virtue of the London equation J ~ A A2, the
matching conditions are j n i = j n 2 and λ2 j^j = λ 2 ,]^. It is

precisely this refraction of the vortex superconducting
lines which leads to the interaction of the vortex with the
interface between two superconductors. A general ex-
pression for the energy of this interaction is given
i n t 3 e ] . This energy is shown schematically in Fig. 15.
We present here some limiting formulas:

'='.+(fi;)1^(£)V^..t>xl. (53)

(54)

(5 5)

where F o = (Φ0/47τλ1)'!1ηκ1 is the free energy of the sin-
gle vortex in the infinite first superconductor, «ι = λχ/ξ!
and Ko is a Hankel function of zero order of imaginary
argument. Formula (56) makes it possible to estimate
with logarithmic accuracy the energy of the vortex at a
distance on the order of ξ χ from the boundary

F (h) as -?4- °*' . ^7^
on3 λ'-|-λ| V /

The discontinuity of the vortex energy on the boundary
(see Fig. 15) is then

(58)

Thus, it follows from Fig. 15 that at λ,. > λ2 and «ι > κ2

there is produced near the interface a potential well for
the vortex, i.e., the vortex becomes pinned by such an
interface. The expressions given for F enable us to
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estimate the external force that must be applied to such
a vortex to cause it to leave the potential well. This is
obviously the maximum value of the derivative |9F/8xL|.
Since the well is asymmetrical (see Fig. 15), it is clear
that the pinning force of such a vortex moving to the
right differs from that moving to the left.

If both superconductors are in the mixed state, then
an array of vortices pinned by the boundary is produced
along the interface. These vortices form a wall that pre-
vent the entire vortex system from moving under the in-
fluence of the Lorentz force. This force arises if trans-
port current is made to flow along the interface. Since
both superconducting half-spaces are assumed to be
ideally homogeneous, there can be no pinning of the vor-
tices outside the interface. The transport current can
therefore flow only along the interface in a layer of
thickness ~λι + λ2.

* f j , H ] = j X H .

"The fact that the multiplicity is minimal for arbitrary fields and κ has
not been proved. It can be shown however, [9~n ] that at κ > 1 the
change of the phase of the order parameter on going around the vortex
filament is equal to 2π in the entire mixed-state region.
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