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Interest in fluids with strong magnetic properties has developed in recent years in connection with

technical applications. Artificially created magnetic fluids are suspensions of very fine (~10~6 cm)

particles of ferromagnetic material in ordinary (as a rule nonconducting) liquids. This review briefly

describes the methods of preparation and considers the stability problems of magnetic colloids. It

deals principally with their physical and hydrodynamic properties. It summarizes the results of

theoretical and experimental investigations of the effect of a magnetic field on the equilibrium

conditions and on the character of the motion of the suspensions. A considerable part of the article

is devoted to an analysis of critical phenomena—instability of the free surface of the liquid in an

external field and thermoconvective instability. The mechanisms of relaxation of the magnetization of

a suspension are discussed; the most important of these are rotational Brownian motion of the

particles and the Neel fluctuation mechanism, which leads to the superparamagnetism of subdomain

particles of a ferromagnetic material. Important differences are noted between the hydrodynamics of

suspensions of superparamagnetic and of ferromagnetic particles. In the latter case it is necessary to

take account of rotation of the particles themselves, which greatly complicates the picture of the

interaction of hydrodynamic and magnetic phenomena. Consideration is given to various effects

caused by internal rotation: anisotropy of the viscosity and of the magnetic susceptibility, entrainment

of the suspension by a rotating field, and dependence of the kinetic coefficients on the field intensity.
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1. INTRODUCTION

With respect to its magnetic properties, any single-
phase fluid is dia- or paramagnetic, so that its magnetic
susceptibility is extremely small. For example, the
volume susceptibility of liquid oxygen—an anomalously
strong paramagnet—is only 3 x 10~4 at 90° K. The mag-
netic susceptibility is at least an order of magnitude
smaller for concentrated solutions of paramagnetic salts
and of certain free radicals. As regards ferromagnets,
as far as is known they do not exist in the liquid phase,
although the problem of whether they are possible in
principle is at present unsolved. But a liquid medium
with strong magnetic properties can be obtained by col-
loidal dispersion of ferromagnetic particles in an ord-
inary liquid. Such a two-phase system is very sensitive
to a magnetic field and in many respects behaves like
a uniform fluid. Existing technology today makes it
possible to obtain colloids with initial susceptibility
0.05—0.10, and with saturation magnetization 30-35 G,
attainable in fields of intensity 8-10 kOe.

The synthesis and the systematic study of the prop-
erties of magnetic fluids was started a few years ago by
Rosensweig's research group11 ~9\ The not altogether
felicitous term "ferrofluid," proposed in one of the first
papers on the hydrodynamics of magnetic suspensions
("ferrohydrodynamics"), became established in the
scientific literature. We remark at once that the ferro-
fluids under discussion here have little in common with
the magnetic composites used for visualization of do-
main boundaries or in magnetic clutches^111 and which
came into use early in the last fifty years. In these, the
suspensions used were of a ferromagnetic powder
(usually carbonyl iron) in a mineral or silicone oil. The

mean dimensions of the particles were 4—12 βτη. The
technical application of such suspensions was based on
their property of congealing under the influence of a
magnetic field.

Ferrofluids differ from these coarse suspensions
primarily by the much smaller (by three orders!)
dimensions of the suspended particles: depending on the
ferromagnetic material used, their mean diameter
varies from 30 to 150 A. The smallness of the dimen-
sions of the particles, in combination with the measures
always applicable for prevention of coagulation, guar-
antees high stability of the magnetic colloids: they
undergo practically no aging or separation, they remain
liquid in a magnetic field, and after removal of the field
they fully recover their characteristics.

The experimental and theoretical data so far obtained
enable us to put together a more or less complete pre-
sentation of the physical properties and hydrodynamics
of magnetic fluids. The only review pertaining to this
subject, by Bertrand112·1, is concerned basically with the
preparation of ferrofluids and with the prospects for
their use in technology. In the article being presented,
we have attempted to fill in the gaps that exist, paying
primary attention to the physical side of the subject.

2. STATIC PROPERTIES OF MAGNETIC
SUSPENSIONS

(a) Colloidal systems. The very existence of a col-
loidal suspension assumes, obviously, that the solid
particles suspended in the liquid do not settle under the
influence of the force of gravity. For this purpose the
velocity of Brownian (thermal) motion of the particles

153 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 Copyright © 1975 American Institute of Physics 153



must be no smal ler than the settl ing velocity determined
by Stokes's formula. Hence an upper es t imate of the
dimensions of a suspended par t ic le :

drC
^

1/7
(2.1)

where Δρ = p s - pf i s the difference of densities of the
solid and liquid phases . Depending on the viscosity η of
the liquid, formula (2.1) gives d m a x ~ 10"3 - 10~" cm a t
room t e m p e r a t u r e . In pract ice , in stable colloids the
dimensions of the par t ic les lie within the l imits 1(F7 to
1(T4 cm.

In a state of thermodynamic equil ibrium, the height
distribution of the par t ic les obeys the b a r o m e t r i c law

n (ζ) ~ exp
(Ap) Vtz

kT (2.2)

(V is the volume of the particles). Consequently, in
order that there shall not be concentration gradients of
gravitational origin, the height h of the container must
be sufficiently small:

h<
kT

(Ap) V, (2.3)

For Δρ = 10 g/cm3, Τ = 300°K, and d = 200 Α., we must
have h < 1 cm. We remark, however, that the time t'
for establishment of the equilibrium distribution (2.2)
for colloidal particles is very large, and an originally
uniform system remains uniform over a long period of
time t < t ' . In order of magnitude, t ' = h2/D, where
D ~ kT/j?d is the diffusion coefficient of the suspended
particles. For h ~ 1 cm, d ~ 10"6 cm, and η ~ 10"2 g/cm
sec, the uniformity is preserved for several weeks.

Whereas in ordinary suspensions gradients of the
particle concentration are produced by Archimedean
forces alone, for magnetic suspensions, placed in a
nonuniform field Η, a role analogous to that of the grav-
itational field is played by gradients of the magnetic
field. In a nonuniform field, a particle with magnetic
moment m is subject to a force[ 1 3 ] m · VH. In estimating
the size of this force, one must remember that for such
particle dimensions (d ~ 100 A) as are used in stable
magnetic colloids, each suspended particle is an individ-
ual magnetic domain'-1'41. Calculation of the critical
dimensions, below which a particle becomes absolutely
single-domain, leads to values of d from several
hundreds of angstroms (330 and 760 A for iron and
nickel respectively)[15] to several thousands of angstroms
for materials with strong magnetic anisotropy (4 x 103

and 13 χ 103 A for manganese-bismuth alloy and for
barium ferrite[ l f a). The magnetic moment of a uniformly
magnetized (single-domain) particle is m = MSV, where
M s is the saturation magnetization of the particle mater-
ial. Thus the ratio of the magnetic force MSV|VH| to
the Archimedean (Ao)Vg is independent of the particle
dimension. For |VH| > g(Ap)/Ms, the magnetic forces
dominate over the gravitational. In this case, in formu-
las (2.1) and (2.3), which determine t̂he maximum per-
missible-linear dimensions of the particles and of the
container, Δρ • g must be replaced by Ms|VH|.

(b) Preparation and stability of magnetic colloids.
Colloidal ferromagnets must be stabilized to exclude
possible coagulation. Stabilization is accomplished by
adsorption on to the surface of the dispersed particles
of ions, with formation of double ionic layers, or by
means of surface-active substances (soaps, alcohols,
fatty acids). The molecules of these substances form
on the solid particles adsorbed layers with definite

orientations of the polar groups.11 This leads to the
appearance of a potential barrier that prevents coagula-
tion: in order for the particles suspended in the liquid
to approach each other, work must be expended to over-
come the forces of molecular bonding between the mole-
cules of the liquid and the adsorbed layer. The width
of the potential barrier in the case of fatty acids is about
20 A.

Rosensweig, Kaiser, et al. worked with ferrofluids
obtained by grinding ferrite powders (mostly magnetite)
in ball mills. The grinding is continued several weeks
in the presence of the carrying liquid, in which the
stabilizing agentis dissolved from the very beginning.
Used as a base are kerosene, water, and fluoro-organic
and silicone liquids; the stabilizer is often oleic acid.
In'1 7 1, the dispersion obtained after grinding was centri-
fuged 20 minutes in a field of 17 000 G, after which the
unsettled fraction was separated. In various suspensions
described in'171, the mean diameter of the magnetite
particles varied from 50 to 90 A, with particle concen-
tration η ~ 101 6-101 8 cm"3.

Colloids of magnetite are prepared also by chemical
precipitation'181 of Fe3O4 particles from a solution of
salts of di- and trivalent iron, by acting on the solution
with an excess of alkali. The precipitate obtained is
washed and is then separated to a colloidal state in weak
hydrochloric acid or in a solution of oleic acid in a non-
polar liquid.

Exceptionally high stability is exhibited by colloids
of cobalt particles, stabilized by polymeric materials
with molecular weight 104 and larger [19>20]. The method
proposed by Thomas[19] for preparing such colloids con-
sists in thermal decomposition of dicobalt octacarbonyl
in toluene or chlorobenzene, containing in dissolved
form a suitable polymer. By changing the Co2(CO)8 con-
centration, the temperature, and the composition of the
polymer, it is possible to vary the dimensions of the
particles of metallic cobalt between 20 and 300 A; in
each case, about 85%, of the particles differ in their
dimensions by less than a factor two from the mean
value.

Int 2 1 ], an electrocondensation method was used for
dispersion of iron in toluene: evaporation and conden-
sation of the metal in a high-frequency spark discharge.
Aluminum naphthanate served as a stabilizer.

In a number of researches, attempts were made to
produce a magnetic suspension on the basis of liquid
metals. Such ferrofluids, in contrast to existing ones,
would possess high electrical and thermal conductivity
and a high boiling point. These qualities, in conjunction
with strong magnetic properties, would guarantee them
a wide application in various areas of technology, in-
cluding the conversion of heat to mechanical or elec-
trical energy'51 (a ferrohydrodynamic generator). The
electrocondensation method was used to obtain particles
of iron[ 2 2 1 and gadolinium'231 in mercury. Ferrofluids of
Ni-Fe alloys on a mercury base were prepared by the
method of electrolytic precipitationt24!. Also used as
carrier liquids were tin, ingas (an indium-gallium-tin
alloy), and bismuth alloys'251. The basic difficulty in the
way of production of an electroconductive ferrofluid is
the lack of effective methods for stabilizing it.

Two mechanisms promote the coagulation of magnetic
colloids: molecular attraction between the suspended
particles, and the dipole-dipole interaction that is spe-
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cific to magnetic particles. The latter has, for contact
of the particles, the order of magnitude m2/d3, so that
it is possible to introduce a dimensionless "coupling
constant"

λ = №- (2.4)

For single-domain particles, for which m = MSV, λ is
proportional to the volume of the particle. For example,
for magnetite (Ms = 450 G) at room temperature
(kT = 4 -' 10~14 erg) the value λ = 1 is obtained for par-
ticles of diameter d = 90 A. For λ < 1 the determining
role is played by van der Waals forces. With increase
of the particle dimensions, the contribution of the mag-
netic interaction to the resultant balance of inter-
particle forces increases.

The effect of magnetic attraction on the stability of
disperse ferromagnets, stabilized by the electrostatic
forces of repulsion between ions of double electric
layers, was considered by Bibik and Lavrovt26] in the
spirit of the Deryagin-Landau[27] theory of the stability
of lyophobic sols. The interaction energy W of two
spherical particles is composed of van der Waals and
magnetic attractions and electrostatic repulsion. The
dependence of W on the shortest distance e between the
sphere surfaces can have the following four basic forms
(Fig. 1). Obviously, only when a curve of type 1 or 2 is
realized will the ionic layers prevent conglomeration of
the particles. A limit of stability must occur when the
peak of the maximum of W(e) is located at the level of
the axis of abscissas (curve 3). The critical thickness
£ c decreases with increase of λ, and for λ > 103 the
magnetic colloid can no longer be stabilized by electro-
static forces. Its uniformity, however, is disturbed
much sooner. For λ » 1 the magnetic attraction of the
particles leads to formation of spatial structures[26]—
chains, rings, clusters—because of the occurrence of
a minimum of the total energy W at appreciable dis-
tances between the particles (curve 2 in Fig. 1).

Figure 2 shows electron-microphotographs of col-
loidal particles of cobaltt20]. Most of the particles in

FIG. 1

Fig. 2a have dimensions less than 100 A. Formation of
chain aggregates begins (Fig. 2b) at somewhat larger
mean dimensions. Finally, still coarser particles (200—
400 A) are completely joined into chains (Fig. 2c).

In those colloids in which spontaneous agglomeration
of the particles does not occur, an external magnetic
field may produce reversible agglomeration. This is
evidenced, for example, by the effect of a field on the
transparency of colloids of magnetite : the transpar-
ency decreases in a magnetic field (aggregation) and is
restored after removal of the field (disintegration of the
aggregates). In[ 2 9 ], experiments were performed with
dispersions of ferrite particles (~ 200 A) in water.
Electron microscopy showed that the agglomerates that
originated under the influence of the field formed a reg-
ular system of lines parallel to the magnetic-intensity
vector. Depending on the method of preparation of the
electron-optic replica , the distance between neighbor-
ing chains of particles amounted to 4000 or 8000 A.

(c) Formation of chains and clusters. Interesting re-
sults pertaining to the formation of chains of colloidal
magnetic particles and to the effect of a uniform mag-
netic field on this process were obtained by de Gennes
and Pincus[30]. They considered some of the properties
of the equation of state of a "rarefied gas" of ferro-
magnetic particles suspended in an inert liquid. They
allowed for the departure of the gas from ideality so far
as this resulted from the magnetic attraction between
the particles constituting the gas (electrostatic and van
der Waals forces were disregarded).

The energy of interaction of two magnetic dipoles,
located at a distance r from each other, is

W f 2 = r~3 [(111,012) — 3 (m,r) (m2r) r~2].

In an external magnetic field strong enough to aline the
particles completely,

ξ > 1, ξ > λ (Ι = mHlkT),

the binary correlation function has the form

0 (r < d\
exp[A(d/r)3(3cos2* —1)1 ( r > d ) , K '

where θ is the angle between r and H. The second virial
coefficient is expressed by the formulat31i

For small λ the integrand in (2.6) is nearly zero. Upon
retaining the term linear in λ in the expansion of the
exponential in (2.5), we find that the coefficient Β de-
pends considerably on the shape of the container in
which the colloid is held. If the container is an ellipsoid
of revolution with its axis of symmetry parallel to the
applied field, then

where Ν is the demagnetizing factor of the ellipsoid in
the direction of its axis of symmetry (0 < Ν < 4ττ).
Thus the sign of Β depends on the shape of the chamber,
and in the case of an oblate ellipsoid (B > 0) it corre-
sponds to a repulsion between the particles.

In the limit of large λ, the most important region in
(2.6) is r ~ d and θ as 0 or π. The asymptotic formula
for Β is

FIG. 2
D J l ud?

Ϊ8 I T 1 > λ> 1).
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By considering pair correlations between particle posi-
tions, de Gennes and Pincus found that in strong ex-
ternal fields, at small concentrations of the suspended
particles, ferromagnetic grains tend to form chains
parallel to the field direction. The mean number of
particles in a chain is

v« = (1 - In | B» I)"1. (2.7)

Formula (2.7) has meaning, obviously, so long as
2n|B«,| « 1, i.e.,

Φ<λιβ-» (2.8)

(φ = nV is the volume concentration of the solid phase).
The condition (2.8) evidently determines the radius of
convergence of an expansion in powers of the density;
the inequality η |C| < |B!, where C is the third virial
coefficient, leads to (2.8) if one takes |C| ~ B2, as in
simple monatomic gases. We may suppose that when
the condition (2.8) is violated, not chains but clusters
will form in the liquid.

At zero external field and λ » 1, there also exists
a certain number of chains. Their mean length,

v0 = (1 - 2n | Bo |)-i (Bo = β^λ"1) (2.9)

is smaller than in a strong field, and they are oriented
in a random manner.

(d) Static magnetic properties. The magnetic prop-
erties of a suspension are determined both by the state
of the solid particles and by their degree of ordering.
Processes occurring in the solid phase have an apprec-
iable influence on the properties of a magnetic colloid
only at temperatures close to the Curie temperature of
a ferromagnet or to the Nfiel and compensation temper-
atures of a ferrimagnet. Far from the Curie temper-
ature, each single-domain particle possesses a magnetic
moment m that is practically constant in magnitude.

For λ < 1 one can neglect the spatial correlations
between different particles; and if in addition φ « 1,
one can neglect also the correlation between the direc-
tions of their magnetic moments. Such a uniform and
isotropic "ferromagnetic fluid" behaves with respect to
an external field like a paramagnet in which the ele-
mentary carriers of the magnetism are the suspended
particles. The magnetic moment of a particle exceeds
the moment of an individual atom by 4 to 5 orders of
magnitude, so that here the term "superparamagnetism"
—introduced by Bean[32] to describe the behavior of sys-
tems of single-domain particles in a field—is entirely
appropriate.

Orientation of the magnetic moments in the direction
of the applied field is impeded by thermal motion.
Allowance for both factors, as in Langevin's classical
theory of paramagnetism, leads to the formula for the
magnetization of a ferrofluid

nkT

~~3~·
(2.12)

t—ξ"1
(2.10)

Because of the large magnitude of the moment m, non-
linear effects show up rather early: at room temper-
ature, the value ξ « 1 has already been reached at fields
Η ~ 102 Oe. The asymptotic forms of the Langevin func-
tion are described by the initial section of the magnetiza-
tion curve,

For large volume concentrations of the ferromag-
netic material (φ ~ 0.1), the initial magnetic perme-
ability may differ markedly from unity. In this case it
is no longer permissible to neglect the interaction be-
tween the magnetic moments of the particles (we shall
as before neglect the spatial correlation of the particles,
supposing that λ < 1). Allowance for the dipole-dipole
interaction can be made by a method similar to that used
in the Debye-Onsager theory of polar liquids (see133-1).
As a result, formula (2.11) is replaced by

„ μ-1 (μ —1)(2μ+1) = / ι π η»'
*· ' ^ 4 η * μ kT

The superparamagnetism of magnetic colloids was
first observed by Elmore[ 3 4 ]. His experiments laid the
basis for magnetic granulometry1351—a method of de-
termining the dimensions of fine particles of a ferro-
magnetic material by magnetic measurements. The
method is based on a comparison of an experimental
magnetization curve with the Langevin curve: by ap-
propriate choice of the "scale factor" m in the argu-
ment of the Langevin function, coincidence of the two
curves can be achieved. Since the magnetic moment of
a single-domain particle is (7r/6)Msd

3, the "right
choice" of m at the same time determines also the
mean diameter of the particles. More accurately, two
mean diameters can be determined: one, d0, from the
data in weak fields; the other dx, in strong. It is always
true that d0 > d«,, since in weak fields the chief contri-
bution to the magnetization is made by the coarse par-
ticles, which are easily oriented by a magnetic field,
whereas the approach to saturation is determined by the
fine particles, orientation of which requires large fields.

Figure 3a shows an experimental magnetization
curve*36] of a colloidal dispersion of magnetite in kero-
sene , with a slight addition of oleic acid as a stabilizer.
The measurements were made at temperature 290°K.
Figure 3b shows the experimental values of the mag-
netization as a function of H"1. The latter dependence,
as is seen from the graph, is linear in strong fields, in
complete agreement with (2.12). By use of formulas
(2.11)-(2.12) and of data taken from the graphs of Fig. 3.

nkT s (#2-5^-)B_>oo = tga = 2.l.io4 erg/cm3,

we find: d0 = 100 A, d«> = 65 A.

In the ferrofluid discussed above, the volume con-
centration of the solid phase, calculated from the den-
sity of the colloid, was <pp = 0.12. At the same time, the
volume concentration determined from the magnetiza-
tion (φ = M Q / M S ) is only 0.075. One reason capable of

(2.11)
2000 ΊΰΟΰ

H,Oe

and the approach to saturation, FIG. 3
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producing such a discrepancy (φ/φρ = 0.62) might be a
dependence of the saturation magnetization of the solid
phase on the degree of its dispersion. But experiments
of various authors, discussed in[ 3 7 ], have detected no
decrease of the spontaneous magnetization of subdomain
particles (diameter down to 20 A) in comparison with the
magnetization of bulk material. The most plausible ex-
planation of the difference between φ and ψη is con-
tained in the paper of Kaiser and Miskolczy"171: the
molecules of oleic acid adsorbed on the surface of the
particles can, by entering into a reaction with the Fe3O4,
form iron oleate, which possesses no magnetic prop-
erties. For this reason the "magnetic diameter" of
each particle decreases by the amount 2e, where e is
the thickness of the nonmagnetic spherical layer.

A better agreement is observedCl7'36] between the
experimental magnetization curves and theoretical
curves calculated with the formula

Μ = Μ. ( φ , / ^

if one takes € = 8.3 A (this is the lattice constant of the
cubic structure of magnetite). The distribution of par-
ticle dimensions was determined in the cited papers by
means of an electron microscope.

As was stated above, strong dipole interaction be-
tween magnetic grains (λ » 1) produces condensation
of the gas of particles, with formation of linear chains
or clusters. The initial magnetic susceptibility of the
suspension is given in this case by the formula

ι-4λ->) (2.13)

with Bo from (2.9). The square of the angle between the
magnetic moments of neighboring grains in the chain
is in order of magnitude equal to λ"1. Therefore for
vQ < λ each chain resembles a short rod with magnetic
moment mv0, directed along the axis of the rod. In the
case under consideration (λ » 1, va < λ) one can neglect
the term 4λ~' in (2.13); this formula then takes the form

For VQ > λ, the chains are strongly curved. For very
large v0 (2n|B0| — 1), we get from (2.13)

_ nnfi λ
" " 3kT 7 '

With increase of the intensity of the external field,
the chains straighten, and their mean length increases
(compare (2.7) and (2.9). For ξ » λ all the chains are
oriented along the field [30]

3. RANGE OF CHARACTERISTIC TIMES

(a) Mechanisms of relaxation of the magnetization.
So far, in discussing the superparamagnetism of sus-
pensions, we have considered only their magnetostatic
properties—the magnetization obeys Langevin's law—
and have ignored the kinetics of the magnetization pro-
cess.

What are the characteristic times that determine the
behavior of an individual ferromagnetic particle in a
magnetic field? In order to respond to this question, we
shall consider the simplest model, a suspension of
spherical single-domain particles of a uniaxial magnetic
crystal, supposing that the first anisotropy constant
Κ > 0. Let the unit vector η be directed along the axis

of easiest magnetization of one of the particles. In an
external field Η the energy of the particle is given by the
formula1'41

U = Uo — mH cos * — KV cos2 (ψ — *) (3.1)

(the angles are defined by Fig. 4). If the particle is
deprived of the freedom to rotate (for example, by freez-
ing the suspension), then the angle φ, depending on the
direction of H, can take an arbitrary value; but the angle
θ, which determines the direction of the effective field
Heff, is found from the equation 9U/w = 0, that is

mH sin # = KV sin 2 (φ — * ) . (3.2)

In equilibrium, m and Heff are parallel. Every de-
parture of the magnetic moment of the particle from the
equilibrium orientation is accompanied by a precession
of the vector m about the direction of Heff with the
Larmor frequency ^ 0 = ^Heff. In the absence of a radio-
frequency field, the extinction time of the precession
i g[38]

(3.3)

where α is a dimensionless attenuation parameter, by
use of which the Landau-Lifshitz[39] equation can be
written in the form

M = - T [ M . X H t l t ] - » l [ M x [MX Heff]]. (3.4)

In the review of Skrotskii and Kurbatov[38] it was
mentioned that in the majority of experiments on ferro-
magnetic resonance the relation a < 0.1 is satisfied.
Anderson and Donovan observed natural (that is, in
the absence of an external biasing field) ferromagnetic
resonance in a colloidal suspension of nickel in diethyl-
phthalate. The value of ot, determined from the width of
the resonance absorption line, is according to the data
about 10"2. We shall hereafter adopt this value of a for
estimates.

The effective field Heff is composed of the external
field Η and the anisotropy field Ha = 2K/MS. For
Η « H a , formula (3.3) takes the form

[40]

2ayK (3.5)

A second characteristic time, which along with r 0

determines the rate of occurrence of relaxation pro-
cesses within the particle itself, is connected with
thermal fluctuations of the directions of the magnetic
moment m. This relaxation mechanism, first pointed
out by N6el[41), is specific to subdomain particles: even
in the absence of an external field, reversal of their
magnetization is possible by surmounting of the energy
barrier KV between different directions of easy mag-
netization. The probability of a transition from the state
with m = mn to the state with m = -mn is proportional
to exp(-KV/kT); that is, it depends strongly on the
dimensions of the particle. For the relaxation time TJJ

FIG. 4
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characterizing the Neel process, Brown1·421 obtained the
asymptotic formula

κν_
~HT~. (3.6)

valid for u > 2 , with TQ from (3.5). If the duration t ' of
the magnetization measurement process satisfies the
condition t ' > T^J, then each particle behaves super-
par amagnetically, and this is manifested in a character-
istic (Langevin) dependence of the magnetization of the
system of particles on field and temperature'321. In the
comprehensive review of Bean and Livingstoni37\ a de-
tailed discussion is presented on the superparamag-
netism of systems of subdomain particles embedded in
a solid nonmagnetic matrix: fine precipitations of iron
in brass and of cobalt in copper, and iron and cobalt
amalgams (the latter at temperatures below the melting
point of mercury).

In a suspension of single-domain particles, the equi-
librium orientation of the magnetic moments in an ap-
plied field can be attained also by rotation of the par-
ticles themselves with respect to the liquid matrix. This
mechanism of relaxation of the magnetization is char-
acterized by the Brownian rotational-diffusion time'331

kT (3.7)

Thus the dynamics of magnetization of a suspension
is related to two fluctuation mechanisms. They are
physically different: one (the N6el) is determined by the
properties of the ferromagnet, the other (the Brownian)
by the viscosity of the liquid. At the same time, there
is a definite similarity between the two mechanisms:
the Neel process may be regarded[ 4 1 ] as a rotational
diffusion of the magnetic moment with respect to the
body of the particle, that is as a certain analog of the
Brownian rotation of the particles in the liquid. Hence
it is clear that the mean square of the angular displace-
ment of the vector m over a time t must be (in order of
magnitude)

and that consequently the more important relaxation
mechanism is the one that is characterized by the
shorter rotational-diffusion time. According to (3.5)—
(3.7), equality of the characteristic times, T N = τΒ,
occurs when

(3.8)

This equation, solved for σ, determines the critical
dimension for a super paramagnetic (in the Neel-Bean
sense) state of a particle suspended in a liquid with vis-
cosity 7j. On setting η = 10~2, M s = 1500, γ = 1.7 x 107,
and α = 10'2 in (3.8), we find σ+ ~ 4. For the critical
diameter d+ of particles of iron (K = 4.8 x 105) and of
hexagonal cobalt (K = 4.5 x 10e) we get 85 and 40 A,
respectively, at kT = 4 χ 10~14. In suspensions of par-
ticles with d > d+ (and consequently τ^ > ΤΒ)> estab-
lishment of the equilibrium orientation of the magnetic
moments is guaranteed basically by the Brownian motion
of the particles; that is, the relaxation time τ of the
magnetization is in order of magnitude equal to2' Tg.
We note that in case the condition

τ <f τ <? τ ti Q\
lo ^* l

 Β ^. ι Ν \o,y)

is satisfied, then in the process of relaxation of the mag-
netization of a suspension the internal state of each
solid particle may be considered an equilibrium state:

during the time Tg the precession of the magnetic
moment has time to become extinguished, whereas the
Neel fluctuation mechanism is "frozen." The condition
(3.9) is well satisfied when σ > 2σ<1.

In the case <J < cr%j the chief relaxation mechanism is
the Neel, so that τ ~ TJJ. Finally, in a strong magnetic
field, when Η » H a (that is, ξ » σ), τ is smallest and
is equal to τ0 = (ayH)"1.

(b) Rotational motion of the particles and relaxation
of the anisotropy. On a particle in a magnetic field there
acts a torque BV/dip, where U is the expression given
above for the energy, and a frictional torque'431 -(
The resulting equation of motion1·441

/οψ + 67ηψ + KV sin 2 (ψ . = 0 (3.10)

(Io is the moment of inertia of the spherical particle)
must be supplemented by the relation between the angles
φ and Θ. For the latter one can use (3.2) if one neglects
motion of the particle caused by the precession of the
vector magnetic moment. Such neglect is justified by
the fact that the period of the Larmor precession is
always several orders of magnitude smaller than the
characteristic turning time Tt of the particle.

For a similar reason, it is possible in the equation
of motion to neglect the inertial term in comparison
with the viscous, if r t » T S = I0/6?]V. In order of mag-
nitude, the "viscous t ime" T S ~ 10~u sec at d ~ 100 A
and ?} ~ 10~2 g/cm sec. The remaining terms of Eq.
(3.10) describe a relaxation process, as a result of
which the axis of easiest magnetization of the particle
sets itself parallel to the direction of the applied field.
In the limiting cases of strong or weak external fields
(in comparison with the anisotropy field H a = 2K/MS),
we have from (3.10) and (3.2)

— iff sin 2ψf — KVsu

• = | -mffsi.

Hence we find the characteristic turning time of the
particle

Gr\IM.H )

It is now easy to demonstrate the correctness of the
assumptions adopted above, ωοτ^>> 1 and τ^>> T S :
we have

for M s ~ 103 G and Κ ~ 10β erg/cm3

Thus the magnetic field as an orienting factor plays
a double role. First, it produces magnetization of the
suspension by orienting the magnetic moments of the
particles. Second, by lining up the axes of easiest mag-
netization the magnetic field causes anisotropy of the
mechanical properties of the ferrofluid. We shall ex-
plain the last statement. In hydrodynamic motion of a
medium with velocity v, each element of the fluid rotates
with local angular velocity Ω = (curl v)/2. In the ab-
sence of a field, particles suspended in the liquid also
rotate with the same angular velocity. A magnetic field
hampers the motion of the particles in those parts of the
liquid where the vectors Η and Ω are not parallel. This
braking effect, caused by the magnetic torques, leads to
anisotropy of the viscosity tensor (see Sec. 5(c)). There
is here an analogy with a plasma, in which the magnetic
field (because of cyclotron rotation of the charged par-
ticles) hampers the processes of transfer in a trans-
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verse direction, whereas along the field the particles
move freely.

But in order that the mechanical anisotropy induced
by the magnetic field may manifest itself, it is neces-
sary that its relaxation time TJ be less than the rota-
tional diffusion time T-Q of the particles (the latter plays
the same role here as does the free-path time of the
particles of a plasma). The condition Tj. « Tg with the
aid of (3.7) and (3.11) reduces to the form σ » 1 (when
| » σ) or ξ » 1 (when ξ « σ ) . Thus only when

σ > 1 (3.12)

can the anisotropy of the ferrofluid be appreciable. On
the other hand, if the condition

°«U (3.13)

the inverse of the preceding, is satisfied, then a sus-
pension of spherical magnetic particles is isotropic in
arbitrary external fields. In this case TJ » Tg, and
because of rapid chaotic (Brownian) rotational fluctua-
tions of the particles no preferred orientation of their
easy axes succeeds in establishing itself. One can say
that in a time Tg the particle "forgets" its orderly
rotation, caused by the magnetic torque.

The next chapter treats the hydrodynamics of an
isotropic (σ « 1) ferrofluid.

4. QUASISTATIONARY FERROHYDRODYNAMICS

(a) Equations of motion of a ferrofluid. In the motion
of a magnetic suspension in a nonuniform field, there
acts on each particle a force[ l 3 ]

£ = (mv) H. (4.1)

This force and the Stokes drag coefficient determine
the regular component of the Brownian velocity of the
particle with respect to the liquid,

ISi) (4.2)

The velocity u is insignificantly small—it does not
exceed 10"5 cm/sec for d ~ 10"6 cm and |VH| ~ 103

Oe/cm. By neglecting the relative (translational) motion
of the gas of particles and of the liquid, one can con-
struct a single-fluid hydrodynamics of a magnetic sus-
pension.

The state of motion of a nonconducting ferrofluid
changes under the influence of a volume magnetic force

F = (MV) H, (4.3)

which is most simply obtained from (4.1) by summing
over all the particles contained in unit volume; in the

η

last expression, Μ = 2} m^ is the magnetization of the
i = 1

suspension, and Η is the magnetic field averaged over
a volume large in comparison with n"1. The relation be-
tween Μ and Η is determined by the equation for dM/dt,
which describes the dynamics of the magnetization, and
Maxwell's equations

div (H + 4itM) = 0, rot Η = 0.

By use of (4.4), F can be expressed in the form

(4.4)

( 4 · 5 )

is subject to a torque, which however may be neglected
if the inequality (3.13) is satisfied. The condition σ « 1
means that the dimensions of the particles lie in the
range of thorough-going superparamagnetism[32]; that is,
there is no connection between the orientation of a par-
ticle and the direction of its magnetic moment. The
relaxation of the magnetization of the suspension to the
equilibrium value

Μ (4.6)

is determined in this case by the "solid body" time τ0,
which is incommensurably small in comparison with any
hydrodynamic times. Equation (4.6) can be violated only
in an alternating magnetic field whose frequency is
close to the Larmor frequency.

The last formula and the condition (4.4) for absence
of currents enable us to write

F = (Mv) Η = (4.7)

so that the hydrodynamic equations for an incompres-
sible ferrofluid will be[ 1 ]

Γ di
> v ] = -

div v = 0.
(4.8)

To these equations must still be added the equation
of heat transfer[ 4 3 ]

where s is the mass density of entropy and κ is the
coefficient of heat conductivity.

Equations (4.4), (4.6), (4.8), and (4.9) constitute the
complete system of equations of Rosensweig-Neuringer
ferrohydrodynamicscl3. It is natural to call this hydro-
dynamics, which uses the equation of "magnetic state"
(4.6) instead of the equation of motion of M, quasi-
stationary . The assumptions made in the theoryl l J about
the instantaneous relaxation of the magnetization and
the absence of anisotropy are satisfied, as has been
shown, when σ « 1.

(b) Isothermal equilibria and flows. In the absence
of outside sources of heat, the flow of a suspension in
a nonuniform magnetic field may be considered iso-
thermal, if we disregard internal sources, weak as a
rule, due to viscous dissipation of energy and to the
magnetocaloric effect[14]—the cooling of a magnet on
withdrawal from a field. For Τ = const it follows from
(4.6) and (4.7) that

F = nkTL (I) VS = nkTsj In ^ P - , (4.10)

thereafter, the equation of motion (4.8) takes the stan-
dard form of the Navier-Stokes equation, in which the
role of the pressure is played by the quantity

p e f f s ρ - nkT In (ξ-1 sh (4.11)

The derivability of the magnetic force (4.10) from a
potential points to the importance of Bernoulli's the-
orem for vortex-free motion of a ferrofluid111. For
stationary flow in the field of gravity we have

Ρ + Pgz 4- ̂ - - nkT in i | i = const. (4.12)

Besides the force (4.1), a particle in a magnetic field

This formula is very useful for qualitative investigation
of the distributions of velocity and pressure in a non-
uniform magnetic field. For ν = 0 ("ferrohydrostatics"),
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FIG. 5

Eq. (4.12) predicts an increase of pressure in those
parts of the liquid where the field is stronger. This
effect is demonstrated by Figs. 5(a) and 6, from an
article of Rosensweig[8]. Figure 5(a) shows the free sur-
face of a ferrofluid in the magnetic field of a straight
current. The latter flows along a metal rod that pierces
the dish containing the liquid (see the diagram in Fig.

In a nonuniform field, a nonmagnetic body immersed
in a magnetic fluid experiences an additional Archi-
medean force, along the direction of diminution of the
field intensity. Unit volume of the test body is acted
upon by a force F|j = - F . In the case ξ « 1, formula
(4.10) simplifies, and we then have

Fb=-i^

Thus a nonmagnetic body in a ferrofluid behaves like a
diamagnet with volume susceptibility xj-, = -χ and can be
kept in equilibrium by static magnetic fields (magnetic
suspension). Figure 6 shows an ampoule containing
ferrofluid, into which has been placed a nonmagnetic
(nylon) ball. The density of the ball is larger than the
density of the liquid, and therefore in Fig. 6(a) it is not
visible. In a nonuniform magnetic field (Fig. 6(b)) the
pressure in the lower part of the ampoule is increased
because of the magnetic pressure, and the ball has
floated to the surface.

We consider as a further example a free horizontal
jet (ρ, ζ = const) that traverses a region in which a mag-
netic field has been produced. According to Eq. (4.12)
the velocity of the liquid should increase on entry into
the field and decrease on exit from it. With change of
the velocity, there will obviously be also a change of the

cross-sectional area of the jet. This fact can be used11'"·
for introduction of signals into a hydraulic control sys-
tem by means of a magnetic field.

A nonuniform field can itself become a reason for
motion of the liquid, if the magnetic pressure is not
equilibrated by the hydrostatic (see (4.11)). In calculat-
ing the gradient of the magnetic pressure one must use
Maxwell's equations (4.4), which together with (4.6) im-
pose limits on the possible geometry of the field. We
shall show, for example, the possible arrangement of a
plane Poiseuille flow caused by magnetic forces'451.

Let a layer of ferrofluid be bounded by immovable
solid surfaces ζ = ±h. Equation (4.12) is satisfied by a
field with components

Hx = Gz, = 0 , Hz Gx. (4.13)

One-dimensional stationary flow with velocity ν = vx(z)
in the section —I < x < Ζ is realized if the gradient of
the intensity is small in the sense Gl « Ho. In the ap-
proximation linear in Gl/H0, Eq. (4.4.1) is satisfied
identically, and from the equation of motion (4.8) we find

'2-A ^—w-· (4.14)

On comparing this with ordinary Poiseuille flow, we
conclude that the role of the drop in pressure δρ is here
played by the quantity ΜδΗ. We shall make an estimate
of the effect. In a strong field Ho (i.e. for ξ » 1) we
may put Μ = 30-40 G; then for 5H = 3 x 10 Oe we get
an effective δρ ~ 0.1 atm.

It is interesting to compare the mean flow velocity
of (4.14), ν = (Sirt^GMh2, with the velocity (4.2) of motion
of the particles with respect to the liquid matrix,
u = (\Άτ) <p)~lGMA2. The condition u « ν that permits
neglect of the relative motion of the particles and the
liquid reduces to the inequality

Φ > ( χ ) 2 . (4.15)

satisfaction of which is already guaranteed at insig-
nificant concentrations of the dispersed ferromagnetic
material: for particle diameter d ~ 10"e cm and layer
thickness h ~ 0.1 cm, it is sufficient to have φ » 10"10,
which corresponds to η » 108 cm"3.

(c) Stability of the surface in a uniform field. Capil-
lary gravitational waves. The equilibrium surface of a
ferrofluid forms under the influence of three kinds of
force: gravity, surface tension, and magnetic forces.
In the case in which the uniform magnetic field is ver-
tical, it can be shown that there is a critical value H,,,
of the intensity, above which a plane shape of the surface
of separation of the magnetic and nonmagnetic media is
unstable with respect to small perturbations. The equi-
librium contour for Η > Η* is stationary waves.

Instability of the boundary between a ferrofluid and
the atmosphere was first observed by Cowley and
Rosensweig
netization

[3]
They also calculated the critical mag-

II =-- - (4.16)

(α is the coefficient of surface tension). Quantities re-
lating to the atmosphere will be denoted below by the
index e. In (4.16) we have set μθ = 1, p e = 0. We shall
estimate the value of M*. For a ferrofluid with a kero-
sene base131 we may take Ρ " 1 g/cm3, a = 28 dyn/cm.
The critical magnetization depends only slightly on the
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FIG. 7

value of (μμ): a change of (μμ) over the range (1, °°)
does not take M^ outside the interval 5—7 G. Such values
of Μ can be attained in the linear part of the magnetiza-
tion curve (see Fig. 3(a)), so that in the neighborhood of
H+ it is permissible to consider that μ = μ = const with
respect to H.

When there is a linear relation between Μ and H, it
is convenient to go over from the critical magnetization
(4.16) to the critical intensity:

This same formula (with replacement of Η by Ε and of
μ by e) determines the onset of instability of the free
surface of a liquid dielectric in a constant vertical
electric field'461. If the liquid is a conductor, then in
(4.17), after the indicated substitution, it is necessary
to go to the limit e — x : the electric field does not
penetrate into the conducting medium. The stability con-
dition obtained in this case, Eg < 87rVpga, was first
found by Frenkel'471 and was corroborated by experi-
ments t 4 6 ' 4 8 ] .

Figure 7, taken from'31, shows a photograph of the
free surface of a ferrofluid in a uniform field Η = 1.03
H+, produced by a Helmholtz coil. In the picture are
visible, in the top plane, waves (peaks) that form a reg-
ular hexagonal lattice. This picture and the very nature
of the phenomenon under consideration remind us of
Benard's convective cells, which occur in a horizontal
layer of a liquid at supercritical temperature gradients.

One can offer the following qualitative explanation1491

of the condition for appearance of ripples on the surface
of a liquid. Suppose that in a uniform vertical field there
has arisen a wave-shaped warping (perturbation) of the
surface of the ferrofluid. The field intensity near the
bulges of the perturbations is increased (the lines of
force of the magnetic field are concentrated), but in the
hollows it is decreased in comparison with the equi-
librium value. Therefore the perturbation of the mag-
netic force is directed upward at the bulges but down-
ward in the hollows; that is, it has a tendency to amplify
the perturbation of the surface. On the other hand, the
surface-tension and Archimedean forces are directed
opposite to the displacement of the parts of the surface
from the equilibrium position; that is, they impede the
displacement. As long as the warping of the surface is
small, all the forces produced by it—magnetic, surface-
tension, and Archimedean—are proportional to the value
of the displacement. It is important that the coefficients
of proportionality between the last two forces and the
displacement—the elastic coefficients—depend only on
the properties of the liquid. But the "elast ic" coef-
ficient in the perturbation of the magnetic force is not

H,

FIG. 8

determined solely by the properties of the liquid (its
magnetic permeability) but is also proportional to the
square of the intensity of the applied field. Therefore
at sufficiently large intensities, the destabilizing mag-
netic force exceeds the sum of the other two forces, and
the displacement of the surface will increase; that is,
instability sets in.

A theoretical investigation of the nature of the transi-
tion from a plane to a wavy surface was undertaken by
Zaitsev and ShliomisC50]. The value Η = Η* is a point of
bifurcation, above which, in principle, two types of wave
excitation are possible—soft and hard. Belonging to one
or the other type is determined by the dependence of the
amplitude a of the warping of the surface on the super-
criticality parameter Η - Η*: in the soft regime, a
vanishes along with this difference (Fig. 8(a)); in the
hard, the amplitude remains finite at Η = Η+. In the
latter case hysteretic effects can be observed (see Fig.

The equilibrium contour of the liquid-air separation
surface is determined by the condition for balance of
the forces acting on the surface'131:

( P — *><•)«.· = (In, — t'k) "h -t α (r; 1 + r;1) n,; (4.18)

here tjjj is the Maxwell tensor (4.5), and η is the out-
ward normal vector to the surface of the ferrofluid. For
two-dimensional perturbations'501 ζ = £(χ) of an initially
plane surface ζ = 0, there remains in the last term of
(4.18), which determines the capillary pressure, a single
radius of curvature r =-(1 + t'2fn/i".

Equation (4.18) for the tangential components is sat-
isfied identically by virtue of the boundary conditions

μΙΙη-^Π'η, //, = //« (4.19)

on the surface ζ = ζ. By using these conditions and
taking account of the absence of volume forces (equi-
librium),

we can write the normal component of (4.18) in the form

at" rr-2
Η to » +const. (4.20)

The field intensity Η is composed of a uniform part
(Ho = (0,0, Ho) and the perturbation h = - z) due to

the warping of the surface. The potentials φ and <pe

satisfy Laplace's equation. For Ho close to H+, a solu-
tion of the system (4.19)-(4.20) was constructed'501 from
a power series in the amplitude (the quasilinear method):

ζ (χ) = a cos kx + ο2β cos 2kx + . . .,
φ {χ, ζ) = aAe"' cos kx + d*Be*-'" cos 2kx + . .,

φ β (χ, ζ) = aAee'"z cos kx + a'B^e'1'" cos Zkx + . . .,
//„ = H, + a2Hl2> + . . ., k = ft. + a2k"> + . . .

In the linear approximation, the critical field (4.17)
and the wave number k,,. = Vpg/« of the critical pertur-
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bation are determined. In the third approximation Η
is calculated; this enables us to find the amplitude of
the wave:

( 2 )

32 (μ+ 1)»
-42μ-11(μϊ + 1)" (4.21)

The function Ρ(μ) changes sign at μ = μ+ » 3.54;
that is, the nature of the instability depends on the mag-
netic permeability of the liquid. If μ < μ + , then F > 0,
and the instability is soft: near H+ the height of the
waves is proportional to VH0- H+ (Landau's law). If
μ > μ*, there follows from (4.21) the possibility of a
wavy contour in the subcritical range of fields—a situa-
tion characteristic of hard instability.

Gailitis[511 considered perturbations of hexagonal
structure,

ζ (ι, y) = a

which corresponds to the experimentally observed
picture (Fig. 7). The results of the first approximation
agree with ], since the linear problem is degenerate
and its solution for Ho = H+ is an arbitrary superposi-
tion of plane waves of the same length. But already in
the second approximation the degeneracy is removed,
and instead of (4.21) one gets

(4.22)
3(μ-1) Η,

This result, in the opinion of Gailitis, indicates the
hard character of the instability; the failure of this to
show up in the experiment1·31 can be explained by the
small value of the threshold jump.

Mention was made above of the equilibrium shape of
the surface and, in this connection, of static (frozen)
waves. Propagation of plane waves

ζ ~ exp [i (at — k^c — kyy)\

of small amplitude on the surface of a magnetic fluid
was observed by Zelazo and Melcher[52]. In a uniform
field, normal to the unperturbed surface (H = Hz), the
relation between ω and k is determined by the equation

Hence it is evident that with increase of the field inten-
sity, the phase velocity of the waves slows down, and at
Η = H+ there occurs the static instability (ω = 0), con-
sidered above, of the plane surface with respect to
waves with k = k*.

In a tangential field Η = H x , the dispersion relation
has the form

In this case, waves propagated along the field (ky = 0,
kx = k) have the largest velocity. We note that a tan-
gential field has no destabilizing effect on the stability
of the surface.

(d) Thermoconvective instability. In a nonuniform
field, mechanical equilibrium of a nonuniformly heated
magnetic fluid is in general impossible. At the basis of
the mechanism of thermomagnetic convection1·531 lies the
temperature dependence of the magnetization: under
otherwise equal conditions, the colder elements of the
fluid are more strongly magnetized, and therefore they
are also subject to a larger force in the direction of
V(H2). The gradients of the magnetic intensity here play

the same role as does the gravitational field in the
mechanism of ordinary thermogravitational convection,
based on the thermal expansion of the fluid.

The equilibrium equation
Vp = MVH + pg (4.23)

requires that the magnetic force and the force of grav-
ity shall be equilibrated at each point by the pressure
gradient. On applying the operation curl to equation
(4.23), we obtain a necessary condition for equi-
librium [ 1 ' 4 5 ' 5 8 ],

from which it is evident that equilibrium is possible if
Τ = const or if the gradients of the temperature and of
the field are vertical. In the latter case, however, there
arises the question of the stability of the possible equi-
librium.

One must begin the investigation of convective stabil-
ity with a transformation of the general heat-transfer
equation (4.9). We choose p, T, and Η as independent
thermodynamic coordinates, so that, for example,

^)p i Tvff. (4.24)

By using the equilibrium equation (4.23) and the thermo-
dynamic identity

(Φ is the thermodynamic potential per unit mass), we
get from (4.24)

where c a c p > H = T(as/aT)P ) H is the specific heat at
constant field and pressure. The derivative 8s/9t is
transformed analogously; then the equation of heat con-
duction in a time-invariant magnetic field takes the form

f ( i ^ ) 2 . (4-25)

The terms in square brackets describe an adiabatic
change of temperature due to (1) compressibilityt43] and
(2) the magnetocaloric effect11*1:

Mechanical equilibrium of the fluid in a field H(z) at
temperature T(z) will be stable if arbitrary small per-
turbations of a standing mode, characterized by velocity
v, temperature Θ, and pressure q, decay with time.
Linearized with respect to these quantities, the equa-
tions of motion (4.8) (to the right side of the first of
these, pg must be added) and the equation of heat con-
duction (4.25) have the form

pv = i)V2v + (βρ? + yMG) 6k — V?, div ν = 0,

pc9 = κΔΘ + [pcA - To {fipg + yMG)] (vk),

where k is a unit vector directed upward, along the z
axis, and

G = —
iH

p\dT
i

~ ~ Μ { dT

The density, the magnetization, and their temperature
coefficients β andy are taken for some constant average
values of the temperature, To = <T(z)), and the field,
H0=(H(z)>.
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At the limit of stability, when equilibrium is replaced
by stationary convective motion, the excitations neither
decay nor build up; that is, they are entirely independent
of time. With appropriate choice of units , the dimen-
sionless equations of neutral perturbations obtained
from (4.26) remain the same as in the problems of
ordinary convection :

V2v + R6k = V?, Δ 2 0 + (kv) = 0, div ν = 0,

but with another dimensionless combination of para-
meters in the role of Rayleigh's number1·541:

R = (κη)-'ί1 Wpg + yMG) [pcA - To (fipg + yMG)] (4.27)

(/ is a characteristic dimension of the container).

Convection occurs for values of R. larger than a
certain critical value Ro. The latter depends only on
the geometry of the chamber and the boundary condi-
tions at its surface; for example, for a plane layer of
liquid, on whose boundaries ν = θ =0, the number R,o
is 1708 for a horizontal position of the layer and 1558
for a vertical.

Mechanical equilibrium of an isothermal (A = 0)
liquid is always stable: to it corresponds a negative
"Rayleigh number"

R = - (fog

inside the fluid is nonuniform: from equation (4.4.1)
follows

so that the inequality R < Ro is known to be satisfied.3

The crisis of equilibrium sets in when

Λ=—
v.i]R0 T0(fog }-yMG)\. (4.28)

In a chamber of small size, the chief factors in
stability are the viscosity and the heat conductivity: for

(4.29)

the second (adiabatic) term in (4.28) can be omitted. In
this case the effective Rayleigh number (4.27) takes the
simpler form1·591

In another limiting case, when it is possible to neglect
the stabilizing effect of dissipation, the threshold value
of the temperature gradient is determined by the "gen-
eralized Schwarzschild criterion"

-1 = — (Ppg + yMG).

We shall compare the effectiveness of the gravita-
tional and magnetic mechanisms of convection. For a
suspension with kerosene base, βρ ~ 5 x 10"4 g/cm3deg.
In the room-temperature range, we may set γ > 10~3

(that is, no smaller than in solid ferromagnets) and
Μ ~ 30 G. With such parameters of the medium and
with G > 100 Oe/cm, the magnetic mechanism is the
main one[eo]; that is, >-MG » £pg. The inequality (4.29)
reduces in this case to I4 « 107G"2 (we have taken for
the estimate Ro ~ ΙΟ3, κ ~ 104 erg/cm sec deg, η ~ 10~2

g/cm sec).

In the preceding analysis, the field gradient G was
considered a given quantity. This approach is justified
if G » Gj, where Gj is the gradient of the magnetic in-
tensity induced by the temperature gradient A. We shall
estimate the value of Gj. Let the ferrofluid be in a uni-
form field Η = (0, 0, He) at temperature T(z). The de-
pendence of Μ on Τ leads to the result that the field

(4.30)

The magnetic forces due to Gj have a marked influence
on the beginning of convection only in very thin layers[ e i ] ,
in which the critical temperature gradient is large. The
condition yMGj « (3pg, which permits neglect of the
magnetic forces due to Gj, reduces with the aid of
(4.28) and (4.30) to

For the values of the parameters quoted above, this
inequality holds true down to / = 1 mm.

Specific problems of nonisothermal ferrohydrody-
namics that have been treated are the conditions for
occurrence of convection in a cylindrical layer of liquid
heated from inside, in the field of a straight wiret451; the
effect of a uniform vertical field on the Rayleigh in-
stability of a horizontal layer[61J; and also some prob-
lems of convective heat exchange in a boundary layer
about a cold rod in a nonuniform magnetic field[62].

5. A MAGNETIC SUSPENSION AS A FIELD
WITH INTERNAL ROTATION

(a) Stress tensor and equation for the magnetization.
Quasistationary ferrohydrodynamics considers the
particles of a suspension as points, for which the con-
cept of intrinsic (axial) rotation does not exist. The
applicability of such a model to real suspensions is
limited by the condition (3.13): the volume of an in-
dividual particle must be small in the sense that
V « kT/K. Allowance for the rotational degrees of
freedom of the particles, which is necessary when the
contrary inequality is satisfied, requires a very radical
modification of the equations of ferrohydrodynamics.

The internal angular momentum of the suspension[63]

can serve as a macroscopic characteristic of the in-
trinsic rotation of the particles. Its volume density S,
in the case of small concentrations of identical spherical
particles, can be written as S = Io>s, where I = nlo is the
sum of the moments of inertia of the spheres in unit
volume, and ωδ is their mean ordered angular velocity.41

In a hydrodynamic description of the suspension as a
homogeneous continuous medium, the internal moment
S must be treated as an independent function along with
the velocity of the medium, the density, and the pressure.

A characteristic of a fluid with internal rotation is
asymmetry of the stress tensor [64"66J: the laws of con-
servation of momentum and of angular momentum are
expressed by the equations

(5.1)

On including in the stress tensor tr^, calculated in'-66J,
the Maxwell tensor t ^ from (4.5), we get for a magnetic
suspension

( 5 - 2 )

From (5.1) and (5.2), by use of Maxwell's equations

163 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 M. I. Shliomis 163



(4.4) and the condition of incompressibility of the med-
ium div ν = 0, we find

p - ^ = - v [ p + ^-(S-/Q)]+rjV2v+(Mv)H + ^rot(S^/Q), (5.3)

^- = [MxHi—i-(S-/O). (5.4)

The system obtained must be supplemented by yet
another equation, relating Μ and S. In magnetic sus-
pensions there is between these quantities no direct
relation like, for example, that exists in liquids with
gyromagnetic properties [ 6 7 ' e s l , where Μ = yS. The
magnetization of a system of "classical" particles in
principle is independent of their state of rotation, so
that the analogy that suggests itself, between the in-
ternal angular momentum of a suspension and spin, is
by no means complete.

The missing equations can be obtained by the follow-
ing simple considerations'-691. For a fixed element of
volume of the suspension, we introduce a local frame
of reference Σ' in which the mean angular velocity of
the particles is zero. We suppose further that in the
system Σ' the magnetization is described by a linear
relaxation equation

rf'M
dt = _ J L ( M - M 0 )

with Mo determined by formula (4.6). The frame of ref-
erence Σ' is rotating with respect to a fixed system Σ
with angular velocity o>s = S/I. By use of the well-known
kinematic relation between the rates of change of a
vector in the systems Σ and Σ', we get the equation for
the magnetization in the fixed frame of reference,

dU

dt
= i[SXM]-4(M-M0). (5.5)

When σ » 1, the only condition under which it is
necessary to take account of the intrinsic rotation of the
particles, the inequality (3.9) is satisfied—the magnetic
moment is "frozen" into the body of the particle, i.e.,
the relaxation time τ of the magnetization is determined
by the Brownian time Tg. The latter has order of mag-
nitude 10'6 sec at room temperature and for d ~ 100 A.
As for the "viscous" time T S , which characterizes the
rate of relaxation of the angular momentum S, it is
(under the same conditions) five orders smaller than Tg:

' * ^ β Oil ly *J *^*^ Λ- \J '

The smallness of r g permits us to neglect in (5.4) the
derivative dS/dt, which could become comparable with
S / T S only at those frequencies of alternation ω of the
field (ω ~ τ*1 ~ 1011 sec"1) at which the rigid-dipole
model itself becomes inappropriate51 because of Larmor
precession of the magnetic moments of the particles'711.

On neglecting the inertial term in (5.4), we find from
this equation

s = /n + τ, IMXHI. (5.6)

Now the internal angular momentum is eliminated from
the remaining equations of the system. The stress ten-
sor (5.2) becomes symmetric:

» = (· · •) 6№ + η ( · |£ + ·!£) + 1 {
(5.7)

as must be true also when dS/dt = 0 (see (5.1)), and the
equation of motion of the magnetic moment (5.5) takes
the form

The last (relaxational) term in this equation appeared
as a result of allowance for the rotational degrees of
freedom of the particles. Like the analogous term in the
Landau-Lifshitz equation (3.4), it describes a process
of approach of the vector Μ to its equilibrium orienta-
tion, which proceeds without change of the length of this
vector. To sum up, the relaxation times of the longi-
tudinal and transverse components of the magnetization
are different. On substituting in (5.8)

(5.9)

and supposing that the liquid is immovable (v = ft =0),
we get in the approximation linear in μ the equation

_βμ_ = Κ(μΙΙ) |ΗΧ[μχΙΙ]]
at τπ«2 x±m

with the relaxation times

2 t B

(5.10)

(5.U)

Thus with phenomenological allowance for the internal
rotation, there develops a dependence of Tj_ on the field
intensity, whereas τη remains unchanged and equal to
the "priming" constant Tg.

(b) Dependence of relaxation times on field intensity.
In order to make more precise the dependence of the
relaxation times of the magnetization of a suspension
on the field intensity, we shall give here, following1·721,
a derivation of the macroscopic equation (5.10) from
the kinetic equation, which is the Fokker-Planck equa-
tion for Brownian particles.

In an external field Η = (kT/m) ξ the distribution
function w of particles suspended in a liquid with respect
to orientations of their dipole moments obeys the equa-
tion[73]

*****%=π[>"*№+&™°)]+-^>&· ( 5 Λ 2 )

For what follows, it is convenient to rewrite (5.12)
in vector form, introducing the unit vector e = m/m in
the direction of the magnetic moment of the particle and
the "angular momentum" operator f = - iexV. With this
notation, Eq. (5.12) takes the form

2τΒκ> = it (ii — [exll) w. (5.13)

The stationary normalized solution of equation (5.13)
is the Gibbs distribution

(5.14)

and averaging of the "microscopic" vector e with the
function w0 gives for the equilibrium magnetization of
the suspension the well-known result

Mo = ntn <e)0 = nmL (|) -|-. (5.15)

The equation of motion of Μ must be obtained by
averaging e with the nonstationary distribution function
satisfying the complete equation (5.13). By taking ac-
count of the anti-Hermitian character of the operator
if = e χ V,itis easy tolbbtain from (5.13) an equation for
an arbitrary moment of the distribution function. It
turns out that the equation for the first moment,

ΤΓ<β>= -2{e>-([ex[ex£]]> (5.16)
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contains the second moment lk' e i ek' > *-ne equation for
the second moment contains the third, etc.; that is, one
obtains, as usual, an infinite system of coupled equa-
tions. Closure can be effected in the effective-field
approximation, by use of an idea of the well-known
thermodynamic method of Leontovich'74].

We shall suppose that at each instant the distribution
function w(t) coincides in form with the stationary solu-
tion w0 of the Fokker-Planck equation, but with replace-
ment in (5.14) of the actual field ί by some effective
field |,,(t). Then any instantaneous value of the mag-
netization

M = »m£(U£ (5.17)

can be regarded'741 as an equilibrium value (compare
(5.15)) in the presence of an additional field ν = ξ^ - ξ.
On carrying out the averaging in (5.16) with a distribu-
tion function introduced in the indicated manner, we
obtain the equation for the effective field

2TB ΊΤ[L β»)If] =~ 2^L (?.Xi.~ 1)-?;' [3£ (!,)-!.][ξ* x U x ξ* ]]·

(5.18)

We shall consider the case of slight nonequilibrium,
when the effective field is close to the actual (ν « ξ).
For the nonequilibrium part of the magnetization,
μ = Μ - Mo, we find from (5.15) and (5.17) in the ap-
proximation linear in ν

Now by linearizing equation (5.18) and in it expressing
ν in terms of μ by means of (5.19), we obtain the equa-
tion of motion of the magnetization in the form (5.10),
with the relaxation times

1 — d I n ' B *'±=J=TW'B- (5-20)

Graphs of these functions are shown in Fig. 9. There
also, dotted, is shown r x , found earlier, (5.11). We note
that for the relaxation time of the magnetization com-
ponents perpendicular to the field, formulas (5.11) and
(5.20) give close values at any ξ: in a strong magnetic
field, 7j_ and τ\ approach the common asymptote
2τΒ/ξ = 6??/MsH (compare (3.11)), while for ξ « 1 we
have

The field dependence of T'H is similar:

I r a »i).
(c) Rotational viscosity. In the derivation of Ein-

stein's formula'751 for the viscosity of a suspension of
spherical particles,

no allowance is made for the possibility of an ordered
rotation of the spheres with respect to the liquid. The
additional internal friction that arises when there is
noncoincidence of the angular velocity u>g of the particles
with the local angular velocity Λ = (curl v)/2 of the
liquid must manifest itself in an increase of the effective
viscosity of the suspension. We note at once that this
additional "rotational" viscosity can be observed only
in cases in which the difference Si - &>s is maintained by
the moments of some external forces, acting directly on
the particles of the suspension. In the contrary case,

FIG. 9

equalization of the angular velocities ws and Si occurs
in a very short time T S ~ 10"9-10"u sec (for spheres
of diameter 10"5-10"6 cm).

The concept of rotational viscosity enables us to
explain the experimentally observed"·7'76'771 increase of
the viscosity of magnetic suspensions under the in-
fluence of a magnetic field. We shall first give a qual-
itative explanation of this effect.

We consider the motion of an individual spherical
particle in a uniform shear flow (SI = const, plane
Couette flow). In the absence of a field, the particle
"rol ls" freely along the appropriate shear plane, with
angular velocity wg equal to β. In a magnetic field,
there acts on the particle a torque m xH that changes
its state of rotation. As a consequence of this, there
arises a frictional torque 6ην(ϋ - (>>s); that is, the mag-
netic field "turns on" a mechanism of rotational vis-
cosity.6 The latter attains its limiting value (saturation)
when "rolling" of the particle is replaced by "slipping":
a field of sufficiently large intensity guarantees con-
stancy of the particle's orientation, not allowing it to
twist with the liquid.

The orienting influence of the field (mH) is opposed
by the hydrodynamic forces (6ηνίΙ) and the Brownian
motion (kT). The quantities indicated in parentheses,
of the dimensions of torque, characterize the effective-
ness of the factors enumerated above. In the absence of
rotational diffusion, complete orientation of the mag-
netic moments would be attained for mH » 6?/νΏ; that
is, for single-domain particles, in fields Η » 6r)Sl/Ms.
The value Η ~ 1 Oe satisfies the last inequality for any
reasonable values of Ω . Hence it is clear why a theory
of rotational viscosity that does not allow for thermal
motion'79'801 predicts saturation of the viscosity at weak
fields.

For colloidal suspensions, the condition

is always satisfied, so that the chief disorienting in-
fluence on the magnetic moments of the particles is
rotational Brownian motion. Saturation of the viscosity
as a function of the field must consequently set in at
mH » kT; that is, at ξ » 1.

A quantitative theory of rotational viscosity (with
allowance for Brownian motion) is given in'691.

We shall consider stationary flow of a suspension in
a uniform magnetic field. In a quiescent liquid, the sta-
tionary solution of equation (5.8) is Μ = Mo. The mag-
netization of a moving suspension differs, of course,
from Mo, but the difference Μ - Mo = β is small in pro-
portion to the smallness of Ω τ Β . Treating μ and Ω τ Β

as quantities of the first order, we find from (5.8) in the
linear approximation
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μ-*χ-/[ϋχΗι. (5.22)

By use of the last formula, the magnetization of the
suspension can be described in the form Mj =
where

As is evident, the antisymmetric part of the magnetic
susceptibility tensor is determined by the vorticity of
the flow.

On eliminating Μ from the expression (5.7) for the
stress tensor, we get

~ΕΓΗ'Β> (5.23)

with a viscosity tensor consisting of an isotropic
(ordinary) part, with coefficient η, and an anisotropic
part

1?Mm = j τχΜοΗ-ι lS,,HkHm-&mHkHl-6klH,Hm + 6»mfffff,]. (5.24)

The tensor rfc, is antisymmetric with respect to the

indices i, k and /, m and symmetric with respect to
interchange of pairs of these indices.

We shall calculate the frictional force acting on a
solid surface past which the liquid is flowing. We choose
a local system of coordinates with the χ axis along the
velocity of flow and the ζ axis along the normal to the
surface. The force acting on unit area is fx = crxz - σ χ ζ ,
where σ/, is the Maxwell stress tensor in the solid body.

By using the boundary conditions of continuity of H x and
B z , we get from (5.23)-(5.24)

The quantity added to the ordinary viscosity in this
expression must be regarded as rotational viscosity

ηΓ = {τχΜ0//δί,ι
2α, (535)

where at is the angle between the vectors Η and SI. The
vanishing of ητ for ΗΙΙΩ is simply explained: orientation
of the magnetic moment of the particle along Η does not
impede its rotation with angular velocity Ω about the
same direction.

In weak fields, T X ~ Tg and the expansion of ητ in
powers of I begins with terms of the second order:

(5.26)

In a strong field, when τχ ~ 2τβ/ξ, the rotational vis-
cosity reaches the limiting value7'

In general, the formula

(5.27)

(5.28)

obtained from (5.25) after substitution of τχ from (5.11),
applies for arbitrary ξ. The dependence on the field,
approximately that of F(£), remains such if τχ is re-
placed by r'L from (5.20).

On including ^ in the Einstein formula (5.21), we
have to the first order in the concentration

(5.29)

FIG. 10

In the experiments of McTague1761 the viscosity of a
magnetic colloid (particles of cobalt in toluene) was
messured on the basis of the time of flow through a
round capillary (Poiseuille's method) placed in a uni-
form magnetic field. The experimental points shown in
Fig. 10 were obtained with two different orientations of
the field with respect to the velocity of flow: curve 1
corresponds to Hllv, curve 2 to Hiv. In Poiseuille flow
the isolines of vorticity (ft = const) are concentric
circles in a cross-sectional surface of the capillary.
Therefore in case 1 the angle a = π/2 at each point of
the flow, while in case 2 it takes all values from 0 to 2π,
so that sin2a = 1/2.

According to (5.28) we should consequently have

^ a - n ' r " · (5.30)

The curves in Fig. 10 calculated from these formulas
are in agreement with experiment.

We note that in case 2, when the local viscosity de-
pends on a, the flow loses its axial symmetry[82]. But
the intensity of the "secondary" flows caused by the
field is very small: in order to calculate corrections to
the velocity of the basic motion, it is necessary in the
expansion of μ in powers of flTg to keep higher-order
terms that were neglected in (5.22). It is interesting
that when these terms are taken into account, the stress
tensor becomes a nonlinear function of the velocity
gradients; that is, in a magnetic field the suspension
acquires non-Newtonian properties[ 6 9 > 8 0'8 3 '8 4 1. One must
remember, however, that there exists also another, far
more serious reason for the non-Newtonian character
of magnetic suspensions. This is the dipole interaction
of the particles, which is capable, as was mentioned
above, of leading even to the formation of chain aggre-
gates. Against the background of this latter effect, non-
Newtonian behavior due to finiteness of the value of
ΩΤβ can scarcely be noticed.

(d) Entrainment of a suspension by a rotating field.
Entrainment of a nonconducting fluid by a rotating mag-
netic field was first observed by Zwetkoff[85] in experi-
ments with n-azoxyanisole. The molecules of this liquid
crystal possess a diamagnetic anisotropy and tend to
arrange themselves in the field in such a way that the
longest dimension of the molecule is parallel to the
field intensity.

In ferromagnetic suspensions the rotational effect is
of course much more pronounced.141 The magnetic
moments of the particles "follow" after the direction of
the field, so that rotation of the field causes rotation of
the particles. Because of the friction experienced in
such a rotation by each particle, the liquid does not re-
main in the quiescent state but gradually begins to ro-
tate. Thus there occurs a transformation of part of the
internal angular momentum of the suspension into a
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visible (hydrodynamic) motion of it. The mechanism of
this transformation is very curious.

Each particle, by entraining the adjacent layer of
viscous liquid, becomes a center of microscopic vortic-
ity, whose dimensions do not exceed the mean distance
between particles. From the point of view of the mech-
anics of a continuous medium, such a motion of the
suspension is no longer hydrodynamic. Averaging of the
microvortices over physically small elements of volume
also does not lead to a resultang hydrodynamic motion
in the simple case in which the particles are uniformly
distributed in the liquid and rotate with the same angu-
lar velocity o»s. "Macroscopic" vorticity Ω = (curl v)/2
is possible only with nonuniform spatial distribution of
the internal angular momentum S = Iu>s. This is easily
seen from the equation of motion (5.3) of the liquid,
where the term containing curl S is the volume force
density. There is here an analogy with the Amperian
model, which explains the magnetic moment of magnets
by means of molecular currents (see, for example, the
book by Tamm[86]). The density of molecular currents is
proportional to curl M. If Μ = const, then the elementary
currents of neighboring "molecules" compensate each
other. The same thing occurs with microvortices when
S = const.

The distribution of internal angular momentum in an
arbitrary bounded volume is already nonuniform be-
cause of the fact that near the fixed solid boundaries of
the chamber the rotation of the particles is impeded. In
order to satisfy the boundary conditions for S,8) it is
necessary to include in (5.4) a term DSV

2S, where D s

is the coefficient of diffusion of the internal moment.

In reference[ 8 8 ] the complete system of equations of
the theory is solved for the case in which the suspension
fills a long cylinder of radius R, placed in a uniform
rotating field perpendicular to the axis of the cylinder.
We shall not present the results of the calculation here,
since in some details they disagree with the experi-
mental results of Moskowitz and Rosensweig and
especially of Bibik et al. t 8 9 i We shall merely indicate
the character of the distribution of velocity and of in-
ternal moment over the cross section of the cylinder.
The nonvanishing components of these vectors (νφ and
Sz in coordinates r, φ , ζ) are expressed in terms of
Bessel functions of imaginary argument In(r/6), where
δ = /DgTg. Comparison of calculated and experimental
data gives for the diffusion length δ a value of order
10~4 cm, so that the condition R/δ » 1 is satisfied. In
this case, as is evident from the asymptotic form of the
Bessel functions

Jn(n6) _„_„,_,,„,
/»(Λ/δ) ~° ·

the gradients of velocity and of moment are concen-
trated in a narrow boundary layer of thickness δ. In all
the remaining volume of the cylinder (the core), the
liquid rotates like a solid body, and the internal angular
momentum is constant.

"For example, in aqueous colloid the polar COOH groups of the fatty
acids are oriented into the water. For colloidal systems in an organic
medium, stabilization is accomplished when the hydrocarbon chains
of the surface-active molecules are rotated into the medium.

2)We disregard for the present the dependence of τ on H, which is im-
portant in strong fields (on this topic see Sec. 5 (b)).

3)An erroneous conclusion about convective instability and "thermo-
convective explosion" of an isothermal ferrofluid [56"s8] was based on
incorrect neglect of the compressibility in the heat-conduction equa-

tion: in the cited papers, the term containing ν ρ in (4.24) was not
taken into account; see in this connection [90] and the note added
in proof in [5 4].

4'It is implied, of course, that the averaging is over elements of volume
that are large in comparison with n"1 but small in comparison with
hydrodynamic dimensions.

s)Despite an opinion that is encountered [7 0], a phenomenological de-
scription of magnetic suspensions cannot be given in general form for
arbitrary external influences, properties, and degree of dispersion of
the ferromagnetic material.

6)If the particle is not spherical, then the field prevents it from still
flowing in symmetric (vortex-free) flow. In this case there appear
additional coefficients of viscosity, dependent on the form of the
particles and on the field intensity. For a suspension of ellipsoids of
revolution, magnetized along an axis of symmetry, the viscosity tensor
was calculated in [78J.

7)We recall that this result (η™ΆΧ/η ~ Φ) refers to suspensions of ferromag-
netic particles (σ > 1) with "frozen in" magnetic moments (σ > ξ). For
suspensions of superparamagnetic particles (σ « 1) one gets [81]
instead of (5.27) t?max/T) ~ σ2φ. The smallness of this quantity
justifies the application to such suspensions of the Rosensweig-
Neuringer [') isotropic model (with a single viscosity coefficient).

8)Different variants of the boundary conditions are discussed in [ 8 7 ] .
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