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The article reviews the present status of the microscopic theory of non-transition-metal lattice vibrations. A regular scheme is
described, which makes it possible to analyze in detail the role of the electrons in the formation of the phonon spectrum of
metals. It is based on a consistent utilization of a small parameter VKjeF, corresponding to the effective weakness of the inter-
action between the conduction electron and the ion core (VK is the Fourier component of this interaction with a momentum
transfer equal to one of the reciprocal-lattice vectors). Expansion of the electron-ion energy of the system in terms of this
parameter yields, besides the pair interactions that are traditional for metals, also automatically the effective three-particle etc.
unpaired inter-ion forces. It is shown that the unpaired forces play an important and sometimes decisive role in a number of
questions, such as lattice stability, compressibility, the Cauchy relations for the elastic moduli, and singularities in the phonon
spectrum. The theoretical analysis is illustrated by calculations of the static and dynamic properties of metals, and' by comparison
with experiment, using Na, Mg, Al, and /3-Sn as examples.
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INTRODUCTION

Much progress was made recently in our knowledge
of the dynamic properties of metals. Ihe theory, which
was phenomenological in character only recently, has
become to a considerable degree a microscopic theory.
It makes it possible to carry out an almost exhaustive
qualitative and quantitative analysis for nontransition
metals, making use of only elementary interactions that
have clearcut physical nature.

This progress is connected primarily with the general
development of the electron theory of metals, which oc-
curred in the 60's. For the problem of formation of the
phonon spectrum, an important role is played here pre-
cisely by the most highly developed and in fact initial
ideas concerning the electron-ion system of nontransi-
tion metals (see, e.g., Γ ι > 2 ] ) . We can formulate them
briefly as follows:

1. In metals, all the valence electrons are collecti-
vized to form a single subsystem of quasifree electrons.
The remaining ions have relatively small dimensions,
occupying approximately 10% of the volume per atom in
the crystal. Consequently, the ions in fact do not overlap
and thus the direct interaction between the ions has a
pure Coulomb character.

The allowance for the weak overlap or Van der Waals
forces between the ions in such metals would almost
certainly be less than the error of the theory at its con-
temporary state.

2. Strong oscillations of the wave function of the elec-
tron within the limits of the ionic core lead to a sharp

decrease of the effective electron-ion interaction at
short distances, and consequently also of the amplitude
for the scattering of the electron by the ion at large mo-
mentum transfers. The success of the model of the
quasifree electrons in the description of electrons near
the Fermi surface is due precisely to the fact that in a
regular metal an important role is played by electron
scattering with transfer of a large momentum equal to
the reciprocal-lattice vector.

3. Most frequently, the singularities of the wave func-
tion of the conduction electrons within the limits of the
ionic core do not play a fundamental role in the analysis
of the properties of a metal. This suggests the natural
idea of replacing the true interaction with a multi-
electron ion by a certain effective single-particle po-
tential (in the general case nonlocal), which is weaker
than the initial potential inside the ion, but which re-
tains the scattering properties of the initial ion. The
resultant pseudopotential or model potential is usually
determined from first principles or by using limited
experimental information (see[1~33).

Thus, if the ionic cores do not overlap the metal is a
degenerate plasma with an electron density determined
by the valence, and with a distinct effective electron-ion
interaction vertex. This effective interaction is connec-
ted with a small parameter of the theory, namely the
ratio νχ/ep, where VK are the Fourier components of
the effective potential at the points of the reciprocal
lattice vector Κ (in the language of the local potential).
It can be easily concluded from the foregoing that the
phonons in the metal are low-frequency collective exci-
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tations of the electron-ion plasma, the ground state of
which corresponds to a regular arrangement of the ions.
Therefore any consistent dynamic theory of metals
should in principle be from the very outset a multiparti-
cle theory, and should carry inevitably the imprint of the
difficulties typical of multiparticle theory at intermed-
iate densities (see, e.g.,'-4·').

At the same time, the theory of metals has developed
so far principally by following the single-particle ap-
proach, and it is precisely in this way that it has attained
the greatest quantitative success. The reason is that the
dispersion properties of the electron spectrum on the
Fermi surface, which can be described in principle in
single-particle language, are most sensitive to the char-
acter of the electron-ion interaction, and it frequently
suffices to take the electron-electron interaction into
account in the form of a static screening of the potential
of an isolated ion.

If, furthermore, the energy of the electron gas in a
metal is obtained as the sum of single-particle energies
calculated in second-order perturbation theory, then this
energy contains a contribution that contains effectively
the indirect pair interaction between ions via the conduc-
tion electrons[1>2]. When separated in explicit form,
this interaction together with the direct Coulomb interac-
tion constitutes the pair interaction between the ions,
which can already be used to determine the vibrational
spectrum within the framework of the traditional Born-
Karman scheme'"5'6·'. An alternative analysis, in which
the indirect interaction between two ions is determined
directly with the screening taken self-consistently into
account (see, e.g., the review t7-1), or else the determina-
tion of the electron-gas energy in the Hartree-Fock ap-
proximation in second order in the electron-ion interac-
tion, leads in fact to the same result. The only difference
might lie in the different degree of accuracy in the allow-
ance for the screening. Most of the work on the analysis
of the phonon spectrum in particular metals was per-
formed in this approximation (see the review ̂  for the
corresponding references). A particular place among
these investigations is occupied by the research of
Toya1-8·1 and Vosco et al.[e-1. Toya was the first to try
and find the phonon spectrum of a metal by starting from
a microscopic approach. Vosco et al.1-9-1 made the first
serious attempt to analyze the entire problem as a whole,
and their paper still remains one of the best in this field
(although somewhat different methods were used in the
two references, in the final analysis the physical ap-
proximations turn out to be equivalent). Inasmuch as the
approach remains in many respects single-particle, it
follows, just as in the case of the electron spectrum, that
the main emphasis of most studies was on the determina-
tion of the effective electron-ion interaction, a metal
characteristic that is more readily atomic than pertaining
to the solid state. Frequently, an illusion was created
that this rather simplified approximation is valid, and the
entire inaccuracy of the results was attributed only to
the limited knowledge of the true value of the electron-
ion interaction and of the dielectric function of the homo-
geneous electron gas.

The real picture of multiparticle interaction in a
metal is actually much more complicated. Besides the
pair interaction, there exists an unpaired interaction
which is an indirect interaction via the conduction elec-
trons of three or more ions. This interaction plays a
fundamental role, particularly in the dynamics of vibra-
tions (see below), and determines, in particular, the ap-

pearance of forces of the covalent type in a metal. A
consistent examination of this interaction entails already
significant formal difficulties, since it becomes neces-
sary to take into account, simultaneously with the change
in the electron spectrum, the influence of the restructur-
ing of the electronic wave functions in the crystal on the
character of the ion screening and on the Coulomb-in-
teraction energy of the electron gas.

Recent papers'-10'11-1 consider a certain general
microscopic approach to the analysis of crystal dynam-
ics, which expresses the force constants or the elements
of the dynamic matrix in terms of the total reciprocal
matrix of the dielectric constant, pertaining to all the
electrons of the substance. (The first formulation of the
dynamic problem in the language of the reciprocal dielec-
tric matrix, in the Hartree approximation, was given for
metals in a paper by Shamtl2J.) In this general form, the
obtained representation is valid in principle for any sub-
stance, and can therefore be used to obtain limiting rela-
tions of general type. Unfortunately, it is very difficult
to use it constructively for an analysis of the dynamics
of a metal if an attempt is made to take multi-ion effects
into account in a manageable approximation. As a result,
the approximation used by Sham to calculate the phonons
in Na'-12-' turns out again to be fully equivalent to the
pair-interaction approximation. An attempt to take par-
tial account of multi-ion interaction in a metal within
the framework of this approach was actually made by
Maradudin and KoppelL13>14:i.

The present authors have developed1-15"17-1 a multi-
particle theory of metals, in which it is possible to take
consistently into account both paired and unpaired inter-
ion interaction via the conduction electrons. The analy-
sis is based on the use, from the very outset, of a plasma
Hamiltonian with introduction of an effective model po-
tential in the vertex of the electron-ion interaction, and
with determination of the ground-state energy as a func-
tional of a static ion configuration. This energy is de-
termined in the form of a series in powers of the elec-
tron-ion interaction, and the electron-electron interac-
tion in each term of this series can be taken into account
accurately. From the physical point of view, the obtained
expansion describes in explicit form in succession two-
ion, three-ion, etc. indirect interactions, and from the
formal point of view it degenerates into a series in
powers of a small parameter V-^/e-p. Knowing the
ground-state energy and assuming the validity of the
adiabatic approximation, it is easy to determine the dy-
namic matrix of the oscillations, and also other metal
characteristics integrated over the electron spectrum,
such as the equation of state, compressibility, elastic
modulus, etc.

This approach will be used here for the purpose of
analyzing, in a unified manner, all the common problems
of metal dynamics (the nature and role of covalence, the
compressibility problem, singularities in the phonon
spectrum, dynamic stability, etc.). On the other hand,
the explicit determination of the phonon spectrum and of
the principal characteristics of nontransition metals
within the framework of this approach demonstrates
that the present state of the theory makes it possible to
describe many quantities, with reasonable quantitative
accuracy, within the framework of a single set of ap-
proximations, using information only on the electron-
ion interaction. It seems to us that this is precisely in
general the main problem of the quantitative physical
theory.

126 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 E. G. Brovman and Yu. M. Kagan 126



1. ADIABATIC APPROXIMATION IN A METAL

As is well known, the Born-Oppenheimer adiabatic
approximation plays a cardinal role in the dynamic
theory of l a t t i c e s [ 5 ] . At f irst glance it seems that the
main adiabaticity criterion, the absence of excitations
with energy on the scale of the nuclear-vibration f re-
quency ω from the electronic spectrum, i s violated in a
metal. Actually, it is possible to have near the Fermi
surface electronic transit ions with arbi trar i ly small
excitation energy, and the adiabatic approximation
does not hold at any rate for electrons in a layer
on the order of ω. At the same time, however, for
the bulk of the collectivized electrons, the excitation
energy is of the order of ep, and by virtue of this
they should follow adiabatically the vibrating nuclei.
The latter circumstance makes it possible in fact to use
the adiabatic approximation to determine quantities in-
tegrated over the electron spectrum. This problem is
analyzed in detail in a paper by Chester1-18-1 or in our
paper '-15-'. In the latter paper, the principal attention is
paid to the question of the renormalization of the adia-
batic phonons as a result of the electron-phonon inter-
action at an arbi t rary phonon momentum. Obviously, it
i s precisely this problem which is decisive for an est i-
mate of the accuracy of the adiabatic approximation when
determining the phonon spectrum of the metal. To solve
the problem during the first stage, one can use the t r a d i -
tional procedure of separating the electronic and ionic
degrees of freedom. If the Hamiltonian of the system i s

* = Si\ (r) + S't (R) + St'ei (r, R), (1.1)

then, separating the Schrodinger equation for the elec-
trons at a fixed ion position,

\S(. (r) + Si.ι (r, R)] Wm (r, R) = Em (R) Ψ™ (r, R), (1.2)

we go over directly to a system of equations describing
the vibrational problem:

[Mi (R) + En (R)J Φ,, (R) -·τ 2 (Anm + Bnm) G>m (R) = ΕΦη (R), i 1 · 3 )

where

(R. is the coordinate of the j-th ion, and the remaining

notation is standard).

If we neglect the off-diagonal terms A n m and B j ^ ,
then (1.3) is an equation that determines the adiabatic
vibrational spectrum, and the off-diagonal terms des-
cribe the non-adiabatic interaction of the vibrational and
electronic systems.

The next step is the determination of the nonadiabatic
part ΔΕ of the total energy. To this end we can change
over to the second-quantization representation with
respect to the electrons in the regular lattice and the
adiabatic phonons, and use a relation that follows directly
from (1.2):

( )
1 " ; ' ' " " " En(K)-Em(R) "

If ΔΕ is obtained, then the renormalizations 6wq A of the
phonons and δ E^ of the electrons, due to the electron-
phonon interaction, can be obtained by using the proced-
ure of varying the energy of the system with respect to
the corresponding occupation number, a procedure
analogous to that used in the Landau theory of the Fermi
liquid[ 1 9 ] .

We then have

(1.6)

(q and λ a r e the wave number and the number of the
phonon mode, and k is the wave vector of the electron).

Such a program was implemented (see1-15-1) and the
energy ΔΕ was determined by perturbation theory in
second order in A and in first order in B. Referring to
the reader to that paper for details, we present only the
final result for the renormalization of the phonons:

where M^ q A is the standard Bloch matr ix element of

the electron-phonon interaction and n k a re the occupa-
tion numbers for the electrons.

It i s easy to understand the meaning of the presented
expression. The second term in it describes the adia-
batic contribution of the electrons to the frequency of
the phonon excitation, and can itself be of o r d e r ω χ.
However, the nonadiabatic renormalization itself is quite
weak. For the predominant part of phase space, (1.7)
yields

ι = Re δω 0 (1.8)

The damping Γ _ λ is determined only by the first term of

(1.7), by virtue of which it is not sensitive to the adia-

batic procedure, and the estimate for Γ λ is standard:

Γ, λ = Ιιηδ(ο(Ιλ~ω,]λ-^-. ( l .g)

In a narrow region of the momenta, where |q - 2kF|/kF

~ ωοΑρ, a larger shift in comparison with (1.8) takes
place:

Δω,λ~ω,λ^. (1.8')

For the renormalization of the electron spectrum,
the variational procedure (1.6) leads to the expression
(we retain only the principal term)

Ae^SlM-*!' ° * « ~ > i • (1.10)

A simple analysis shows that far from the Fermi surface

whereas in a narrow "crust" |&_ — e t ω ο the renorm-
alization of the electron velocity turns out to be already
significant and does not contain the parameter ωοΑρ.
The last result was first obtained by Migdal1^20-1.

The foregoing estimates enable us to formulate gen-
eral conclusions concerning the use of the adiabatic ap-
proximation in a metal and the role of electron-phonon
interaction:

1) The phonon mode of the excitations in a metal can
be separated with high accuracy within the framework of
the pure adiabatic approximation. Allowance for the
influence of the electron-phonon interaction on the dis-
persion law leads to a very weak renormalization.

2) The microscopic quantities determined from the
microscopic analysis within the framework of the adia-
batic approximation are determined with accuracy not
lower than ωο/ερ.

127 Sov. Phys.-Usp., Vol. 17, No. 2, September-October 1974 E. G. Brovman and Yu. M. Kagan 127



3) To determine the properties connected with the
electrons of the metal on the Fermi surface, in zeroth
order in the parameter ωο/ejp, it is necessary, after ob-
taining the adiabatic phonon spectrum and the electron
spectrum in the static lattice, to renormalize the elec-
trons near the Fermi surface to allow for the electron-
phonon interaction.

4) The renormalization of the phonons, in the general
case, does not impose on the electron-phonon interaction
constant any limitations that follow from the requirement
of lattice stability. The converse statement, which re-
sults from the use of the Frohlich Hamiltonian (see,
e.g., E21>223) is incorrect and is connected with the fact
that the electron-ion interaction, roughly speaking, is
taken into account twice, once in the choice of the "bare"
phonons, which have a normal longitudinal sound, and the
second time in the calculation of the renormalization of
the form of the first term in (1.7). We note that this re-
sult is quite important for the superconductivity problem.

The validity of the adiabatic approximation greatly
facilitates the application of field-theoretical methods'-23·'
to the analysis of the dynamics of a metal. It is clear
from the foregoing that the problem of finding the phonon
spectrum reduces in this case in fact to a determination
of the energy of the interacting electron gas in a static
field of fixed ions, for which a diagram technique can be
used directly.

Within the framework of the field-theoretical methods,
it is also possible to use another approach based on the
determination of the renormalization of the "bare"
phonons due to the electron-phonon interaction[ 2 0 ]. An
important role is played then by the results obtained by
Migdal, namely that the vertex part of the electron-
phonon interaction reduces, accurate to the same
adiabaticity parameter ωο/ep, to a simple vertex. It is
important, however, that the electron-ion system of a
metal cannot be reduced in a self-consistent manner to
a system of "bare" electrons and phonons with a definite
interaction between them (the Frohlich Hamiltonian),
which would be the analog of the situation in quantum
electrodynamics. The reason is that introduction of any
"bare" phonons in a metal already presupposes auto-
matically participation of electrons in their formation.
Therefore, the use of the Frohlich Hamiltonian is cer-
tainly model dependent. This model turns out to be ade-
quate when it comes to the influence of electron-phonon
interaction on the electrons near the Fermi surface, for
example, for the description of the electron kinetics, to
the renormalization of the mass and lifetime of the elec-
trons , to obtain equations for the gap in supercon-
ductivity theory (see, e.g., C 2 4 ' 2 S ] ) , etc.

We note from a purely procedural point of view that
in these problems, when using adiabatic phonons, it is
necessary to leave all the phonon lines unrenormalized.
(In particular, the result obtained for the mass operator
actually coincides here with (1.10).)

A complete analysis of the nonadiabatic interaction
of the electrons and phonons is, however, beyond the
scope of the present article and should be the subject of
a special review.

We note also that it is possible, in field-theoretical
language, to consider the problem consistently by choos-
ing as the "bare" Bose excitations the plasma oscilla-
tions of the ions in an immobile neutralized electron
background, and by taking into account simultaneously

the electron-electron and the electron-phonon interaction
with the vertex determined by the "bare" electron-ion
potential. Such a problem was analyzed, for example, in
Schrieffer's book'-25-1, using the "jellium" model. A con-
sistent analysis with allowance for the discrete structure
of the metal should lead in principle to a phonon spec-
trum that coincides with the spectrum of the adiabatic
phonons obtained within the framework of the results
given above.

The analysis that follows is based on the first ap-
proach, i.e., on the determination of the energy of the
interacting electrons as a function of the ion position.
For the purpose of our review, this approach offers sig-
nificant advantages, since it makes it possible to obtain
in a unified manner both the properties of the static lat-
tice of the metal and the phonons in the lattice, and at
the same time is the most lucid from the point of view of
an analysis of the physical nature of the interactions
responsible for the formation of these quantities.

2. ELECTRON ENERGY

As follows from the preceding chapter, to determine
the electronic contribution to the formation of the vibra-
tional spectrum it is necessary to find the energy
E(Ri, ..., Rn) of the electron system in the field of fixed
ions; in Eq. (1.3) for the adiabatic phonons this energy
plays the role of the potential energy. It suffices here to
consider the problem at Τ = 0, inasmuch as at a fixed
unit volume the corrections to the energy for the finite
temperature are proportional to (T/e-p)2.

We are therefore dealing here with the determination
of the ground-state energy for the Hamiltonian contained
in (1.2). In the second-quantization representation with
respect to plane waves we have

kk'q k ,

~

(2.1)

here Ω is the total volume of the system. The interaction
of the electron with the ion system is given here by

U =V — V ex Γ R (2 2)

where Ν is the total number of ions. (We confine our-
selves for simplicity to a monatomic metal.)

For the vertex
+ q

of the interaction between the

electron and the individual ion we use the concept of a
"weak" pseudopotential that takes into account effectively
the cancellation of the interaction within the ionic core,
(see the introduction) and describes correctly the ampli-
tude for the scattering of the electron by an isolated ion.
In the general case this model potential is nonlocal, and
when it can be reduced to a local potential, the matrix
element depends only on the momentum difference

vk.k+q-*Vv. (2.3)

To simplify matters, we obtain first the principal re-
sults just for a local pseudopotential, and then analyze
specially the changes that must be taken into account
when nonlocality is introduced (see Chap. 12).

The ground-state energy of the electron system will
be sought in the form of an expansion in powers of the
electron-ion interaction. It is easy to write down the
general form of this expansion:

E. = E'<" (2.4)
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£•'"> = Ω 2
•11 . . .

Γ ( " '(Πι . . . q , , ) 6 T

q i . . . C / < , n A ( q , - L . . . - ! q n ) ; ( 2 . 5 )

A(q) describes here the momentum conservation law
corresponding to homogeneity of space. The many-pole
quantities Γ ( r l ) introduced in this manner are universal
characteristics. They depend, obviously, only on the
electron-electron interaction and do not depend on the
positions of the ions or on the properties of the particu-
lar ion. It follows from (2.5) that the Γ < η ) can be regar-
ded, without loss of generality, as symmetrized over all
their arguments.

To find the explicit form of (2.4) and (2.5), we can
[ 2 3 ]

Coulomb interaction with q = 0 in all three terms of
(1.1). These components should therefore be missing
from the Hamiltonian (2.1), and the "bare" ion-ion inter-
action should therefore be considered henceforth to-
gether with the negative homogeneous compensating
background. It must be recognized here, however, that
since the ion is not pointlike, we always have at small q

use a diagram technique (see, e.g.,
and

[ 2 3 ] ) taking the per-
turbation in the S matrix to be the operator

3t int = Sf,e + St',i,

where fee and > êi are respectively the second and third
terms in (2.1). The ground-state energy can in this case
be set in correspondence with an aggregate of "coupled"
vacuum diagrams. Each term in (2.4) corresponds to the
aggregate of all diagrams of a definite order in .W ^ and
of arbitrary order in -faa.

By virtue of the adiabaticity of the problem, the elec-
tron-ion interaction plays in these diagrams the role of
the static external field. To each term of definite order
in ^ there corresponds a diagram given in Fig. 1, with
an appropriate number of external-field wavy lines.

It should be borne in mind that the coefficients pre-
ceding such a diagram are not equal to unity, as in the
case of the Green's function where the number of convo-
lutions that lead to a given diagram cancels out l/n! of
the order of the diagram. It is easily seen that for
"coupled" diagrams of the considered type, containing an
external field -if^, the coefficient will always depend on
the number η of external field lines, and after symme-
trization with respect to the external momenta it is equal
exactly to l/n, since a cyclic permutation does not change
the convolutions contained in the integral, and a symme-
trized set of diagrams obviously has a symmetry of this
type. It is essential that the coefficient does not depend
on the order of the diagram with respect to the electron-
electron interaction, since the external field "clamps"
the ends and therefore acts like an external operator
when the Green's function is written out in accordance
with Wick's theorem.

When any multiparticle problem is considered for a
metal, it is convenient to take into account in the very
initial Hamiltonian (1.1) the electro-neutrality condition
in explicit form. In the Fourier representation (this can
be done even before the second quantization) the electro-
neutrality leads to a vanishing of the components of the

where ζ is the charge of the ion and Qo is the volume per
ion. Therefore, when all the Coulomb interactions cancel
each other at q = 0, the electron-ion potential retains a
non-Coulomb part averaged over the volume. Accord-
ingly, we must leave in the Hamiltonian (2.1), at q = 0,

vq=0,.,±. (2·7)

The resultant effect of homogeneous potential plays a
very important role in the determination of the different
properties of the metal (see below), and vanishes only in
the case of metallic hydrogen (see^30^).

We proceed now to a regular analysis of the individual
many-pole functions Γ < η ) . The function Γ α ) is described
by the single diagram indicated in Fig. 2, where the thick
line denotes the total Green's function G of the electron,
and it is easily seen that all the possible complications
introduced in the diagram by the electron-electron inter-
action are included in the Green's function.

Therefore (the notation is standard; see1-23-1)

1 \U) = — ll • 6- (/;) —na, \^·°)

where n0 is the density of the electron gas. In accord-
ance with (2.5) and (2.7), we obtain here

/;<"-A'fc/Q,, (2.9)

(we have taken the fact that n0 = ζ/Ω0 into account).
Together with the energy of the homogeneous electron
gas E( 0 ), this term forms the structureless part of the
total energy, which plays the major role for the volume
properties of the metal and does not play any role in the
formation of the vibrational spectrum. For Γ ( 2 ) we have
the graphic equation shown in Fig. 3, where the dashed
line denotes the interelectron interaction line, and n(q)
denotes a block that is irreducible (non-intersectable)
with respect to this line and represents in fact the static
polarization operator. The summation is carried out
directly. As a result we get

where

(2.10)

(2.11)

is the static dielectric constant of the homogeneous elec-
tron gas.

We consider now the function Γ ι η ) at an arbitrary
value of n. What is important is that the diagrams of the
described type (see Fig. 1) admits of partial summation
corresponding to replacement of each external-field line
by a "thick" line with the aid of the graphic relation
shown in Fig. 4. This leads to the expression

(2.12)

FIG. 3

where Λ(η) is the aggregate of diagrams with η external-
field lines containing no blocks (polarization parts) that
might be attributed to "thick" external lines. Further
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FIG. 4

simplication of Γ ( Π ) depends already on the concrete ap-
proximation (see below).

The terms starting with η = 4 call for a special analy-
sis, since the usual perturbation-theory technique for
finding the ground state does not apply to them. More
accurately speaking, the total energy determined with its
aid will no longer correspond to a system state with the
lowest energy. The reason is that starting with η = 4 it
is necessary, when determining the ground state, to take
into account from the very outset the distortion of
the shape of the Fermi surface, whereas in perturbation
theory we continue to follow the spherical filling in mo-
mentum space, which is characteristic of the ground
state of the unperturbed system. In other words, a
change peculiar to the crystal takes place in the symme-
try of the ground state, and to take this change into ac-
count it is necessary to modify the standard perturbation
theory in such a way as to ensure additional variation
with respect to the shape of the Fermi surface. It is
possible to use instead a thermodynamic perturbation
theoryC 2 3 ], in which the lower energy states are auto-
matically selected, and then let Τ •— 0.

The actual procedure consists of finding the thermo-
dynamic potential Ω by summing diagrams having a per-
fectly analogous structure, but defined now for the tem-
perature Green's functions, and then change over from
Ω (as a function of the chemical potential μ) to the sys-
tem energy Ε (as a function of the particle number N).
The expansions for both Ω and Ε take the forms (2.4) and
(2.5). It is natural also that the partial-summation pro-
cedure that has led to (2.12) remains in force for the
coefficients of the series for Ω . On going to E, the re-
sultant many-pole function Ω ( η ) becomes generally
speaking renormalized and equal to

A < n ' ( q i , . . . , q,,) = AH"(qi> · · · . qn) + A ™ ( q i , . . . , q n ) . ( 2 . 1 3 )

Here Λ μ is the result of renormalization of the chemical
potential, and differs from zero only at η > 4 and only
for a rigorously defined set of momenta q. Thus, at η = 4
the only nonvanishing component is

Ai'(q,, -q,, q2, - It) = I-^ {^P1) (°-^) . (2.14)
μ \ΊΙ' 111 ΙΔ1 ΙΔΙ ΟΛ Λπ. \ fill η Ι Λιι Ι Λ > '

electron energy. We note to this end, taking (2.2) into
account, that the n-th term of the series contains η ion
coordinates, so that E<2) contains the coordinates of a
pair of ions, i.e., corresponds to the effective pair inter-
action, while E m > contains the coordinates of η ions and
corresponds to pairwise indirect interaction between η
ions via the conduction electrons.

The expressions obtained above are valid, naturally,
for any fixed ion configuration. When determining the
static part of the pair energy in an irregular system (for
example, in liquid metal), it is necessary to average
over the possible configurations, and in a regular crys-
tal, owing to the interference, a very great simplification
is introduced by the transition to summation over only
the reciprocal-lattice vectors K. Indeed, using (2.2), we
can easily obtain

L ~ 2 2J ττκτ' κ | ' ( " ' (^·15)

£ < " > = Ω ^ - ' " ' ( K ' ' • • • ' K " > , γ Κ ι . . . γ Κ η χ

X S ( K , ) ...S(]

For the same set of external momenta (when the sum of
several successive q̂  vanishes, i.e., when the arguments
of two or several G functions coincide), a unique
"anomalous" contribution appears in the temperature
technique for Ω, on going to the limit as Τ — 0, besides
the usual contribution corresponding to the diagram ex-
pansion of the energy (T = 0). We note that "anomalous"
contributions appeared first in the problem of a Fermi
gas with nonspherical interaction^29-1. At arbitrary ex-
ternal momenta not corresponding to special conditions,
both the "anomalous" contributions and the term Λμ are
missing, and Λ<η) can be determined by the standard
perturbation theory.

We can now find the structure-dependent part of the

(2.16)
we present here the results for the general case, and
accordingly (2.2) gives rise to the structure factor

(2.17)

The summation in this factor is over all ν ions in the
unit cell with relative coordinates p g . From the form of
(2.16) we can easily understand now that the expansion
for the electron energy of a static lattice, starting with
η = 2, is indeed a series in the small parameter Vg/ep.

In concluding this chapter, we note that the employed
perturbation theory is in fact approximate, since the
coherent restructuring of the electron spectrum near
the Brillouin-zone boundaries is taken into account in
this theory only approximately. However, as shown by a
well known analysis1-58-1, the characteristics integrated
over the electron spectrum are determined by this me-
thod with high accuracy. It appears that this result is
quite general for "good" nontransition metals.

3. DYNAMICAL MATRIX

We proceed now to determine the phonon spectrum in
a metal. To this end we recognize that, in accordance
with the adiabatic approximation, the role of the poten-
tial energy in the vibrational problem for a metal is
played by the quantity (see (1.3))

U (R) = U, (R) + Ee (R), (3.1)

where U^R) is the potential energy of the ion lattice
(which is immersed in a compensating homogeneous
negative background), and Ee(R) is the ground-state
energy of the electron system, obtained as a function of
the ion coordinates. We find first the equilibrium posi-
tions of the nuclei, corresponding to (3.1). They are
given by the stationarity condition and correspond, for
the s-th ion in the m-th unit cell, to the requirement

i™™\ = o. (3.2)
\ (JH /o

The contribution of the indirect inter-pion interaction to
this condition is obtained directly from (2.5):

( S . = - £ Ω

κ ι Σ Κ Β

Κ » Γ < η ' < κ ' · · - K " ) y * · ••· (3.3)

...VKn Im [S (Κ,) . . . S (Κ,,.,) cxp (iK,,ps)!;
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we have used here the fact that V_K = VK, as well as the
symmetry relations for the many-pole functions. The
obtained condition does not depend on the number of unit
cell, as should be the case. In the case of monatomic
crystals (Bravais lattice) (3.3) vanishes identically. In
a lattice with two atoms per unit cell, Eq. (3.3) vanishes
identically only if the displacement of the same atom
changes the space group of the lattice symmetry. (It does
not vanish, for example, for a bismuth-type structure in
the case of a displacement along the trigonal axis.) In
the general case only the total force acting on the ion
vanishes. The condition (3.2) is in fact an equation for
determining the equilibrium value of p g for the atoms
inside the unit cell.

To consider the vibrational problem in the harmonic
approximation, it is now necessary to find the force ma-
trix (see, e.g.,E5>63), defined relative to the equilibrium
position (2.2):

(the superscripts denote from now on Cartesian coordin-
ates).

The contribution made to (3.4) by an ionic lattice with
pure Coulomb interaction (Uj) is of standard form. The
indirect interaction corresponding to Ee, in accordance
with (2.4) and (2.5), can be again represented in the form
of a series in powers of the electron-ion interaction.
This series, as can be easily seen, begins with η = 2, and
its general term can be written in the following form
((ms) Φ (m's')):

> (q,, q2, K3 K,,)( i<n')Z. • η In 1\ U V 1
V* /mi, m s — " l'< — I) .,., 7^ ι

*ϊκ *Ϊ2» Κ.1 Κη

Χ qf qfFq.fqjFKj . . . VKn exp (iq, (RS> - Rff) f iq.p» + /q2p»·) 5 (K3) . . .

.. -S(Kn)A(q, + q2 + K3-|- .. .+ Kn). (3.5)

This yields automatically, for the matrix with ms = m's',
the relation

')»is, mi— £^ (^("')ms, m-»', (3.6)

which is valid separately for each η and is actually the
consequence of translational symmetry, which is taken
into account in the expansion (2.4), in the form of the
exact momentum-conservation law in each term of (2.5).
(We have used for the ion equilibrium coordinate the
notation R m ' s = l C s + P s ) · For the first term of the
series in (3.5) we obtain the expression

>\v,\ (3.7)

The elements of this matrix depend thus only on the dis-
tance between the ions and correspond to axial symme-
try, thus reflecting the central character of the indirect
interaction between the two ions in E< 2 ). The ionic con-
tribution to the force matrix has obviously the same
symmetry. Therefore, if we discard the remaining
terms of the series, the total force matrix in the metal
will also have axial symmetry.

However, the next terms in (3.5) lead already to the
appearance of a force matrix of more general form with
constraints imposed only by the spatial symmetry group
of the crystal, which would correspond in the general
theory to the existence of covalent forces» Formally
this is connected with the fact that at η > 2 the expres-
sion (3.5) depends not only on the coordinate of the ion,
but also on the structure of the crystal, via the summa-

tion over the reciprocal-lattice vectors (the latter are
missing only at η = 2). Physically, the appearance of
such terms is due to the existence of unpaired indirect
interaction between the ions. This question will be con-
sidered in greater detail in Chap. 10.

Knowing the force matrix and using the standard
procedure, we can immediately obtain the dynamic ma-
trix, diagonalization of which yields the phonon spec-
trum:

) = ir 2

(3.8)

(3.9)

Taking into account the translational symmetry, it is
convenient to introduce beforehand, for each contribu-
tion, the definition

Then

^ BgS-(q). (3.10)

For the ionic contribution we have here

''-'*' (3.11)

and for the electronic contribution we have

Κ ι, . . ., Κ η

χ Γ·»' (q ·Ι Κ,, - q - Κ2, Κ3 Κ η ) V^+K

Χ eilKl»"-K"'')6'(K3) . . . 5(Κ,,)Δ ( Κ , - Κ 2

K3 ... VKn

Let us analyze the obtained expression. The most essen-
tial fact is that the character of the expansion of D e in
powers of the electron-ion interaction differs in princi-
ple from the corresponding series for the static elec-
tron energy E e . Indeed, each term of this expansion
contains two factors V_, in the general case at arbitrary

values of q, whereas in the terms of the series for the
energy there are contained the Fourier components only
at q = Κ ^ 0. However, the statement of the presence of
a small parameter Vj^/ep, which corresponds to the
pseudopotential theory, is by far not equivalent to the
statement that the potential is small in general. To the
contrary, it is easily seen that at small momentum
transfers the electron interaction is far from small and

e(q) /q^o -1 (3.13)

(we have introduced here in explicit form the dielectric
constant e(q), recognizing that according to (2.12) the
expansion is carried out precisely in terms of this ratio).

To determine also the static energy of the phonons at
the same accuracy it is necessary therefore to take into
account different numbers of terms in the series. Thus,
if the energy is accurate to (V^/eF)2, it suffices to take
into account only the term (2.1%) with η = 2, whereas in
the series for De it is necessary here, in general, to
take into account terms with η = 3 and η = 4 (at η = 5,
the corresponding terms in the dynamical matrix are of
order of smallness not lower than (VK/eF)3).

The foregoing result is quite general. The presence
of a small parameter makes it possible to express all
the quantities integrated over the electron spectrum in
the metal in the form of a series in Vj^/ep, but the
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higher the derivative of the energy with respect to the
ion coordinates in the problem, the more terms of this
series must be taken into account (this must be taken
into consideration, for example, when anharmonicity is
considered).

Let us find the dynamical matrix, bearing this cir-
cumstance in mind, and confining ourselves to the accur-
acy (VK/eF)2. For the region of small q, the situation is
obvious, and together with the term D ( 2 ) we should re-
tain in the term with η = 3 also the contributions with Ki
or K2, which are equal to zero, and in the term with
η = 4 we should retain the contributions with Ki = K2 = 0.
Then

·'-···'φ (q + Κ) +

.XVKF_(,+K)yqr'3>(q, - q , - Κ , Κ)-Ι

+ 2q a qp|F ( ,Pt |F K HS(K) i pr<"(q, - q , Κ, Κ)}.(3.14)

where we have introduced the function

In expression (3.14), the first term is the dynamical ma-
trix Dp corresponding to pair interaction—the direct
Coulomb interaction and the indirect interaction due to
E ( 2 ) . (In the (VgVep)3 approximation, the increments to
the pair interaction are contained in E< 3 ); see Chap. 10.)
The remaining terms in (3.14) correspond to the un-
paired interaction, and are of the same order with the
pair interaction.

At noticeable q comparable with the limiting momen-
tum of the phonons, each succeeding term in the expan-
sion of De (see (3.10)) contains an extra power of the
small parameter, starting in fact already with η = 3. One
can therefore hope for a rapid convergence of the series
and for the pair term to be singled out at large q. There
is, however, a circumstance that makes the allowance
for D(3) quite essential in the entire phase region. The
point is that in most cases, especially in polyvalent me-
tals, a very strong cancellation of the direct and indirect
interactions takes place in D p

C l 6 ] , and the contribution
D ( 3 ) should be compared not with D(2>, but precisely with
Dp. Thus, allowance for at least D( 3 ) in entire phase
space is not only of principal character (symmetry), but
also of purely quantitative character. We note that the
approximation (3.14) is valid only at small q. At large q,
the remaining terms in (3.12) become of the same order
as the unpaired contribution to (3.14); therefore, in par-
ticular, (3.14) does not satisfy the condition D(q + K)
= D(q) of periodicity in reciprocal space. For this rea-
son, it is necessary to use the general expression (3.12)
at large q.

In concluding this chapter let us dwell briefly on
another possible method of determining the dynamic os-
cillation matrix, based on the use of the dielectric form-
alism for periodic structures. The corresponding results
are easiest to obtain if, starting from the validity of the
adiabatic approximation, one uses the Hamiltonian (2.1),
expanding the term of the electron-ion interaction in the
displacements of the ions. One can pose next the problem
of determining the change produced in the energy of the
electron system by a displacement wave with a definite
wave vector q. In the harmonic approximation we need to
find the energy only in second order in the displacement.

The problem is then formally perfectly equivalent to the
problem of the dielectric constant and its exact definition
(see1*' 3 1 3).

We choose as the basis |n) the exact wave functions of
the total Hamiltonian of a periodic static lattice with
allowance for electron-electron interaction. In this ba-
sis, the reaction of the medium on the displacement wave
is obtained directly, and for the electronic dynamical
matrix in a monatomic crystal we obtain the expres-

sion
[10,11,323

here

x(q.q')=S-

-q-K');

(3.16)

(3.17)
is the static function of the density—density reaction
(see'-4-') and p« are the Fourier components of the elec-
tron-density operator.

In the RPA approximation, a similar expression was
first obtained by ShamC l 2 ] . The result (3.16) is in prin-
ciple quite general. In particular, it is applicable also
to transition metals and dielectrics, if the electronic and
ionic subsystems are suitably separated. The simplicity
of this expression, however, is quite illusory and it is
impossible to use it in an exact initial form.

If the exact multiparticle wave function |0> is repre-
sented in the form of a perturbation-theory series in the
electron-ion interaction in a periodic lattice, then it can
easily be seen that (3.17) is described by an aggregate
of the many-point diagrams represented in Fig. 1, where
the two external-field lines have momenta q and q', and
the remaining ones have momenta equal to the recipro-
cal-lattice vectors. We shall sum with respect to the
latter with the corresponding factors V^. The coeffi-
cients of each diagram with η points turns out to be equal
to (n - 1).

Comparing this result with (3.12), we verify directly
that the dynamic vibration matrix obtained in this case
from (3.16) coincides exactly with the result given above
in this section[ 1 5 ] .

Thus, if we use perturbation theory in terms of the
electron-ion interaction, then (3,16) does not lead to a
new result (see also1-32-1). In the initial form, however,
it is more general, since it incorporates in principle a
coherent restructuring of the electron spectrum near the
boundaries of the Brillouin zone where, strictly speak-
ing, expansion in the electron-ion interaction is not valid.

As already noted in Chap. 2, there exists also a
"field" method of determining the vibrational spectrum,
based on a renormalization of correctly chosen "bare"
particles and using a simple vertex for the electron-
phonon interaction. The problem reduces in this case to
a solution of a system of Dyson's equations. It can be
shown that if the possibility of rescattering by a static
lattice is correctly taken into account, the result in final
form also coincides with (3.12).

4. LONG-WAVE PHONONS IN A METAL

We begin a more detailed consideration with an analy-
sis of sound in a metal, confining ourselves in this stage,
for simplicity, to the case of one atom per unit cell and
to an accuracy of order (VK/eF)2. To this end, we go
over to the region of extremely long waves and expand
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(3.14) in powers of q. The expansion of the pair dynam-

ical matrix Dp (the first term in (3.14)) can be easily ob-

tained by recognizing that (3.15) leads to the expression

Ο ) . (4.1)
π(Ο)Ω ο

 τ <20

We then obtain

Σ
K / 0

I Of (K)

The three-particle contribution to the dynamical matrix
is also obtained directly from (3.14). It is convenient
here to introduce immediately irreducible many-pole
functions in accordance with (2.12):

In analogy, for the four-particle contribution we have

ο, ο, κ, -Κ). (4.4)

In the derivation of (4.3) and (4.4) we have used the fact
that, in accordance with (2.6) and (2.11),

n ( U ) S > u f CD / c i - 0 -o.

As seen from the obtained expressions, to determine
completely the sound velocities or the elastic moduli we
must determine the explicit forms of Λ<3) and Λ(4) for the
particular case when one or two of the arguments in them
are equal to zero. It turns out that this problem can be
solved in general form and a number of exact relations
similar to the Ward identities and valid for an arbitrary
normal Fermi surface can be established for these func-
tions '-17-' „ A diagramatic derivation of these relations is
based on the technique of skeleton diagrams and on the
differentiation of the "thick" electronic Green's functions
with respect to the chemical potential, which is equiva-
lent to introducing an additional vertex with an incoming
zero momentum. The details can be found in our earlier
paper1-17-1, where the following system of identities was
established:

1 rfP">(c| q , , ) .

rfu
(4.5)

the divergence of e(0) as q — 0 is compensated here by
the corresponding factor in Γ ( η + υ . For η > 2 it is
therefore convenient to rewrite (4.5) by introducing the
irreducible functions (2.2):

' jr^JSi.....q,,i_ (4.6)
e (<Ii) . . . t (C|,,) ii - 1 rf|i

For the particular cases needed by us we obtain, taking
(2.10) into account,

•V-'> I», K, - K ) 1 d π (Κ) ( 4 7 )

In the determination of Λ(4)(0, 0, Κ, -Κ) it must be borne
in mind that we are interested in a definite limit, namely
Λ<4) (q, —q, K, — K). As can be easily understood, owing

to the electroneutrality, definite diagrams drop out of
this expression, so that when (4.5) is repeatedly differen-
tiated with respect to μ one must not differentiate e(0).

As a result we obtain

Λ'·"(0. Ο, Κ, — Κ ) 1 d~

24 ί/μ- e (Κ)
(4.8)

With the aid of (4.5) we can establish one more important
relation. We consider the case η = 2. Then, in accord-
ance with (2.8) and (2.10), we obtain

"(°) = ̂ r · ( 4 · 9 )

This result, usually obtained in Fermi-liquid theory by
another method'·4-', is thus the simplest particular case
of (4.5). It enables us to transform the differentiation
with respect to the electron density:

π (0) d .-i(K)•V3'(0, K, - K )

(ε (Κ))Ζ (i dna f (K) '
(4.10)

With the aid of (4.9) we can also transform (4.8). It
should be noted here that Λ(η) in the foregoing expres-
sions actually means Λ1™ (see (2.13))—the two simply
coincide at η = 3. To determine the total four-pole dia-
gram it is necessary, on the other hand, to add to (4.8)
the contribution Λ*4' (2.14). Putting in it q2 = 0, we obtain
ultimately after simple transformations

We can finally obtain also an identity for the differentia-
tion of the irreducible multipoles'-17-'

(̂ 5--V<»>(q, - , , Κ. -Κ)),_ο !_±ΓΛ«"(0.Κ, _Κ). (4.12)

Thus, expressions (4.10)—(4.12) show that the dynamic
matrix at small q, and consequently also the speeds of
sound, depend on the properties of the electron liquid
only in terms of the polarizability w(q) and its deriva-
tives.

It is convenient to carry out the analysis of the sound
velocities in the language of the dynamic elastic moduli.
To this end, we introduce the notation of Born and
Huang[5]

p J^ (4.13)

and use the general expression for the elastic moduli of
the monatomic crystal

£«r,(s lay. βΛΙ + Ιγβ, afil - (4.14)

Comparison of (4.13) with (4,2) and (4,3) makes it possi-
ble to determine the value of the moduli cQo δ for an
arbitrary crystal. We confine ourselves here, for sim-
plicity, to the case of cubic symmetry. We then get for
the elastic modulus Cu=c

xxxxx
corresponding to a

longitudinal sound velocity with q along the edge of the
cube, using the identities given above,

""'· 2l'"u ι 1 V Γ , , ί ί Ο ->Κ ' " Γ ( Κ ) ' IK >: " " ' < ' ( K i Ί

κ ο •

. , . | , ΐ Β | Γ κ | ^ ^ - ; . (4.15)

Recognizing that neither direct ion-ion interaction nor
the "bare" electron-ion interaction depends on the elec-
tron density, we can rewrite (4.15) also in the following
convenient form, introducing the pair-interaction func-
tion ^(q) (3.15):

(4.16)

-L ν Γ2»,5£ΐ4 1
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Expressions (4.15) and (4.16) determine the square of
the longitudinal velocity of sound in a metal, accurate to
(V^/eF)

2 inclusive. Its analysis is very instructive from
the physical point of view. The first two terms in (4.15)
(the first term in (4.16)) describe the contribution from
a homogeneous continuous medium and coincide with the
known result of Bardeen and Pines1-34-1. The first of the
terms corresponds to a plasma with pointlike ions, and
if we assume for π(0) the value obtained in the self-
consistent-field method or in the random-phase method,
TT(O) = (3/S)no/ep, then it yields the longitudinal sound
velocity first obtained by Bohm and Staver^35-1. How-
ever, it is precisely the second term in (4.15), which is
connected with the non-pointlike character of the ions,
which plays a very important role in the formation of
longitudinal sound in a metal, and as a rule exceeds the
first term.

The inhomogeneity of the medium becomes manifest
in the presence of the third and fourth terms in (4.15),
which contain contributions from the direct interaction
of the discrete-lattice ions (the first term in φ(Κ) and
its derivatives), and also from the indirect inter-ion
interaction via the conduction electrons. An important
factor in this case is that in longitudinal sound the con-
tribution of the multi-ion forces (the last terms in (4.15)
and (4.16)) in the structurally-dependent part does not
contain small quantities and turns out to be of the same
order as the contribution from the indirect pair interac-
tion. It follows from this, in particular, that any repre-
sentation based only on the paired dynamical matrix Dp

is certain to describe incorrectly the long-wave region
of the known spectrum.

Comparing (4.13) with (4.2)-(4.4) and using (4.14), it
is easy likewise to determine the shear moduli corre-
sponding to transversely-polarized sound. With the same
accuracy (VK/eF)2 we have

(4.17)

(4.18)

It follows from these expressions that in an approxima-
tion in which terms of order (Vjj/ep)2 are retained, the
shear moduli are determined entirely by the pair inter-
action and do not contain a contribution from the multi-
ion forces. The contribution of the latter, just as in the
energy of the static lattice, begins with terms of order
(VK/eF)3. It should be noted, however, that the role of
these expansion terms can turn out to be quite signifi-
cant from the quantitative point of view. The reason is
that the transverse sound velocities, unlike the longitud-
inal one (4.15) or (4.16), do not contain terms corre-
sponding to a continuous medium (K = 0). Therefore, if
the electronic and ionic contributions to (4.17) and (4.18)
are comparable in magnitude, then allowance for the
third-order terms will yield an important first-order
correction to the total value of the elastic modulus. This
circumstance becomes particularly important when the
velocity of the surface sound is small. There are known
cases, for example in tin1-15-1 or in zinc1-16-1, when the
ionic lattice is in general unstable with respect to cer-
tain transverse oscillations and becomes stable only as
a result of the electronic contribution. In this case the
multi-ion terms can play even the decisive role.

In the opposite case, when the electronic contribution

to (4.17) or (4.18) is small in comparison with the ionic
contribution, owing to the particular smallness of the
parameter VK/cF, as is the case, for example, in me-
tallic sodium, the transverse sound is determined prac-
tically entirely by the ion lattice.

In metals with several atoms per unit cell, there ap-
pear also additional optical modes that can also be
analyzed in the long-wave limit. Let us consider by way
of example a metal with two identical atoms per unit
cell, and let the symmetry be high enough to make the
matrix (3.9) at q = 0 diagonal in the Cartesian indices.
This gives rise to decay into three independent optical
modes with polarizations along the selected axes. Using
(3.14), we obtain for the limiting frequencies, again ac-
curate to (Vj^/ep)2 inclusive,

*. y. z). (4.19)

This expression is similar in structure to expressions
(4.17) and (4.18) for the shear moduli. Here, too, there
is no homogeneous contribution (K = 0), and the multi-
ion forces become manifest only in terms of order
(VK/eF)3 and higher.

As a result, all the considerations advanced above
remain in force. In particular, all available metals are
frequently characterized by a strong mutual cancellation
of the electron and ion contributions in (4.19), at which
the role of the multi-ion interaction turns out to be quite
appreciable (see [ 1 5 > 1 6 : i ) .

5. THE PROBLEM OF COMPRESSIBILITY

One of the interesting problems in the theory of me-
tals is the question of the relation between the dynamic
compressibility, i.e., that determined from the speed of
sound, and the static compressibility, which is deter-
mined from the energy:

ΰ"Ε (5.1)

(B is the bulk modulus). If we analyze the customarily
employed expressions for the energy and the dynamic
matrix, which are equivalent to taking pair interaction
into account, i.e., if we retain in (2.4) and (3.10) only
terms with η = 2, then the expressions obtained for the
compressibility do not agree. At first glance, from the
formal point of view, this may seem natural for a sys-
tem in which an important role is played by the electron
liquid, since the static compressibility is determined by
all the terms of (2.4), whereas the dynamic compressi-
bility is made up only of a part of these terms, those
with η a 2. On the other hand, the dynamic problem in
metals is considered at a constant electron density,
whereas in the static case there appear in explicit form
terms corresponding to the change of the density, and
consequently, for example, to the dielectric constant.

However, as shown by a detailed analysis'-36-1, while
all the indicated problems do exist, a consistent consid-
eration of multi-ion interaction makes it possible to
prove the equality of the static and dynamic compressi-
bilities.

To discuss this problem, we determine first the static
compressibility (5.1), and for the sake of simplicity we
confine ourselves to lattices with one atom per unit cell
(the generalization to an arbitrary case entails no diffi-
culties in principle). To this end we use the expression
for the total static energy
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E^Ei + Ee, (5.2)

where E e is defined in Chap. 2, and for Ei we have

E--^~ V yi fa-2'2 jigiii»-»,,,-, _ 1 y ν i £ ! 2 £ l _ _ l V Ι ί ί ϊ ΐ

(5.3)
The contribution to the bulk modulus B<0) from the en-
ergy E ( 0 ) of the homogeneous interacting electron gas
can be obtained by recognizing that

« dn0 '

and by using expression (4.9):

π(0)

The contribution from E( 1 ) is obtained from (2.9)
directly:

2hz

£2= '

(5.4)

(5.5)

In the determination of the compressibility connected
with the structurally-dependent terms in (5.2), it must
be borne in mind that the energy, besides the explicit de-
pendence on the volume, contains also an implicit depen-
dence via the reciprocal-lattice vectors and via the de-
pendence of the polarization operator 7r(q) on the elec-
tron-gas density n 0 . Accordingly we have1-36-1

ail
=(JL\ L K " / — Λ —H°.tJL\ ( C R I

(the differentiation is carried out throughout at constant
N).

The form of the second term of (5.6) suggests a sim-
ilar change in the unit cell with changing volume. In a
cubic crystal in the presence of an external homogeneous
pressure, this assumption is automatically satisfied. To
simplify the exposition, we confine ourselves henceforth
to just this case.

We calculate now the contribution made to the com-
pressibility by Ei (5.3) and E<2) (2.15). We first fix the
electron density and determine that part of the com-
pressibility which is governed by the first two terms of
(5.6). We take into account here the fact that the second
term in (5.3) does not depend at all on the volume (on
going from summation to integration with respect to q,
the quantity Ω appears, but Ω / Ω Ο = Ν), while the former
depends on Ω also explicitly via K. In addition, we
recognize that by definition we have

Direct calculation yields therefore

·»=±Σ [φ (Κ)-! £κa dif(K)

•l·
, a-tf{K)

OK"- ΘΚ^ ] •

(5.7)

where φ(Κ) is defined by (3.15). It is easy to see that the
contribution from E<2) connected with the change of the
electron density n0 takes the following form:

mi— Σ LT»Ji^is^r-^fi--"Oi'-Ki^^f (5.8)
κ , ο

a π ( Κ ) \ - ι1 χ'Ί

-Τ -jr ««Κ - I VK I1

·)«,, F ( K )

Introducing, as in Chap. 4, the pair interaction <p(q) and
incorporating all the contributions in the static com-
pressibility, we obtain ultimately

Γ 9M
t"p ( K )

(5-9)

Allowance for the next higher term in the expansion of
the electron energy would yield a contribution of the
order of (Vĵ /e-p)3 to the compressibility, and thus (5.9)
determines the static compressibility accurate to
(Vj^/ep)2 inclusive. We compare now (5.9) with the ex-
pression for the bulk modulus

B = CJI±£<IJ (5.10)
3

which will be determined with the same accuracy if we
use the results (4.16) and (4.18) obtained in the preceding
chapter by considering long-wave phonons in the dynamic
problem. Direct comparison of all the contributions to
the static and dynamic compressibilities shows that both
expressions coincide exactly.

A similar proof can be obtained in any order in
Vg/ep. It must be remembered here that, as follows
from the preceding chapter, it is necessary to retain
each time two more expansion terms in the dynamical
matrix than in the corresponding expansion for the en-
ergy.

The result is quite nontrivial, inasmuch as in the
static approach it turned out to be necessary to take into
account the terms E<0), E( 1 ), and E<2) in the expansion
(2.4), whereas in the dynamic approach we have the en-
tirely different terms E<2), E( 3\ and E< 4 ). It is therefore
advisable to discuss the situation in somewhat greater
detail. The term E<2) in the expansion (2.4) for the en-
ergy, if we consider a fixed electron density in conjunc-
tion with Ej, describes the effective pair interaction be-
tween the ions, and it is natural that the contribution,
equivalent to Β (5,7), to the dynamic compressibility is

obtained from the paired part of the dynamic matrix (the
second term in (4.2)). However, changing the volume
alters not only the distance between the ions, but also
the interaction itself, through the change in the electron
density. A unique non-paired type of interaction arises
between the ions in the metal, although the same type is
obtained in the static problem from E< 2 ). This leads to
the appearance of the term B ^ (5.8). It is typical that
the equivalent contribution to the dynamic problem is
now already connected explicitly with the multi-ion terms
of third and fourth order in the electron interaction. It
must therefore be emphasized that if no account is taken
of the multi-ion interaction, the static and dynamic com-
pressibility cannot be made equal. The quantitative dif-
ference between them can be quite appreciable, especially
in polyvalent metals, although it can reach also 30% in
alkali metals.

The part of the static compressibility corresponding
to the continuous medium B<0) + B( 1 ), is also obtained in
the dynamic problem from D p (the first term of (4.2),

which does not depend on K), and equality of the corre-
sponding contributions to the compressibility is obtained
only when account is taken of relation (4.9). Since this
relation is valid only in the exact theory of an interacting
electron gas, in which all orders of perturbation theory
are taken into account, the quantity Ω92Ε<0)/9Ω2 does not
coincide in general with (5.4), in the approximate theor-
ies (for example, a strong deviation from this equality
is obtained in the random-phase approximation).
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The energy of the electron gas as a functional of the
exact Green's function has, as is well known, the station-
arity property1-33-', and is therefore usually determined .
with a higher accuracy than such a characteristic as the
polarizability 7r(q). Therefore to obtain self-consistent ~
results, especially in the analysis of the phonon spec-
trum of metals, it is necessary to use for 7r(q) repre-
sentations that satisfy (5.4) C l 6 ' 3 T ] .

6. NATURE OF VIOLATION OF THE CAUCHY
RELATIONS IN METALS

As is well known^5-1, if the interaction between the
atoms in the crystal has a paired (central) character,
then in the absence of an external pressure the elastic
moduli should satisfy the so-called Cauchy relations

For cubic crystals these reduce to a single relation

It has been established experimentally, however, that the
Cauchy relations are not satisfied in all metals. One
possible explanation (in the absence of overlap between
the ions) lies in the role of the multi-ion interaction
considered above, which leads directly to nonpaired
forces. However, certainly there exist metals where
the multiparticle forces are small, but the Cauchy rela-
tion is violated to full degree. Examples are Na and K,
where the measured phonon spectrum[38>393 is very well
described in the approximation of a pure pair interaction
between ions. The explanation should be sought in the
fact that the contribution of the electron liquid to the lat-
tice equilibrium does not reduce merely to a pair inter-
action between ions. A qualitative explanation of this
circumstance can apparently be found in a number of
papers, but a complete analysis of the problem was given
only recentlyC 3 6 ].

From the expressions (4.15)—(4.18), which were ob-
tained above with accuracy to (VKAF) 2 > w e c a n write
down directly for cubic-symmetry crystals

1 , V π(Κ)1
Ί 2 » flng e (Κ) J (6.2)

To introduce the equilibrium condition we now find the
general expression for the pressure Ρ = —9Ε/3Ω. In ac-
cordance with (5.2) and (2.4), we obtain

p=Pi^yp'n'. (6·3)

The pressure produced by a homogeneous interacting
electron gas

is conveniently expressed in terms of the polarization
operator. To this end it is necessary to integrate the
reciprocal compressibility (5.4) with respect to the den-
sity:

0

For P u ) we get from (2.9)

(6.4)

(6.5)

The other terms of the series (6.2) can be obtained from
the energy by direct application of the operator (5.6).
Confining ourselves to the previous accuracy (Vj^/ep)2

and respectively omitting from (6.3) terms with η > 3,
we obtain ultimately after a number of transformations

(6.6)π(Κ)
r(k)

Now, if we neglect in (6.2) and (6.6) terms that con-
tain the derivatives with respect to the electron density,
then C12 — c4 4 = 2P and the equilibrium condition Ρ = 0
leads immediately to c i 2 = c44, i.e., to satisfaction of the
Cauchy relation. The presence of derivatives with
respect to the density is precisely a reflection of the
fact that the picture of the interaction in a metal cannot
be adequately described in the language of paired forces.

The equilibrium condition with allowance for all terms
in (6.6) leads to the relation

π(Κ)
e(K)

π ( Κ ) \

(The last term can be rewritten also in terms of deriva-
tives of <p(K).) This expression demonstrates clearly
the presence of two causes of violation of the Cauchy re-
lation in a metal. The first is connected with the non-
paired character of the direct inter-ion interaction, and
corresponds to the second term of (6.7) (see the discus-
sion in the preceding chapter). The second cause is the
unique role played by the electron liquid in the formation
of the equilibrium condition of a metal, and is actually
connected with the fact that the Cauchy relations are not
satisfied for a homogeneous electron gas. It corresponds
to a term in (6.7), which can be rewritten also in the
form

( C 1 2 - c 4 4 ) o = :J,_^=_2P.o. + 1 J 5 r . (6.8)

It is interesting that this contribution does not reduce
merely to double the pressure of the electron liquid, as
was sometimes assumed in the earlier papers.

Expression (6.8) depends only on the properties of
the electron liquid and can be obtained for concrete me-
tals if one uses the energy El 0 ), for example in the
Nozieres-Pines interpolation form [ 4 ] . By way of exam-
ple, we present here the values of this quantity for Na,
K, and Al:

Na (c1 2 - c 4 4 ) 0 = 0.176, Κ (<:,., - c u ) 0 = 0.0%,

Al (c l 2 — t u ) , = 0.250.

The experimental values of the elastic moduli yield
0.092, 0.059, and 1.176, respectively, for this difference.
Thus, the nonpaired character of the indirect inter-ion
interaction turns out to be appreciable here even in the
case of alkali metal, and is decisive in the case of alum-
inum.

7. EQUATION OF STATE OF A METAL. THE
"ZERO MODEL"

The expressions (6.3) (or (6.6)) obtained in the pre-
ceding chapter is actually the equation of state of the
metal for the given structure at Τ = 0:
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Ρ = Ρ (°-ο)· (7.1)

The equilibrium condition in the absence of external
pressure

Ρ ( Ω η ) = 0 (7.2)

enables us, knowing the pseudopotential, to find the
equilibrium volume of the unit cell. Since the equili-
brium value Ωο(0) is usually known from experiment with
high accuracy, Eq. (7.2) can be effectively used as an
independent relation between the parameters if the effec-
tive electron interaction is specified by way of a model.

As shown by a direct analysis, in simple nontransi-
tion metals the contribution of P< 2 ) is relatively small,
and for a semi-quantitative analysis it is very convenient
to use the so-called "zero model"1-40'41-1, in which the
structurally-dependent electronic terms are omitted.
The equation of state in this model is the simple form

P-P'» + &-h-gr, ( 7 · 3 )

where γ is a constant that enters in the expression for
the energy of the ion lattice (per ion)

and is directly connected with the Madelung constant.
The zero model is particularly effective in the case of
metals of the Na or Κ type, where the Fourier compon-
ents of the pseudopotential are small at the reciprocal-
lattice points.

For the compression modulus we have accordingly in
the "zero model"

~'l _ * v J ? £ i . . (7.4)
- - Q g n ( O ) ' Ω3 9 ' SJV3 ·

From the form of expressions (7.3) and (7.4) and from
the direct estimate of the terms that are contained in
them it follows that a very important role is played in
nontransition metals, under equilibrium conditions, by
the non-Coulomb part of the averged electron-ion inter-
action, i.e., by the second terms of (7.3) and (7.4). The
equilibrium volume is primarily the result of competi-
tion between this contribution and the contribution deter-
mined by the energy of the ion lattice.

In the model of pointlike ions, i.e., at b = 0, the pres-
sure and the compressibility at ordinary densities turns
out to be in general negative. This makes it possible, in
particular, to understand why a stable metallic phase of
hydrogen should correspond to a much higher density in
comparison with alkali metals (the competition between
the contributions from Et and Ε ( 0 ) ) [ 3 0 ] .

In the case of metals of the Na or Κ type, the contri-
bution from E(0> is also small. Equations (7.3) and (7.4)
therefore lead directly to a universal law for the equa-
tion of state [ 4 0 ' * 1 ]

-J—
B(0)

• Ωρ(0) γ

ι £2ο /

' Ωρ (0)

ι Up ) ' • > / ( ίίιι(Ο) (7.5)

(Bo(0) and Ωο(0) are the bulk modulus and the volume of
the unit cell at Ρ = 0). It is interesting that this law was
empirically established in the analysis of the experimen-
tal data for alkali meta l s [ 4 2 ] .

Figure 5 shows the equation of state obtained i n [ 4 0 ]

in terms of these variables, and the corresponding ex-
perimental points for Na and Κ from1 1 2 6 ' 4 3 1 . We see that
there is good agreement in a relatively wide range of
pressures.

FIG. 5. Equations of state for Na c?
and K.

as-
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8. SINGULARITIES OF ELECTRONIC MANY-POINT
DIAGRAMS

It is clear from the preceding chapters that in multi-
electron theory an important role is played by many-
point diagrams Γ < η \ or diagrams with an arbitrary num-
ber of external-field lines, in which all the properties of
the electronic Fermi liquid are contained. To analyze
particular problems, it is necessary to have for them
explicit analytic representations (see Chap. 11 below).
However, in many cases (singularities in the phonon dis-
persion law, asymptotic behavior of the inter-ion inter-
action, etc.), greatest interest attaches only to the
"singular" part of these many-point diagrams, i.e., to
the character and the position of the singularities of the
many-point diagrams as functions of the external mo-
mentum. We start with a general analysis of just this
problem.

The authors have previously1·44-1 developed a method
that makes it possible to find the singularities of the
many-point diagrams without an explicit analytic calcu-
lation of the diagrams. This method is in a certain sense
an analog of the Landau method^453 for the determination
of the singularities of diagrams in quantum field theory.
The main peculiarity that distinguishes essentially the
case of electronic many-point diagrams is due to the
presence of a background of Fermi particles and of the
Fermi surface in momentum space, and also to the
three-dimensional character of the problem, all these
factors taken together lead to singularities of the dis-
tinct type.

We consider in detail ring diagrams, i.e., diagrams
that do not contain electron-electron interaction lines
(Fig. 6).

As will be made clear later on, it is precisely these
diagrams which determine the leading singularities of
the many-point diagram, i.e., of the entire aggregate of
diagrams with a fixed number of external-field ends.

To take the influence of the distortion of the Fermi
surface into account in many-point diagrams of high
order (with η > 4) (see Chap. 2), we shall use a tem-
perature technique[ 2 3 ] and then let Τ — 0. A character-
istic feature of ring diagrams with static external ends,
which are the only ones involved in the preceding chap-
ters (by virtue of the adiabaticity of the problem), is the

b

FIG. 6
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presence of one and the same frequency ω in all the elec-
tronic propagators. It can be easily seen that taking the
limit as Τ — 0 i s equivalent to the use of the following
representation for the Green's function of the free elec-
trons:

Go(p, «>) -
ω _ ε ο ( ρ )

(8.1)

where eo(p) = p2/2m and μ is the chemical potential. As
δ — 0, this expression coincides with the usual oneC23],
but has for our purposes the advantage that the imagin-
ary increment in the denominator of (8.1) is the same for
all the Green's functions of the ring. A ring diagram with
η external-field ends (see Fig. 6c) corresponds to the
following expression (we omit the coefficients whose
inclusion causes this expression to coincide with
r( n )(<u qn)):

2_ f dp da,
i J (2it)» [<o- g

sgn(m— μ)] . . . [ ω - ε 0 (pn) + i6sgn(co — μ)]' \°'")

here all the p^ are linearly connected with ρ and q̂ .
Using the well known Feynman parametrization formula,
we can rewrite (8.2) in the form

«.- l) . (β.3)

In (8.4) we have used in explicit form the condition

| α , = 1. (8.5)

According to the "Hadamard principle" a singularity of
a multiple integral of the type (8.3Ϊ appears only if the
aggregate of the real parameter q/0> is such that f van-
ishes, and furthermore at a point where simultaneously
each integration variable corresponds to: 1) a second-
order zero or (2) coincidence with fixed boundaries of
the integration contour. Let us analyze expressions
(8.3) and (8.4) from this point of view.

From the form of (8.4) it follows directly that in ω
the singularity can be only of the second type. In the
integration with respect to ω, the entire integration
contour can be shifted, with the exception of the point
ω = μ, which remains fixed. We then obtain the first
condition

ω = μ. (8.6)

The singularity with respect to the variable p, to the
contrary, can only be of the first type. The condition
af/ap = 0 leads in this case to the relation

OlfPl=0. (8.7)

The singularity with respect to the variables α± can be
of either the first or the second type. In the former case,
after first eliminating a n from (8.3) with the aid of (8.5),
we obtain from the condition dt/da^ = 0

ε0 (Pi) = ε0 (Pn)·

Taking into account the alternative possibility of the oc-
currence of a boundary singularity with respect to any
of the variables a^, and also the condition f = 0, we ulti-
mately obtain

ε0 (ρ,) = μ ΟΓ α, = 0 (i = 1, 2 η). (8.8)

Thus, the necessary condition for the appearance of a

singularity in the function Im )(q1, ..., q^) (8.2) is satis-
faction of the relations (8.7) and (8.8). If a i = 0 the
propagator corresponding to a given electron line drops
out in general, and the singularity corresponds to the
singularity of a diagram of lower order ("reduced" dia-
gram) obtained by contracting the given electron line to
a point.

We now determine the character of the resultant
singularities. To this end we carry out in (8.3) integra-
tion with respect to ω and then with respect to ρ in ex-
plicit form. Direct calculation yields

1_ l-m l-α,-...-αη-!

dct\ \ ώ%ι . . . \

ο ο

χ ] / 2πιμ+ 2 I
i, )=1

n - 1

(8.9)

here
«s = qi + · • · + qs. (8.10)

It is assumed in (8.9) that the integration is carried out
only over regions where the radicand is positive. In
addition, we have taken into account the fact that κη = 0
and integrated explicitly with respect to an.

The quadratic form under the square root in (8.9) is
positive-definite, since it is made up of coefficients con-
stituting a Gram determinant. At a fixed value of the ex-
ternal momenta qi; the radicand has a minimum at the
point {a^}, which is the solution of the system of equa-
tions

n— 1

2 ( * ^ ) « J = | * ? . (8.11)
J = l

At this point, the expression under the square root be-
comes equal to (KF is the Fermi momentum)

Δ = «-κ2, κ^Σα,Χί)2. (8.12)

We note that the conditions for the existence of the
singularity (8.7) and (8.8) leads, naturally, to the same
system of equations (8.11), and at the singularity point
itself we have

Δ = 0. (8.12')

The singularity is realized here only at those external-
momentum values qi0) (or K.<0)) for which the solution of
the system (8.11), corresponding to (8.12), lies in the
integration region of (8.9).

Expanding the radicand of (8.9) at small values of Δ
near {αί0)}, and carrying out the integration for the
singular part of I< n ), we obtain after a number of trans-
formations t 4 4 ]

Ι η | Δ | )

(_1)<2'**-1>'ίΔ(-2π+6"21η|Δ| (SIS Odd), ( 8 · 1 3 )

where Δ can be of arbitrary sign;

at Δ < 0, the diagram has no singularities. Here s is
the rank of the square matrix made up of κ^.

l|Xi*i.ll- (8.15)

Expressions (8.13) and (8.14) determine the behavior of
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I ( n ) near a leading singularity of a ring diagram with
η ends. Such a diagram contains in fact also weaker
"boundary" singularities, corresponding to the vanishing
in (8.8) of one or several a^. The behavior of I< n ) near
the boundary singularity corresponding to k values a^
= 0 is described by the same expressions (8.13) and
(8.14), with the substitutions

η -*- η' —η — k, s-*• s',

where s' is the rank of the square matrix of order n' re-
maining after crossing out k rows and columns, with the
indices corresponding to a. = 0, from the initial matrix

Expressions (8.13)-(8.14) together with (8.6)-(8.8)
(or (8.11)—(8.12)) solve completely the problem of the
character and position of the singularities of the ring
diagrams with tails of a static external field for the sys-
tem of Fermi particles. At the same time, it seems that
these singularities remain leading also for the entire
many-point diagram with η external-field ends. Indeed,
the most remarkable result is the fact that in order for
singularities to appear it is necessary that all the vir-
tual particles lie on the Fermi surface (see (8.8)). This
is a reflection of the role played by the sharp boundary
in momentum space, which is typical of the Fermi dis-
tribution. When account is taken of the interaction be-
tween the electrons this sharp boundary, as is well
known, is preserved (see1-46-1, and alsoC23]). On the other
hand, each interaction line is accompanied on the more
complicated diagrams by two electronic propagators and
simultaneously by additional quadrupole integration. It
can be assumed as a result that allowance for the dia-
grams with inter-electron interaction leads to neither
the appearance of stronger singularities nor to a smear-
ing of the singularities obtained above.

We consider now the singularities of separare par-
ticular many-point diagrams. In the case of a two-point
diagram (see Fig. 6a), the solution of (8.11) yields 7^
= 1/2. Then, recognizing that s = 1 and Ki = qi, we obtain
from (8.12) and (8.13) for the singular part

'Ifogfo.. -q.)~(**—f)ln(*i—£)• (8.16)

We arrive at the known singularity typical of the usual
polarization loop^47-1.

For a three-point diagram (see Fig. 6b), the rank of
the matrix (8.15) is s = 2, and the solution of the system
yields

point diagram

" ' ^ ~*~ ' | | V - χ χ 12 ' α 2 2 " Τ κ ί - . , . _ , , -Γ ·

The sum of these quantities should be less than one.
This leads immediately to the limitation

Taking into account (8.10) (Ki = qi, K2 = —q3) and the lee-
way in the numbering of the external momenta, we can
conclude from this condition that the singularity exists
only if the vectors qi, q2, and q3 form an acute triangle.

Using the obtained values of «̂  from (8.12), we get

Q~u·

where q^ is the radius of the circumscribed circle of
the triangle made up of the vectors qi, q2, and q3. We
then obtain from (8.14) for the singular part of the three-

/sta (8.17)

(I is an analytic function at qpj > Kp.) In the degener-
ate case when the vectors qi and q2 are parallel, the rank
of the matrix (8.15) decreases to s = 1, and we arrive at
the stronger singularity

In the case of a four-point diagram we obtain for the
leading singularity (s = 3) from (8.13)

ΛϋιΕ(ΐι· Is· Ί»· Ίί) ~1»ΙΛ'ϊ· -κ/ι|, (8.19)

where κ^ is obtained from (8.11) and (8.12) and corre-
sponds to the radius of the sphere circumscribed around
a tetrahedron with sides qi, q2, q3, q4, qi + <lz, and qt

+ q3. If all the vectors lie in one plane, then the rank of
the matrix decreases to s = 2 and we have in this case
from (8.14)

!· Ί--· 1»· «I»)' (8.20)

For many-point diagrams of higher order, we arrive at
an interesting problem connected with the fact that space
is three-dimensional, i.e., with the fact that s < 3 always,
and the number of external ends increases. We shall not
analyze this case here, referring the reader to the cited
paper[ 4 4 ] for details.

All the singularities considered above become clearly
manifest on the dispersion curves of phonons in metals.
This question is considered in greater detail in the next
chapter.

9. ANOMALIES ON THE PHONON DISPERSION
CURVES

As shown in the preceding chapter, the presence of a
sharp Fermi boundary in the momentum distribution of
the electrons leads to the appearance of an entire
"hierarchy" of singularities in the electronic many-point
diagrams (8.13)-(8.14).

An essential fact is that singularities of this kind can
be observed in experiment directly, by measuring the
phonon dispersion curves. Indeed, in the study of phonons
in the entire momentum space, a continuous variation of
q leads inevitably to satisfaction of the critical conditions
(8.9) for the many-point diagrams that enter in the dy-
namical matrix (3.12). The simplest of the considered
singularities is the two-point-diagram singularity corre-
sponding to the polarization operator of a homogeneous
electron gas. The first statement that this singularity
should become manifest in the phonon spectrum was
made by KohnC48]. The "Kohn" singularity was subse-
quently observed many times in experiments on inelastic
neutron scattering (£49~51] etc.). From the form of the
dynamic matrix it follows that the singularity for a
phonon with wave vector q occurs under the condition

Κ | -- -ZK, (9.1)
If the Fermi surface becomes strongly restructured
near the boundaries of the Fermi zone, then singulari-
ties at certain other values of q can appear in principle,
in addition to the singularities of the points (9.1), which
can be shifted somewhat. This can be easily understood
by using the analysis of Chap. 8. Indeed, when explicit
account is taken of the anisotropy of the electron dis-
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persion law in the Green's functions, the condition (8.7)
is replaced by

(9.2)

here v^(p) is the group velocity of the electrons. (The
remaining conditions remain unchanged.) Prom the con-
dition that <2j be positive it follows immediately in the
case of a two-point diagram that the singularity takes
place for the vectors q + Κ joining two Fermi-surface
points that have strictly oppositely directed group veloc-
ities. In the case of a spherical Fermi surface, the con-
dition (9.2) coincides with (9.1), but additional singu-
larities can appear in the case of strong distortion. In
this case the character of the singularities can be greatly
strengthened; for example, for pieces of the Fermi sur-
face of cylindrical form, the singularity of the derivative
becomes of the root type, and for flat pieces of the sur-
face the singular part itself becomes logarithmic i 5^. It
is interesting that the "flat" situation takes place for
electrons in a strong magnetic f ieldc 5 3 ] .

The singularities corresponding to more complicated
diagrams ( Γ ( η ) ) are connected with the indirect interac-
tion between three and more ions, and the corresponding
many-point diagrams enter in the dynamical matrix with
several momenta equal to the reciprocal-lattice vectors.
Let us consider in greater detail the singularity corre-
sponding to the three-point diagram. In this case, as
seen from (3.12), one of the momenta, say q3, should be
equal to the reciprocal-lattice vector K3. From the
previously obtained condition it is therefore clear that
the "triangular" singularities can be produced only by
vectors |K| < 2|Kf|. Consequently, neither these singu-
larities nor more complicated ones appear at all in
monovalent metals. Singularities occur only in polyvalent
metals and only for the reciprocal-lattice vectors with
the smallest moduli. It is necessary here to satisfy the
condition q^ = Kp in a triangle with sides q + Ki, q — Ki
- K3, and K3.

Figure 7 shows a geometric construction that demon-
strates the position and the character of the singularity
in a metal with bcc structure and r g ~ 2 (the character-
istic density of Pb). The "Kohn" anomalies correspond-
ing to diagrams that are reduced from the "three-point
diagram" are also indicated, and are connected with both
qx and q2. We chose a definite reciprocal-lattice vector
corresponding to the site [111] and considered several
phonon propagation directions q (labeled by the numbers).
Singularities occur when the end of the vector q, desig-
nated O3, crosses a circle of radius K F drawn on the
vector [111]. The figure shows clearly how the singular-
ity, which is strongly pronounced for acute triangles
(2, 3, 4), becomes smoothed out and vanishes for obtuse
triangles, for example (6). This circumstance can be
used for an experimental separation of triangular singu-
larities from "Kohn" singularities.

It should be noted that the results obtained in Chap. 8
correspond to the use of perturbation theory in the
electron-ion interaction, and cannot be used for elec-
trons near Brillouin planes. Inasmuch as one of the vec-
tors of the three-point diagram should be equal to the
reciprocal-lattice vector, expression (8.17) holds outside
a narrow region near the singularity. Inside this region,
on the other hand, the behavior of the three-point diagram
has a more complicated character that depends on the
particular form of the Fermi surface and of the wave

-> 0.10 -

' t - 0.05 -.

0.00
U q/lKe

FIG. 7. Geometry and general form of the singularity of a "three-
point diagram" for different angles of the triangle.

functions of the electron, and the singularity becomes
smeared out. This is a general result for the appearance
of singularities of many-point diagrams on phonon dis-
persion curves. The only exception is the singularity of
a two-point diagram, which does not become smeared
out. However, as seen from Fig. 7, the anomalous char-
acter of the three-point diagram takes place in a much
broader region. Therefore, in spite of the smearing, it
can become manifest to a sufficiently strong degree. It
should be noted that although many-point diagrams of
higher order have stronger singularities (which also be-
come smeared out in principle), the fact that an addi-
tional factor Vji/ep appears each time with increasing η
makes the separation of the singularities of many-point
diagrams with η > 3 difficult.

The appearance of singularities on dispersion curves
that reflect the topology of the Fermi surface is one of
the clearest manifestations of the role of electrons in
the formation of the phonon spectrum. Unlike nonmetals,
where u>a(q) is an analytic function of q, in any case out-
side the degeneracy points, this function is clearly non-
analytic in a metal.

Singularities in the phonon spectrum correspond to
infinite values of the group velocity vffl(q) = Swa(q)/dq.
They should therefore be most clearly pronounced pre-
cisely on plots of the group velocity against q. Figures 8
and 9 show theoretical plots of va(q) for three symme-
trical directions in the case of Na and Al, obtained with
the terms E<2) and E ( 3 ) taken into account. We see how
strikingly different the curves are: there is practically
no fine structure in the former case and an exceptionally
strongly pronounced fine structure in the latter.

The result for Na can be easily understood if account
is taken of the smallness of the ratio V|q ι = 2κ / €F>
which is typical of alkali metals, and if it is recognized
that I I ^ ^ I > 2Kp in such metals, and consequently
there are no singularities for three-point diagrams (and
for many-point diagrams of higher order in general).
The picture is particularly remarkable because it is
difficult to guess, by simply glancing at the dispersion
curves of the two metals (see below), how different is the
information that they contain. In particular, it becomes
clear why it is so easy to describe the Na spectrum
within the framework of the phenomenological model of
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short-range forces, in contrast to metals such as alum-
inum.

The curves in Fig. 9 are quite unique in form. The
regions of smooth variation of va(q) are separated by
numerous singularities of either the "Kohn" or three-
point-diagram type. The "Kohn" type singularities are
only of the "diametral" type, i.e., they are connected
with the initial sphere of the quasifree electrons and by
the same token with the condition (9.1). We have already
noted that the phonon-spectrum singularities connected
with allowance for many-ion interaction are not true
mathematical singularities and should become partly
smeared out. Consequently the behavior of the curves
near the singularities of the three-point diagram are
drawn arbitrarily. It is interesting that although each
singularity connected with non-paired interaction con-
tains an extra factor VK/eF, a strong restructuring of
entire regions of the curves takes place as a result of
the strong character and considerable interval of the
singularity.

Figure 9 shows also the results of exceptionally pre-
cise measurements by Weymouth and StedmanC54:l, which
enabled them to determine the group velocity of the
phonons in aluminum as a function of q. Their study was
devoted specially to searches for Kohn anomalies. In
addition to these two-point-diagram anomalies, which ap-
appear on the theoretical curve, the authors obtained
many anomalies due to restructuring of the elec-
tron spectrum near the Brillouin-zone boundaries, and
the positions of these anomalies are governed by the
positions of the points on the Fermi surface at which the
group velocities of the electrons are antiparallel (see
(9.2)).

They observed at least two singularities that cannot

be identified as "Kohn" singularities. They are located
at q = 0.43 along the [100] direction and q = 0.33 along
the [110] direction (in units of 2π/α). A direct analysis
has shown that the positions of these singularities coin-
cide with the positions of the singularities of the three-
point diagram (in the former case KL = 0, 0, -2, K2 = 1,
1, - 1 , K3 = 1, 1, and there are 16 equivalent sets of
reciprocal-lattice vectors, and in the latter case Ki = 1,
- 1 , - 1 , K2 = 2, 0, 0, and K3 = 1, 1, 1 and the number of
equivalent sets is eight).

Thus, singularities corresponding to three-particle
interaction have apparently been observed for the first
time in this experiment.

We note in conclusion the general reasonable corre-
spondence between the theoretical curves and the experi-
mental results, which is far from trivial at the level of
the derivative of the phonon dispersion law, and can be
attained in principle only within the framework of a
microscopic analysis.

10. INTER-ION FORCES IN A METAL. COVALENCE

The entire preceding analysis of the static and dy-
namic characteristics of a metal was carried out in mo-
mentum space. In principle, however, an alternative
description in coordinate space is possible. Indeed, by
virtue of the validity of the adiabatic approximation, the
energy of the electron system in the field of ions plays
the role of a potential in the problem of ion motion (see
Chap. 1). This potential (see (2.5)) can be regarded as
an effective inter-ion interaction, and we thus arrive at
the concept of forces binding the ions in the metal.

This concept, as already indicated, is not necessary
for the problems considered here. Nonetheless, it is
useful for a discussion of a number of physical questions
that are traditionally considered in direct space, for ex-
ample the covalence question. Traditional crystal dy-
namics was also formulated precisely in this language [5-L
In particular, metals were regarded as characterized by
the presence of a paired centrally-symmetrical interac-
tion between ions, corresponding to additivity of the
forces.

Yet the theory developed above shows that much more
complicated inter-ion interactions are realized in a me-
tal. Indeed, paired simple forces arise naturally from a
direct ion-ion interaction and from an indirect interac-
tion

^ ' ( R . - R ^ - f r S r'^q.-qJI^IVilKi-K*). β0·1)
«Ιϊ-Ο

However, in addition to these there are also interactions
that bind groups of three and more ions. Thus, from the
term E<3) we find (RL t- R2 Φ- R3)

C|f (R, - R3, R2 - R3),., f̂-

q, ( R 2 _ (10.2)

The presence of such a term indicates immediately non-
additivity of inter-ion interactions and the appearance of
unique unpaired forces of the covalent type in a metal.

The expansion (2.5) indicates one more interesting
circumstance. The n-th order term contains contribu-
tions not only from the interactions of η ions, but also
from a smaller number of "different" ions, since this
term takes into account the possibility of multiple scat-
tering by one and the same separate ion. Thus, for ex-
ample, E ( 3 ) contains also an indirect pair interaction as
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the result of double scattering by one ion and single
scattering by another:

= 3-2! -Is- 2 «i"l(Rl-u) Γ'3' (q,, q2, -q,, -q 2 ) VqiF,2V_(qi^2)-
m.q.*o (10.3)

In addition, there is also a homogeneous term due to the
triple scattering by an individual ion:

A similar term is contained, obviously, also in Et 2 ) :

(10.5)

It is clear that in the general case the electron energy
can be represented in the form of the series

(10.6)

9o+2<Pi(Rn) + 4- 2
η ηφτη

4" Σ <P»(R»-Rm. Rn-R,).

Each term of this expansion, which describes simultane-
ous indirect interaction between k different ions, can in
turn, in accord with the foregoing, be represented in the
form of the series

If we analyze the obtained expressions, we come
across the following interesting result. The series (10.6)
and (10.7) are expansions in powers of the electron-ion
interaction, but by no means in powers of the small
parameter VK/eF, as, for example, in (2.16). From
each term of definite order in V^/e^, for example from
E(3), we obtain several terms (10.2)—(10.4) containing Vq

already in the intermediate momentum regions, where
the potential, generally speaking, is not weak (see (3.13)).
If the role of the small q in (10.3) and (10.4) is apprecia-
ble, as is the case in a number of polyvalent metals, then
the convergence of the series (10.7) turns out to be slow.
In particular, pair interaction, which in accordance with
the usual practice is taken only from E<2), is in fact ap-
preciably altered, and this may turn out to be important
for many problems that use coordinate representations,
for example for the description of vacancies. It would
therefore be attractive to construct a technique for the
summation of the series (10.7) and to express the
answer, for example, in terms of an exact amplitude for
the scattering of an electron by an individual ion. How-
ever, owing to the presence of electron-electron inter-
action at the typical metallic electron densities, this is
strictly speaking impossible.

We note that this is not necessary for our problem,
since interference produces in a metallic equilibrium
crystal, as a whole, a mutual cancellation of the electron
scattering corresponding to the terms <p(P) at a fixed

Κ

value of p. As a result, the only remaining contributions
are those from electron scattering with transfer of a
momentum equal to the reciprocal-lattice vectors. This
is precisely why the total inter-ion interaction in a me-
tal is expressed in the form of a series in powers of the
small parameter Vjj/ep, although the interactions them-
selves, in clusters consisting of several ions in the elec-
tron fluid, do not contain this parameter in explicit form,
and the series (10.7) as described by expansions that
converge more slowly. Consequently, the separation of
paired and non-paired interactions from the terms of

definite order in Vĵ /ep i-n (2.5) is much less effective in
the calculations than the determination of their joint con-
tribution. Thus, for example, the corrections to the pair
interaction from E( 3 ) (10.3) are of the same order as the
three-particle interaction (10.2) from the same term, as
can be shown by a direct analysis (see1-28-1), and as a rule
are larger than E<3) itself.

Thus, the cooperative character of the interactions in
the metal leads to the onset of complicated unpaired
forces, which represent forces that unify clusters of
three, four, etc. ions. If for some reason phase-space
regions near the boundaries of Brillouin zones become
significant, then to describe the contributions of such a
region to the interaction we must use expressions of the
type (3.16), without expanding in the electron potential.
This gives rise to one more increment to (10.6), which
has no "cluster" character, but pertains in coherent
fashion to the entire crystal as a whole. Such non-paired
terms, in particular, should be significant for the coup-
ling and dynamics of oscillations of semiconductors,
where there is no free Fermi surface at all, and also in
those metals having a large number of gaps that "fall"
on the Fermi surface (e.g., in Be). For most metallic
crystals (and also liquid metals) they do not seem to
play a noticeable role.

Let us discuss the asymptotic behavior of the resul-
tant forces. The total indirect pair interaction between
ions is described by the term <p2 in (10.6). The first
term of the expansion (10.7) for φ 2 is the usual expres-
sion used to describe the interaction between two ions
in an electron liquid (see, e.g., '-1-'), which leads to an
axially-symmetrical force matrix in the form (3.7). As
is well known, since the polarization operator is not
analytic at |q| = 2KF (see (8.16)), the function ψϊΖ) (10.1)
has a non-exponential asymptotic form (Friedel oscilla-
tions)

cos2KF|Ri-- R (10.8)

It is easy to understand that the next terms in φ2 de-
crease at any rate no slower than (10.8). This can be
seen from the fact that although, for example, Γ ( 3 ) has a
stronger non-analyticity than Γ ί 2 > (see (8.17)), Γί3) (10.3)
contains on the other hand an extra integration with
respect to q. A similar situation obtains also for all the
remaining contributions to the pair interaction. Thus,
the asymptotic form of the pair interaction retains the
form (10.8), and the coefficient of this term is obtained
as an expansion in the pseudopotential.

The long-range character of this interaction causes a
slow decrease of the force-matrix parameters with the
number of the coordination sphere, as first revealed by
the now classical experiments on the measurement of the
phonon spectrum of lead1-50·1, where the indirect interac-
tion plays a very important role.

We note that allowance for the nonsphericity of the
real Fermi surface can change in some cases the asymp-
totic form of the pair forces. Thus, in the case of a
strictly cylindrical Fermi surface, owing to the stronger
character of the singularity ([52-1, see Chap. 9) we get
1/r2 in place of 1/r3, and in the case of a flat surface we
even get l/r.

The aggregate of the terms φ^ with k > 3 describes
unpaired indirect interaction at a fixed density. Compar-
ing again the character of the leading singularity for an
n-th order many-point diagram and the general expres-
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sion (2.12) with the number of integrations with respect
to q, we can conclude that the unpaired interaction de-
creases asymptotically with increasing distance between
any of the ion pairs, at a rate that is likewise not slower
than (10.8).

We note in conclusion that the unpaired interaction
that depends on the mutual position in space of several
ions and leads to the appearance of covalent-type forces
is sensitive to the structure of the crystal. It therefore
differs in principle from the paired forces and cannot be
imitated by any special choice of the electron-ion inter-
action, including also in nonlocal form. The role of the
unpaired forces in the dynamics of polyvalent metals can
be quite significant, and in many cases decisive, for ex-
ample, in the problem of the dynamic stability of compli-
cated m e t a l s [ 1 5 ' 1 6 ] . All the features of this interaction
are manifest already in principle in the leading term
(10.2), and in the dynamic matrix by the associated con-
tribution with η = 3 (3.12). Therefore in the analysis of
the phonon spectrum of polyvalent metals it is of funda-
mental importance to take into account at least this term
in the dynamical matrix.

From the experimental point of view, particular in-
terest attaches to a direct observation of the manifesta-
tion of unpaired forces. One possibility of such observa-
tion was already encountered by us—we have in mind the
"triangular" or singularities of higher order on the
phonon dispersion curves (see Chap. 9). We shall dis-
cuss here one more direct manifestation of unpaired
forces, namely the lifting of the degeneracy in a phonon
spectrum by these forces1-55-1.

As already noted, paired interaction leads to axial
symmetry of the force matrix for each pair of ions. As
a result, the dynamic matrix can have in the general
case a higher symmetry than dictated by the spatial
symmetry group of the lattice. This circumstance can
lead to additional symmetry in the phonon spectrum at
definite points of phase space, which, however, is lifted
in the presence of unpaired forces. Therefore the quali-
tative restructuring of the spectrum and its scale is
therefore evidence of the existence of non-paired forces
and of their quantitative characteristic.

A clear-cut example of this situation is the behavior
of the phonon dispersion in hexagonal metals in the sym-
metrical point K^55]. In the absence of non-paired
forces, there are two degenerate frequencies at this
point, ω? = ωΐ, and two other frequencies, ω\ and J\,
which are shifted away from them upward and downward
by strictly equal distances. In the presence of non-paired
forces, the degenerate level shifts relative to the center
(o)2 + ω\)/2. The available experimental data on the
measurement of the phonon spectrum in hexagonal me-
tals demonstrates clearly the shift of the degenerate
frequency (see, e.g., the spectrum of Mg in Fig. 13 be-
low), and the value of this shift offers evidence of the
appreciable scale of the unpaired forces. It turned out
to be particularly large in Zn [ 5 6 ] and in B e [ 5 7 ] .

11. CALCULATION OF IRREDUCIBLE MANY-POINT
DIAGRAMS

For a quantitative analysis of the phonon spectrum in
all of phase space, it is necessary to know important
characteristics of the homogeneous electron liquid,
namely irreducible many-point diagrams A<n)(qi, ..., qn)

with arbitrary values of the momenta of the external
"ends."

Of course, owing to the absence of a small parameter
at the characteristic metallic densities, one cannot hope
to obtain exact expressions for them. There exist at
present, however, a number of interpolation schemes
that make it possible to obtain sufficiently reasonable
approximations (see below). In all cases it is necessary
to know the principal "skeleton" structures, which serve
as the basis for further approximations. It is easily
understood that they correspond to many-point diagrams
(for a two-point diagram—the simple polarization loop).

The representation (8.9) obtained above is very con-
venient for a direct integration of such ring diagrams.
(A method for finding an analytic expression correspond-
ing to an arbitrary η-point diagram was developed
in'-27-'.) For a multipoint diagram (simple loop) we ob-
tain the well known expression'-47-'

l-(g/2A»s
(IUK-F

In

For a three-point diagram we have1-44'75-1

- Δ χ
Ιιι|(1-ΔΛ)/(Η-Δ/1)| for KF

2arctgA.4 for
(11.2)

here

Δ = i i i ) 2 - 1 I,

qpj is the radius of the circumscribed circle, and cos θ^
~ ~(%^ι)/%<!/· ^he D r a n c h 0 s tan"^ < π is proposed
for the arctangent. A similar result can be arrived at
also by direct calculation of the single-electron energy
in third order in the electron-ion interaction'-59-'. Ex-
pression (11.2) for the three-point diagram is found to
be automatically symmetrical with respect to permuta-
tions of qA.

For a four-point diagram it is necessary already to
carry out a special symmetrization (the operation S):

J^IJ tqi» q 2 ; q3> *ΐί) = ~^' ' q i ' q2) q3^ q^)» ν Α Α · Ί /

the integral I< 4 ) is defined in (8.9). In the general
"spatial" case the formula for I<4> is quite cumbersome
and is expressed in terms of a single integral (see^27-1).
If we consider the frequently encountered planar case,
when all four momenta q̂  lie in one plane, the integration
can be carried through to conclusion, and we obtain

+ /'2V
3'(q2, qa, ~{q2+q3))-\ P3'\'"(q,,<h, — (q3 -i q4))

-I /VV3>(q4, q,. -(q,-{-q4))]; ( H . 5 )

The three-point diagram Λ<3) is defined in (11.2), and

(the remaining P^ are obtained by cyclic permutation).

An important particular case of this expression is
encountered when the momenta are pairwise equal:

, q 2 , — — q2)

'/! '(qi, - q i , — q 2 , q 2 ) - — q l f q2, — q2)]; ( 1 1 . 6 )
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here form

-If

The obtained symmetrized expression for (11.6) is quite
compactC27-1:

| -(1/2) In | (1 -Δ+4+),'(1 + Δ+4+) |, KF,'sS< 1,1
X

-(1/2) In | (1 -Δ"Λ-)/(1 +
·]••

here qi = — (qx ± q2), and the corresponding quantities
q™, Δ 1 , and A* have been introduced.

The diagram 1^' is of interest in that it contains an
"anomalous" contribution due to the coincidence of poles
from two G-functions. As already noted above, the in-
tegral representation (8.9) yields automatically the sum
of the "normal" and "anomalous" contributions. How-
ever, the "anomalous" contribution can be separated in
principle:

,, - q . , - q . ) = - 2 Σ < Κ ε , -

The obtained integral (for the region qx, q2 > 2KF) can
be easily calculated:

T(A> — , ITI ι ( 1 1 > O I

A curious property of the anomalous contributions is
the fact that at small K F they are proportional to KF,
whereas the "normal" ones are proportional to Kp.

The expression for the complete four-point diagram
Λ<4), as follows from (2.13), consists of (11.7) and an
increment Λ1 '̂, which in this approximation is equal to
(see (2.14))

"~±£l-("·9)1 η In

A direct use of expressions (11.1), (11.2), (11.6), etc.,
corresponding to the ring diagrams, obviously conforms
to an approximation of the self-consistent-field type, in
which rescattering of electrons by screened ions, without
exchange with the perturbed background, is taken into
account. This approximation, which is valid in the case
of high densities, is of limited accuracy at the typical
densities in metals. Unfortunately, the electron gas has
no small parameter at these densities, and it has there-
fore been impossible to develop so far a regular tech-
nique appropriate to the problem and with controllable
accuracy.

However, in spite of the difficulties, progress has
been made recently in the analysis of this problem, by
using certain self-consistent schemes or by attempting
to select and summarize entire classes of diagrams. All
these efforts consist of investigations of the dielectric
constant of a homogeneous gas, and lead to a polarization
operator that can be represented in the static case in the

(11.10)

Only the functions G(q), which play the role of the effec-
tive electron electron interaction, are different.

The first attempt to go outside the RPA framework
was made by Hubbard'- , who attempted to summarize
approximately the simplest class of exchange diagrams.
As a result he arrived at an expression of the type
(11.10) with

(11.11)

In this form, however, ir(q) does not satisfy the identity
(4.9). Several modifications of (11.11) were subsequently
proposed. The most frequently used form was that in-
troduced by Geldart and Vosko[ 3 7 ] :

(11.12)

where the parameter ξ was obtained precisely from the
condition that (11.10) satisfy the identity (4.9). Inasmuch
as we have already noted in Chap. 5, the compressibility
κ is determined from the energy with sufficiently high
accuracy, the values of π(0), and at the same time also
e(q) at small q were determined in this case with per-
fectly reasonable accuracy. At metallic densities, the
principal role in the compressibility is played by the
exchange term (see, e.g. [ 4 ]) and

2
1 = -.2. (11.13)

The next step was made in a recent group of studies
by Geldart and Taylor[ 6 1"6 3 : i, in which an attempt was
made to select the most essential class of diagrams for
the static polarization operator. The mutual cancellation
of definite aggregates of diagrams, which is strongly
pronounced in the Coulomb case, was traced during each
stage. Particular attention was paid also to the need for
satisfying the identity (4.9).

An entirely different approach, but one leading to
close results for the same region of q, was developed at
Argonne t64"66^, They made an approximate attempt to
include, in a self-consistent manner, the corrections for
the local field, with an aim at taking the correlations at
short distances between the electrons into account, using
a pair-correlation function for this purpose.

An approach based on the method of uncoupling the
equations of motion for the Green's function was pro-
posed by Toigo and Woodruff'-6'7"69·1. In principle, such a
technique may turn out to be quite useful for this prob-
lem. A study of e(q) is reported also in a number of
papers (see'7 0"7 3 3).

FIG. 10. Effective-interaction
function G(q) in different theories:
H-Hubbard, TW-Toigo-Woodruff,
GT-Geldart-Taylor, STLS-Singwi-
Tosi-Land-Sjolander, HGV-Hub-
bard-Geldart-Vosko.
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We note that in the dynamic matrix, and when the
static properties are described, we are interested ac-
tually in the behavior of the static polarization operator
only at q ^ 2Kp. The abrupt decrease of wo(q) at
q > 2Kp makes the error in the determination of G(q)
negligible in this region. At q %. 2KF, however, all the
recent papers give a relatively similar behavior of G(q)
(Fig. 10), which can be assumed to represent the true
behavior in this region with reasonable accuracy.

It is possible also to improve accordingly the ap-
proximation for the irreducible many-point diagrams.
To this end, we note that the total irreducible polariza-
tion operator is described by the following diagram:

f

Analyzing the approximations that lead to (11.10), we
can easily understand that they are actually equivalent to
replacing the exact vertex by an approximate one that
depends only on the momentum transfer (and letting G(p)
- Go(p)):

71(p,q)«7'(q) =
1 - (4JWW) G (q) π 0 (q)

(11.14)

Proceeding analogously for many-point diagrams, i.e.,
taking into account at each vertex the possibility of ex-
change and of correlation of the electron with the screen-
ing background, we obtain

r < n ' ( q , , . · . , q n ) = T " 1 " ••-
e ( q i ) ·•· « (

(Aj,n) is a ring η-point diagram); here

(11.15)

(11.16)

We note, and this is quite important, that the approxi-
mations for all the irreducible many-point diagrams turn
out to be reconciled in this case, in the sense that the
hierarchy of the identities (4.6) is automatically satis-
fied, since we can show directly for ring diagrams, with
the aid of the representation (8.9), that

. (H.17). _ 1 <№">(q,, ..

12. MANY-PARTICLE PROBLEM WITH ALLOWANCE
FOR NONLOCALITY OF THE ELECTRON-ION
INTERACTION

So far, the entire analysis was carried out assuming
locality of the vertex of the electron-ion interaction,
corresponding to the substitution (2.3) in the initial
Hamiltonian (2.1). From the fundamental point of view,
the nonlocality of the potential introduces no new phys-
ical aspects into the problem, and all the qualitative re-
sults remain unchanged, but formal allowance for the
nonlocality leads to certain complications in the scheme
of the many-particle theory. The reason is that the
problem is no longer factorized into separate ionic and
electronic components, since the vertices of the
electron-ion interaction, which now depend on the initial
momentum, enter in the integrand (Fig. 11).

We shall consider specially only the question of the
energy, bearing in mind the fact that the transition to the
dynamical matrix and to other quantities remains the
same as in the case of the local potential. If we forgo

FIG. 11 FIG. 12

(2.3), then the diagram (see Fig. 2) yields obviously for
E u ) in place of (2.9)

£ ' » = » k k n k . (12.1)
*k

For the energy Ε ( 2 ) we can similarly use the same dia-
gram representation as before (see Fig. 3). Now, how-
ever, characteristic blocks which are irreducible in the
electron-electron interaction (Figs. 12a and 12b) appear
and are no longer expressed in terms of the irreducible
polarization block 7r(q). Summing over all the polariza-
tion blocks that are strong on the electron-electron
interaction line, we obtain (Fig. 12)

In the local case we have R(q) = V_qT =
l

|V

• (12.2)

27r(q) and
expression (12.2) reduces to the usual expression (2.15).
The simplest approximation corresponding to the RPA
approximation consists of neglecting (in the nonlocal
case) the electron-electron interaction in R(q) and T(q):

(12.3)

*k+q

Substituting everything in (12.2), we arrive at an expres-
sion for E< 2 ) coinciding with the expression usually em-
ployed in practice in the case of a nonlocal potential E74-1.

It is of interest to separate in explicit form the
screening of the nonlocal potential. In graphic form, the
corresponding expression coincides with Fig. 4, when
account is taken of the complication with the vertex (see
Fig. 11). In analytic form this corresponds to

(12.4)

(12.5)= <q) '

The screening potential Vgq(q) is thus always local. If
the initial potential is also local, then we arrive at the
natural expression

Vk.k+q -+UqlB(q), (12.6)

which was indeed used by us to separate the irreducible
blocks (2.12). Now when the screening potential (Vsq(q))
is substituted in (12.2) instead of one of the T(q), we can
obtain another general representation of E( 2 ) . In the ap-
proximation (12.3), this representation corresponds to
the following widely-used form:

2' = ΎΣ\^ΓΣ^"\Ί^ £k+q
(12.7)

We consider now an arbitrary term E ( n ) with η > 2.
This term is determined by a block with η external-field
ends (see Fig. 1), where all the vertices again depend
on the electron momenta before and after the scattering,
and must therefore be included in the general integration
of each diagram. It is interesting that in this case one
can carry out a partial summation that leads to a re-
placement of each external-field line by a "thick" line,
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which at this instant is equivalent to the substitution

We present here in explicit form an expression
(analogous to (12.7)) corresponding to allowance for only
ring diagrams, i.e., without electron-electron interac-
tion lines inside the ring (see the discussion in Chap. 11):

E < 3 > = 4 Σ
n,) <?ί3> (ql t q,, q.) Δ (q, + q2 + q,),

X G<°> (ρ, ω) G<«> (p + q,, ω) G<°> (p + q, + q2, ω), ( 1 2 . 8 )

where the Green's function of the electron is defined in
accordance with (8.1). We note that the integration with
respect to ω is carried out in this expression in just as
elementary a manner as before.

In the case of a local potential, the relation (12.6)
holds true and we have

where Λ<3) is the three-point diagram obtained in Chap.
11. For arbitrary n, the expression for EW has an
analogous structure.

From the form of the expressions and from an analy-
sis of the general initial formulas we can deduce that all
the general results remain fully in force in the case of
a nonlocal potential. This pertains, in particular, to the
ratio of the dynamic and static compressibilities, to the
position and the character of the singularities in the
phonon spectrum, to the unpaired character of the in-
direct inter-ion interaction, etc. (Allowance for the non-
locality does not change by itself the picture of the inter-
action between the ions in a metal, and consequently, is
by no means an alternative for taking the many-particle
forces into account, as is sometimes stated.)

A correct description of the qualitative picture, while
analytically simple, makes the approximation corre-
sponding to a local effective electron-ion interaction
attractive whenever the physical aspect of the results is
of primary importance.

13. ROLE OF ELECTRONS IN THE FORMATION OF
THE EQUILIBRIUM LATTICE OF A METAL

The microscopic theory developed in the preceding
chapter has made it possible to describe by means of a
single scheme, using the same quantities, both the vibra-
tional spectrum and the equilibrium structure of the me-
tal.

In this chapter we wish to reveal certain general
regularities that explain the role of the electrons in the
formation of the static lattice in a real metal. We are
interested in the character of formation of both the
equilibrium density and the equilibrium crystallographic
structure.

The first and simpler problem was already qualita-
tively considered in Chap. 7. For a quantitative illustra-
tion, Fig. 13 shows a plot of the total energy and of its
individual contributions against the volume of the unit
cell for Na.C 4 i : i We see that the role of the structurally-
dependent terms E(2> and E<3> in Na is indeed very small.
The equilibrium density is primarily the result of com-

FIG. 13. Dependence of the total
energy of Na and of its individual contri-
butions on the volume Ω ο of the unit cell.
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petition between the ion energy
1

Ωϊι/3 and the energy
E ( 1 ) ~ Ωό1. This remains qualitatively valid also for
other nontransition metals, so that the zero model intro-
duced above (see Chap. 7) accounts correctly for the
main regularities in the formation of the equilibrium
volume.

If it is recognized that E, depends relatively little on
the structure, and that E( 1 ) (as well as E( 0 )) does not de-
pend on it at all, then it becomes clear that the equili-
brium density is determined to a considerable degree
independently of the structure, i.e., by the concrete con-
figuration of the ions.

We note also that the presence of a minimum on the
Ε(Ωο) curve indicates a locally stable metallic phase. To
ascertain whether this phase is absolutely stable, it is
necessary to compare in principle with other phases, for
example, the atomic or molecular phase.

The question of explaining the realization of any par-
ticular structure is much more subtle, since in this case
the large volume terms drop out from consideration and
it is necessary to investigate small structure-dependent
terms.

We now examine the problem of explaining the
"anisotropy" of uniaxial metals, i.e., how the considered
theory explains the different c/a ratios for metals. We
note first that the competition takes place now between
the ion energy Ej and the electron energy E< 2 ) + E<3) + ...
The ion energy is lowest in this case for close-packed
structures. As to the most important electronic contri-
bution, E<2), it reveals, as first noted by Heine and
Weairet a : i, a tendency to form anisotropic structures.
This can be easily understood. Only the values of the
potential at the reciprocal-lattice sites contribute to the
electron energy of the static lattice (see (2.15)). It is
clear from this expression that if the anisotropy is in-
creased, i.e., if some of the reciprocal-lattice sites are
shifted to a region of smaller q, where Vq is stronger,
we always gain in energy. However, very large distor-
tions are certainly undesirable, owing to the sharp in-
crease in the Ewald energy (the charges come closer
together), so that the real situation at intermediate dis-
tortions depends on the scale of the potential.

These considerations are illustrated in Fig. 14 with
Mg as an example l 7 S l. We see that in Mg the electron
energy has a tendency to anisotropy, but shifts c/a only
slightly from the value corresponding to the minimum of
the total energy (c/a = 1.636).

It appears that a similar situation obtains in metallic
tin (β-Sn). Figure 15 shows the Madelung constant a ^
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FIG. 14. Dependence of the total energy of Mg and of its individual
contribution on c/a.

FIG. 1 5. The Madelung constant for the ion energy in the structure
of |3-Sn as a function of c/a.
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FIG. 16. Total energy of uniaxial lattices of metallic hydrogen as a
function of c/a. Structures: 1 —face-centered cubic (fee), 2—body-cen-
tered cubic (bec), 3—hexagonal close packed (hep), 4—diamond, 5—white
tin, 6-face-centerd tetragonal (fct), 7-primitive cubic (pc), 8-primitive
tetragonal (pt), 9—trigonal (rhombohedral) (re), 10—primitive hexagonal.

The foregoing examples and remarks explain the
qualitative picture of the influence of electrons on the
formation of an equilibrium structure of metals, the
principal difference between which is precisely the
presence of a subsystem of quasifree electrons.

14. ROLE OF ELECTRONS IN THE FORMATION OF
THE PHONON SPECTRUM OF METALS

We now turn to the analysis of the general regulari-
ties in the influence of electrons on the formation of the
phonon spectrum of metals.

It must be emphasized immediately that the study of
such differential characteristics as the phonon spectrum
offers a unique possibility of comparing the theoretical
concepts with experiment, since we are dealing with the
determination of the phonon spectrum in all of phase
space. Accordingly, the results are sensitive to the be-
havior of both the electron-ion and electron-electron
interactions for a continuous momentum interval, in con-
trast to the static quantities, which are determined by
the corresponding values at discrete reciprocal-lattice
points.

The role of the electrons is most clearly revealed if
the vibration spectrum of the ion lattice of the metal is
compared with the experimentally observed spectrum.
Figure 17 shows curves for the Na lattice line and the
experimental points'-76-1. The most significant changes
occur, naturally, in the longitudinal branches, which turn
from ionic plasma oscillations in the immobile back-
ground, when the electron "response" is taken into ac-
count, into acoustic oscillations. (For small momenta
this question is discussed in detail in Chap. 4.) What is
more unexpected is the fact that the ion lattice becomes
attuned to the characteristic values of the frequencies,
and that some transverse modes are in general very
well described even in this approximation (a similar
picture holds also for the shear moduli (see below)).

A much different situation is observed in metallic
aluminum (Fig. 18; the experimental data are taken from
the paper of Stedman et a l . [ 7 7 ] ) . There the characteris-
tic frequencies of the ion lattice at the end point of the
band are already approximately double the corresponding

for this structure as a function of c/a. It has a minimum
at c/a = 0.545 close to the experimentally observed value
(c/a = 0.553 at Τ = 0), so that the electronic contribution
likewise shifts only insignificantly the minimum already
present in the ion lattice. (We note that in the Ge lattice
the value c/a = VlTcorresponds to a maximum on this
curve.) In principle, however, it is possible also to have
a situation wherein the strong electron-ion interaction
"wings" and leads to anisotropic structures.

By way of a clear-cut experiment we consider the
metallic phase of hydrogen[ 3 0 ], where the electron-ion
interaction constant is very large because of the absence
of an ionic "core." Figure 16 shows the total energy as
a function of c/a for a number of uniaxial structures
(individual points correspond to cubic lattices). Aniso-
tropy is observed everywhere, i.e., the electronic con-
tribution prevails, the structures deviate from close-
packed with "double-hump" curves and the distortion is
strong in all cases. It is possible that a similar situa-
tion is realized in Zn and Cd, in which large deviations
of c/a from the ideal value have been observed.

FIG. 17. Ion-lattice vibration frequencies and
cies of the phonons in Na.
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FIG. 18. Frequencies of ion-lattice vibrations and experimental fre-

quencies of the phonons in Al.

experimental values. The compensation is even more
appreciable for phonons in Pb. To illustrate the situa-
tion, Table I lists the values of (ω^/ω0)

2 and (ωβχρ/ωο)2.

Here ωο is the plasma ion frequency, which is a natural
scaling characteristic of the spectrum, while ω? and
ωβχρ w e r e taken at the boundary of the Brillouin zone
along [001].

TABLE I. Squares of frequencies in units of the
plasma frequency

((ui/ωο)2

(ωοχρ/ωο)2

Na

L, τ (Hn)

0.333
0.248

Al

I· (*l) | Τ <*s>

0.678
0.105

0.161
0.037

P b

0.678
0.031

T(Xi)

0.161
0.007

The table demonstrates the tremendous growth of the
contributions from the electrons in the sequence Na, Al,
Pb (see the analogous discussion i n t 9 ] ) . Thus, even an
analysis of the experimental results without introduction
of a concrete theoretical scheme allows us to conclude
that the role of the electrons varies very strongly from
metal to metal.

We shall now show that the microscopic theory makes
it possible to explain in a perfectly natural manner the
indicated regularity. We consider for simplicity the
electron contribution in only the second approximation
in the pseudopotential. We introduce for convenience the
notation

| l ' | i j l ( q ) S 2 Oo (14.1)

Then the electron contribution to the dynamical matrix
of a monatomic metal takes, in accordance with (3.12),
the form

K q (14.2)
For all three metals in all the symmetrical directions of
q shown in Figs. 17 and 18, the dynamical matrix can be
factored and the oscillations can be separated into purely
transverse and purely longitudinal modes.

It is easily seen from an examination of the corre-
sponding angles that the term with Κ = 0 makes no con-
tribution to the transverse oscillation modes, and we
obtain

,
(14.4)

Thus, the transverse modes of the oscillations are
screened only with the aid of "Umklapp processes" and
receive no contribution from the "continuous medium."
(This circumstance is already discussed in connection
with the problem of the shear moduli in Chap. 4). It is
obvious from (14.3) and (14.4) that the character of the
behavior of *(q) and the location of the reciprocal-lattice
vectors for the given concrete metal become very im-
portant.

Figure 19 shows the function *(q) for Na, Al, and Pb,
and indicates the locations of the lattice points; for the
sake of uniformity, we used the calculations of
Animalut78^ within the framework of the Abarenkov-
Heine model. (For convenience, a section of the figure
is shown enlarged.)

It is clear now that the decisive circumstance for Na
is precisely the distribution of the reciprocal-lattice
points, the closest of which is located much farther to
the right than q0, which is the first zero of Vq. This

obviously corresponds to the fact that in monovalent Na
the Fermi surface lies entirely in the first Brillouin
zone, i.e., 2Kp < Km^n, and q0 is usually even somewhat
smaller than 2Kp. As a result, the terms with Κ / 0 in
(14.3) and (14.4) play a very minor role, so that they
transverse oscillation modes in Na are determined
almost completely by the ionization lattice (especially at
small q). As to the longitudinal modes, the principal
term for the electronic contribution is the one with
Κ = 0 in (14.3). It is easily seen that the electronic con-
tribution to the longitudinal phonons is determined at the
boundary of the band principally by the value of *(q) at q
equal to half the distance to the corresponding site, and
therefore it likewise screens the ion lattice weakly in
Na. It is obvious here, in full accord with Fig. 17, that
the values of the frequencies should be most strongly
shifted for q in the direction [001].

The nearest reciprocal-lattice points in Al and Pb lie
much closer than in Na, this being obviously due to the
fact that Al and Pb are polyvalent metals. Therefore,
first, an essential role is assumed by the terms of
Κ Φ- 0, and, second, the term corresponding to the
"continuous medium" on the boundary of the Brillouin
zones is quite large. All this explains the appreciable
enhancement of the role of the electrons, and it is clear
from Fig. 19 that the behavior of *(q) and the disposition
of the lattice sites indicate that the maximum electronic
contribution is made precisely in Pb.

- >F(K)coS

2

(14.3)
FIG. 19. Energy characteristic * ( q ) for Na, Al, and Pb, and positions

of the corresponding reciprocal-lattice sites.
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FIG. 20. Energy characteristic * ( q ) for Be, Mg, Zn, and Sn, and
positions of the sites of the corresponding reciprocal lattices.

Even more interesting possibilities for the compar-
ison of theory with experiment are provided by an analy-
sis of diatomic metals in which there are optical fre-
quencies. Let us consider the limiting optical frequen-
cies at q = 0, and designate them o>c(0) and wa(0) in ac-
cordance with the oscillation polarizations (in uniaxial
crystals, the two frequencies <t>a(0) are degenerate).
Table II lists the data for these frequencies in Be, Mg,
Zn, and /3-Sn (using the same notation as in Table I). We
see that for each element there is a low frequency, to
which the electrons make a small contribution, and a high
frequency, where this contribution is appreciable. To
explain this result1-15'6-1, we use expression (4.19), which
we rewrite to conform with the notation in (14.1):

ωΐ (0) = (ojj (0) - ω0

2 V ψ (Κ) cos (Κ, ρ) cos2 (c s , Κ);
κ * ο

(14.5)

here ρ is the basis vector of the second atom and e g is
the polarization of the oscillation mode.

With the aid of Fig. 20, which shows the function *(q)
for the corresponding elements, we can explain the data
listed in Table Π. Indeed, the factor cos(eg, K) makes
the roles of the individual reciprocal-lattice sites quite
different for frequencies with different polarizations. In
hexagonal metals, the "strongest" sites [001] contributes
only to the screening of ω£(0), and in tin the site [110],
to the contrary, strongly screens just the frequency
ω^(0). All the other frequencies are weakly screened.
In addition, it is clearly seen from Fig. 20 that the in-
tensity of the screening due to the site [001] increases in
the sequence Be, Mg, and Zn, in agreement with the data
listed in Table II. Thus, the unique behavior of the opti-
cal frequencies is also naturally explained in the micro-
scopic theory. We note incidentally that the foregoing
considerations not only explain the variation of the elec-
tronic screening from metal to metal, but also show how
a strongly anisotropic oscillation spectrum is reduced,
only as a result of the location of the reciprocal-lattice
sites, even if the interaction V(|q|) is isotropic.

We now examine the role of the electrons in the dy-
namic stabilization of the metal lattice. As already

TABLE II. Squares of frequencies in units of the plasma frequency

noted, the sum of all the forces acting on a given atom
in the equilibrium position is always equal to zero in
symmetrical lattices, and is equal to zero in other lat-
tices, such as bismuth, under certain conditions. This
means that a stationary point corresponds to a given
configuration. This situation, however, can correspond
not only to a minimum but also to a maximum or to a
saddle point. The lattice is then dynamically unstable and
imaginary oscillation frequencies appear. It is natural
to distinguish between long-wave elastic instability, i.e.,
instability relative to a definite homogeneous deforma-
tion, and a short-wave instability, corresponding to
phonons with finite momenta.

It was shown for the first time in [ 1 5 ' 1 6 : l , with 0-Sn and
Zn as examples, that the ion lattice of real metals can
have dynamic instability. The corresponding results are
given in Figs. 21 and 22. We see that the instability has
a complicated character, and there are examples of both
long-wave and short-wave instability. Thus, the ion lat-
tices of Sn and Zn, while stable against variation of (c/a)
(see Fig. 15), are unstable against more complicated
deformations.

Indirect interaction by the electrons stabilizes the
lattice, as is clear even from the very existence of these
metals in the corresponding crystalline phases. As
already noted in Chap. 4, the terms starting with η > 3
in the expansion of the energy assume an important
role in the general case. The presently available
quantitative analysis of ^-Sn[15] and Zn[ 5 5 ] shows that
when a potential of the Abarenkov-Heine type is
used, the dynamic instability remains in both metals
if only D ( 2 ) is taken into account. This raises the general
question, whether the existence of unpaired inter-ion
forces proper is of fundamental importance for the sta-
bility of such metals, or whether such a stability can be
attained via paired forces only. This question is all the
more interesting because as shown in Chap. 10, the
terms of higher order in the potential also contain a
paired part of the interaction. There is no rigorous
answer to this question. A correct separation of the
non-paired interaction together with a refinement of the
electron-ion potential could explain the situation to a
considerable degree, at least for concrete metals. It
seems to us, however, that in metals such as metallic
tin the multi-ion forces of the covalent type should cer-
tainly play an important role in the dynamic stabilization
of the lattice.

We note that the electron contribution cannot only
stabilize the lattice but, if the electron-ion potential is
strong, "overscreen" the direct ion-ion interaction.
Thus, for metallic hydrogen (at Ρ = 0) all the cubic lat-
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FIG. 21. Ion-lattice vibration frequencies for /3-Sn.
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FIG. 24. Dispersion curves of phonons in Mg.

tices become unstable, although when only the ion-ion
interaction is taken into account they are of course,
stable'-30-'. Therefore, only strongly anisotropic struc-
tures are stable in this case. At high pressures, however,
the role of the direct ion-ion interaction becomes pre-
dominant and accordingly the cubic lattices of metallic
hydrogen are stable [ 7 9 ] .

So far we have considered principally the qualitative
picture of the formation of the phonon spectrum in a
static metal lattice. However, the microscopic theory
developed above makes it possible also to present a
complete qualitative description of this entire aggregate
of properties.

By way of illustration, let us examine certain results
obtained for MgC75:l, Na C 2 8 ' 4 1 3 , and Al [ 2 8 3 . The choice of
these metals is not accidental, being connected with the
fact that a detailed analysis of their Fermi surfaces
indicates that the nonlocality of the effective electron-ion
interaction plays a minor ro le^ 8 0 ' 8 1 ' 8 2 3 . This makes the
representation of a model pseudopotential in the simple
local form reasonable ( see [ 4 1 ' 7 5 3 ) . The free parameters
(two for Na and Al and three for Mg) are determined
within the framework of the "inverse" problem with the
aid of the corresponding number of experimental quanti-
ties, one of them being always determined from the
equilibrium condition (6.2), and in the case of Mg one
more is determined from the condition that the energy
be a minimum relative to c/a (see1-75-1).

Figures 23—25 show the phonon dispersion curves
calculated for Na, Mg, and Al with allowance for the
terms of third order in the pseudopotential, and also the
experimental data from 1 1 7 6 ' 7 7 ' 8 3 3 . We see that there is
very good agreement between the theoretical and experi-
mental results. What is particularly important is the
fact that, by using the same pseudopotential, we can also
present a quantitative description of the basic static
characteristics of the metal. Table III lists, with mag-
nesium as an example, the following data: the energy E,
the pressure P, the bulk modulus Bu, the shear moduli
B22, B12, B44, and B33 — [(Βββ^/Βββ] connected with the
usual c ^ (see1-753), and also the two limiting optical fre-
quencies B88 and B99 at q = 0. In all cases, good quantita-
tive agreement is observed between theory and experi-
ment (a similar situation holds also for Na and Al"2 8 3);
this is far from trivial in matter, since the electrons
play quite different roles in the different quantities. It is
also quite interesting that, without varying the pseudo-
potential and by varying only the electron density it is
possible to calculate, with sufficient accuracy, also the
properties of the metal under pressure. For example,
Fig. 26 shows the null isotherm Ρ = Ρ(Ω) for Mg in a
wide range of pressures (Drickamer's experimental
point t 8 4 3 ) . The equation of state for Na was given above
(see Fig. 5).

Figure 27 shows the Fourier component of the em-
ployed model potential, the points being the values of the
pseudopotential obtained from an analysis of the Fermi
surface of magnesium'-80-1. A comparison shows that the
chosen pseudopotential should reproduce fairly well also
the electronic spectrum near the Fermi surface. (We
note, to be sure, that the question of the convergence in
"pseudopotential" band calculations has not been suffi-
ciently well investigated—see the discussion in1·85-1).

Returning to Table IE, we can estimate the role of the
individual contributions to different physical quantities,
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Experi-
ment

-2.1524

-0.2304

0.6705

-0.0906

-0.0323
-1.7705
-1.7787

(+0.0060)

α,
|l

-6.82

1.62

6.38

-1.94

0.77
0.00
0.00

03

II

-9.10

3.56

12.76

-5.79
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3.38
3.69
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0
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0.0000
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FIG. 25. Dispersion curves of phonons in Al (dashed curve-without

D3).
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FIG. 26. Equation of state for Mg.

ΰΑ

F1G. 27. Fourier component of the pseudopotential in Mg.

and particularly the contributions of third order in the
pseudopotential. We see that in a number of cases they
are quite appreciable, and increase from the energy to
the elastic moduli. A direct estimate of these values for
other metals, for example β-εη1-28'86-1 shows that they
can determine in decisive manner, for example, the
characteristic frequencies of the phonon-spectrum os-
cillations. A more detailed quantitative discussion of
this question is contained in the review1· .

In conclusion, it should be specially noted that for

certain metals the quantitative agreement between theory
and experiment, if the same simple scheme is used to
describe the electron-ion interaction, may be not so
convincing as for Na, Mg, and Al. This, however, is of
no fundamental significance (for example, for a given ion
the interaction with the electron may be essentially non-
local). What is important is that the macroscopic theory
as developed to date, in which exact account is taken of
the interaction in a metal, undoubtedly provides a reas-
onable quantitative description of the entire aggregate of
the properties of the metal as a whole.

"A more detailed analysis of this problem is contained in an article by
the authors, published in the collection "Lattice Dynamics," edited by
A. A. Maradudin and G. K. Harton, Amsterdam, North Holland, 1974.
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