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It is shown that a very large set of optical properties of molecular crystals (pure crystals, crystals
containing impurities, and crystalline solutions) in the region of the lowest singlet electronic (or
vibrational) excited states, where the mutual interaction of the molecules does not violate their
neutrality, can be treated without bringing in exciton concepts, but by generalizing to anisotropic
media the methods of molecular optics that had been developed before Frenkel's ideas on the exciton
had appeared. This treatment is based on using the method of the acting field, which goes back to
Lorentz, and also on the results of Born and Ewald et al., which permit one to calculate the
electric field acting on some particular molecule in the crystal, and in particular, with account taken
of the higher multipoles of the polarizability of the molecules. It is shown that this approach permits
one to calculate the dielectric constant of the crystal with account taken of spatial dispersion, to
treat the polarization and splitting of light-absorption bands in crystals, and polarization of impurity
absorption bands, as well as an entire series of other problems that were previously studied in less
general form only within the framework of the Frenkel exciton theory. The limits, of applicability of
the presented approach are also discussed.
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1. INTRODUCTION. THE ACTING-FIELD METHOD mental and theoretical studies, and they fundamentally
form the content of an entire branch of molecular optics:

As we know, the properties of long-wavelength nor- the optics of molecular crystals and molecular liquids,
mal electromagnetic waves in condensed media can Even before Frenkel's ideas on the exciton had appeared,
most easily be studied within the framework of macro- an entire series of theoretical methods of describing op-
scopic electrodynamics, which is based on using the di- tical phenomena, both exact and approximate, had been
electric-constant tensor eij(u>, k). However, to calculate developed within the framework of this branch of optics,
this tensor for any particular medium is already a prob- Many of them were also confirmed experimentally,
lem of microtheory. In particular, the methods for cal- However, after excitons had been discovered, these
culating the tensor eij(w, k) for the exciton region of the methods began to be used more and more rarely, and
spectrum in crystals are discussed in the monographs11'23, many of the results that had been obtained thereby were
These methods are based on using the different types of not sufficiently acknowledged within the framework of
exciton states of the crystal (Coulomb or mechanical exciton theory. This circumstance resulted in suspend-
excitons). When one finds a linear response to an ex- ing the process of their further development and gen-
ternal electromagnetic perturbation, these are treated eralization. On the other hand, owing to the underrating
as the states of the zero-order approximation. Of course, of the results of preexcitonic molecular optics, the op-
the methods mentioned above are rather general. How- tical properties of crystals have been discussed only in
ever, this does not imply that a knowledge of the exciton the language of exciton theory, even in cases in which
states of the crystal is obligatory in general for calcu- this could be done considerably more simply by using
lating the tensor eij(w, k). We shall explain below what the earlier, simpler, and no less pictorial physical
we have stated, in treating, for the sake of definiteness, concepts. Of course, this situation could not be reflected
molecular crystals (pure crystals, crystals containing in the development of the theory of optical properties of
impurities, and crystalline solutions) in the region of the crystals, and this article is precisely devoted to trying
lowest singlet electronic (or vibrational) intramolecular to analyze it. Fundamental attention will be paid herein
excited states, where their mutual interaction does not to calculating the dielectric-constant tensor of crystals
violate the neutrality of the molecules. In this case, the that consist of identical or different molecules, and to
intermolecular interaction is purely classical in nature, discussing their optical properties (dispersion and light
and it is determined by the van der Waals forces, which absorption).
only lead to mixing of the molecular configurations.t2]

One can use the acting-field method to find the dielec-
We note that a vast number of studies has been de- trie-constant tensor of this type of system. This method

voted to treating such media. They include both experi- goes back to Lorentz, and it led him to the well-known
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formula for the refractive index for light in isotropic
media (the Lorentz-Lorenz formula). Let us recall the
derivation of this formula.

According to Lorentz, the electric field E' that acts
on an arbitrary molecule in isotropic media, and which
causes it to be polarized, is not equal to the mean (mac-
roscopic) field E, which satisfies the phenomenologlcal
Maxwell equations, but is determined by the relationship

Here Ρ is the polarization per unit volume, Ρ
= ( € - 1 ) Ε / 4 Ι Γ , and € is the dielectric constant of the
medium. On the other hand, since the polarization per
unit volume P = NoaE' (where a is the polarizability of
the molecule, and No is the number of molecules per
unit volume), the induction vector D is determined by
the relationship

If we substitute (2) into (1), we get the relationship

which directly implies toe Lorentz-Lorenz formula

However, even for cubic crystals consisting of isotropic
molecules that interact with one another by van der
Waals forces, this formula, which expresses the dielec-
tric constant of toe medium in terms of toe polarizability
of an individual molecule, is highly approximate. In par-
ticular, it takes no account whatever of spatial disper-
sion. Moreover, it does not consider the contribution
of the higher multipoles of toe molecule to the energy
of intermolecular interaction, which immediately causes
the optical properties of toe crystal to differ from those
of molecules in rarefied gases.

We shall show below (see Chap. 2 and Appendix 1)
how these inaccuracies of the Lorentz-Lorenz formula .
can be eliminated. Moreover, by using the acting-field
method, we shall generalize this formula to the case of
anisotropic molecular crystals of complex structure,
and we shall discuss an entire series of their optical
properties that have previously been treated in less
general form only within the framework of the exciton
theory.

Here we shall merely show how one can find the
dielectric-constant tensor of an anisotropic molecular
crystal by using the acting-field method, with account
taken of spatial dispersion.

Let the unit cell of toe crystal contain σ identical
molecules that are differently oriented with respect to
the crystallographic axes. As a plane electromagnetic
wave of amplitude E(u>, k) propagates in the crystal, ac-
cording to Born and Ewald (see , Sec. 30), toe elec-
tric field E a acting on toe molecule α is not equal to
the mean field, but is determined by toe relationship

Here p a is toe amplitude of the dipole moment induced in

the molecules of type a, and the coefficients Qy (k) (the
internal-field coefficients) are determined by the crystal
structure alone. If aff(u>) is toe polarizability of toe
molecule when in orientation α (we assume here and
everywhere below for simplicity that toe molecules have
no static dipole moments"), then

ρ? = α?.(ω)£?. (2)

which permits us to express the local fields E a in
terms of E:

(3)

(4)

A knowledge of toe tensor A[J leads directly to an ex-
pression for toe dielectric-constant tensor of the crys-
tal. In fact, if we take account of the fact that the po-
larizability per unit volume is

(5)
ai l

where ν is the volume of toe unit cell, we get the fol-
lowing for the tensor eij(w,k):

(6)
ai.

Eq. (6) permits us very simply to treat the problem of
how the internal-field correction affects the optical
properties of crystals. It seems pertinent to discuss
this problem, since there is a great confusion in the
existing scientific literature on this topic. Many journal
articles and even monographs have taken no account at
all of the differing nature of the effect of the internal-
field corrections in pure crystals and in crystals con-
taining impurities. There are also studies conducted
within the framework of the microscopic exciton theory
in which the elementary manifestations of the internal-
field effects, etc., were not distinguished in interpreting
the results.

Along with the problems mentioned above, we shall
discuss below the optical properties of mixed crystalline
solutions, we shall account for certain effects of spatial
dispersion of the medium in treating the optical proper-
ties of an impurity, and we shall also touch upon the
theory of resonance interaction of impurity molecules
with one another. Here we shall only note that, when
we used in Eq. (2) a tensor afj which does not depend
on k to express the polarizability of an individual
molecule, we thus restricted ourselves to accounting
only for the dipole polarization of the molecule. This
approximation is fully justified when we are dealing
with the optical properties of a non-gyrotropic crystal
in a region of resonances of the molecule that have
large enough oscillator strengths. However, this ap-
proximation is in no way fundamental for the entire
subsequent presentation.2' Since we assume below that
the polarizability of the molecule in vacuo is known, we
might use the more general expression afj(w, k) for it
in Eq. (2). Of course, here we would have to include in
the internal-field expression also other terms besides
the term given in t 3 3 , which corresponds to the internal
field of toe dipoles in the lattice. These additional terms
correspond to the internal field in toe lattice of the
quadrupoles, octupoles, etc. The electric field created
by these multipoles declines with distance more rapidly
than the dipole field. Thus the well-known difficulties
in summing toe series, as were so successfully over-
come by Ewald for a lattice of dipoles, no longer arise
in distinguishing their internal fields. This fact makes
the procedure of distinguishing toe internal field for the
higher multipoles more or less trivial. In this regard,
moreover, we shall spend no further time on it, just as
for toe dipoles."
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Thus, the abovesaid implies that it is completely un-
suitable to use in Eq. (2) the tensor ay(w) instead of the
tensor aij(w, k) in a region of dipole-forbidden transi-
tions. In this regard, while discussing below for the sake
of simplicity the optical properties of non-gyrotropic
pure and impure crystals, we shall always be considering
only the spectral region of dipole-allowed transitions.
As we have emphasized, a more general treatment can
be conducted in an analogous way (see Appendix 1).

2. THE DIELECTRIC CONSTANT OF CUBIC
CRYSTALS

As has been shown in the book t 3 ] , in cubic crystals
with one molecule per unit cell with neglect of spatial
dispersion, the tensor Qi*^ is reduced to the scalar Q..

= (4ir/3v)6ij, where ν is the volume of the unit cell .
Since in addition ay = a 6 i j , Eq. (3) implies that the ten-
s o r Aij=A6ij, where A = [ l-(4Ta/3v)]" 1 . If we substi-
tute this relationship into (6), we find that eij = e6ij,
where

(7)

so that A = (€ + 2)/3. Eq. (7) directly gives rise to the
Lorentz-Lorenz relationship

e+2 ~ 3D
(7a)

Let us consider the dispersion of the quantity ε, tak-
ing into account only one of the resonances of a(o>). In
this approximation,

ο (ω) = - / l
-ω 2 (8)

Here ωι is the frequency of the 0 — 1 transition in the
isolated molecule, and px is the corresponding dipole
moment of the transition. Upon substituting (8) into (7),
we find that

ε(ω) = (4πΛ0 /ι
l — ω 2 — (8π/3ιΛ) ρΐΐύ Ο)

This relationship implies that accounting for the in-
ternal-field correction, i .e., for the fact that A *1,
does not change the oscillator strength of the transition,
but only shifts the resonance frequency: the resonance
e(a>) proves to be shifted to lower frequencies than that
of the transition in the isolated molecule by the amount

Δ « = ^ ·

One can take account of attenuation by adding to the
denominator of (9) the imaginary term ίδ(ω). Since
e = (n-i/c) 2 , where η and κ are the refraction and ab-
sorption indices, for small δ — 0 we get the following

expression for the integral J_ao 2n/cdw (see also, e.g./ 1 3 ) :

| 2re (ω) κ (ω) da - 2π»/ι (10)

The expression for κ{ω) itself in this case has the
form

~ (ω·, — ωψ + δ" (ω) η (ω)

(10a)

where ω\ = ω\ - (4π/3ν)ίι.

Let us now proceed to the case of a crystal having
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some amount of substitutional impurity molecules (the
generalization to the case of interstitial impurities is
trivial). Evidently, here the internal field depends on the
volume distribution of impurit ies . If we neglect the fluc-
tuations of this distribution and replace the internal
field with i ts mean value, we get4>

Ε (ω) - 1 + 4πΛΌα (ω) - + 4jtJV, [α (ω) - α (ω)] (11)

Here No = l/v, and Ni is the concentration of impurity
molecules. If 6e is a small variation in the quantity e,
6€~Ni, then we find from (11) that

Here e o =e when Ni = 0. Hence (see also (7a)),

ε (ω) = ε» (ω) + 4n7V, [α (ω) — α (ω)] ( β0^"2 Ϋ. (12)

Bearing in mind (7a), we can also represent this re la-
tionship in the form

ε(ω) = ε0—f (εο + 2)(ε0-1) + 4π^1Ξ·(ω)(-?ϊ±1)2, (12a)

where p = NiV.

If we assume that the following relation holds for the
impurity molecule instead of (8) (with account taken of
attenuation):

α (ω) =
2pjai/ti

ω|

and that the frequency ω ι lies in a region of trans-
parency of the solvent, we find for frequencies ω~Ζ)).
that

Thus the integration in the region of an absorption
band w~2ij gives

(10b)

(13)

Thus the absorption coefficient of light by an impurity
existing in a medium of dielectric constant £<>(u>) and
the integral on the left-hand side of Eq. (13) (the Kravets
integral) are proportional to the square of the Lorentz
factor. The change in the oscillator strength formally
implies that, instead of the transition dipole moment pi,
the impurity acquires under the influence of the light a
certain new effective value of this quantity (pi)eff
= Pit(£o + 2)/3]. Since the experimentally measurable
quantity in Eq. (13) is its left-hand side, a correct ac-
count of the internal-field correction (in this case, an
account for the Lorentz factor) permits one to recon-
struct the oscillator strength for the isolated molecule
from data on the dispersion and absorption by the mole-
cule in solution. Of course, the abovesaid is valid (a
fact well known and used) only in cases when no chemi-
cal bonds arise between the molecules of the solute and
the solvent, no aggregates of impurity molecules are
formed, etc.

However, a two-level scheme has been used above
for the molecules of the impurity and the solvent. Hence
we can naturally discuss the problem of how the exis-
tence of many resonances of polarizability of the mole-
cules will affect the conclusions drawn above. The re-
lation (12) derived above does not assume that the mole-

V. M. Agranovich 105



cules of the solvent or the impurity are described by a
two-level scheme. Hence this relation remains valid
also when we include many resonances. Only the right-
hand side of Eq. (13) is altered. Namely, when we in-
clude many levels, i = 1, 2, ..., it is converted into a sum
of contributions from the individual resonances:

(13a)

Now let us proceed to the case of a crystal without
impurities, and for the sake of simplicity, let us assume
that the molecules of the crystal in the isolated state are
characterized by the polarizability

(14)α (ω) (ω),

where the function ai(co) corresponds to Eq. (8), while
the quantity ao is determined by the contribution to the
polarizability from distant resonances. The latter can
be considered to be a constant quantity independent of ω
in the frequency region ω~ω1. If we substitute (14) into
(7), we get the following expression for the tensor e(w)
in the case being treated:

Lorentz factor on the right-hand side of Eq. (13). How-
ever, for pure substances (see (17)), the background
dielectric constant replaces this quantity in the Lorentz
factor, and is not at all equal to the square of the index-
of refraction of light in the crystal at the transition
frequency. However, in the two-level approximation in
general, €t> = 1; then Eq. (15) goes over into (9), and (17)
into (10).

Finally we note that Eq. (7a) can be used (see t5]) to
find resonances of molecular polarizability from data
on dispersion and light absorption in the crystal. Since
e = (n-i/c)2, where η and κ are the refractive and ab-
sorption indices of light in the crystal, Eq. (7a) implies
that

Im α(ω) =

e(a) = ebH--

Here

4π

(15)

(16)

ωχ = ω; =rj

If we introduce a weak attenuation into (15), then we
get the following equation instead of (10):

(17)

We might call the quantity €D the background dielectric
constant with respect to the resonance at the frequency
ωχ. Since generally e\^ * 1, the existence of the back-
ground dielectric constant alters the oscillator strength
of the transition. This is especially important in a
spectral region of low-intensity transitions.

If the molecule has two or more close resonances
in the studied frequency region, then in (14) we must
also distinguish terms a2(ci>), a3(co), etc., in addition to
the terms indicated there. It is also elementary to take
them into account, although this leads to somewhat less
pictorial formulas for ε(ω).

Equations (15) and (17), which are special cases of
the more general relationships derived in the book l 2 1 ,
show how, for the crystal model being discussed, the
mixing of molecular configurations due to intermolecu-
lar interaction in the crystal affects the oscillator
strength of dipole transitions. However, the fact of
importance to us here is only that these relationships
substantially differ from the analogous relationships
(13) and (13a) for impurity molecules in solutions.
Whenever we are dealing with impurity molecules in a
solution, the dielectric constant of the solvent at the
transition frequency of the impurity figures in the

is what (see also (7)) the dielectric constant of the crys-
tal would have been if the polarizability of its constituent
molecules had lacked the resonance term at the frequency
coi (i.e., ai(a>) = 0). Now the value of the resonance fre-
quency ωχ that figures in (15) is determined by the re-
lationship

where No is the number of molecules per unit volume.
As was shown in t 5 ] for a number of examples, the max-
imum of the function Ima(bi), which is proportional to
the molecular absorption coefficient, can be shifted
quite substantially with respect to the maxima of κ(ω).
However, we should note that this way of finding the
molecular frequencies can be justified only when we
are dealing with the vicinity of rather intense dipole
transitions and we can neglect the contribution of higher
multipoles (see Appendix 1 for how the higher multi-
poles are taken into account).

3. THE DIELECTRIC CONSTANT OF ANISOTROPIC
CRYSTALS

As an example of an anisotropic crystal, let us con-
sider a molecular crystal having σ> 1 molecules per
unit cell. If we are interested in the optical properties
of the crystal in the frequency range ω^ωι, where ιοί
is one of the intrinsic non-degenerate frequencies of
dipole vibrations of the isolated molecule, then we can
use the following relationship for its polarizability (see
Chap. 6 for more general results):

hhh (18)

Here fi is a quantity proportional to the oscillator
strength of the 0 —• 1 transition, and 1 is a unit vector
lying along the dipole-moment vector of the same transi-
tion. Since the different molecules in the unit cell dif-
fer in orientation, evidently their polarizability tensor is

(« = 1 , 2 , . . . , σ ) . (18a)

If we substitute this relation into (3) and find its scalar
product on the left with la, we get the following system
of σ equations for the quantities Ε α ·\α (α = 1, 2, ..., σ):

# (ω, (19)

where

Mat. (ω, k) = ̂ r 2 Qf (k) ml (20)

For a crystal with one molecule per unit cell, we find
directly from (19) that

(EM1) = [1 - Mu (ω, k)H (El1),

so that the polarization per unit volume is

(ω, k) -
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By using this relationship as well as (20), we get the
following expression for the dielectric-constant tensor
«?i(«, k):

ω?-ω»-/, Σ CiiJi (•<)((A
nil

The resonance of this expression occurs at
where

M i l

(21)

(22)

The tensor (21) corresponds to a uniaxial crystal. If one
of the coordinate axes, e.g., the χ axis, lies along 1, the
tensor (21) is reduced to diagonal form with the following
non-zero components:

Now let us proceed to treating crystals having two mole-
cules per unit cell. The optical properties of this type
of molecular crystals have currently been studied in
especial detail, and this is precisely the group that in-
cludes the crystals of anthracene, naphthalene, and many
others of the aromatic series, with which the overwhelm-
ing majority of the most competent experimental studies
have been concerned. Crystals of the anthracene type
possess symmetry operations that transform molecules
with a = l into molecules with α = 2. Hence, when k = 0,
or when vectors k * 0 lie parallel or perpendicular to
the monoclinic axis, the relationships hold that
Mji(a>, k) = M22(cd, k), and Μι2(ω, k) = Μ2ΐ(ω, k). It is less
cumbersome to solve the system of equations (19) for
such values of k. We can easily convince ourselves that
in this case

[-.Q'Lf
(23)

(« = 1,2;,

where

L " = I ' 1 ' - 1'· (23a)

If we substitute these relationships into the expression
for the polarization Ρ (see (5)), we also find an expres-
sion for the dielectric-constant tensor5':

where
Ω; (k)=ω·-/, Σ <?" (k) irw -/, Σ <?ϋ « IF ψ,

) = ω·-/, γ. Q»

(24)

(25)

Since the quantities Qij (k) are analytic functions of
k, this same property holds also for the frequencies
u(k) (see also (22)). Of course, the abovesaid is not
remarkable. As has been emphasized in C l ] , the reso-
nances of the tensor eij(a>, k) occur at the so-called
mechanical-exciton frequencies, which are analytic
functions of k, regardless of the model. The vectors
L( 1 ) and L( 2 ) are orthogonal. Hence, if e.g., the χ and
y coordinate axes lie along the directions of L( 1 ) and
L< 2 ), the tensor £jj proves to be reduced to diagonal
form with the following non-zero components:

(26)
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These relationships imply that absorption of light prop-
agating along the ζ axis with a direction of electric
vector Ell L ' must occur at the frequency O^k). How-
ever, if the direction of the electric vector ΕII L ,
light absorption occurs at w=n2(k). Thus, although we
have assumed the vibration in the isolated molecule at
the frequency o>i to be non-degenerate, the absorption
spectrum of a crystal containing two molecules per unit
cell should exhibit two differently polarized light absorp-
tion lines .e) This phenomenon (Davydov splitting) has
now been studied in many objects. Interestingly, al-
though Davydov discovered it upon generalizing Frenkel's
exciton theory to the case of crystals having several
molecules, the theory of excitons of small radius was
not necessary for understanding it, nor for explaining
the well-known experiments of Obreimov and Prikhot'ko
and their associates. As was shown above, it sufficed
merely to generalize the Lorentz-Lorenz formula to
the case of anisotropic crystals in order to do this. This
cannot be said about exciton spectra in semiconductors.
As we know, it has required the creation of the theory of
excitons of large radius to explain them. Of course, the
abovesaid in no way diminishes the significance of the
development of the theory of excitons of small radius, as
stimulated by the studies of Frenkel', Peierls, Davydov,
etc. As we know, only within the framework of this theory
can one to some extent discuss such a phenomenon as
transport of electronic excitation energy in crystals, or
optical properties of crystals at high excitation levels,
or nonlinear optical effects, or fine details of the struc-
ture of light absorption and luminescence spectra in
crystals, and many other matters.

Let us now continue to discuss the optical properties
of crystals in the region of impurity light absorption.
Above, in Chap. 2, we considered only cubic crystals.
However, here we shall study anisotropic crystals by
using the equations derived above relating the acting
field to the mean field. In speaking of the optics of im-
purity centers in crystals, we should bear in mind the
fact that, although this branch of solid state physics al-
ready has a rich history, interest in it is still not slack-
ening. And this arises not only from the fact that many
crystals containing impurities are used as materials for
inventing optical devices, but also from the discovery
of an optical analog of the Mossbauer effect (the
ShpoPski! effect), from capture of excitons by impuri-
ties, and from many other interesting optical phe-
nomena. To analyze them would exceed the limits of
this methodological remark. Yet, returning to its
main theme, let us now discuss the problem of how
the dielectric properties of the matrix affect the op-
tical properties of an impurity in an anisotropic medium.

4. THE DIELECTRIC CONSTANT OF MIXED
CRYSTALLINE SOLUTIONS AND THE
POLARIZATION OF IMPURITY ABSORPTION BANDS

Let us begin again with a very simple model of a
crystal in which the polarizability of the molecules of
the main substance in vacuo is determined by Eq. (18a).
However, for the sake of simplicity, we shall consider
the impurity to be a substitutional impurity for which
the polarizability tensor ajj(co) differs from (18a) only
in the value of the resonance frequency and the oscillator

(27)
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If we assume that the impurity is uniformly distributed,
the acting field on the average can be approximately
represented as follows (the mean-polarizability ap-
proximation) :

*?=>*·-rgCSPWfS. (28)

Here p*3 is the mean polarization of the site β:

7? = (l-c)a*£?+<^E?, (29)

and c is the ratio of the number of impurity molecules
to the total number of molecules in the crystal. Now,
upon using (28), (29), (18), and (27), we get an equation
for the quantities Ε α Λα, with α = 1, 2, . . . ,σ, analogous
to Eq. (19). We can easily convince ourselves that this
equation has the form

< 3 S >

Moreover, since the dielectric-constant tensor of the
studied system is determined by the relationship

ε,) (ω, k) Es = E,+-^- (1 — c) 2 <*«£? + -^Γ c Σ "«*?· (34)
α α

we finally find by substituting (33) into (34) that

Λ _l_

β,,+

2 j t Γ ( l -

(35)

-AT,, (ω, ί)-Μιζ{α, k) 1-M,, (ω, k) + Jl/i2(<o, Ι

where

(E"l«) - 2 M*

». k)

(ω, k) (Εί>1Ρ) = (1«E), (30)

( 3 O a )

For crystals having one molecule per unit cell, the
polarization per unit volume is

(ω) Ε)"],Pi -71(1 - c) oi)' (ω) E?>

so that we get the following expression for the tensor

If we take (30a) into account, Eq. (35) completely de-
fines the relation of the dielectric-constant tensor to
the impurity concentration c in the studied approxi-
mation (the "additive-refraction approximation" or
"mean-polarizability approximation"). Chapter 5 will
take up the optical properties of mixed crystals at
large concentrations c. Here, however, as we did earlier
with crystals having one molecule per unit cell, we shall
treat the case of small values of c, where we can omit
the terms of order c2, c3, etc. in expanding the tensor
of (35) in powers of c. In this case, as (35) implies
(henceforth we shall assume for simplicity that 1i = fi,
as is justified for an isotopic mixture),

(31)

When c —-0, (31) goes over into (21). Here, however,
we are interested in it for c « 1. Then it suffices to re-
tain only the term linear in c, along with ejj, in the
power-series expansion of Eq. (31) in c. We can easily
convince ourselves that here

(32)

Upon taking account of (20), we can easily convince our-
selves that the term of the order of c/(w2—ω2) that
figures in (36) identically vanishes as ω — ω! (an analo-
gous situation happens also for the previously discussed
cubic crystals and anisotropic crystals containing one
molecule per unit cell; see (12a) and (32), respectively).
Thus, in the frequency region of impurity absorption,
i.e., absorption whose intensity is proportional to the
concentration of the impurity, the only resonating term
in (36) has the form

where. €^(ω, k) is the dielectric-constant tensor of the
pure crystal as defined by Eq. (21), the coefficient is

and #! = -£-.

Thus, Eq. (32) is analogous to the previously derived
relationship (12a) for cubic crystals, and is a generali-
zation of it to the case of an anisotropic crystal of the
studied type.

Before we proceed to study a crystal having two
molecules per unit cell, we note that the so-called
mean-polarizability approximation, which permits one
to treat an ideal crystal whose molecules have the
mean polarizability of (29), in lieu of a disordered sys-
tem of crystal plus impurity, is actually very old. In
former times (see, e.g., C 6\ Sec. 6), the term for this Now, if we use Eq. (23), we find that
approximation, as applied to systems composed of
molecules in van der Waals interaction, was the "ad-
ditive-refraction approximation." However, we em-
phasize that, although Eq. (31) is only a certain very
convenient extrapolation, its accuracy increases with
declining c, so that the linear term in c in (32) already
proves to be exactly determined.

Now let us proceed to crystals of the anthracene type
with two molecules per unit cell. Since the system of
equations (30) differs from that of (19) only in the sub-
stitution Μαβ(ω, k) —· Μαβ(ω, k), we can use (23) to
write directly the values of the quantities Ea · 1 α , which
satisfy the system of equations (30):

However, if we recall what we have said in Chap. 2 about
the role of the local-field correction in impurity spectra,
we could write Eq. (37) directly without resorting to ex-
pansion of Eq. (35) in a power series in c. Actually, the
transition dipole moment is p« =pZa in an isolated mol-
ecule of an isotopic impurity having the orientation a.
The effective value correspondingly to this dipole mo-
ment must be determined by the condition

(38)

(39)

(40)

P<"<- 2 \ 1-Μ,,-Λ/,, l-Mu+M

Since, on the other hand, by definition,

a substitution of (39) into (40) immediately gives Eq. (37).

Equation (37) permits us to analyze the relation of
the intensity of impurity absorption to the polarization
of the incident light. Rashba has discussed this prob-
lem (see t 7 ] and also l 2 ] ) within the framework of the
theory of excitons of small radius, and precisely for im-
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purities of the type being studied. For the crystal model
under discussion, the tensor eij(w, k) proves to be re-
duced to diagonal form when the coordinate axes, e.g.,
the χ and y axes, lie in the directions of the vectors
L( 1 ) and l/2 ) . In this case,

(,ί — Μ,, —

2nc
(41) «

ε3 3(ω, k) = l,

where we have also taken account of a possible weak at-
tenuation. For example, let us assume that the light is
polarized along the χ axis. If we assume that the ma-
trix is transparent at the frequency ω«ω 1 ; we find the
following expression for the absorption coefficient ωχ
of the impurity:

( _ nc i A I L·'» ρ 6(0-0),) (42)

Here n?(u>) = Ve^w, k) is the refractive index of the
matrix for light polarized along the χ axis (see (26)).
Analogously, for light polarized along the y axis,

I (ω) =
1

2 » , η§(ω) (1—

where n2(a>) = veyy(a>, k) (see (26)). The ratio of the
integral absorption intensities κ corresponding to these
values of κι and tqj, as defined by !κ(ω)άω, will evi-
dently be

xj (ω() n% (ωι) | L f I > | 2 f l — Mu-{-M\z)% (44)

In order to give a more graphic character to this re-
lationship, let us return anew to the dielectric-constant
tensor of the pure crystal in (26). Bearing the relation-
ships (20) and (25) in mind, we can rewrite (44) as
follows :

κΐ(ωι)
ΐ (ωι) η° (Si) F, (ωξ-

(45)

If the frequency Wi is close to the intrinsic absorption
frequencies, so that the difference Ιωι-Ω1 ) 2 | is rather
small, we can also write (45) in the form

"I

"II
(46)

This relationship implies that the quantity /q can be-
come anomalously large with respect to «u as the
frequency ώι, e.g., approaches the frequency Ω ^ Thus,
absorption at the impurity frequency becomes sharply
polarized, even though sharp polarization of the im-
purity absorption may be absent far from the frequen-
cies fij and Ω 2 . Indeed, Rashba derived Eq. (46) for
k = 0. C 7 ] We shall discuss somewhat later the signifi-
cance of accounting for spatial dispersion in Eq. (46).
Here, however, we wish only to say some words on the
nature of the effect expressed by Eq. (46). As (39) im-
plies, this effect arises completely from accounting
for the internal-field correction, which directly in-
creases as the frequency ώι approaches the resonances
of the dielectric-constant tensor of the pure crystal. Of
course, this mechanism of the effect of the matrix also
occurs in crystal of any structure, and also for inter-
stitial impurities. However, the structure and effect of
the internal field can differ in different cases. For ex-
ample, for cubic crystals, as we see from (12a), and
also for crystals having one molecule per unit cell,
given the same dependence on the frequency <3i, the
quantity κ proves to be proportional to the square of

the transition oscillator strength in the matrix, rather
than to the first power, as in (42).

Now let us continue to discuss Eq. (46). Let the fre-
quency Wi lie in the region of an intense dipole transi-
tion in the matrix, such that this transition is precisely
the one that determines the dispersion of the refractive
indices η?,2(ω) in this frequency range. Then, when
ύι<Ωι(0), Ω2(0), and the differences ΙΩ1)2-ωιΙ are
small, but yet great enough that we can neglect the
spatial dispersion of the medium, we have

η,0 ( ω ) . ω — β 2 (0) *

Under these conditions Eq. (46) acquires the form

XI -,/Tj" / 5i—Qj(O) \W ,.η\

Ί ^ ^ ^7^,-0,(0)/ ' ( '

However, if it becomes important to account for spatial
dispersion, then, since for small k,

SIS' (48)
(43) we can write Eq. (46) as follows:

Here the n5)2 satisfy the equations

i. 10 = !+-£•-
(50)

As we know (see, e.g., C l ] ) , the nature of the ηι(ω) and
n2((*>) relationships is determined by the signs of the co-
efficients μχ and μ2, respectively. Hence, in principle,
we could use an experimental study of the ratio in Eq.
(49) to reveal spatial-dispersion effects of the crystal
matrix. However, this is hindered by the decay of the
excited states of both the impurity and of the matrix.
If the levels of these states are wide enough, then it
becomes practically impossible to "sneak up" on the
frequency Ω^Ο) and to distinguish the impurity absorp-
tion from the matrix absorption. Nevertheless, for
comparing the relationships derived above with the
analogous ones derived within the framework of the
microtheory (the exciton theory), we shall consider the
broadening of the terms impurity and crystal. This is
because the immediate vicinity of the frequency Ω^Ο) is
precisely where not only the above-mentioned effects
of spatial dispersion are manifested, but also the differ-
ences from the results of the microtheory. Let us ex-
amine these results in greater detail. It is implied in t 7 ]

that the integral absorption intensities κμ are propor-
tional to the quantities ¥μ/{ωι — Ωμ)2 that figure in (42)
and (43), but also to the very same coefficient lu(0)l2,
which is defined by the relationship (see also Appen-
dix 2):

I "» (k) |2

(51)
k, μ=1. 2

Here the coefficients \ΐμ(\ί) satisfy the normalization
condition

(52)

and a>iC is the frequency of an impurity center. As
ά>ι - ' Ω^Ο), the latter already begins to. differ appreci-
ably from c3i. However, for frequencies ά>ι sufficiently
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remote from Ωι(0), the frequency ωϊο~ωι, and apart
from small terms of the order of δ = Ι [Ω1(0)-Ω2(0)]/(ΰι
— Ωι)Ι, the value of lu(0)l2 proves to be unity. Hence,
the results obtained above and those of the microtheory
prove to coincide in this frequency range, not only for
the ratio «ιΑπ, but for the quantities Ki and Kn them-
selves. However, as cSi approaches Ωι(0), the quantity
lu(0)l2 decreases. For example, when μι >0, then
lu(O)l2~Vn1(O)-u5i (see [ 7 ] ) . Under these conditions, as
was shown in , the excited state of the local center
already encompasses not only the impurity molecule,
but also a certain number of solvent molecules nearest
to the impurity. However, under these conditions lu(0)l2

determines the probability that the impurity molecule
itself should be in the excited state, and its decline as
ΰι — Ω^Ο), which is due to the "spreading" of the local
excited state, thus has a quite clear physical meaning.

It is precisely in terms of this "spreading" that all
of the studies known to us on impurity absorption have
interpreted the sharp polarization of impurity lines as
«ι ~*Ωι(0). However, as is implied by the above, actu-
ally the main effect that leads to sharp polarization is
the long-known effect of the internal-field correction,
and here the quantity lu(0)l2 doesn't enter into the ratio
KlAn at all, but it leads in the expressions for τη and
iqj only to the appearance of additional, relatively weak
root-law dependences on the frequency.7'

Curiously, the relative weakness of the "spreading"
effect is actually implied by the experimental data. Thus,
a variation in iq by almost two orders of magnitude was
observed in C8] for deuterated naphthalene in naphthalene,
while under these same conditions, as estimated by the
authors1183 themselves, even the minimum value of lu(0)l2

proved to be about 0.5 (according to : 8 ] , the minimum
value of I u(0)l2 for deuterated benzene was even 0.8).
Of course, the fact is not remarkable that the internal-
field corrections remain invariant in the "spreading"
of the excited state of a local center. It stems from the
fact that the internal-field correction is practically in-
dependent of the radius of the cited state whenever this
radius is small in comparison with the wavelength of
the light (see also C l 8 ] for how to account for the internal-
field corrections in ionic crystals).

5. OPTICAL PROPERTIES OF MIXED CRYSTALLINE
SOLUTIONS

We shall discuss in this chapter some features of
the spectrum of electromagnetic waves in mixed crys-
talline solutions by using expressions for the dielectric-
constant tensor of the solution found in the mean-po-
larizability approximation. As we know, effects of con-
centration broadening of absorption spectra prove to
be lost in this approximation. At the same time, as was
shown in : 9 ] , where they actually studied the corrections
to the mean-polarizability approximation, this approxi-
mation proves to be more or less suitable for studying
the relatively coarse features of a spectrum, such as,
e.g., the relation of the position of the center of an ab-
sorption band to the composition of the solution, and
certain others.

However, the mean-polarizability approximation may
even have a very high accuracy in describing dispersion
and optical anisotropy of crystalline solutions outside an
absorption band. This accuracy of description stems
from the fact that the concentration broadening in crys-
tals of this type (with only van der Waals forces acting

between the molecules) does not affect the integral
oscillator strength of a transition. Moreover, for a
large number of isotropic mixtures, both liquid and crys-
talline, the mean-polarizability approximation or the
long-known and equivalent additive-refraction approxi-
mation, at least in a region of transparency, is even
the basis of the analysis developed by Obreimov of the
composition of many-component systems (for the details,
see t l 0 ] and also the book t e \ Sec. 6).

Evidently, the reason for the high accuracy of the
additive-refraction approximation is that the error in-
troduced into the refractive indices far from absorption
bands proves to be a small quantity of the order of
δ/ΐω-ΩΙ « 1 (where δ is the width of the resonance,
Ω is the resonance frequency, and ω is the frequency
in the region of transparency), in spite of the fact that
this approximation proves to give the band structures
incorrectly. Even when 6~102cm"1 and Ι ω — ΩΙ = 104

cm"1, this error is of the order of 10"2.8) We know of
no mention in the literature of the equivalence, at least
as applied to molecular crystals, of the mean-polari-
zability approximation and the additive-refraction ap-
proximation. Apparently this fact has not been noted,
so that many of the results and approaches obtained
before the appearance of the first studies on the theory
of excitons of small radius have proved to be utterly
forgotten. However, when even more recently the need
arose of analyzing the properties of mixed crystalline
solutions, the process began of repeated "discovery",
in particular, of approaches developed long ago, but alas
forgotten.

Let us illustrate the mean-polarizability method with
the example of the spectrum of a binary mixture of iso-
topic molecules in a cubic crystal. For this case Eq.
(11) implies that

(53)
' 1 — (4π/3) Ν&

ά = (1 — c) a + ca

(c is the relative concentration of the impurity). Thus
the resonances of e(u>) correspond to frequencies that
depend on c, and which satisfy the equation

(54)

where

In deriving this relationship, we have used the fact
that the polarizabilities of the different isotopic mole-
cules have the form (8), and they differ from one another
only in the values of the resonance frequencies. Eq. (54)
permits us to trace in the studied approximation the shift
of the absorption lines of the mixture as a function of its
composition. However, we can trace the dependence on
the composition of the mixture for the frequencies of the
longitudinal lines from the equation ε(ω) = 0. We find
by using (53) that these frequencies satisfy the equation

ι l - c ι

' 5| _ ω 2
(55)

Analogously, we can find the dependence on the composi-
tion of the mixture, e.g., of the frequencies of the surface
waves (from the condition €(ω)=—1; the accuracy of
definition of these frequencies is increased by the re-
moteness from resonance), as well as many other char-
acteristics of the mixture that are determined by its
dielectric constant. Anisotropic crystalline solutions
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can also be treated in just as elementary a fashion.
The dielectric tensor in the additive-refraction approxi-
mation has been derived above for such solutions con-
sisting of two types of isotopic molecules in a lattice
with two molecules per unit cell (see Eq. (35)). This ex-
pression implies that in the polarization L{ 1 ) the reso-
nances of the tensor ey correspond to frequencies ω
that satisfy the equation

i—At,i{<o,k)-Ma(,a,k)^0, (55a)
( 2 )

In the polarization L , they satisfy the equation

1-Λ/,,(ω, k) + Jtf12(co, k) = 0.

By using (30a), we can represent Eqs. (55) and (56) in
the form

(56)

1— c
(p-1,2), (57)

where

Equation (57) implies that each of the polarizations
p= 1, 2 in the light-absorption spectrum must correspond
to a doublet of lines. If we denote the solutions of Eq.
(57) for each of the polarizations ρ by Ωρχ, λ= Ι, 2,
then after expansion into elementary fractions, we can
also represent the tensor qj(w, k) as follows:

where

"

(58)

(59)

In the studied approximation, the solutions of Eq. (57)
and also of Eqs. (58) and (59) fully determine as func-
tions of c not only the intensities and positions of the
light-absorption bands in the crystal, but also the dis-
persion of the refractive index. The relationships de-
rived above can be generalized in an elementary way
also to the case of many-component isotopic solutions.
Here Eqs. (30) and (58) retain their forms, but instead
of (30a) and (57) and (59), respectively, we have the
more general relationships

Mat, (ω, k) =

where the c^ are the relative concentrations, with k

= 1, 2, ..., s, such that Σ c^ = 1,
k

An-(-VfAa

π _ 2 " ft

(57a)

(59a)

where the Ω*λ(λ= 1, 2, ..., s) are the roots of Eq. (57a)
for fixed p= 1, 2.

We emphasize that the results obtained here for the
line positions and the absorption intensities of such so-
lutions agree with the results of C u ] , which were obtained
by using the theory of excitons of small radius with an
approximation identical with the mean-polarizability ap-
proximation (the additive-refraction approximation; the
tensor €ij(u>, k) was not found at all in this study).

Within the framework of the acting-field method pre-

sented here, one can treat quite analogously not only
isotopic mixtures, but also molecular mixtures made of
quite different molecules. Here we must bear in mind
the fact that the resonance frequencies a>k for the indi-
vidual molecules in the solution in this more general
case become functions of the composition. This is in
contrast to isotopic molecules, for which we can con-
sider all the static multipoles to be independent of the
isotopic composition to a high degree of accuracy. The
reason for the appearance of this dependence is ele-
mentary, being the shift in the resonance frequency of
the individual molecule that was mentioned in Chap. 1.
As was stated, this shift is due to the change upon ex-
citation in the energy of interaction of the static multi-
poles of the molecules with the environment. This en-
vironment differs for different compositions of the mix-
ture, and this leads to the stated dependence. Let us
take it into account, for which we shall introduce the
following notation: ω£ is the resonance of the molecule
in vacuo, and Dj^ is the shift of this resonance in the
presence of an environment consisting only of molecules
of type I. Evidently, in the mean-polarizability ap-
proximation for the mixture,

o j s i u i f a , c2, ...)=--ω'κ + Σ Dk,Cl. (61)

6. POLARIZABILITY OF THE MEDIUM AND THE
ENERGY OF RESONANCE INTERACTION OF
IMPURITY MOLECULES WITH ONE ANOTHER

An entire series of problems exists in the optics of
crystals containing impurities for whose solution we
must know the matrix element of the operator for the
interaction energy of the impurity molecules with one
another. The latter corresponds to transport of energy
of intramolecular (electronic or vibrational) excitation
from one impurity molecule to another. As the most
important examples of this type, we shall point out the
problem of finding the structure of an impurity exciton
band, and also that of calculating the probability of
radiationless energy transport between rather remote
impurity molecules.

Here we shall restrict ourselves to the situation in
which the fundamental role is played by the energy of
dipole-dipole interaction, as happens in the Forster-
Dexter-Galanin mechanism. In vacuo the operator for
this energy is

_PAPBr'-3(PAr)(PBr) (62)

Here P A and Pj$ are the dipole-moment operators of
the impurity molecules A and B, and r is the vector
between the centers of these molecules. If in the initial
state the molecule A was in the excited state f, and
molecule Β in the ground state, and vice versa in the
final state, with molecule A in the ground state and
molecule Β in the f-th excited state (for the sake of
simplicity, we assume the molecules to be identical),
then the matrix element of the operator VAB corre-
sponding to this transition will evidently have the form

v,0, 0/ _ r'PJ°PB'-3<r)(P°'r)
' AB ~ ".IT (63)

If the impurity molecules are in a polarizing medium,
then the appropriate correctives must be applied to
the interaction-energy operator and its matrix ele-
ment. At first glance, it might seem that in order to
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do this, e.g., in an isotropic medium for c/ωοί » r » d ,
where d is the lattice parameter of the crystal, it
would suffice simply to divide the matrix element (63)
by £(o>of), where €(o>of) is the dielectric constant of the
solvent at the frequency u>of. However, such a conclu-
sion would be not quite right, even though it corresponds
to the well-known result derived within the framework
of the phenomenological Maxwell equations. If we intro-
duce a point dipole μΑ("Όί) at some point A into these
equations as a source, the electric field created by this
dipole proves to be of the order of μρ^/er3. Thus we get
an interaction energy of the order of

(64)

In connection with the broad scope of experimental
studies on energy transfer, let us define the general
form of the energy of dipole-dipole resonance radiation-
less interaction in anisotropic molecular crystals (for
some more special results for crystals containing one
molecule per unit cell, see t l 2>1 3 1). in order to do this,
we shall have to generalize somewhat the results pre-
sented in Chap. 3. Let us assume that aj/(w), where
v= 1, 2, 3, are the principal values of the polarizability
tensor of the individual molecule, and that the \v are
the directions of its principal axes. Then, evidently, we
can represent this tensor in the form

e (ω0 /) r3

However, we must take account of the fact that all of the
quantities entering into the phenomenological Maxwell
equations must also be treated as phenomenological
quantities, which can greatly differ from their corre-
sponding microscopic values. For example, this fact
is, of course, well known for the dielectric constant
ε(ω). In the given case, it is expressed in the difference
between the polarizability of the individual molecules
and the polarizability of the crystal. It turns out (see Cl23)
that this type of effect occurs also with the transition
dipole, or matrix element of the dipole moment of the
molecule, and it consists in the fact that the phenom-
enological or effective value of this dipole in the medium
differs substantially from the corresponding value in
vacuo. In particular, the following relationship holds
for an isotropic medium instead of (63):

0. 0/\ (65)

where e is the dielectric constant of the medium at the
transition frequency.

Derivation of the latter using the microtheory is
given in C l 2 ] , where also certain corrections of a mi-
croscopic nature have been taken into account (the
shift in the impurity term and a certain delocalization
of the excitation). However, if the transition frequency
ωοί is far enough from the resonances of €(ω), as we
shall assume henceforth for simplicity, these corrections
are not significant, and we shall not consider them. How-
ever, we note here that, inasmuch as the factors in (65)
that are new in comparison with (63) are macroscopic
in nature, we can easily understand how they arise on
the basis of very elementary and rather general argu-
ments .

In fact, the effect of polarization of the medium at the
energy of dipole-dipole interaction is due to exchange of
virtual electromagnetic-field quanta in the medium,
which specifically obeys the phenomenological Maxwell
equations. Hence we need to know the interaction energy
of the impurities with precisely this field. Turning to
Eq. (38), we conclude that the dipole moment that figures
in this energy is not its vacuum value, but some effective
value that is found by taking account of the internal-field
correction. In an isotropic medium, this is μΑ = [(€

+ 2)/3]pf. Upon taking account of (64), this precisely
gives (65). Of course, what we have said holds for non-
conducting media as applied to local centers of any na-
ture. However, the method presented in Chap. 3 of
accounting for the internal-field corrections permits
one to treat in a very elementary way the effect of po-
larization of the solvent on the energy of resonance
exchange in molecular media of any symmetry.

β«(ω)=Σ«ν(ω)ί (66)

If we consider just one of the excited states in the mole-
cule, Eq. (66) goes over into (18a). However, in a region
of transparency, many excited states make comparable
contributions to the polarizability of the molecule, so
that the approximation (18a) becomes insufficient. Of
course, an analogous situation happens also in crystal-
line solutions. In this case, we must use the following
relationship in the mean-polarizability approximation
(the additive-refraction approximation), e.g., for iso-
topic mixtures, instead of (66):

0...((01 = Λ] <ZV (W) ii lj , IDD3,)

Here Cp is the relative concentration of isotope p, and
a£(a>), with v=l, 2, 3, are the corresponding principal
values of the polarizability tensor of the molecule. Now
upon using Eqs. (1), (2), and (66), we find that the projec-
tions of the internal field E a on the directions lav, i.e.,
the quantities Ε α ·Ιαν, satisfy a system of equations
( a = l , 2 σ, v=l, 2, 3):

( Ε Ύ ν ) = (El0™;

where

(67)

(68)

Since for fixed α the unit vectors \ a v form a triple of
mutually orthogonal vectors, solution of the inhomogene-
ous system of equations of (67) permits us to find the
form of the tensor Α«(ω, k) in Eq. (4). Hence, if p ^ ' a

is the vacuum value of the matrix element of the dipole
moment of the substitutional impurity at the site a, then
we get the following for its effective value:

Thus, if we neglect spatial dispersion, the sought dipole-
dipole interaction energy takes on the form

V A B (r) = (pi'' ")„ Aflt (ω0
% (ω0') (pjf · " ')„•

'(68a)

where €α)3(ω ) is the dielectric-constant tensor of the
solvent at the frequency ω .

Accounting for spatial dispersion results (see t2>12:)
in appearance in VAB(r) of additional terms that de-
cline more quickly with increasing r. However, these
terms are important only for frequencies ω ο ί that are
close enough to the intrinsic absorption frequencies of
the medium. For an isotropic medium, naturally, (68)
goes over into (65). However, in the special case of a
crystal having one anisotropic molecule per cell,
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and moreover in the approximation of (18a), Eq. (68)
goes over into the expression derived by Konobeyev
and Kamenogradskff (see lm), who used, as in C l 2 \ the
apparatus of the theory of excitons of small radius.

Finally, we note that solution of the system of equa-
tions of (67), both for pure crystals, and for isotopic crys-
talline solutions (here M™ ~ * M ^ , and a"(co) — a"(w)),
permits us to generalize all of the results presented above
to the case including many resonances in the molecule
(i.e., we account for the mixing of molecular configura-
tions effected by the intermolecular interaction).

7. CONCLUDING REMARKS

In the earlier chapters of this article, we have
treated a number of problems of the crystal optics
of molecular crystals within the framework of the
acting-field method that had previously been treated
only by using the exciton theory.

On the other hand, we have also derived above some
new relationships that can prove useful in analyzing
certain optical effects in crystals of this type. Such a
treatment seems pertinent, since one can more clearly
delineate thereby the set of physical phenomena in crys-
tals (concerning these, see below) for which we truly
need the concepts of the exciton theory to understand
them. Here, by no means all of the potentialities of the
acting-field method have been used. In particular, it
would be of great interest to treat the gyrotropy of
molecular crystals, both pure crystals and those con-
taining impurities, and in particular, to treat the gyro-
tropy of crystalline solutions as a function of their
composition. In view of the ideas presented in Chap. 5,
we have every justification for hoping that using the
mean-polarizability approximation for solutions in a
region of transparency of the crystal will permit one
to calculate the rotatory power of a crystalline solution
from a knowledge of the properties of the individual
molecules with an accuracy no poorer than for the re-
fractive indices of light in non-gyrotropic disordered
media. It is of no lesser interest also to study the ef-
fect of static electric fields (the Kerr effect) and mag-
netic fields (the Faraday effect) on the optical properties
of molecular crystals. We mention these effects, not
only because they have been studied extremely poorly in
molecular crystals, but mainly in line with the fact that
treating them within the framework of the acting-field
method would also probably be very simple and con-
venient.

We recall that the acting-field method is based on
Eq. (1), in which the internal-field tensor Q^(k) is

assumed to be known. Hence, the simplicity and graphic
quality of this method is evidently due to the possibility
of effectively using the previously derived results of
Born, Ewald, and many other authors (see t 3 > 4 ] ) .

However, there is a vast set of optical phenomena in
crystals which in principle cannot be treated within the
framework of this approach. Some of them have been
mentioned in Chap. 3. Moreover, we might point out
light-absorption processes in which the energy of one
photon in one event gives rise directly in the crystal to
several of its elementary excitations. In general, such
processes manifest the entire region of allowed values
of energies of quasiparticles. One can find the latter,
when dealing with elementary excitations, only within
the framework of the exciton theory. An example of the

limited applicability of the approach used in this article
is light absorption to states of the biphonon type, i.e.,
excited states of the crystal in which two elementary
excitations, e.g., two optical phonons, are bound together
and migrate through the crystal as a unit (Van Kranen-
donk1 first studied this type of states in molecular
crystals; for their properties and manifestations in
Raman spectra, see [ 1 5 3 ) . Whenever the radius of this
state is shorter than or of the order of the lattice con-
stant, both excitations " s i t " at the same lattice site.
Here (the case of limiting strong anharmonicity: the
anharmonicity constant Α > Γ , where Γ is the width
of the phonon band), we can neglect the effect of delo-
calization, and consider the transition, which corre-
sponds to creation in a molecule of two intramolecular
vibrations, to be accounted for in the molecular-
polarization tensor aij(u>, k). Conversely, if A is less
than or of the order of Γ , the approach used in this
article becomes quite inapplicable, since one cannot
take account within its framework of effects of delo-
calization of an excited state of the molecule of the
type that was discussed in Chap. 4 for impurity molecules.

And finally, above we have not treated at all effects
of broadening of light-absorption lines in crystals arising
from interaction of intramolecular excitations with lat-
tice vibrations. Treatment of this problem also exceeds
the limits of applicability of the used model, and it can
be most effectively carried out only by using the existing
methods of exciton theory (see, e.g., Γ ι>2 ) 1 6 : !).

The problem of the role of the local field in molecu-
lar crystals has been touched upon repeatedly in dis-
cussing particular problems of crystal optics, and on
particular, at the sessions of the All-Union Seminar on
Excitons. In this regard, I wish to thank my colleagues,
whose discussions have aroused me to consider this set
of problems more systematically. I consider it my
pleasant duty to thank also V. L. Ginzburg, Yu. E.
Lozovik, and V. I. Yudson for remarks and advice that
were taken into account in the final editing of the text of
this article.

APPENDICES

1. ON TAKING ACCOUNT OF THE HIGHER
MULTIPOLES IN THE ACTING-FIELD METHOD

In order to explain how one can take account of the
higher multipoles within the framework of the acting-
field method, let us consider, along with the dipole po-
larization, also the quadrupole qij and octupole qij/
polarizations of the molecule. In this approximation,
the operator for the energy of interaction of the mole-
cule with an external monochromatic electric field
E(r, t) is V, where

ν**ΣΡ'ε'~^Σ ΐίΐΕα+Σ itJi^iji: ( 1 Ί )
i a HI

Here the Pi, qij, and qy; are the operators for the di-
pole, quadrupole, and octupole moments of the molecule,
and Eij = 8Ei/8xj and Ε φ = 92Ei/axj 8x/.

By using Eq. (1.1) and the results of time-dependent
perturbation theory (see il71, Sec. 40), we can find the
values of the studied multipoles that are induced by the
external field. However, as was stated above (see Chap.
1), the so-called acting field performs as the perturbing
field for the molecules in a crystal. Hence, we can rep-
resent the corresponding multipole values for the ath
molecule in the unit cell as follows:
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Ρ? — Σ "S'£? + Σ "SlB*l + Σ "Slm Ŝro· / J 2a)

The tensors a a , b a , a n d c a that figure in (1.2a)-(1.2c),
and which depend on ω, have the form of sums of reso-
nance t e r m s , each of which corresponds to a transition
from the ground state to one of the excited states of the
molecule. If for the sake of simplicity we bear in mind
only any one of the resonances corresponding to a transi-
tion from the ground state to a non-degenerate excited
state of the molecule having the excitation energy Htalt

the tensors a a , b a , and ca can be factored. This sub-
stantially simplifies the treatment. In this approxima-
tion, which corresponds to neglecting the mixing of
molecular configurations, e.g., the tensor bi* , has
the form l ) > i m n

etc., so that we can write the relationships (1.2a)-(1.2c)
as follows:

(1.3a)

where

m

Equations (1.3a) are a generalization of Eq. (2) of the
main text. When one takes account of the higher multi-
poles within the framework of the method used here,
they imply that one must distinguish the internal-field
corrections in the expression, not only for the amplitude
of the acting field, but also for the amplitudes of its
derivatives. Bearing this in mind, as well as the results
of C 3 > 5 ]

; we represent the values of the acting field and
its derivatives as follows:

£a

«5, .+ Σ
ftmn

"«ft
fijlm

.+ Σ ?ϊ
(limn

.,+ Σ <
fynnp

(1.4a)

(1.4b)

(1.4c)

The internal-field coefficients Q 0 ^ , φ " * 3 , and Qa0 are
determined only by the crystal structure, and one can
get their explicit expressions, which are not written
down here, from t 3 ' . Evidently, Eqs. (1.4a)-(1.4c)
generalize Eq. (1) of the main text, and they are reduced
to the latter when qfu=qf* =0.

Now if we multiply Eq. (1.4a) by (pf)1 0, Eq. (1.4b) by-
(q?:)10, and Eq. (1.4c) by (q?^)10, and sum over the sub-
scripts i, j , and I, we can easily convince ourselves by
using (1.3a) and (1.3b) that the quantities V« (a = l , 2,
..., σ) satisfy the following system of σ equations:

(1.5)

where

-iilmnp

As compared with the tensor Μα/3 (see Eq. (20) of the
main text), we have also taken account in the tensor
M e f | of dipole-quadrupole, dipole-octupole,quadrupole-

octupole, and other interactions, in addition to the
dipole-dipole interaction. However, if we are dealing
with crystals of the type of anthracene or naphthalene
that consist of molecules having an inversion center,
then matrix elements (qf*)01 of the quadrupole-moment

operator vanish for the dipole-allowed 0 — 1 transitions.
Then only the dipole-dipole, dipole-octupole, and octupole-
octupole interactions contribute to (1.6). Moreover, we
can omit in (1.7) for these transitions the second and
third terms, since for macrofields Ei(r) = E i e ^ ' r their
derivatives with respect to the coordinates are small
(it is important to account for these terms only in analyz-
ing gyrotropy effects, in which we must take account
also in (1.1) of the interaction of the molecule with the
magnetic field, and also in a frequency region of dipole-
forbidden transitions). Bearing this in mind, we con-
clude that the system of equations (1.5) proves to be
completely analogous to the system of equations (19)
of the main text. The only difference consists in the
fact that the intermolecular interaction has been taken
into more exact account in the matrix of (1.6). This
circumstance has the result that accounting for the higher
multipoles for a region of dipole-allowed transitions
only shifts somewhat the resonances of the dielectric-
constant tensor. Yet the rest of the results cited in the
main text of the article remain unchanged here.

It beeomes quite necessary to account for the higher
multipoles in a region of dipole-forbidden transitions,
as well as in studying gyrotropy. Discussion of the
features that arise here exceeds the limits of this ar-
ticle, and it must be carried out separately.

2. CALCULATION OF THE FIELD ACTING ON AN
IMPURITY MOLECULE WHEN THE COULOMB GAUGE
OF POTENTIALS IS USED

In microscopic calculations based on exciton theory
of the optical properties of crystals arising from the
presence of impurity molecules, one usually uses the
Coulomb gauge of the vector potential. In this gauge,
one first calculates the local states of the crystal
(ground and excited states) with full account of Cou-
lombic interaction. Then one determines the matrix
elements of the transitions for the found states (dipole,
quadrupole, etc.). It is essential in this method of
calculation that one must consider as the perturbing
field in the light wave only the transverse component
of the electric-field intensity, for which the local
corrections are infinitesimally small (see t 3 ]). The ex-
pressions derived here for the oscillator strengths of
the transitions in the local centers prove to be expressed
in terms of solution of the Coulomb problem for the
crystal, and in particular, in terms of the energy and
wave functions of Coulomb excitons. Since one can ex-
press the dielectric-constant tensor of the crystal most
simply in terms of the characteristics of mechanical,
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rather than Coulomb excitons (see C l ] ) , the fact cited
above somewhat complicates discussion of the problem
of the nature of the effect of the macroscopic properties
of the matrix (its dielectric constant) on the optical
properties of the impurity molecules. However, within
the framework of the acting-field method used in this
article, this problem can be solved very simply, and it
leads to very graphic results (see Chaps. 2-4). How-
ever, evidently, to use any particular gauge should not
affect the final results. As applied to the problem under
discussion, we shall illustrate what we have said by the
example of an impurity molecule incorporated in a cubic
crystal consisting of isotropic molecules with one mole-
cule per cell. It is precisely by using the Coulomb gauge
that we shall first find the transition dipole moment at
the local center. Then we shall express it in terms of
the dielectric constant of the crystal. We also shall
compare the expression derived thus with the results
based on using the model of Onsager (see llal), and shall
point out the discrepancies that arise here.

Thus we shall assume that an impurity molecule is
located at the point p, which lies within the unit cell of
the crystal. In contrast to the molecules of the main
substance, we shall use a two-level system for the im-
purity molecules (0 for the ground state, and f for the
excited state). We can write the Hamiltonian of this
system (see ) as expressed in terms of the Bose op-
erators Bgj and BSi for creation and annihilation of
the ith excited state of the molecule s, as follows:

a? = <«•„+^,, (2.1)

-s»0 = E'm + 2 4/Β"·Β"« + 2 Vnm ' O i ; O ) B^iBml +
ni ηφτη

ij
1 V* + +

^ 2 "S" " ( 2 · 2 )

+ Vpm (00/;) (Bi,Bmj+BptBml).

(2.3)
In the expressions (2.2), E<0) is the energy of the crys-
tal in the ground state, Af and Δ̂  are the energies of
excitation of isolated molecules of the impurity and of
the main substance, and the Vnm are the matrix ele-
ments of the operator for the energy of interaction of
the molecules η and m. In particular, the matrix ele-
ment Vnm(OijO) corresponds to a process in which the
state B^jlO) goes over into the state Bnil0); Vnm(00ij)
corresponds to a process in which the state I 0) goes
over into the state BniBmj I 0), etc. One can show (see t 2 ])
that the matrix elements Vnm(0ij0) and Vnm(00ij) dif-
fer only when one accounts for the exchange corrections.
However, for molecular crystals in a region of singlet
excited states, these corrections are infinitesimally
small, and hence we shall not consider them here.

In order to determine the energies and wave functions
of the excited states of the studied system, let us trans-
form to the new Bose operators Έ>\, and Bv:

,uv (ni) + Bin* (ni)], (2.4)

(E-Af) u(p/)= -(E + A,) ν (p/)= 2 Vnm (0//0) u («», (2.7)
mi

where u = u + v.

Equations (2.6) and (2.7) imply that

where the coefficients u and ν satisfy the normaliza-
tion condition

SH «,(»i) |.-K(»DI»l-i (2.5)
ni

and are determined by the following system of equations
(see also C 2 ] ) :

" (mi), Ζ {pi) = E

2^'A u (pf), (2.8)

Thus, we can represent the system of equations for
the quantities a(mj) = S(mj)/vAy in the following form:

(2.9a)

(2.9b)

where

) = 2

In an ideal crystal the coefficients a(ni) satisfy the
system of equations (2.9a) if therein we set Vnp = 0.
Then, owing to translational symmetry, the quantities
a(ni)^ a

( 0 )(ni) that correspond to the exciton μίς are
determined by the relationship

"ilk I
(2.10)

Here μ is the number of the exciton band, and k is its
wave vector. Hence, considering the normalization con-
dition (2.5), we can represent the Green's function of the
ideal crystal in the form

η /ci * V "μ* (''a*uk Μ £ μ № ik(n-m) IO i1\
Gni, mi(E) = - w 2J 7Γ. ΖΐΤΓ. ' · \^-S-i)

where Εμ(1ε) is the energy of the exciton Mk.

Upon solving Eq. (2.9a) for the quantities a(ni), we
find that for a local excited state (whose energy we
shall denote by Eo),

a (ni) = a (pf) mJ (0//0). (2.12)

Then if we substitute this relationship into (2.9b), we
get an equation that determines the value of the energy
Eo:

E>-A',= %Vpn(Ofi0)Gni,mj(Eo)Vml@jf0). (2.13)

The last term in (2.13) proves to be substantial only for
impurity molecules whose excitation energies are close
to the energy of an exciton. In the converse case, the
resonance interaction of the impurity molecules with
their environment is hardly significant, so that Eo~Af.
Without taking up here the details and results of calcu-
lating the energy of a local excited state (on these, see,
e.g., C 2 ] ) , we shall proceed directly to calculating the
matrix element of the transition moment.

(E-Ai) u (ηί)= - ) = 2 Vnm (OijO) £ (
mi

np (0/i0) ΰ (/>/), ( 2 . 6 )

If this transition arises under the influence of a light
wave propagating through the crystal with the wave vec-
tor k, then evidently its intensity will be proportional to
the square of the projection of the matrix element of the
operator

onto the 1-direction of the transverse component of the
macrofield E-^co.k). Here ps is the dipole-moment
operator of the molecule s and the summation over the
sites s also includes the impurity molecule. When
represented in terms of operators for creation and an-
nihilation of molecular excitations, the operator Ρ has
the following form:
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Thus, if v= VQ in the summation of (2.4) corresponds to
the excited state of a local center, then the sought ma-
trix element

is determined by the following relationship, in view of
(2.4):

takes on the following form for cubic crystals with neglect
of spatial dispersion:

Thus we find that the projection of the vector (2.14) onto
the direction of polarization of the transverse macro-
field l ( l - k = 0) is

ΐΡ»νο=νΛ-/0ν M ' W i W i <2.18)

Now if we use Eq. (2.12), we find that

POv° = yA}aVii(p/)ip°' + 2 ^ ViA7Gnimj(£0)l/mp№70)p0i

e-
ikn|. (2.14)

nmij

If then we take account of the fact that, in accord with
(2.11),

and introduce the notation

we can write the second term within the square brackets
of Eq. (2.14) in the form

where

Σ p (0,70) e (2 .16)

In order to give the final formulas the simplest and most
lucid form, we shall account only for the dipole-dipole
interaction in the energy V n m . In the dipole approxi-
mation, the quantity Auk(pf) equals the interaction en-
ergy of a dipole ρ lying at the point ρ with a net of
dipoles lying at the lattice sites n, and varying accord-
ing to the law Ρμ(1^)θ"^'η. This means that

A > k ( p / ) = - ρ « Ε μ ( 1 0 ,

where Εβ()α) is the electric field at the point ρ pro-
duced by the net of dipoles. According to t 3 ] , the com-
ponents of this field are determined by the relationship

where ν is the volume of the unit cell and Qxy is the
internal-field matrix. Thus

ft) P (2.17)

so that the χ component of the vector within the square
brackets of (2.14) can be represented as follows:

[...].=

where

If the impurity atom (or molecule) lies at the center of
the unit cell, then as k —0, the tensor Qa/3(k) is reduced
to the scalar Qaj3(0) = (4jr/3v)6a^. Moreover, according
to C l 2 ] the relation holds that

8π ^
— Zl er, (£) krkt

For sufficiently deep traps, the quantity 3,, (pf)
= V5fai/0(pf) is close in modulus to unity (see also Chap.
4 of the main text). Under these conditions, as we see
from (2.18), the effect of the environment is reduced to
replacing the transition dipole moment in the isolated
impurity molecule with its effective value [(£ + 2)/3]poi.
One also gets exactly the same result by using the
Coulomb gauge for substitutional molecules , and of
course, it does not depend at all on the choice of gauge
(cf. Chap. 2 of the main text, where the Lorentz gauge
was used). Thus, in contrast to the treatment in 1 8 ] ,
which was based on using the model of Onsager, the
acting-field correction has a Lorentzian form even
when the properties of the impurity substantially differ
from those of the molecules of the main substance.
However, the comparison that we have made with the
results of the macroscopic model of Onsager indicates
simply that it is inapplicable for describing the intensi-
ties of transitions at impurity centers (Mahan : i 9 : l has
also come to an analogous conclusion in calculating the
interaction energy in a medium of two static dipoles).

'*At the same time, of course, the molecules can have static moments of
higher multipole character, both in the ground and in the excited state.
In general, these moments differ for the ground and excited states. The
energies of interaction of a molecule with its environment also come to
differ in these states. This leads to a certain frequency shift of the intra-
molecular transitions with respect to the transition frequencies in vacuo.
We shall assume henceforth,that the tensor ay (ω, k) differs from the
corresponding tensor for a molecule in a vacuum only by taking of this
shift.

2)This treatment using the tensor ay (ω, k) is in no way more phenomeno-
logical than the theory of excitons of small radius, where instead of the
tensor ay (ω, k) one also assumes the wave functions and energies of the
isolated molecule to be known (assigned). However, the structure of the
tensor ay (ω, k) in the region of certain resonances of the molecule can
be treated by using point-group theory.

3'The results existing here are reflected in very general form in Khokhlov's
article. [4] References to the earlier studies are also found there.

4)For the accuracy of this approximation, see below in Chap. 4.
5)The tensor ey (ω, k) has been calculated within the framework of

Frenkel's exciton theory in [' ] • In this regard, see also [ 4 ] .
6)Of course, a knowledge of the tensor ey (see (24) and (26)) permits us

to find the position of absorption lines for arbitrary polarizations and
directions of propagation of the light, and also to account for spatial-
dispersion effects.

7'The fact that we are dealing with effects that differ in nature becomes
especially evident when we consider that the size of the acting field at
the site of the impurity is practically independent of the properties of
the impurity (see Appendix 2).

8*Thus, dispersion measurements in a region of transparency can be used
for analyzing the composition of a mixture. A knowledge of this com-
position is necessary in interpreting results on concentration broadening
and comparing them with theory.

where e^ is the dielectric tensor of the crystal, which

lV. M. Agranovich and V. L. Ginzburg, Kristallooptika
s uchetom protranstvennoi dispersii i teoriya 6ksitonov
(Crystal Optics with Account Taken of Spatial Disper-
sion and the Theory of Excitons), Nauka, 1965 (Engl.
Transl., Spatial Dispersion in Crystal Optics and the

116 Sov. Phys.-Usp., Vol. 17, No. 1, July-August 1974 V. M. Agranovich 116



Theory of Excitons, Interscience, New York, 1966).
2V. M. Agranovich, Teoriya eksitonov (The Theory of
Excitons), Nauka, 1968.

3M. Born and K. Huang, Dynamical Theory of Crystal
Lattices, Clarendon Press, Oxford, 1954 (Russ. Transl.,
IL, 1958).

4Yu. K. Khokhlov, Tr. FIAN SSSR 59, 221 (1972).
5N. G. Bakhshiev, Spektroskopiya mezhmolekulyarnykh
vazaimodeistvii (Spectroscopy of Intermolecular Inter-
actions), Nauka, 1972.

6M. V. Vol'kenshtein, Molekulyarnaya optika (Molecular
Optics), Gostekhizdat, M., 1951.

7a) E. I. Rashba, Optika i Spektroskopiya 2, 568 (1957)
Fiz. Tverd. Tela 4, 3301 (1962) [Sov. Phys.-Solid
State 4, 2417 (1963)]; b) Fizika primesnykh tsentrov ν
kristallakh. Materialy Mezhdunarodnogo seminara
(Physics of Impurity Centers in Crystals. Materials
of the International Seminar), Tallin, 1972, p. 427.

*V. L. Broude, E, I. Rashba, and E. F. Sheka, Dokl.
Akad. Nauk SSSR 139, 1085 (1961) [Sov. Phys.-
Doklady 6, 718 (1962)]; E. F. Sheka, see Ref. 7b,
p. 450.

9Y. Onodera and Y. Toyozawa, J. Phys. Soc. Japan
24, 341 (1968); O. A. Dubovskii and Yu. V. Konobeev,
Fiz. Tverd. Tela 12, 405 (1970) [Sov. Phys.-Solid
State 12, 321 (1970)]; J . Hoshen and J . Jortner, Chem.
Phys. Lett. 5, 351 (1970); H.-K. Hong and G. W. Robin-
son, J. Chem. Phys. 52, 825 (1970).

I 0 I . V. Obreimov, Ο prilozhenii frenelevoi difraktsii dlya

fizicheskikh i tekhnicheskikh izmerenii (On the Appli-
cation of Fresnel Diffraction for Physical and Technical
Measurements), AN SSSR, 1945.

UV. L. Broude and E. I. Rashba, Fiz. Tverd. Tela 3, 1941
(1961) [Sov. Phys.-Solid State 3, 1415 (1962)].

12V. M. Agranovich, N. E. Kamenogradskii and Yu. V.
Konobeev, Fiz. Tverd. Tela 11, 1445 (1969) [Sov. Phys.-
Solid State 11, 1177 (1969)].

13N. E. Kamenogradskii and Yu. V. Konobeyev, Phys.
Stat. Sol. 37, 29(1970).

1 4 J. Van Kranendonk, Physica 25, 1080 (1959).
15V. M. Agranovich, Effekty sil'nogo angarmonizma ν

spektrakh kombinatsionnogo rasseyaniya sveta (Effects
of Strong Anharmonicity in Raman Spectra)(Supplement
to the Russ. Transl. (Mir, 1973) of H. Poulet and J .-P.
Mathieu, Spectres de vibration et syme'trie des cris-
taux, Gordon and Breach, Paris, 1970).

16A. S. Davydov, Teoriya molekulyarnykh eksitonov
(Theory of Molecular Excitons), Nauka 1968 (Engl.
Transl. of 1st Edn., McGraw-Hill, New York, 1962).

1 7L. D. Landau and Ε. Μ. Lifshitz, Kvantovaya mekhanika
(Quantum Mechanics), Fizmatgiz, 1963 (Engl. Transl.,
Addison-Wesley, Reading, Mass., 1965).

1 8D. Y. Smith and G. L. Dexter, Progr. Optics 9, 165
(1972).

19G. D. Mahan, Phys. Rev. 153, 983 (1967).

Translated by M. V. King

117 Sov. Phys.-Usp., Vol. 17, No. 1, July-August 1974 V. M. Agranovich 117


