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The review reflects the results of theoretical and experimental investigations of thin dielectric films

with an aim of using them to develop integrated optical circuits. The principal properties of optical

waveguides on dielectric substrates are considered. Methods are analyzed for the admission and

extraction of light through the waveguide surface using the optical tunnel effect, using a phase

diffraction grating, and using a gradually tapering edge. Attention is paid to the conversion of the

frequency of laser radiation in a nonlinear thin-film waveguide, and also to the losses due to

absorption and scattering of light in the films. The review describes, in addition, the principal results

of theoretical and experimental research on the interaction of optical and acoustic waves in thin

films, and on amplification and generation of light in activated thin-film waveguides. Passive optical

elements based on thin films are also considered.
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INTRODUCTION

Quantum electronics has recently reached a devel-
opment level such that its capabilities, discovered in
laboratory research, are finding ever increasing prac-
tical applications. In particular, the use of thin-film
dielectric waveguides uncovers a way of producing
miniature laser devices, optical modulators, filters,
parametric generators, and other elements for com-
munication systems with large information capacity,
high-speed computing devices, and systems of optical
information processing. The formation of thin-film
optical elements on flat dielectric substrates will make
it possible in the future to construct integrated optical
circuits which are insensitive to external (thermal and
mechanical) influences, are economical in operation,
and are cheap when produced on a commercial scale.
These prospects stimulated a new field of research at
the junction of microwave engineering and optics, namely
integrated optics. The first work on flat asymmetrical
dielectric waveguides with thickness on the order of the
light wavelength were performed in our country in
1967-1968 C l " 3 ] . These consisted of studies of the prin-
cipal properties of optical waveguides on dielectric
substrates, development of a method for the entry and
exit of the light through the waveguide surface by using
the tunnel effect, and conversion of laser-emission fre-
quency in a nonlinear thin-film waveguide. Following
the publication of [ 4>5 ], where different variants of the
utilization of optical waveguides and integrated circuits
were proposed, extensive integrated-optics research
has developed abroad. By now, considerable progress
has been reached in this field. The dispersion charac-
teristics of asymmetrical dielectric waveguides, and
also the field distribution and the light fluxes produced
in them by surface waves have been quite fully investi-
gated theoretically and experimentally C l>6~1 7 ] ( s e e Chap.
1). By using thin-film waveguides of varying optical
thickness, passive optical elements were developed such
as lenses, prisms, and diffraction gratings t 6 ; 1 8 ~ 2 1 ] (see

Chap. 2). Entry of radiation via the tunnel
effect1 2 '6 ' 8 ' 2 1"3 1 3, effective methods of exciting a definite
surface wave through a gradually narrowing edge of a
waveguide film and through a three-dimensional (or
planar) phase diffraction grating deposited directly on
its surface were developed t 2 ' 1 1 ' 3 2 " 4 1 3 ( s e e Chap. 3).
Calculations and measurements were made of the op-
tical losses due to absorption and scattering by inhomo-
geneities in a real film, and also due to noticeable scat-
tering by its optically imperfect and rough
walls t1*2»7*11»16»17.42-463.

The possibility of obtaining light fluxes of high den-
sity over sufficiently extended sections of a thin-film
waveguide is its main advantage when various nonlinear
interactions are effected between the light
waves [2>iM5>29>47-523 (See Chap. 4). In addition, it can
be noted that the thin-film waveguides make it possible
to use isotropic nonlinear materials and afford new rel-
atively simple possibilities for frequency tuning of
parametrically-excited waves C 2>1 5\ Published experi-
mental papers on nonlinear effects in thin films are
limited to reports of observation of the second harmonic
and of the difference frequency [ 2>5 1>5 2 ].

In Chap. 5 of this review we present the principal re-
sults of theoretical and experimental research on spatial
modulation of optical surface waves when they interact
with acoustic waves C 5 3 " 5 5 ] , and also the results of re-
search on the mutual conversion of surface waves in
thin films with anisotropic boundary media C 5 6 " 5 8 ]

> The
last and sixth chapter is devoted to problems connected
with amplification and generation of light in activated
thin-film waveguides [ 5 9>7 2 : l .

Confining ourselves to purely physical problems, we
do not dwell here on the technology of manufacture of
strip thin-film waveguides (width of the order of several
wavelengths), although it should be emphasized that the
development of such low-loss waveguides is a fundamen-
tal practical problem of integrated optics at the present
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stage of its development. Intensive searches are there-
fore being made for new materials, namely organic and
inorganic semiconductors and dielectrics1·15'43'44'''6'73·'.

In addition to the known methods of obtaining wave-
guide layers C 7 4~7 6 ]

; new methods are being devel-
C l 5 7 7 ]

oped
ye

C l 5 > 7 7 ] particularly those using ion diffusion and
penetration of protons into the substrate C78~8o:l. Cir-
cuits comprising strip optical waveguides are produced
on a single dielectric substrate not only by photolithog-
raphy, but also by exposing the photoresist to a laser
or electron beam t 3 5>8 1>8 2 i

j by engraving the substrate
with subsequent filling of the microscopic grooves with
polymerizing material t 7 3 ] , and by other methods'1 5 '6 4 '8 3 3.

1. PROPAGATION OF LIGHT WAVES IN
THIN DIELECTRIC FILMS

A homogeneous dielectric film of constant thickness,
deposited on a flat dielectric substrate, constitutes a
flat (generally speaking, asymmetrical) optical wave-
guide if the dielectric constant e0 of the film exceeds
the dielectric constants ej and e2 of the adjacent media.

The field of monochromatic waves (with time depen-
dence e'i^t) propagating in such a waveguide (Fig. 1)
along the χ axis and homogeneous along the y axis, is
described by the two-dimensional scalar wave equation

{-& + •&+k*i)v(*,z)^ (i.i)

where kj =njk, k = a>/c is the wave number in vacuum,
nj = ViJ stands for the refractive indices of the media
(j = 0, 1, 2), the absorption of light in which we neglect.
Depending on the two possible polarizations of the light
in the waveguide, the wave function ν coincides either
with the electric field vector

V=E,j II # , = — —

du
dx

(//-waves),
(1.2)

(1.3)

or with the magnetic vector
V^-Hy Η Εχ

(see t 8 4 ] ) . To satisfy the boundary conditions on the
planes z = 0 and z=-h, which separate the dielectric
layers, the waves v(x, z) should be represented in the
form Z(z)X(x), i.e., in the form of plane waves

these waves should have the same dependence on the
coordinate x:
kjx = const = kx = n*k HJIH na s in9 0 = n, sin Θ, = n2 sin Θ, = re*.

(1.5)
In other words, the wave propagation direction should
satisfy the law of refraction (and reflection) of light.
Further analysis of the continuity of the tangential com-
ponents of the field for the two boundary values z(0, -h)
makes it possible to obtain, on the basis of (1.4), the
field distributions that are possible in the three-layer
dielectric media considered by us. We shall dwell on
them in greater detail later on, and for the time being
we discuss the detailed boundary condition (1.5). Since,
by assumption, ik <nj and no, it follows that when the
angle of inclination θ0 of the wave vector ko is increased
the angle θ2 will be the first to reach the limiting real
value π/2. Of course, the condition (1.5) remains in
force at n* >n2 (or kx >k2), but then real angles θ0 will
correspond to imaginary values of the constant 02. Intro-
ducing in its place a new constant for the second medium
in accordance with the formula α 2 = ΐ[02-(π/2)], we ob-
tain n2 sin(?2=n2 cosha2 for the condition (1.5) and
ik2 cos02=-k2 sinha2 for relation (1.4). When k x >k 2 ,
the parameter a2 assumes real values under the con-
dition (1.5). According to (1.4), the field in the second
medium decreases exponentially with increasing dis-
tance from the interface z = 0. There is no field increas-
ing exponentially along the ζ axis in the second medium
(CJ =0) if no radiation enters the dielectric film from
this medium (see Chap. 3). Thus, if kx >k2 the light wave
travels in the second medium along the boundary surface,
and the light propagating in the film experiences total
internal reflection from this boundary surface.

As the angle of incidence of the wave on the walls of
the dielectric film is increased further, the parameter
n* eventually becomes larger than the refractive index
nx of the substrate. The wave propagating in the film
is then totally reflected from both boundary media. The
field penetrating into the first and into the second
medium decreases exponentially with increasing dis-
tance from the film. Thus, under the condition

v(x,z) = Z (z) X (x) = [CJ exp (ikj cos 9j · z)

-r C] exp (— ikj cos θ> · ζ)] exp (ikj sin By x), Cf = const.
(1.4)

The constants 6j which result from the separation of
the variables in the wave equation, specify the angles,
relative to the ζ axis, at which the incident and re-
flected plane waves exp[i(kjXx±kjzz-o>t)] propagate in
each of the media. By virtue of the continuity of the field
on the surfaces separating the dielectrics (z = 0, -h),

•η·> η, ( a n d n2) (1.6)

the optical radiation becomes channeled in the dielec-
tric waveguide and the so-called surface waves are
produced and travel along the film. The propagation
velocity of the surface waves, vx = o>/kx=c/n* is
smaller than the light velocities Vi,2 = c/ni)2 in the
first and second media, but is larger than the light
velocity vo = c/no in the film. We note that the parame-
ter η*, which was introduced together with the incidence
angle θ0, plays the role of the effective refractive index
for the given surface wave, and the values of this index
cannot go beyond the limits indicated in (1.6). We intro-
duce next for the first medium (as was done previously
for the second medium) the real parameter «i instead
of the imaginary constant θ1, rewrite the boundary con-
dition (1.5) in the form

(1.7)n* = n0 sin θ 0 = η, ch αϊ = n2 ch a2

and make the substitutions

j sin 6j = in'k,

(1.8)

in (1.4). It is also necessary to put in (1.4), in the ab-
sence of optical pumping from either medium, Ci = C2~ 0.
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On the basis of the continuity of the tangential field
components, at the interface between the film and the
second medium (z =0), we can express the amplitudes
Co" and C2 of the reflected wave and of the wave pene-
trat ing into the second medium in t e r m s of the amplitude
Cl of the incident wave (see formulas (1.16) below). In
the case of total internal reflection, the amplitudes Cl
and Co" a r e naturally equal in magnitude:

C^/Cl = exp (— ίδ02), (1.9)

and the phase shift between them is U 3

where Hv = 0 in the case of the Η waves (1.2) and
H = Hy in the case of the Ε waves (1.3).

By satisfying analogous conditions on the boundary
z=-h between the film and the first medium we can
obtain with the aid of (1.4) the amplitude CT of the wave
penetrating into this medium (more accurately, Ci/Co),
and show that

where the phase shift δοι corresponding to total internal
reflection from the surface of the first medium is de-
scribed by formula (1.10) in which n2 is replaced by ni.
It is easily seen that Eqs. (1.9) and (1.11) are compati-
ble if

or

2A0 cos θο-h - δΜ - δ02 = 2π (m - 1), (1.12)

(1.13)

where m = l, 2, 3, ... Thus, a monochromatic light wave
can propagate in a dielectric film via total reflections
from its walls only at definite incidence angles 9om that
follow from the condition (1.12). These angles θοηι de-
crease with increasing m, and the minimal angle of in-
cidence 0om (or the possible number in of surface waves
of frequency ω in the given dielectric waveguide) is de-
termined by the lower limit (nx) of the effective refrac-
tive index n* of the surface waves:

«o sin 6Om > n, (m = 1, 2 m). (1.14)

On the other hand, if we fix the value of m, then re-
lation (1.13) assumes the role of a dispersion equation
that describes the dependence of the effective refractive
index n m of the given surface wave on its frequency ω.
The effective refractive index njn depends also on the
thickness h of the dielectric film, a fact used to pro-
duce passive optical elements (prisms and lenses) that
act on surface waves in the (x,y) plane of the waveguide
(see Chap. 2). As n m approaches its lower limit Πι
(i.e., with decreasing angle of incidence 0om), the quan-
tity kh in (1.13) reaches its minimal permissible value

(1.15)
In a dielectric film of given thickness h, relation (1.15)
determines the critical frequency cog}in for each of the
surface waves. If the light frequency ω becomes less
than the critical frequency, then the surface wave goes
over into a wave that does not experience total internal
reflection, at least on the interface of the film and the
first medium, so that light starts to be emitted from the

surface of the waveguide into this medium. For this
reason, in order for the m-th surface wave at the fre-
quency ω to exist, the thickness of the dielectric film
should exceed the critical thickness hg}in that follows
from (1.15). Since the phase shift of the Ε wave is
larger in the case of total internal reflection than the
phase shift of the Η wave, the critical thickness of the
film turns out to be larger for the first of the indicated
polarizations of the m-th surface wave: h£?in >hj?in.
* E,m Ή,ηι
When m is increased by unity, the critical thickness of
the film invariably increases by x/2Vn[j-nJ. Using a
film of suitable thickness, we can limit the number of
surface waves of the dielectric waveguide at will (in
particular, to one wave Hi).

According to (1.13), analogous relations between the
relative film thicknesses kh corresponding to E m and
Hni waves hold true for any fixed value of n*. By way
of illustration, Fig. 2 shows the dependence of the ef-
fective refractive indices n m on the relative film thick-
ness for surface E m and H m waves of low order, for
material refractive indices no«4.0, ni« 1.42 and n2

= 1.0 (a) C l 3 and for closer values no = 2.3, n1= 1.5, and
n2 = 1.0 (b) C l l ] . The first case (Fig. 2a) describes in
the wavelength band λ=2-4 μ, a germanium film de-
posited on a quartz substrate and in contact with air
on the other side. The second case (Fig. 2b) corre-
sponds in the vicinity of λ~ 1 μ to a film of ΖnS on a
glass substrate in air.

In any longitudinal plane ζ = const of the waveguide
shown in Fig. 1, its surface waves are traveling waves
of the type exp[i(n*kx-cot)]. In a transverse plane
x = const inside the film ( Ο ϊ ζ ^ - h ) , the light field is
described by the standing wave C0V

ici't{exp(iVn<;-n*'"!kz)
+ exp[-i(V no-n*2kz + 602)]}, which is produced as a result
of a superposition of the wave incident on the film wall
and the wave reflected from it. At an incidence angle
0om(nm = no s ine m ) , i.e., in the case of a surface wave
with index m, the standing wave has (m—1) nodes. On
the whole, the surface-wave field is distributed in the
following manner:

ν (χ, ζ, t) = Ζ (ζ) exp [ί (n*kx — tat)],

— n\kz), z>0,

2 exp ( - ίδο2/2) Cl cos [V nj — n" kz + j 602 («•)] ,

C>xp (yn·
2—n\kz), z< —ft,

(1.16)

where the amplitudes of the waves penetrating into the
first and second media areC*2=2Co/[l + i tan(5o2/2)],
CI = 2CJ expftVn^-ni-iVni-n^khj/tl-i tan(6oi/2)];
tan(6o2<oi>/2) is defined in (1.10). The magnetic field
of the H m waves (v=Ey) and the electric field of the
E m waves (v = Hy) can be easily calculated from for-

2.3 - — _ "n

IS

1.5

0,1 0.3
Λ/λ

as
1.0 ίθ

Λ/Λ

FIG. 2
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mulas (1.2) and (1.3), respectively. The resultant ex-
pressions are given in t l ] .

The time-averaged energy flux carried by the surface
wave along the thin-film waveguide in each of the con-
stituent media (through a section of unit width along the
y axis) is given by the general expression

Μ·=:/Λ + («"-«?)-1'2 + («*2-«5)-1/2. (1.22b)

We see that at a fixed value of n* the effective wave-
guide thickness h* exceeds the film thickness h by the
same amount for all E m waves (κ = 2), and by a some-
what different amount for all Hm waves (κ = 0), m= 1, 2,
3, ... The difference (h*-h) reaches a minimum as
n* —no and increases without limit as n* — ni. Fig. 4
shows plots of h* (and h) against the effective refrac-
tive index for the case of Hi and H2 waves in a ZnS
film on a glass substrate (no = 2.3, ni = 1.5, 1̂  = 1.0; see
also Fig. 2b). t l l ] Similar curves can be easily con-
structed for Η waves of higher order m, if it is recog-
nized that, according to the dispersion equation (1.13)
when m is increased by unity the relative film thickness
kh (and consequently also kh*) is invariably increased
by π(η?-η*2)-1 / 2:

\v\'dz

(1.17)

7 = 0,1,2).

(1.18)

taking into consideration the field distribution (1.16),
we get

Pf = (en* | Cl |2/4nnJ) [h -}• [(sin 601 + sin 6m)/2k ΥΤξ^η

PS·" = en" | C*o Ρ (1 + cos fi01. 0 2)/8πη* ,/i Υη*% - η\Λ.

Similar formulas are given in C l ] . The results of the
calculation performed in that reference for a germanium
film on a quartz substrate (no- 4.0, η,.* 1.42, n2 = 1.0) are
shown in Fig. 3. We see that at a relative film thickness
close to critical for the Ei wave (see Fig. 2a) the
greater part of the Hi-wave energy is carried in the
interior of the film. With further decrease of the film
thickness the field of the fundamental surface wave
(and the radiation flux produced by the wave) becomes
distributed to an ever increasing degree in the neighbor-
ing media, especially in the substrate. This behavior is
typical of all surface waves and follows directly from
the general uncertainty relation Akz · Δζ~ 1.

The total energy flux produced by the surface wave is
conveniently expressed in the form

P^SSM*. (1.19)

where S ^ ' ^ denotes the maximum density of the t ime-
averaged light flux in the film:

SSkT = en'|C;P/2nny (1.20)

(see relations (1.17) and (1.16)), and h* denotes the ef-
fective thickness of the waveguide, over which the total
energy flux becomes distributed with an average density
Smax/2:

kh* — kh + [(sin 601 -f sin δο2)/2

+ («o/ni)H 1(1 + cos δο1)/2 Υη·*-η']

+ (ηο/η2)
κ [(1 + cos δο2)/2 / « « - n j ] .

Expanding δο2<οι> in accordance with formula (1.10), we
obtain

(1.22a)

where /c=2Hy/H. In the case of Η waves (K = 0), the
last formula becomes much simpler

— B « ( m = l , 2, . . . ) ,

where λ is the wavelength of light in vacuum. By
choosing the relative film thickness (or n*) and excit-
ing in it the fundamental surface wave H1( we can ob-
tain the smallest effective thickness khjfr χ of the wave-
guide and by the same token (see (1.19)) the largest
light-flux density inside the film at a given total flux
Ρχ. In the case represented in Fig. 4, the effective
waveguide thickness becomes minimal at a relative film
thickness hH,lA=0.19 (and at an effective refractive
index njj i*1.82). This minimal thickness is hjj χ/λ
= 0.435. For light of wavelength λ» 1.06 μ in vacuum,
the effective thickness hjj χ is 0.46 μ (and hn, 1 = 0.2 μ).
Thus, when a light beam of 1W power and of 10 μ width
(along the y axis) is introduced in the fundamental mode
Hi of a thin-film ZnS waveguide, the average radiation
flux density in the film reaches the appreciable value

•i SiSix « 22 MW/cm2,

thus producing favorable conditions for the realization
of nonlinear interactions (see Chap. 5).

Principal attention will be paid here (and throughout)
to surface waves, but in a thin-film waveguide there can
be produced in addition waves that do not experience
total reflection from the film walls (see the general so-
lution (1.4) at incidence angles θ0 in the range O^no
sin θ0 = η* ̂  ni). In particular, if the film thickness
changes in some section of the waveguide, then any sur-
face wave passing through that section is transformed
into surface waves of other orders, and also into waves
accompanied by radiation of light from the film into the
neighboring media. The radiation waves are described
in detail in the review C l l ] . Referring the reader to this
review, we recall only that in an asymmetrical dielec-
tric waveguide the radiation waves can be of two types.
Namely, in the region n2 < n * s m there exists for each

(1.21)

67 Sov. Phys.-Usp., Vol. 17, No. 1, July-August 1974 Ε. Μ. Zolotov et al. 67



value of η* one solution of the type (1.4), which de-
scribes a wave incident in the medium, refracted (and
partially reflected) in the film, and experiencing total
internal reflection from its interface with the second
medium. The amplitudes CT, C?, and Ct of the corre-
sponding waves are expressed in terms of the amplitude
Ci of the incident wave with the aid of four boundary
conditions. In the region 0 S n * ^ n 2 there exists for
each value of η*, besides the solution representing the
wave incident from the first medium and going through
the film off to the second medium, also another inde-
pendent solution, which describes the propagation of a
wave incident on the film from the second medium. In
the theory of symmetrical thin-film waveguides it is
convenient to use two linear combinations of these so-
lutions , having odd and even field distributions about the
ζ axis, namely Zg(z, n*) and Zu(z, n*), respectively'16'173.
The convenience lies in the fact that the modes Zg and
Z u are obviously orthogonal to each other, As to the
modes Z(z, n*) corresponding to different values of the
effective refractive index η*, they are hermitially or-
thogonal in the general case of an asymmetrical wave-
guide:

of the field v(x, y)=A(x, y) e iMx,y). The applicability
of this equation is limited by the condition Ik grad ΝI
« 1, which means that the dimensions of the transition
from the thin region of the film to the thick one should
be much larger than the wavelength of the light. Using
the eikonal equation, we can easily derive the law for
the refraction of the light on going from one region
with n*=N* to another with η*=ΝΠ t 8 5 ]

:

JV1 sin otj = Nn sin α π . (2.2)

! = 0 for (1.24)

since they are eigenfunctions of the hermitian linear
operator

(1.25)

where

= \ "ο
I «1

for z>0,
for 0>z^
for z<-h.

Relation (1.24) holds for both the continuous spectrum of
the values 0 s n * ^ n i (radiation waves) and for the dis-
crete spectrum ni<nj^£no (surface waves).

We note in conclusion that, confining ourselves to
thin-film waveguides on dielectric substrates, we take
into account the circumstance that in the far infrared
and in the optical bands the radiation losses due to re-
flection from a metallic substrate (and all the more the
losses in hollow metallic waveguides) exceed by several
orders of magnitude the losses in films (at the present
state of the art of their manufacture) C l>1 3 ].

2. PASSIVE OPTICAL ELEMENTS

One of the tasks of integrated optics is the develop-
ment of passive optical elements (lenses, prisms, dif-
fraction gratings) in a film. This problem can be solved
on the basis of the theoretical analysis of the propaga-
tion of light in thin waveguide films. In Chap. 1 of this
review we described in detail and discussed the funda-
mental results of this analysis, and have shown in par-
ticular that in the region (1.6) of the existence of the
mode m its effective refractive index n}n increases
monotonically with increasing film thickness. This is
a fundamental fact for the analysis that follows.

In the case of two-dimensional (film) optics, in volume
optics, we can obtain an eikonal equation describing the
propagation of a light ray in the film p 0 ]

[grad φ (χ, y)Y = [η* (χ, y)]* = Ν1 (χ, y), (2.1)

where <p(x,y) is the eikonal which determines the phase

Throughout this chapter, the effect of refractive index
of the parts of the film with different frequencies will
be designated Ν1, Ν*1, etc.

It should be noted that the refraction angle α π does
not depend on the profile of the thickness of the transi-
tion region of the film, but this profile does determine
the shift of the ray along the transition boundary, and
also the losses to reflection, to radiation, and to mode
conversion in the transition region. The snoothness of
the transition on the whole minimizes these losses.
Refraction of light going from one region of the film
with NI to another with N^ was observed experimen-
tally in C 6 > 2 0 ]. A ZnS film was deposited by vacuum
evaporation on a glass substrate. A film of thickness
hi 700 A was deposited first. Part of the film was then
covered by a shield and a second layer was deposited on
top of the first.^ The total thickness of this film layer
was hn~2400 A. In the second coating, the covering
shield was located at a distance 0.1 mm from the first
film layer, making it possible to obtain a smooth
transition from one region of the film to the other,
with a transition width Lx«0.05 mm. A light beam
from an He-Ne laser was introduced with the aid of a
prism (see Chap. 3) into the film with hi = 700 A. The
authors of t2°3 verified the validity of Snell's law by
measuring the angles αϊ and a n and the effective re-
fractive indices N1 and Φ. Within the limits of the
experimental accuracy, which was limited by the errors
in the determination of the angles a, no deviations
from (2.2) were observed. In this experiment the in-
tensity of the light beam reflected from the transition
region was too weak to be registered. The smooth
transition from a thin film to a thicker one, with dimen-
sions Lx much larger than the light wavelength λ, has
an exceedingly small reflection coefficient ~(2πΝΙ/τΑ)~2

and is equivalent to the effective nonreflecting coating
used in ordinary optics. An exception is the case of total
internal reflection, when the light beam propagating in
the film region with thickness hn is incident on the
transition region at a sufficiently large angle a j . (a*

> a c r , where a C r = sin'1(NVN11)). The total internal
reflection of the ray in the film in the region of the
transition is a direct consequence of the refraction law.
A light ray reflected from the interface between regions
I and II propagates in region Π at an angle αί" to the

normal to the interface; this angle is connected with the
incidence angle a* by the relation

«rn=«-<*ii· (2.3)
Total internal reflection of light in a thin-film wave-
guide was observed experimentally by the authors of
the cited papers t 2 0 ' 3 2 ]

 a t ray incidence angles exceeding
the critical value a c r = 51° (hi = 700 A, h n = 2400 A, ZnS).
Obviously, total internal reflection can occur also when
the film thickness in region I is less than critical, i.e.,
hi < h m i n . In this case the necessary and sufficient con-
dition for total internal reflection is the inequality
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ATii). (2.4)

At smaller incidence angles, the light cannot propagate
in region I, and is radiated into the substrate from the
section with variable thickness. We note that the total
internal reflection on the boundary of two regions of the
film is actually total in the case of a strictly straight-
line boundary.

Just as in ordinary optics, prisms and lens are pro-
duced by suitable shaping of the surfaces of dielectric
transparent media, in thin films it is possible to pro-
duce elements acting as prisms and lenses by suitable
shaping of the boundaries of the region where the refrac-
tive index Ν varies. Obviously, this can be primarily
effected by varying the film thickness. If we wish to op-
erate with a film in which the fundamental mode propa-
gates, then its thickness should not exceed the critical
thickness for the second mode m = 2. The maximum
change of the refractive index does not exceed no-n!
in this case:

n 0 — raj.

IOWA

Numerical calculations C 2 1 ] show that for a film with
no = 1.75 on a glass substrate in air, it is possible to
achieve changes AN m a x s 0.17 of the effective refrac-
tive index by varying the thickness from 0.2 λ to
0.8 λ. Thin films having large refractive indices, such
as CeO2, ZnS, ZnO, having no = 2-2.5, can obviously en-
sure appreciable changes ΔΝ, on the order of 0.5 and
more. A major shortcoming of these films, however, is
the large scattering loss, which limits the propagation
of light in them to distances up to several (1-3) centime-
ters and makes their use as waveguides difficult. It is
therefore proposed in C2X] to produce prisms and lenses
by introducing a suitably shaped layer with high refrac-
tive index into the waveguide film or the substrate, as
shown in Fig. 5.

Prisms and lenses based on films were experimentally
investigated in C 6 ) 2 0 \ In one of these studies Ce3 the prism
was a rectangular film region with larger thickness. The
light beam propagating in the film was refracted both
on entering and on leaving the film. The angle φ of the
beam deflection by the prism and the prism dispersion
dcp/dX could be calculated from the standard formulas
for three-dimensional prisms, by using the relative re-
fractive index ΝΚ = Ν Π / Ν Ι . Film prisms of this type
can be used to analyze the frequency spectrum of a wave-
guide light beam in some particular mode m, or else
for a spatial separation of light of different modes but
of one frequency. Thin-film lenses for surface waves
were obtained in t 2 0 ] by shaping the boundary of the re-
gion in which the film thickness was changed. The focal
lengths of the obtained lenses reached 2 mm. In C 2 1 ], a
rectangular profiled layer of cerium oxide (CeO2) with
thickness 0.08 μ in the center was positive on a film

FIG. 5

ω ζζ

FIG. 6

of glass with no = 1.64. The profiling of the layer was
carried out during the course of the evaporation of
CeO2 through a rectangular mask located at a distance
1 cm below the substrate. The sputtered section of the
film acted like a lens of focal length 12 mm.

An important role in the applications referred to
above is played by the dispersion of the refractive in-
dex. In thin-film optics, this dispersion can be varied
in a wide range by choosing the waveguide parameters,
particularly the film thickness h. The dispersion of
the relative refractive index can be expressed in the
form

<i,ln ΝK _ d In JV11 d In N1

dX ~ dX dX •

If the dispersion (in the case of a ZnS film on VK7
glass, Hi mode, λ=6328 A C203) is plotted against the
logarithm of the effective refractive index (In NR
= 1ηΝ^-1ηΝ^), we obtain the curve shown in Fig. 6
A thin-film optical waveguide of definite thickness is
represented on this plot by a certain point. When the
film thickness h is varied, the point moves along the
curve joining the points corresponding to the dispersion
of the substrate and film material. The film thickness
is indicated in Fig. 6 along the curve as a parameter.

It should be noted that the dispersion of the wave-
guide can be appreciably higher than the dispersion of
the material of the waveguide. This property is inher-
ent in the mechanism of waveguide propagation of radi-
ation. If we are interested in particular values of the
dispersion and of the relative refractive index of the
transition from one film thickness hi to another hn,
then obviously, by suitable choice of the points on the
curve of Fig. 6, we can obtain these values simultane-
ously. In particular, it is possible to have refraction at
a boundary between two regions without dispersion, an
important factor in the development of achromatic
prisms and lenses.

Besides prisms and lenses, diffraction gratings can
also be produced in two-dimensional optics. A diffrac-
tion grating can be obtained by depositing closely-
spaced depressions on the surface of the film or by
depositing strips of a dielectric having a low refractive
index. The surface-wave propagation constant kn* in
such a structure undergoes periodic variations, leading
to diffraction effects similar to the scattering of light
by a standing acoustic wave in a three-dimensional
medium. These phenomena can be used in a large num-
ber of thin-film devices such as spectral filters and
mode selectors. If material with large absorption is
coated on the surface of the film instead of a dielectric,
the result is rapid attenuation of the optical surface
wave, and this can be used to develop thin-film equiva-
lents of amplitude masks, spatial filters, gratings, and
lenses of the type of a Fresnel zone plate. The realiza-
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tion of the film diffraction gratings was reported in t 2 1 ] .
One grating was constructed in the form of a series of
aluminum strips deposited on the surface of a glass
film (no- 1.64). The width of each strip was 12 μ and
the spacing between strips was also 12 μ, the strip
length reaching 0.25 mm. When a collimated beam is
incident on such a grating, the output beam has a di-
vergence 5° and consists of several beams of higher
diffraction orders. Another dielectric grating was pro-
duced on the surface of a glass plate with approximate
thickness 2 μ, by developing the image of the strips in
a thin photoresist layer. The length of the grating along
the strips was 1.5 mm. The number of strips reached
40. The strip width and the spacing between strips was
9.6 μ. Propagation of the optical surface wave along
such a grating, when the incident beam was approxi-
mately parallel to the grating strips, led to the appear-
ance of diffraction orders separated by angles
θ = λο/Λ (λο is the wavelength of the light in the wave-
guide and Λ is the period of the grating). The meas-
ured angular distribution of the diffracted rays in the
film (1.24°) was in good agreement with the calculated
value of Θ.

Thus, all the foregoing shows that film-optics ele-
ments (prisms, lenses, gratings), are feasible and can
be used in integrated-optics systems.

3. ENTRY AND EXIT OF RADIATION THROUGH
THIN-FILM WAVEGUIDES

Dielectric films of thickness on the order of or less
than the light wavelength are of greatest interest from
the point of view of integrated optics, and in particular
for the development of single-mode dielectric wave-
guides (or waveguides with a limited number of surface
waves), for the realization of nonlinear optical trans-
formation in the waveguides, for an effective action of
passive optical elements (lenses and prisms) on surface
waves in the waveguide plane, etc. The critical film
thicknesses corresponding to surface waves of low or-
der lie precisely in the thickness region, and it is here
that the minimum effective waveguide thickness and the
maximum effective gradient of the refractive index
9nm/9h are reached.

On the other hand, a small film thickness creates
definite difficulties when it comes to excitation of sur-
face waves in the film. First, it becomes impossible to
effectively introduce radiation through the open end of
the thin-film waveguide, since the shaping of the speci-
fied distribution of the exciting field at the entrance to
such a waveguide becomes a very complicated practical
problem (all the more since it becomes additionally
aggravated by considerable perturbations of the field on
the optically uneven end surface of the film). The
methods developed by now for the excitation of a thin-
film waveguide through its surface are simpler and are
sufficiently effective Ϊ6>8>24>3°-35>.

When it comes to introducing optical energy through
the surface of the film, account must be taken of the
boundary condition (1.5), according to which a mono"-
chromatic wave exp[i(k-r-wt)], which excites an m-th
surface wave on the side of the second (or first) medium,
should have a wave-vector x-component equal to k n m ,
which exceeds the value kn2<D of the wave vector in
these media. Obviously, the required projection kx
must be possessed by the field penetrating into the sec-
ond medium (and subsequently into the film) under total

FIG. 7

internal reflection of the light in the optically denser
dielectric layer placed over the surface of the film at
a certain distance d (Fig. 7). If the refractive index of
the layer 113 exceeds nj^, then, using an exciting wave
of suitable polarization and selecting the angle of wave
incidence on the base of the layer, it is possible to
satisfy the condition 113 sin03 = n}h, i.e., to attain phase
synchronism of the exciting wave with the specified
surface wave in the direction of its propagation. To
introduce a laser beam into a dielectric layer in a di-
rection "synchronized" with a definite mode of the
thin-film waveguide, from a surrounding medium that
has a lower optical density (e.g., from the second
medium), it is necessary to incline the entrance end-
face of the layer relative to its base, forming a prism
(see Fig. 7). By realizing in this manner the optical
tunnel effect in a certain section of the film, it is pos-
sible to introduce into it the greater part of the
exciting-wave energy. Since the reradiation of the
light energy back to the prism becomes stronger as
this energy accumulates in the excited surface wave,
there should exist an optimal length of the interaction
region, corresponding to the most effective introduc-
tion of the radiation into the waveguide; this length
depends essentially on the gap d between the prism
and the film. In addition to the case of. introduction of
the radiation by the tunnel mechanism υ , phase syn-
chronism (kx = knm) of the wave incident on the film and
of the surface wave excited by it can be ensured by spa-
tial modulation of the exciting wave with the aid of a
phase diffraction grating coated on the surface of the
dielectric film. By specifying the period of the diffrac-
tion grating and the polarization of the exciting wave,
and by choosing the angle of its incidence on the grat-
ing, it is easy in principle to obtain the required spatial
harmonic exp(iknmx) in the distribution of the field of
the exciting wave on the surface of the film. In addition
to the diffraction and tunnel-effect methods of introduc-
ing the optical radiation into the thin-film waveguide,
a sufficiently effective method is also the excitation of
surface waves through a gradually narrowing edge of the
thin film t 3 2 ] . The ideas of this method and the results
of its practical application will be discussed at the end
of this chapter.

The optical tunnel effect is frequently used not only
for the introduction but also for the extraction of the
radiation from the thin dielectric film, as shown in the
right-hand side of Fig. 7. The exponentially decreasing
field of the surface wave, after reaching the base of the
film, penetrates partially into it and goes into the in-
terior in a direction that follows from the boundary
condition

n3sine3 = n^ («3>«m). (3.1)

The calculation of the damping of the surface wave as it
propagates in the waveguide section adjacent to the base
of the prism is perfectly analogous to the problem con-
sidered in Chap. 1 in the construction of the theory of
the thin-film waveguide. In particular, it is easy to
verify that the wave field in the additional layer of the
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dielectric (j = 3) and in the first three layers is de-
scribed by the same formula (1.4) as before. For the
case when the light is radiated from the surface of the
waveguide into the prism, it is necessary to put C3 = 0.
From the continuity of the tangential components of the
field on the flat base of the prism (z = d) we can obtain
the amplitude ratios Cs/c£ and

7 = r - - e x p ( - (3.2)

The phase shift 623 is calculated from formula (1.10)
in which the subscript 0 is replaced by 3. From the
boundary conditions on the upper surface of the film
(z = 0) we can determine Cl/CS and

6 0 2 _
l f ! 2 ' (3.3)

In the absence of a prism (C2 =0), the last ratio
goes over into the ratio (1.9). As to (1.11), which fol-
lows from the boundary conditions on the interface be-
tween the film and the first medium, it obviously re-
mains unchanged. Combining (1.11) and (3.3), we obtain
the following dispersion equation:

n0, n,)-6 '; n0, n 2 ,

In the weak-coupling case, which is usually realized in
practice, i.e., when the distance from the prism to the
film is such that

(3.5)

and IC2/CH « 1 in accord with (3.2), we get from (3.3)

*02 — δ<,2« — 2-^£- (3.6)

Taking now the small deviation of (3.4) from the dis-
persion equation (1.12) into account, we can easily cal-
culate, by the small-perturbation method, the effective
refractive index for a surface wave that is gradually
radiated from a thin-film waveguide into a prism:

, = 6n'm xp( — < . ' -n\) sin 602 ·«-
(3.7)

where the effective waveguide thickness h* defined in
(1.22a), together with the phase shifts 602(23), is calcu-
lated at the value n* = n m . Thus, the distribution of the
field along the waveguide takes the form exp(iknmx)
= exp(-ax)exp(i/3x), where the damping coefficient is
a = k5nm and the propagation constant is j3 = k(nm+ 5nm).

In the case of smooth variations of the gap and of the
film thickness along the waveguide, and more accurately
speaking in the WKB approximation

d In d (x)
d(kx) « 1 -

d In h (1) (3.8)

the solution of the problem of tunnel extraction of op-
tical radiation from a thin-film waveguide retains the
form (3.7), but it is necessary to take into account the
fact that in this case it is not only the quantities d and
h, but also the effective refractive index nJn(kh) de-
pends implicitly on x, in accordance with the dispersion
equation (1.13). There is no practical advantage in
larger changes of the coupling condition along the wave-
guide, with increments Ad~d and Ah~h over distances
on the order of the wavelength, since they lead to an ap-
preciable scattering of the optical energy as a result of
partial reflection of the surface wave, its transformation
into other surface waves, and intensive radiation in di-

rections that differ significantly from the direction indi-
cated in (3.1). In the presence of weak coupling between
the film and the prism, the dimension of the light beam
radiated from the surface is Δχ~ l /α and greatly ex-
ceeds the wavelength: kn m Ax2n m /on m » 1 . Under these
conditions, by choosing sufficiently smooth profiles of
d(x) and h(x), it is possible to obtain in the outgoing
light beam a field distribution with a profile specified
beforehand in accordance with some additional con-
siderations. We note by way of a preliminary that at
sufficiently small path sections dx, as in the homo-
geneous case (relative to the χ axis) d = const, h = const,
the surface wave acquires an increment

d In X (x) = iknm

m (kh, kd) dx. (3.9)

By specifying the field distribution X(x) in the form
Vl(x) exp[i<p(x)] and substituting the solution (3.7) in (3.9),
we arrive at the following equations that determine the
profile of the film h(x) and the profile of the gap d(x):

kd, kh)] wfcraj,(ftfe), (3.10)

•II (χ) -= -k6n'm(kd,kh). (3.11)

We see from (3.10) that the distribution of the phase of
the radiated wave (for example, at the base of the prism)
depends mainly on the film profile h(x). In particular,
the wave radiated from a film of constant thickness is
approximately plane, and weak distortions of its form
appear when the gap d(x) between the film and the
prism is varied. First, inasmuch as the optical-energy
flux Ρχ(χ) carried along the waveguide by the surface
wave is proportional to the wave intensity, it is possible
to replace I in the left-hand side of the equation by Ρχ.
This flux is attenuated by transfer of energy to the prism,
i.e., -dPx/dx = dP3/dx = S3(x), where the latter quantity
denotes the power radiated from a unit length of a thin-
film waveguide. The light fluxes P x produced by the
surface wave in sections χ and x' of the waveguide are
connected by the relation

(3.12)

and when this relation is taken into account Eq. (3.11)
takes the form

(kd, kh).

Substituting in (3.13) the expression for 5n m from (3.7)
we obtain a formula for the profile d(x) of the gap be-
tween the film and the prism:

2 Vn£-n\kd(x) = \n [2 Vn'0-n'm'sinδ02 Κ.) sin623(n»)/n*,]

(3.14)

* ' ( O *S Μ

So far we have assumed throughout that the time de-
pendence of the field is given by exp(-iwt). However, as
shown by the outlined solution, all the results remain in
force also for a time dependence exp(iwt). In other
words, in view of the reversibility of optical phenomena
in time, the description given above for the tunneling
extraction of optical radiation from a thin film into a
prism can be directly extended to the inverse process of
tunneling excitation of a thin-film waveguide. The ab-
sence of a wave reflected from the base of the prism
indicates that the wave incident on the prism, with a
phase distribution φ(χ) and a power distribution S3(x),
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is completely "infused" in the given m-th mode of the
waveguide, if the film thickness h(x) and the gap d(x)
vary along the waveguide in accordance with (3.10)
and (3.14).

Let us dwell in greater detail on the optimal condi-
tions for the excitation of a thin-film waveguide with the
aid of a paraxial light beam. In the case of slight curva-
ture of the phase front of the exciting wave near the
base of the prism, the phase distribution on the front
is given by

φ (χ) = φ (0) + kn,sin Θ 3 · ζ —
kn3 cos2 83 (3.15)

where θ3 is the angle of incidence of the wave on the
base of the prism (i.e., the angle between the beam axis
and the ζ axis) and R is the radius of curvature of the
phase front, which assumes positive values in the case
of a diverging incident beam and negative values in the
opposite case (x/l Rl « 1 inside the beam). According
to condition (3.10) for the phase synchronism between
the exciting wave and the m-th surface wave, the effec-
tive refractive index should vary along the waveguide in
the following fashion:

reji (kh) = re3 sin θ 3 — n3 cos2 θ 3 -^ — &n'm (kd, kh).

Since the last two terms are small, the effective refrac-
tive index is n j ^ n s sin63 = N, and the film thickness
h m determined by the dispersion equation (1.13) re-
mains approximately constant: h l n y s h l N l ^ H m · Taking
this into account in the term 6n m , we obtain from (1.13)
by the small-perturbation method the optimal film pro-
file hm(x):

™ W [ * Z ] (3.16)

where the gap profile d(x) is so far arbitrary. The op-
timal profile d(x) of the gap between the film and the
prism is calculated with sufficient accuracy by formula
(3.14) at n n l = N. Thus, only the last term depends on x.
We see that the optimal profile d(x) is determined com-
pletely by the distribution of the exciting beam power
Ss(x) at the base of the prism.

In the case of a paraxial beam with Gaussian field
distribution over the cross section (I v3(x')l ~exp(-x'2Wo)),
which is of practical importance, the relative distribu-
tion of the power at the prism base is given by

S,(x) = exp (-2

where w = w0/cos Θ3 = n3w0/V n| - N2. Substituting this dis-
tribution in (3.14) and putting x' = °° and Px(x') = 0, we
obtain first the optimal size of the gap at the center of
the exciting beam (x = 0)

=%i(0) = In / | _ J 2 _

On going to another point x, the optimal gap size
changes as follows:

(3.17)

x/w

-3 -I -I 0 1

FIG. 8

Zxju)

ourselves to this efficiency of entry of the radiation into
the film, maintain a constant gap (shown dashed in Fig.
8) in a waveguide section x<-1.5w or break the coup-
ling between the waveguide and the prism, by placing the
left edge of the prism at the point x«-1.5w.

The determination of the optimal film and gap pro-
files that ensure total entry of a given light beam into
a definite mode of a thin-film waveguide is a compli-
cated practical problem. This raises the question of
the effectiveness of tunnel excitation of a waveguide in
those cases when the distribution V3(x) of the exciting
field at the base of the prism differs significantly from
the field phase and intensity distributions φ{χ) and
S3(x) that follow from (3.10) and (3.14) for specified
profiles h(x) and d(x). A relatively simple formula for
the estimate of the input effectiveness as a ratio of the
power of the excited surface wave to the total power of
the incident wave can be derived under sufficiently gen-
eral assumptions C 3 U :

(3.18)

where the integration is carried out over the waveguide
section x"<x<x', within the limits of which the radia-
tion is admitted. This formula is valid not only for tun-
nel excitation of a waveguide (under the condition of
weak or strong coupling), but also when the waveguide
is excited by other methods (for example, diffraction
entry of radiation into a thin film).

We now estimate the effectiveness of tunnel entry
of certain beams into a film of constant thickness at a
constant value of the gap between the film and the
prism, in a section 0 <x<°° within which a weak coup-
ling of the incident beam with the exciting waveguide
is maintained. In this case, the optimal field distribu-
tion in the incident light beam corresponds to

φ (χ) = &mz, S3 (χ) = exp (-2o m i ) , 0 < χ <οο,

where 0 m and am are constants: |3m = k(n}n + 6nni) and
a m = k6nm; 6nm and 5nm are defined in (3.7). Let us
assume further that the waves incident on the base of the
prism have a plane phase front and are synchronized in
phase with the m-th mode of the waveguide: kna sinf?3

= )3m. Then, if the amplitude of the exciting field is uni-
formly distributed over the section 0 < χ < I, namely

• ι ;
Here erf ζ is the error function the entry efficiency is

The gap profile corresponding to (3.17) is shown in Fig.
8 2 ) . Since 99% of the power of a Gaussian beam is con-
tained in the interval -1.5<x/w< 1.5 we can, confining

Excitation of the m-th surface wave by a homogeneous
beam is the most effective under the condition aml
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FIG. 9

til]= 1.25; Tjmax = 81% L 1 1 J . In the case of an exciting beam
with a Gaussian field-amplitude distribution at the base
of the prism, namely

FIG. 10

The distribution (3.20) reaches a maximum at a point
shifted to the left from the vertex of the wedge by a
distance

b . b

the tunnel-input efficiency is given by

The latter reaches its maximum value 0.801 under the
conditions

l,462amu> « 1 and 2ama = 1,

which determine the optimal half-width w of a Gaussian
beam and the optimal shift a of its center relative to
the left-hand edge of the prism t 3 1 ] .

The experimentally attained radiation-entry effi-
ciencies at a constant gap between the prism and the
film do not exceed 57% [ 2 4 ] .

To estimate the efficiency of the tunneling entry of
light beams into a thin film with arbitrary profile h(x)
at an arbitrary profile d(x) of the gap between the film
and the prism, it is necessary to know the optimal field
distribution, corresponding to this more general case,
in the exciting beam. Integrating (3.10) and (3.11) and
recognizing that S3(x)~-dl/dx, we obtain

χ

VSAx) e i ( p W = vf (χ) = ΫΆτξη e x p [ — ft f δη™ dx + ik^ (raj, + 6n'm) A t ] ,

(3.19)

where 5nm(kd, kh) and 6nm(kd, kh) are given by (3.7).
We indicate no definite lower limit of integration in
(3.17), since the choice of this limit does not influence
the relative field distribution. If phase synchronism
exists between the incident beam and the excited (m-th)
mode of the thin-film waveguide, the phase factors
cancel each other in the numerator of (3.18). We recall
that to ensure phase synchronism in the case of a
paraxial exciting beam the film thickness should vary
along the waveguide in accordance with (3.16). We can
therefore h = H m = const put in 6nm(kd, kh), with suffi-
cient accuracy. Under these limitations, the optimal
distribution of the exciting-field amplitude takes the
form

where D = nJnh*/(Vn£-n'if1 sin 602 sin623). In particular,
for a wedge-shaped gap

Approximating the optimal complex-shape profile
shown in Fig. 9 by a wedge-like gap, we can in practice
admit almost completely into a given waveguide node a
light beam with Gaussian field distribution I v3(x) I
= exp[-(x + a)2/w2].[ 3 1 ] To perform calculations within
the framework of the weak coupling, it is necessary to
assume that the center of the Gaussian beam is shifted
relative to the vertex of the wedge by a considerable
distance (say, a/w >2). The results of the calculations
show that the entry efficiency η reaches a maximum
value 0.96 at a beam displacement

d(x) = —ex, x < 0 ,
(3.20)

here

= «max' -0,2716, or o=(ln|/-g~0,27l) b,

and at a beam half-width

w = 1,128*.

The experimentally obtained C 3 1 ] excitation efficiency
?7«0.88 is in good agreement with the theoretical value
(allowing for the violation of the weak-coupling condi-
tions and other experimental imperfections).

Besides the tunnel entry of radiation into a thin-
film waveguide, a rather effective method is excitation
of surface waves with the aid of a phase diffraction grat-
ing deposited on the surface of the waveguide film. In
experimental entry devices one uses both plane and
three-dimensional diffraction gratings [ 3 S~3 5 ] . The latter
have the advantage that they ensure, at a suitable thick-
ness and periodic structure, a deep spatial modulation
of the incident wave and a predominant conversion of this
wave into a diffractive wave of definite order. Three-
dimensional sinusoidal gratings are prepared by holo-
graphic methods. In particular, when an interference
pattern is registered in gelatin sensitized with am-
monium bichromate [ 3 7>3 8 ] , lithium niobate C 3 9\ and
photopolymer materials t 4 0 3 , periodic changes take
place in the refractive index (phase gratings). To the
contrary, in photochromatic media and ordinary emul-
sions, amplitude gratings are produced, due to periodic
oscillations of the absorption coefficient. A detailed
theoretical analysis of three-dimensional sinusoidal
gratings, on the basis of the theory of coupled waves,
is given in l 3 6 ] .

In accord with this reference, we assume that the
refractive index of the medium in a flat inhomogeneous
layer of thickness d (Fig. 10) and the absorption coeffi-
cient vary harmonically in a direction lying in the (x, z)
plane and making an angle χ with the ζ axis:

n = n + 6re cos Kr, n = n' — In" — const, δη= δη' — ioV = const.(3.21)

Here r is the radius vector of the point (x, y, ζ), Κ is
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FIG. 11

the vector of the diffraction grating (2ir/A)(sinx, 0,
-cosχ), and Λ is the period of the grating. Since in
practice the oscillations of the refractive index and the
absorption are small, we can put

| 6n | <n', η"<ζη\ (3,22)

In the weakly-inhomogeneous layer considered by us,
the propagation of a plane monochromatic wave incident
on the grating at an angle θ{ and polarized perpendicular
to the incidence plane (x, z), i.e., propagation of a
type-Η mode, is described by the scalar equation

(3.23)

where E = Ey(x, z ) e i w t and 52«(n'2-2in'n'') + (
+ e-iKr)# n i S Seen from this equation that when a plane
wave exp[-iki · Γ ] passes through the grating, besides
being partially absorbed, it is converted into a wave of
the type exp[-ir •(ki±K)], which in turn generates dif-
fraction waves of higher order, exp[-ir -(ki±2K)], etc.
If the wave exp[—iki · r] is incident on homogeneous
layers of the grating at an angle 6̂ L satisfying the Bragg
condition

2kn'costf$B = qK ( ϊ = 1, 2, 3 , . . . ) ,

then, as can be easily seen from Fig. 11, the q-th order
diffraction wave of exp[-ir · (ki-qK)] is also scattered
at the same angle from these layers. In the particular
case q= 1, which is considered in t 3 6 ] , in view of the
Bragg scattering of the incident wave Ej into a diffrac-
tion wave of first order (Ed~exp[-ikd"r], kd = kj-K),
a strong coupling is established between these waves
(if the grating is thick enough), and diffracted waves of
higher orders can therefore be neglected in first-order
approximation. Thus, the optical field inside the in-
homogeneous layer can be represented in the form of a
superposition of two waves

(3.24)
Ε, (χ, ζ) = Αι (z) exp (—ik,r),
Ed{x, z) = Ad (z) exp (—ikdr),

where the wave vectors are ki = kn'(sin0i, 0, •
and kd = kn'(sin0i-(k/kn')sinx, 0,-cos0i + (K/kn')cosx),
while the complex amplitudes Aj(z) and Ad(z) vary
slowly along the ζ axis as a result of absorption and
mutual conversion of these waves into each other. In
connection with the use of a three-dimensional diffrac-
tion grating for the entry of optical radiation into a
thin-film waveguide, it is appropriate to note here that
the Bragg condition used above is, strictly speaking, not
compatible with the requirement that phase synchronism
exist between the diffraction wave Ed and the m-th
waveguide mode exciting it. Thus, by virtue of the first
condition, the wave vector kd is equal to kn'. To sat-
isfy the second condition, on the other hand, it is nec-
essary that the wave vector of the diffraction wave
exceed knJn, and all the more kn'. In view of this we

shall assume that the vector kd goes outside the limits
of the circle of radius kn' drawn in Fig. 11 with the
origin of the wave vector kj as the center, and that the
Bragg condition is satisfied only approximately:

(3.25)

(3.26)2fcra'cosefe. = J

Substituting in the wave equation (3.23) the field Ε in
the form of a sum of waves (3.24) and equating the zero
the coefficients of the independent factors exp(-ikj · r)
and exp(-ikd • r) , we obtain the following equations for
the amplitudes of the incident and diffracted wave:

2kn'
dAt

dz

where

d= -i*HA,.

j^r- cos χ, a---kn",

x=K

( 3 . 2 7 )

(3.28)

We can analogously derive from the wave equation V2E
v(VE) + (wS/c)2E = 0 approximate equations for the am-
plitudes of the electric field Ai and Ad in the case when
the incident wave, and consequently also the diffracted
wave, is polarized in the incidence plane x, z(Hi = Hi,y,
Hd = Hd,y). To go over to these equations from (3.27), it
suffices to replace KH by /<E=-(l/2)k6n cos2(0i-x).C 3 e :

We confine ourselves henceforth to Η waves. It is
easily seen from (3.27) that under the conditions (3.22)
and (3.25) the amplitudes Ai and Ad undergo negligible
changes over distances on the order of the wavelength,
and terms with second derivatives in these equations can
be omitted. In this case, the general solution of (3.27)
contains two arbitrary constants r1 ) 2, which are deter-
mined from the initial conditions on the boundary sur-
faces of the grating z = 0 and z=-d. In particular, the
amplitude of the incident wave at the entry to the grating,
i.e., Ai(0), can be conveniently set equal to unity. If the
diffraction grating operates in transmission (the parame-
ter c = ki,z/kd,z = ci/cd >0), then the wave Ed develops
in the direction from the upper surface of the grating
(z = 0) to the lower one (z=-d), having a zero amplitude
at z = 0. The diffracted wave at the exit from such a
grating (z=-d) is characterized by the amplitude

Ad( — <*)= —i Vc exp (— txd/Ci)e*sinJ/V — ψ2/ Kl —(ψ'/ν1) , (3.29)

where

In the case of a reflecting grating (parameter c < 0), the
wave Ed develops in the opposite direction (along the ζ
axis). Accordingly, the amplitude Ad at z=-d is equal
to zero, and at the exit (z = 0) the amplitude of the dif-
fraction wave is equal to

ho); (3.31)

where ν and ψ are defined in (3.30).

We shall be primarily interested in the efficiency of
conversion of the incident wave Ei into the diffracted
wave Ed; this efficiency is characterized by the ratio of
the light flux produced by the wave Ed at the exit from
the diffraction grating to the optical-energy flux carried
by the wave Ei through the entrance surface of the
grating z = 0:

•n_|!*<i.z| M J P _ M d l 2 , , ,,,.)
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where the amplitude Ad is described by (3.29) if c >0
and by (3.31) if c<0. At an incidence angle <?i corre-
sponding to Bragg diffraction of the incident wave by a
three-dimensional grating, ( ? 'θ? = χ - θ ' ) , we have

c « — cos θΡ/cos (θΡ—2χ).

In the absence of absorption ( η " , δη" = 0), the diffrac-
tion efficiency of the transmitting phase grating takes
the form

= (sin 1η
2 +12)1/ [1 + (IV

and ξ = 7Xi/21where v= 5n'kd/2Vcjl cdl and ξ = 7Xi/21 cdI . At incidence
angles θ\ close to the Bragg angle 0? for the given

wavelength of the incident light (see (3.26) with 0B

= χ-θψ), we have

ξ * | /Μδθ, sin (χ-θί-)/ | cos (θ? -2χ) |,

On the other hand, if the incidence angle θχ is specified
and we consider small deviations of the wavelength λ
from λβ = 2Λη' cos(x - 0i), then it is convenient to repre-
sent the parameter ξ in the form

ξ « — Κ2άδλί8πη' | cos (θ, — 2χ) |,

6λ = λ — λΒ . < λβ .

Thus, the dependence of η on ξ, shown in Fig. 12 for
three values of the second parameter u, describes the
angular and spectral characteristics of a transmitting
diffraction grating. The maximum efficiency for the
conversion of the incident wave Ei into a diffracted
wave Ed is obtained in the case of Bragg diffraction
(ξ = 0). For ι>=π/2 we have rjmax=l and for V=TJ/A
and 3π/4 we have %iax = 0.5. The half-width of the
maximum is Δξ=1.5.

In the case of a reflecting non-absorbing phase
grating, the diffraction efficiency is

η = {1 + [(1 - ξ2/ν2)/ (sh Υ v2 - ξ * )2]}-i

and its dependence on the parameter ξ is entirely dif-
ferent. As seen from Fig. 13, with increasing parameter
ν the half-width Δξ of the maximum increases strongly,
this being a factor contributing to the increase in the
efficiency of the diffraction entry of the radiation into
the thin-film waveguide, inasmuch as to ensure phase
synchronism between the diffracted wave and the sur-
face wave excited by it it is always necessary to deviate
from the conditions of Bragg diffraction (ξ * 0). With
increasing v, the maxima of the diffraction efficiency
become higher: 7Jmax = 0.43, 0.84, and 0.96 for v=rr/A,
Ή/2, and 3π/4, respectively.

The presence of absorption in three-dimensional
phase gratings (n" * 0 , 5n" = 0) not only lowers the ab-
solute value of the diffraction effectiveness, but also
influences, generally speaking, greatly their spectral-
angular characteristics [ 3 6 ] . The influence of absorption
on the absolute value of diffraction efficiencies of dif-
ferent phase gratings is illustrated in the cited refer-
ence in Figs. 8, 14, and 15. We note also that amplitude
three-dimensional gratings (5n' = 0, 6n"^0) are con-
sidered in detail in C 3 6 1 . In particular, it is shown that
the efficiency of conversion of the incident wave into
the diffracted wave is largest (=7.2%) in the case of a
reflecting amplitude grating with horizontally arranged
homogeneous layers (χ = 0, c=-l) at a Bragg angle of
incidence on the grating (ξ = 0), at maximum modulation
of the absorption coefficient in the grating (k6n"=kn"

.M

= a), and sufficient thickness of the grating (D = ad cos 0B

>2). Naturally, all the results presented above are valid
for three-dimensional diffraction gratings of sufficient
thickness or, more accurately speaking, under the con-
dition

which i s well satisfied in practice [ 3 6 ] . An entry device
making use of a three-dimensional diffraction grating
was realized experimentally in [ 3 4 ] . To obtain a dielec-
tr ic diffraction grating, gelatin sensitized with am-
monium bichromate was used; the technology of prepa-
ration and development of the gelatin is described in
detail in C 4 U . A gelatin layer of thickness d = 4 μ was
coated on a waveguide film by immersing the substrate
with the film in the gelatin solution and then drawing
it out of the solution at a constant r a t e . The waveguide
film, made of glass, had a thickness h = 0.3 μ and a
refractive index no equal to 1.62. The input device was
designed for a wavelength λ= 6328 A and for a light
incidence angle on the grating 0i close to zero. The
homogeneous layers in the diffraction grating of such an
exciting device should be inclined at an angle χ = 45° and
should have a spatial period Λ equal to 0.25 μ. A grating
with the indicated dimensions was obtained by exposing
sensitized gelatin to He-Cd laser radiation with λ '
= 4416 A. Two coherent light beams from the cadmium
laser , incident on the gelatin at suitable angles, pro-
duced a three-dimensional interference pattern. Further
processing of the gelatin by a method s imi lar to that
used in holography has made it possible to obtain a
three-dimensional diffraction grating measuring 5 x 5
mm. The light entered the film through the grating
operating either in the transmission region or in the
reflection region, but the best results were obtained
when a reflecting diffracting grating was used (i.e.,
when the light was incident on the grating from the side
of the substrate). In the experiment, the exciting laser
beam has a Gaussian field distribution and was in-
cident on the edge of the grating. To optimize the entry
of the light, the parameter 2w0 of the beam at the
focus and the distance from the focus to the grating
were varied. For the best of the gratings, the
most effective input was with the aid of a diverging
beam of diameter 2w0 = 0.3 mm with the focus 16 cm
away from the grating (the beam diameter on the grating
amounted in this case to 2w = 0.6 mm). The optimal di-
mensions of the region within which the radiation was ad-
mitted were of the same magnitude («0.6 mm). The study
of the angular dependence of the transmission of the
grating when an Η wave was excited in the film (under
optimal conditions) has shown that the insertion effi-
ciency reaches a maximum when the angle of incidence
of light on the substrate is 0= 3°, and decreases to half
this value when the angle is changed by an amount ΔΘ
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~0.1°. The Bragg condition was satisfied near the angle
of incidence θ = 6°, and the width of the "Bragg reso-
nance" was 250 = 3°. Measurement of the reflection and
transmission of the grating has made it possible to
estimate the efficiency of entry of the optical energy
into the film. It amounted to 71°. The efficiency of ex-
citation of an Ε wave in the film with the aid of such
a grating did not exceed 15%.

In addition to a three-dimensional diffraction grating,
the light can be fed to the film also through a flat dif-
fraction grating. The first exciting device with a flat
diffraction grating was proposed and realized in t 3 3 ] .
Just as the three-dimensional grating, the flat diffrac-
tion grating is deposited directly on the waveguide film.
The laser beam incident on the sinusoidal phase grating
with period Λ and phase-modulation depth ΔΦ at an
angle θ\ produces on the film surface a polarization
wave with a phase factor in the form

Λ-66ΜΑ

exp[i(AOsin-^ + - ^ 8 1

This polarization wave can be represented in the form
of a superposition of spatial harmonics

l 2πζ , 2πχ

q = 0, 1, 2, 3, ... The polarization wave will excite in the
film the m-th surface wave exp(iknmx) if one of the
spatial harmonics of the polarization wave is reconciled
in phase with the surface wave:

n* -s inf l -J--iL Ci 11}
rijn — M U Of ι -j— « yoiOOJ

This condition determines the connection between the
parameters of the grating, the film, and the incidence
angle θ{.

To excite a surface wave in a glass film of thickness
h=0.76 μ and with no= 1.73, deposited on a glass sub-
strate with nj= 1.52, use was made of a flat diffraction
grating of a photoresist with a period Λ = 0.665 μ. An
entry efficiency «40% was reached in this experiment.
The surface waves excited in the film were identified
with the aid of formula (3.33) on the basis of calculated
dispersion curves and measured values of the incidence
angle θχ.

In another study C35], the phase diffraction grating
for the entry of the radiation was produced directly in
the waveguide film as shown in Fig. 14. The waveguide
film was made of photoresist, and the phase diffraction
grating was formed in it, just as in c , by using an
argon laser with Λ = 4880 A. The radiation-entry ef-
ficiency reached =50%.

In concluding this chapter, let us dwell in greater
detail on the insertion and extraction of the radiation
through a tapering edge of the waveguide film. The
dimensions I of the tapering region will be assumed
to be much smaller than the wavelength λ. As indicated
above, the effective refractive index n m = no sin 9om

for the m-th wave in the film depends on the film thick-
ness and decreases monotonically in the region of the
tapering-down edge, reaching at a certain point xcr (as
the film thickness approaches the critical thickness
h ^ n ) the value n! of the diffractive index of the sub-
strate. With further propagation in the film, the angle
of incidence 60m of the wave on its walls decreases
such an extent that the wave, no longer experiencing total
internal reflection from the interface of the film with
the first medium (substrate), is partially refracted into

this medium. It is shown in i32: that in the tapering re-
gion of the film the conversion of the surface wave into
substrate radiation modes occurs over a distance of
several wavelengths ahead of the point x c r . According
to calculations, 80% of the light energy radiated into
the substrate through the tapering edge of the film
should be concentrated in the far zone within an angle
15°. The picture of the field changes little if the slope
of the tapering edge ranges from 0.01 to 0.001. An ex-
perimental check ] had demonstrated the feasibility
of using the tapering edge of the film for the entry of
optical radiation. The exciting unit was constructed
by depositing a ZnS film on a polished glass block, part
of which was covered during the time of the sputtering
by a mask, in order to shape the tapering edge of the
film. The taper angle determined by the distance from
the mask to the surface of the glass block, was 0.001.
The film thickness h, equal to 1420 ± 50 A, was such as
to be able to excite in the film the fundamental surface
mode Hi. A laser beam with λ =6328 A and a near-
Gaussian distribution was focused through the lateral
surface of the glass block on the edge of the film. Owing
to the scattering of the light in the ZnS, it was possible
to observe the trajectory of the excited surface wave. In
this experiment, approximately 25% of the laser-beam
energy entered the film, and the remainder of the beam
was reflected from the boundary between the film and
the glass. A similar exciting unit was constructed for
an organic film on a glass substrate, and the entry ef-
ficiency reached in this case 40%. To increase the entry
efficiency it is necessary to monitor the distribution of
the intensity of the incident laser beam, so as to match
this distribution to the intensity distribution of the radi-
ation modes.

4. NONLINEAR OPTICAL PHENOMENA

The effective methods developed to date for the ex-
citation of a dielectric waveguide through its surface
at a low effective waveguide thickness (h* ~ λ) make it
possible to obtain light fluxes of high density on suffi-
ciently extended film sections. In addition, an advantage
of a thin-film waveguide, from the point of view of non-
linear optics, is that in any of the component dielectric
layers, made of an optically nonlinear material, it is
possible to satisfy the phase-synchronism condition for
the interacting surface waves by having the frequency
dispersion of the effective refractive indexes offset by
the increments that result when the order (m) or the
type (H or E) of the surface wave is changed. These in-
crements can be varied in the experiment by varying
the film thicknesses and the refractive indices of the
adjacent media. We recall that in bulky nonlinear crys-
tals the phase sychronization of the interacting waves is
attained only in the presence of optical anisotropy, when
the refractive index of the crystal depends on the polari-
zation in the direction of the light-wave propagation.
To the contrary, thin-film waveguides provide a means
of using optically isotropic nonlinear media.
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Let us consider the parametric interaction of three
surface waves in a thin flat film of optically isotropic
nonlinear material, placed between two optically linear
dielectric layers [ . Assume that the surface pump
wave frequency ω"1 and the parametrically excited
waves with frequencies ω' and ω" (ω' + ω" = ωι") propa-
gate in the same direction (along the χ axis), and have
a Gaussian distribution in the plane of the film (with re-
spect to the y axis), and a distribution corresponding to
one of the fundamental modes (Hi or Ei) of the wave-
guide in its cross section (along the ζ axis), i.e., cor-
responding to its minimal effective thickness. At a suf-
ficient width of the Gaussian beam, one can neglect its
diffraction divergence in a thin-film waveguide section
of length I, and write the condition of phase synchronism
in the simple form

ω'η*, π (ω') + ω"ηΐ, Η (ω") -~ ω"η ' , Ε (ω"). (4.1)

The pump wave is chosen here to be an Ε wave, and the
parametric waves are chosen to be Η waves, in view of
the fact that η?;Η(ω) always exceeds η^,Ε(ω), and this
makes it possible to compensate for the dispersion in-
crement of the latter due to the transition from the fre-
quencies ω' and ω" to the higher frequency ω". In
other words, relation (4.1) determines the frequencies
of the Hi waves that are parametrically excited in the
given waveguide, in terms of the frequency of the pump-
ing Ei wave. The effective refractive indices are
calculated on the basis of the dispersion equation (1.13)
at m = 1 and κ = 0 or two for the Η and Ε waves, re-
spectively. Figure 15a shows the dependence of the
parametric frequencies on the relative film which fol-
lows from the phase-synchronism condition (4.1) at a
pump wavelength in vacuum ω'"= 1.06 μ for a GaAs
film (ηο(ω") = 3.49) deposited on a substrate of single-
crystal CaF2 (ni(co"') = 1.43) and placed in air (η2(ω'")

= 1)
[48]

If the refractive index of one of the media is
varied (using, for example, different liquids as a
second medium) and the effective refractive indices
are changed by the same token, then the parametric
frequency can be tuned in sufficiently wide range at a
given pump frequency. Thus, putting η2(ω') = η2(ω")
= η2(ω/") and varying n2 from one to 1.6, we obtain in
a film of relative thickness hA"'~0.17 (or B = hko(w'")
= 3.66) a tuning of the parametric frequency in the
range u>"'/2 (IT0.35) (see Fig. 15b). The same figure
shows also the tuning curves for other values of the
parameter B.

When anisotropic nonlinear media are used in the
form of a thin film (or substrate), account must be
taken also of the fact that in the case of arbitrary ori-
entation of the principal axes of the crystal relative to
the plane of the film and the propagation direction of the
surface wave, the electric field of the latter at any
point of the waveguide varies with time not only in mag-
nitude but also in direction. Averaging over different
orientations of the electric vectors of the surface waves
relative to the principal axes of the crystal (and relative
to one another) leads to a weakening of the nonlinear in-
teraction of the surface waves. This raises the ques-
tion of the anisotropic-crystal orientations at which
the surface-wave electric-vector direction can be main-
tained constant in the thin-film waveguide, i.e., at which
Η waves can be realized in the medium: E = (0, Ey, 0),
or at least the electric vector of the surface wave can
be contained in a definite plane, i.e., Ε modes can be
realized: E = (EX, 0, E z ). The possibilities for the case

Ίβ lf,5

FIG. 15

FIG. 16 FIG. 17

in accord with that reference that only the film is made
of anisotropic material, and the adjacent media are op-
tically isotropic (a uniaxial crystal can also be used
either as a first medium or as the second medium). It
is easily seen from Fig. 16 that when the crystal optical
axis w and the direction of propagation of the surface
wave (the χ axis) lie in a plane perpendicular to the
(x, y) plane of the film, the Η wave is the ordinary wave
in the crystal and the Ε wave is the extraordinary wave.
It is perfectly understandable that with such a mutual
orientation of the optical axis of the crystal and of the
direction of the surface wave, the Η and Ε waves prop-
agate in the thin-film waveguide independently, without
being transformed into each other. In C 4 9 ] the results are
considered a case in which the crystal optical axis lies
in the film plane (Fig. 17). The remark made by the
author concerning this case namely that the Η and Ε
waves are maintained approximately under conditions
of weak birefringence in sufficiently small sections
of the waveguide, remains, of course, in force also for
an arbitrary orientation of the optical crystal axis in
the thin-film waveguide.

Proceeding now to consideration of parametric inter-
action of three surface waves in an anisotropic waveguide,
we confine ourselves to the first case represented in
Fig. 16. We assume that the pump wave with frequency
ω'" and the parametrically excited waves with frequen-
cies ω' and ω" (ω' + ω" = ω'") propagate in one direction
(along the χ axis) and satisfy the scalar phase-syn-
chronism condition (4.1). In this case the effectiveness
of the nonlinear interaction of the surface waves at any
point of the film is characterized by the quantity

d,JhEi (ω") Ej (ω') Eh (ω") = dUhe; (ζ, ω") e, (ζ, ω') ek (ζ, ω"), ( 4 . 2 )

where dijk is the quadratic-polarization tensor, and Ε
is the electric field of each of the surface waves. In the
presence of weak birefringence of light, the electric
field of the extraordinary Ε waves is described by the
formula

of a uniaxial crystal are analyzed in
£49]

We assume
E'e> = A"" e (z) exp i (kn*x — at), (4.3)
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where e(z) is a real function, A(e) = (l + y2)~1/2(iy, 0, 1)
is a unit complex vector, y(z) is a real function, and
A(e) · Ave) = 1. The electric field of the ordinary Η wave
can be represented in similar form

E<"> = Α"" e (ζ) exp i (kn'x - at), (4.4)

where A( o )=(0, 1,0). We rewrite (4.2) with allowance
for (4.3) and (4.4):

dmEt{tu")E, (ω') Ek (ω") = C,e (ζ, ω") e (ζ, ω') β (ζ, ω*),

Ct = dljhAi (ω") Α, (ω') Ah (ω").

It must be emphasized that the coefficient Ci introduced
here depends not only on the symmetry properties and
orientation of the nonlinear crystal, but also indirectly
(via the function y(z) contained in the vector A(e)) also
on the coordinate z. The latter circumstance was lost
sight of in C 4 9 ] . It was therefore assumed there that the
efficiency of the nonlinear interaction of the surface
waves over the entire film cross section, i.e., the
quantity

j (ω") Ej (ω') Eh (ω") dz

can be reduced to the form
h

C ' \ e ( · ω ' ) e (2, ω") e (ζ, ω") dz.

In fact, the coefficient Ci is independent of y only in the
case of the interaction of three Η waves, and conse-
quently this coefficient characterizes the efficiency of
the nonlinear interaction over the entire film cross
section. In the general case the coefficient Ci deter-
mines the nonlinear interaction of surface waves in
the vicinity of a certain point, more accurately speak-
ing at all points of a fixed longitudinal plane ζ = const.
The table lists the final formulas for ICil from t 4 9 3 ,
corresponding to different combinations of the inter-
acting surface waves: H-HH, E-HH, and H-EH. We
note that the first letter in the indicated combination
indicates the type of the pumping wave. Similar formu-
las were obtained in li9Z for parametric interactions
with participation of two or three Ε waves, and are not
listed in the table, since these formulas do not take into
account that two Ε waves with different frequencies or
of different order correspond to different functions y(z).
The coefficients Ci were calculated in t 4 9 ] for crystals
having different symmetry at arbitrary orientation
(Θ, φ) in the waveguide film.

The properties of nonlinear optical waveguides can be
used to excite radiation at combination frequencies of
the initial waves (and also for second-harmonic genera-
tion) . A theoretical analysis of the production of com-
bination waves in nonlinear thin-film waveguides is
presented in : a 9 ] . When surface waves of two different
frequencies (ω' and ω") propagate in the film, the non-
linear interaction produces polarization waves that
serve as radiation sources at the sum and difference
frequencies. The propagation of these waves is char-
acterized by an effective refractive index

The quantity n£ depends on the film thickness, on the
propagation direction, and on the type of waves of fre-
quency ω' and ω", and can vary in a wide range. In
the particular case when waves of equal frequency
propagate in opposite directions, the effective refractive
index for the polarization waves at the second-harmonic
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frequency is n? =0. In the case of excitation of waves of
equal type and frequency in the same direction, the ef-
fective index for the nonlinear polarization of the second
harmonic coincides with n* for the first-harmonic waves.

The field excited by the nonlinear-polarization wave
can be represented as a sum of surface waves and radi-
ation waves:

E(x, z) = £rad(*, !) + Σ « . ( ΐ , ζ);
m

here C m are the surface-wave amplitudes.

By varying the film thickness and the propagation di-
rection of the initial waves it is possible to obtain surface
waves and radiated waves at the combination frequencies.
The energy transfer into the combination-frequency
wave is effective if n* for one of the waveguide modes
at the frequency ω"" = ω'±ω" coincides with the effec-
tive refractive index for the nonlinear-polarization
wave: η*(ω"') = η*(ω"'). As already noted, in the case of
three-particle interaction in a nonlinear waveguide the
synchronism condition can be satisfied by choosing the
film thickness and the type of the wave for each fre-
quency. However, the efficiency of excitation of com-
bination frequencies is determined not only by the
wave synchronism, but also by the extent to which the
distribution of the nonlinear-polarization wave at the
combination frequency agrees with the distribution of
the field of the initial waves. This in turn is governed
by the choice of the types of modes and orientations of
the nonlinear dielectric in the film.

Excitation of radiation waves at combination fre-
quencies becomes possible in a film waveguide when
the condition η |<ηι(ω'±ω"), η2(ω'±ω") is satisfied.
If the waveguide is assumed to be infinite along the χ
axis, then the optical field in the boundary dielectrics
constitutes plane waves radiated at angles θι and θ2

(Fig. 18), with s ine l j 2 = n*(w'±wVni)2(co"'). In the case
of the already mentioned opposite propagation of the
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initial waves with equal frequency, (ω' = ω" = ω, ω' + ω"
= 2ω , η?(2α>) = Ο, an in-phase distribution of the non-
linear-polarization wave is realized at the second-
harmonic frequency. This polarization excites two plane
waves in a direction normal to the waveguide surface,
and the excitation of the plane wave at the second-
harmonic frequency takes place at arbitrary film thick-
nesses. The radiation waves can be realized by propa-
gation of the initial waves in one direction, if nj is
smaller than the refractive index of the boundary di-
electric at the combination frequency, but larger than
the refractive indices of the same dielectric at the fre-
quencies ω' and ω".

Excitation of surface waves at combination frequencies
is the most effective, since the output power is propor-
tional in this case to the square of the length of the non-
linear waveguide. This regime can be realized if the
waveguide is transparent enough at all the interacting
frequencies and if the synchronism conditions are satis-
fied. To satisfy the latter requirement, the calculated
waveguide thickness (h) should be maintained accurate
to Ah/\~ λ/l, where I is the interaction length. It is
difficult to attain this in practice at present.

It is easy to obtain radiated waves at combination
frequencies, since this case is less critical to variation
of the film thickness. In addition, it is permissible to
use films with attenuation at the combination frequency,
since the energy of the wave at this frequency is ex-
tracted from the waveguide over lengths on the order of
the film thickness. The main shortcoming of generation
of radiation waves is its low efficiency, since the output
power is proportional to the length of the waveguide.

A promising possibility for the observation of non-
linear effects is afforded by the use of single-crystal
LiNbO3 film in a quartz substrate C l l ] . The axis of the
LiNbCh crystal should be oriented perpendicular to the
film plane. If the second harmonic is obtained by using
the Ηι(ω) and Ei(2u>) modes, then the nonlinear trans-
formation is determined by the nonlinear interaction
constant d3i. At a pump wavelength λ = 1.06 μ, the
thickness of the LiNbO3 film should be approximately
2.5 μ.

In the experiment, nonlinear thin-film waveguides
were used to obtain the second harmonic of a neody-
mium-glass laser t 2 9 ] . The system consisted of a
prism (TF-5) an LiF2 film as the optical gap, and a
ZnS film as the waveguide layer (Fig. 19a). The op-
tical-gap thickness was chosen such that the Q of the
waveguide was determined mainly by the coupling and
not by the film loss. The second harmonic (λ = 0.53 μ)
was seen at the resonant incidence angle as a bright
green spot-spatially-incoherent radiation.

To obtain spatially-coherent radiation waves at the
second harmonic, the system was modified somewhat,
namely, nitrobenzene (n^ was placed over the wave-
guide layer (Fig. 19b). The thickness of the ZnS wave-
guide layer was chosen such that the phase velocity of
the excited first-harmonic wave exceeded the phase
velocity of the second-harmonic plane waves in the
boundary medium (nitrobenzene). In this case the sec-
ond-harmonic radiation angle was given by the expres-
sion sin6i = n*(ct))/n1(2w). At an Nd-laser pulse power
20 kW, the efficiency of conversion in the polycrystal-
line ZnS film was 10'6. The dependences of the power
and of the second-harmonic radiation angle in nitroben-
zene on the thickness of the waveguide layer were de-

FIG. 19

termined and compared with the calculations for the
Εί(ω) mode.

Generation of surface waves at the second harmonic
in a thin film was obtained in [ 5 2 ] . The nonlinear wave-
guide was a chemically-polished GaAs plate with cross
section 3.2x 160 μ. Radiation from a CO2 laser was in-
troduced through the end face of the plate with the aid
of a lens. The range of second-harmonic generation
corresponded to the rotational lines of the CO2, which
lie between 9.2 and 10.8 μ without tuning of the non-
linear crystal. The broad phase-matching band is due,
on the one hand, to the nature of the phase matching in
thin films, and on the other to *he inhomogeneity of the
waveguide thickness along the ray trajectory. The low
conversion efficiency (~10~2) was due, first, to the low
powers of the energy input due to the low crystal-damage
crystal, and second to the inefficient method of introduc-
ing the light ray through the end face. To obtain the
second harmonic in thin-film waveguides it is also pos-
sible to use the nonlinear properties of the substrate.
In [ 5 1 3 they investigated an optical waveguide of poly-
crystalline ZnS film, deposited on a single-crystal ZnO
substrate. The surface wave in the film was excited by
a Nd r̂YAG laser, and the field penetrating into the sub-
strate produced in it a nonlinear-polarization wave at
the second-harmonic frequency. The thickness of the
ZnS film was chosen such that the nonlinear-polarization
wave propagated in the substrate with a higher velocity
than the velocity of light in the substrate. The second-
harmonic radiation was observed in the form of Ceren-
kov radiation at an angle θι = 8ίη"1[η*(ω)/η2(2ω)].

5. CONVERSION OF SURFACE WAVES

Thin-film optical waveguides can be used not only
for frequency conversion of surface waves (see Chap.
4), but also for spatial scanning of the waves. As in the
case of volume crystals, a promising method is the
acoustic method, namely the interaction of light with
elastic waves propagating in the film. The possibility
of obtaining large concentrations of optical and acoustic
energy in thin films gives grounds for hoping that effec-
tive film spatial modulators can be developed.

The interaction between acoustic and surface optical
waves in a thin-film waveguide can be studied analyti-
cally by using the perturbation method C s 3 ] . For simpli-
city, a symmetrical dielectric waveguide (ni = n2 = l) is
considered, in which the change of the dielectric con-
stant, due to the acoustic wave, is represented in the
form

e={

where ρ is the amplitude of the change of e/e0 (p « 1).

1, \z\>h/2, (5-1)
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We assume that an antisymmetrical type-Hm light wave
propagates collinearly with the acoustic wave, and write
down the y component of its dielectric vector in the
form

£?.'.» = C™ si η ( ] / n J - η ' 1

£j?m = ± Cf sin (\Tn\-nSkh)

1 1 n m

(5.2a)

/ra — ω,ί)], ±z>fc/2.

(5.2b)

is the root of the dis-Here Co11 is a constant and n
persion equation of the symmetrical waveguide (see
(1.13) with ^ = 1̂  = 1).

We obtain the solution of the wave equation for the
film in the surrounding medium:

= 0 -f· (5.3b)

The right-hand side of (5.3a) is the perturbation in-
troduced by the acoustic wave. The solution of these
wave equations can be represented in the form of the
sum of the incident wave and the scattered waves

Ey = AWEy%+ 2 4 " (*) Ey. , (*, Z, f, <0S) + W (ξ, X) Ey ftj X, Z, ij M.) (ίξ.
1 0

(5.4)

The functions Ey(?; x, z, t; cos) describe radiated modes,
Bsin/c2z-exp[i(fc^ — ω,ί)], |z|<fc/2,

* + Ce-<l') exp [i (Μ-ω,ί)], | ζ | > A/2;

(5.5)

! ; ι, ζ, ί; ω.,) =

where k x = Vk2-?2 and kz = Vn?,k2-kx.

The principal task is to determine the function
q(?, x), which is due to the right-hand side of (5.3a).
Substituting the value of Ey from (5.4) in (5.3a) and
equating terms belonging to the same order of the
perturbation, and also integrating the right-hand and
left-hand sides with respect to ζ from zero to °°, we
obtain the following results 5 3 3 :

When the propagation directions of the acoustic and
optical waves coincide, the function q(?, x) is maximal
if the conditions ω δ = ωι-Ω and kx«±(n}nk-K) are
satisfied. In the case of propagation in opposite direc-
tions, q( | , x) is maximal at ωβ^ωϊ+Ω and
k x = ± ( n m k - I Kl). The variation of the radiation angle
(ΔΘ) is connected with the change of the acoustic
frequency (Δί) by the relation Δθ = \Af/(sin0) -V,
where V is the phase velocity of the acoustic wave.
An analysis carried out for a GaAs waveguide and
λ= 10.6 μ has shown that in this case, for a beam inclin-
ation ΔΘ«0.45 rad (AF = 50 MHz) it is necessary to have
an acoustic energy lower by one order of magnitude than
in the case of a three-dimensional acoustic deflector
with similar characteristics.

One of the problems connected with the interaction
between elastic and optical waves in thin films is the
excitation of acoustic oscillations in the optical wave-
guide. Up to now, the experiments were performed with
acoustic surface waves excited in a piezoelectric by
opposing-post converters. These waves in turn excited
surface waves in a film coated in the piezoelectric
crystal. The short-comings of this method are obvious.
To obtain an optical waveguide it is necessary to use a
substrate with a refractive index smaller than no of the
film. The most widely used films, glass and organic,

FIG. 20 FIG. 21

have no~ 1.5; consequently, the substrate should have an
even smaller refractive index ni. However, piezoelec-
trics with small ni have small electroacoustic con-
stants and small elastic-wave excitation efficiencies.
In the case of substrates of LiNbO3 crystals (ni=2.2),
a metal layer is deposited on the substrate in order to
maintain the waveguide properties of the glass films,
followed by a dielectric film. But in this case the metal
introduces additional losses in the waveguide and in-
creases the surface-wave attenuation.

The authors of C543 have demonstrated experimentally
the deflection of the light beam interacting with an
acoustic wave in an optical waveguide. The scanning
was carried out in the plane of a glass film sputtered
on α-quartz, in which surface acoustic waves were ex-
cited. The light flux propagated relative to the acoustic
wave at the Bragg-scattering angle e-Q = sin'1{X<1/2A),
where \, = 27r/nok is the wavelength of the light on the
film, and Λ is the length of the acoustic wave. The
scattered ray was deflected from the principal ray
through an angle 2θβ, which amounted to =1.3° in
this experiment. The deflection efficiency was

The scattering of optical surface waves by acoustic
waves in collinear propagation was investigated ex-
perimentally in t 5 5 ] , and a redistribution of the energy
among the modes was observed. This effect is the
analog of the Bragg scattering of light by elastic waves
in anisotropic bulky media, except that to obtain phase
matching in parametric excitation in thin films there is
no need to use anisotropic materials (see Chap. 4). The
waveguide substrate was single-crystal LiNbOe (one in
Fig. 21), on which an aluminum layer 3 was deposited,
followed by a glass film 4 (the number 5 in Fig. 21 de-
notes the converter for the surface acoustic modes).
An He-Ne laser excited the Hi mode in the film through
a diffraction input unit 2; the energy of the Hi mode
was transferred by the interaction with the acoustic
surface wave to the mode H2, which was extracted from
the film at an angle θχ that differed by ~4° from the
angle θ3 of the mode H3. The conversion efficiency was
55% and was determined principally by the overlap
integral:

J ιια (ζ) κ, (z) i>3 (») dz

+ 00 +00 +co

J i>l (2) dz J i>f (2) dz J c | (2) dz

(5.6)

where vx(z) and v3(z) are the distribution functions of
the Ey components for the modes Hi and H3, and

1, 0<z<fe,

is the distribution function of the stress produced by
the acoustic wave. In this case, the nonlinear polariza-
tion excited by one of the modes does not coincide with
the other mode, this resulting in a small value τ»0.027
and a low conversion efficiency. The overlap integral
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can be increased by choosing a more suitable distribu-
tion of the acoustic energy (e.g., asymmetrical) or by
using an asymmetrical waveguide with appropriate modes,

The acoustic method of surface-wave mode conver-
sion is not the only one. As indicated in Chap. 4, when
surface waves propagate in an anisotropic waveguide,
their polarization changes continuously, and this pro-
duces automatically scattering of light over different
oscillation modes. The polarization can vary also in
an isotropic film if the boundary media from which the
light rays are reflected are anisotropic or gyrotropic.
The surface-wave field that penetrates into the bound-
ary media is given by

Ce-W exp [i (n*kx — ωί)],

where y = vn* 2 -n 2 is the damping constant. For an
anisotropic substrate, there exist two eigenvalues yt

and 72 of the damping constant. Inasmuch as in the
general case these two natural modes in the substrates
are not purely transverse or purely longitudinal, it
follows from the boundary conditions that the Em and
H m modes in the film are likewise not purely trans-
verse or purely longitudinal. Thus, when rays are re-
flected from the boundary between the film and the
anisotropic medium, energy is transferred from one
mode to another. In order for this conversion effect
to accumulate, it is necessary to obtain a degenerate
propagation of the surface waves, in which the same
phase shifts are obtained upon reflection of the E m

and H m modes. Usually when light is reflected from
isotropic dielectrics at one and the same angle, the
phase shifts for different polarizations are different,
but by using suitable anisotropic media as boundary
media it is possible to obtain degenerate propagation.

In : 5 6 ] , a theoretical analysis was carried out of the
conversion of optical modes in films with anisotropic
boundary media, and the coherence lengths were calcu-
lated numerically for different films, anisotropic and
gyrotropic substrates, and boundary media. The possi-
bility of obtaining 100% conversion was demonstrated,
and the permissible deviations of the film thicknesses
and of the mode-excitation angles from their optimal
values were estimated. The indicated conversion prin-
ciple was realized in Lael. The optical waveguide was
made up of a glass film sputtered on glass having a
smaller refractive index. The film thickness was such
that only the two lower modes H! and Ei could be ex-
cited. A gas laser (λ = 0.63 μ) was used to excite the Hx

mode. To obtain conversion, a suitably oriented plate
of crystalline quartz was pressed against the film (until
optical contact was obtained). Hi and Ei modes were
observed in the output. The efficiency of conversion of
Hi into Ei was -15%.

6. AMPLIFICATION AND GENERATION OF
LIGHT IN THIN FILMS

The principle of miniaturization of optical circuits,
which have found their way in modern communication
technology, computer technology, etc., has raised the
question of development and production of film ampli-
fiers and light generators. The possibility of amplifying
surface waves in a flat dielectric waveguide was first
demonstrated theoretically in C 5 9 ], where the active
medium considered was gas adjacent to a waveguide.
By now, a large number of active elements in thin-film
waveguides was proposed and realized in practice. In

particular, in C 6 0 1 there was reported amplification of
light of wavelength λ =6328 A in a polyurethane film acti-
vated by rhodamine Β dye. The waveguide film was ob-
tained by immersing a clean glas substrate (microslide)
into a specially prepared solution of two components of
polyurethane resin and dye, followed by drying of the
slide in a vertical position in air and in an oven. The
rhodamine-B concentration in the film was 7.5x 103

mole/liter (film No. 1) and 3.3xlO"2 mole/liter (film
No. 2). The film had a refractive index no = 1.55 and the
substrate had nx= 1.51. The film was pumped with a ni-
trogen laser of power «43 kW and pulse duration 6.6 nsec.
The laser radiation was focused into a line 28 mm long
and 0.3 mm wide. In the absence of feedback, super-
radiance was observed in the dye-activated film. A
polarization analysis of the radiation extracted from
the film with the aid of a rutile prism revealed the
presence of Hm and E m waves in the radiation. The
superradiance pulse duration, 5.6 nsec, was shorter
than the pump pulse. The emission spectrum was broad
enough, Δμ«200 A, and the center of the emission band
was at λ= 6320 A. Amplification of light in a film acti-
vated with rhodamine Β was also demonstrated in [ s o 3 .
To this end, radiation from an He-Ne laser (Pi = 0.15
mW) was introduced into the film and extracted from it
by means of prisms separated by a distance of 16 mm.
The output radiation was analyzed with a spectrometer
and registered with a photomultiplier on an oscilloscope.

It was established that when the power incident on the
input prism is increased, the gain decreases, saturation
being observed in the region of large Pi. The maximum
gain was 12.5 cm' 1 for film No. 2 and 8.4 cm' 1 for film
No. 1. An investigation of the dependence of the gain on
the nitrogen-laser power P N 2 , performed on film No. 1,
has shown that when the pump power P N 2 increases the
gain increases. However, at sufficiently high pump
levels ( P N 2 > 14 kw/cm) the gain exhibits saturation,
and for smaller Pj the gain is higher in the saturation
region. We note that no superradiance was observed
when the pump power was reduced to 10 kw/cm, al-
though an appreciable gain of the He-Ne laser light was
registered by the receiving apparatus.

An interesting design of a film-type light amplifier
was obtained in . Using the penetration of the field
of a surface wave propagating in a film into the bound-
ary medium, the authors chose one of these media to be
the dye rhodamine 6Zh. The dye was pumped by a sur-
face wave from an external source, excited in the film
with the aid of a prism. An important factor in such an
amplifier is the proper choice of the refractive indices
of the film, substrate, and dye solution, so as to ensure
the largest penetration of the pump field and of the ampli-
fied field into the dye. Obviously, the optimal case will
correspond to a dye-solution refractive index close to
the refractive index of the film. The authors of [ 6 5 ] de-
posited on the film a rhodamine 6Zh solution with con-
centration 3xlO"3 mole/liter and pumped it with the
second harmonic of a Nd^YAG laser. At low pump
levels they observed spontaneous emission of the dye
in the waveguide, and at large concentration they ob-
served superradiance with wavelength λ= 5900 A emerg-
ing from the output prism. Estimates show that the gain
necessary to observe superradiance should reach e2 0.

Progress in the technique of sputtering glass films
has made it possible recently to obtain a glass film ac-
tivated with Nd3+ ions and having very low losses (0.05
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dB/cm for the fundamental mode) C 6 6 ]. A film amplifier
for light of wavelength 1.06 μ was realized in c on the
basis of such a film. The activated film (no = 1.55, 3.5
wt% Nd), deposited on a glass substrate with n*= 1.53,
was illuminated by a xenon flash lamp. The light beam
from a cw Nd^YAG laser was introduced into the film
and extracted from it with the aid of prisms. The dis-
tance between prisms was 5 cm, and the length of the
illuminated region was 3 cm. At a pump energy 130 J,
a 16% gain per pass was registered. A study of the de-
pendence of the gain on the pump energy and on the
power of the radiation amplified in the film has shown
that it increases linearly with increasing pump (up to
200 J), and decreases linearly with increasing power of
the light beam entering the film.

The necessary stage in the development of film
lasers is the realization of an effective feedback in the
film. The first step in this direction was made in t 6 2 ] ,
where generation was investigated in a periodic struc-
ture in which the feedback was provided by backward
Bragg scattering of the light. The light was scattered
by periodic spatial changes of the refractive index or of
the gain of the amplifying medium itself. The changes of
the refractive index η and of the gain a are given in
the form

re (x) = η + δη cos Kx, a (x) — a + δα cos Kx, (6.1)

where the χ axis is directed along the optical axis and
Κ=2π/Λ. Here Λ is the period of the spatial modulation,
and δη and δα are its amplitudes. A distributed-feed-
back laser of this type will emit light of wavelength λ
determined by the Bragg condition (3.26)

λ = 2ηΛ.

[62]

(6.2)

An expression was obtained in LDi!J for the threshold and
for the spectral width of the simulated emission in such
a periodic structure, on the basis of an analysis of the
structure by the coupled-wave method (see Chap. 3).
The condition under which generation sets in at large
values of the gain G = e2fflL, where L is the length of
the periodic structure, is of the form

4 c t 2 G " 1 = I (6.3)

If only the refractive index of the medium is modulated,
then the threshold condition reduces to

(6.4)
LIIVG

When the gain is double the threshold value at the cen-
ter of the band, the threshold condition is satisfied for a
spectral band Δλ, the width of which is given by

Αλ
λ

λ\ηβ (6.5)

To illustrate the foregoing relations, let us assume that
the amplifying medium has a length L = 10 mm, a gain
G= 100, and an emission wavelength λ=0.63 μ. Equation
(6.4) indicates that generation will take place if δη2 10"5.
For the width of the radiation band we obtain from (6.5)
the value Δλ»0.1 A. A laser with distributed feedback
was experimentally realized using dye in a gelatin film.
The laser length was 10 mm and the width was 0.1 mm.
The film was deposited on a glass substrate. Gelatin
sensitized with ammonium bichromate (NH^CraCM was
exposed to two coherent beams from an He-Cd laser.
The interference pattern produced with such an illum-
ination of the gelatin had a period of 0.3 μ. The gelatin

was then developed by the method used in holo-
graphy C37>38>69:1

; w i th a resultant spatial modulation of
the refractive index. The developed gelatin was im-
mersed in a solution of rhodamine 6Zh, to permit the
dye to penetrate into the pores of the gelatin layer.
After drying, a structure with distributed feedback was
obtained, and was illuminated with ultraviolet radiation
from a nitrogen laser. At pump densities higher than
106 w/cm2, generation with wavelength 0.63 μ was ob-
served. An analysis of the emission spectrum of the
film laser, with the aid of a spectrometer, has shown
that the line width is smaller than 0.5 A. The line width
of the stimulated luminescence of the rhodamine 6Zh in
a homogeneous gelatin film, under the same pumping
conditions, was 50 A, and the center of the line was at
the wavelength λ=0.59 μ. Thus, the presence of dis-
tributed feedback led to an appreciable narrowing of the
radiated line. Lasing in gelatin films of different thick-
nesses and under different pumping conditions was in-
vestigated. In addition to the possibility of obtaining
single-frequency generation in a film h= 14μ thick, it
was noted that multifrequency generation is possible at
larger pumps and in thicker films. The multifrequency
character of the radiation is due to generation of differ-
ent modes of the gelatin film.

Variation of the period of the spatial modulation of
the refractive index or of the gain makes it possible to
obtain tunable radiation from a laser with distributed
feedback. To this end one can use the well known prop-
erty of organic dye solutions, namely that the gain and
refractive index are altered by absorption of intense op-
tical radiation. A tunable thin-film laser was produced
in t 6 7 ] using a polyurethane waveguide film activated with
rhodamine 6Zh and pumped with two interfering coherent
light beams (Fig. 22). Depending on the angle 2Θ be-
tween them, the radiation wavelength XL varied in ac-
cordance with the formula

λ,.---
3 sin θ

where qg is the order of the Bragg scattering (see
Chap. 3). The pump was the second harmonic of a ruby
laser with λρ = 0.347 μ. The line width of the film laser
did not exceed several tenths of an Angstrom unit at high
pump levels. The possibility of constructing a laser
based on the foregoing principle is apparently limited
to media with large gains.

The development of a thin-film ring laser, in which
strong feedback is easiest to obtain, can increase the
class of thin-film generators, by making possible the
use of media with moderate gains.

A film ring laser was realized in Ce3a by depositing
an activating film on the surface of a cylindrical glass
rod. The optical path of the light in the film followed the
periphery of the rod. The pump was a nitrogen laser

Film activated with
rhodamine 6 Zh

1/

FIG. 22 FIG. 23
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(λ=3371 Α), the output beam of which illuminated a nar-
row strip of the film on the rod. The light generated in
the film was extracted from it with the aid of a prism
(Fig. 23). Inasmuch as the light propagates in the annu-
lar film in two directions, two output beams were ob-
served. These rays were well collimated in the vertical
direction (along the rod), since the height of the pumped
region was =0.2 mm. In the horizontal direction, they
have an angle spread ~1° at a rod diameter 2r = 5 mm.
This spread is due to the finite spectral width of the
laser light and to the curvature of the film. The film
curvature leads to a very short length of the region of
coupling with the output prism, and consequently to an
angular broadening of the output beam. The width of the
gap between the prism and the film can be optimized by
regulating the pressure of the prism against the rod.

In the experiment, a polyurethane film activated with
rhodamine 6Zh dye (8xlO~3 mole/liter) was deposited
on a glass rod (ni= 1.47). The film had a refractive index
no = 1.55 and a thickness 0.8 μ. Only the fundamental
modes Hi and Ej could propagate in the film. Measure-
ments of the output power as a function of the pump
power have revealed a clearly pronounced threshold.
The threshold pump power was 15 kW (1.5 MW/cm2).
However, only a small fraction of the light (~1 kW) inci-
dent on the film was absorbed in the film. The emission
spectrum of the ring laser was quite broad and reached
110 A, with a maximum at λ = 6200 A. The spectrum has
revealed the natural frequency of the ring-laser resona-
tor, this being the most direct proof of the presence of
feedback. The intermode distance in the wavelength scale
is determined in the case of a ring laser by the relation

Λ λ = - λ " ,

where 2r is the rod diameter, ngr = c/vgr, and Vgr is the
group velocity of the wave in the film. An intermode dis-
tance Δλ= 0.553 A was observed in the experiment in the
case of a ring laser on a rod of diameter 2r = 1.397 mm.
This value agrees well with the theoretical value obtained
for longitudinal modes of a film ring laser with ngr
= 1.583 and h=0.8 μ. Similar measurements were per-
formed for a laser on a rod of diameter 2r = 1.05 mm.

As noted earlier, two beams are observed at the out-
put of the ring laser. If a lens and a mirror are placed
in the path of one of the beams, which is thereby re-
turned to the film, it is possible to obtain a unidirec-
tional ring laser. Such a film laser was realized ex-
perimentally in leai. The maximum power ratio of the
two output beams reached 17. Replacement of the mir-
ror by a diffraction grating has made it possible to
tune the center of the emission band of such a laser
within a narrow range, by displacing the lens. It should
be noted that a film ring laser can be coupled quite
simply with a flat film on a substrate and used to intro-
duce the radiation into the film.

An electroluminescence laser or a semiconductor
laser can be used as a thin-film active element. A re-
port of the first attempts to develop an electrolumines-
cence laser was published in [ 6 9 : l . In that study, narrow-
ing of the luminescence line was observed, together
with a noticeable increase of the directivity of the ra-
diation in a high-resistivity (p~ 108-1010 Ω-cm) ZnS
semiconductor doped with manganese. The "threshold"
values of the electric field intensity and of the current
density through the sample reached E~ 1.4x 106 v/cm
and j~10" 2 A/cm, respectively. The gain at the maxi-

mum of the luminescence band xmax = 5900 A turned out
to be (l-5)x 103 cm' 1 . The mechanism for the produc-
tion of inverted population in ZnSMn was impact excita-
tion of the Mn2+ ions, as is evidenced, in the opinion of
the authors, by the emission spectrum which is typical
of the transition 4Tj(4G) —A6(6S) in the Mn2+ ion, the low
density of the threshold current, the absence of heating
of the sample, and the large value of the internal quan-
tum yield of the generation.

A suggestion that a semiconductor laser be used to
excite thin-film waveguides is made in [ 7 0 ] . The idea
of the proposed method is analogous to that described
above in the discussion of an amplifier with an active
medium adjacent to the film [ 6 5 ] . The only difference is
that a semiconductor laser diode is used for pumping
in this case.

The possibilities of using a semiconductor laser with
a double heterostructure as an intense laser source di-
rected coupled to a film waveguide were investigated
in C 7 1 ] . The authors believe that such a semiconductor
laser can deliver a power on the order of 50 mW into
the fundamental wave mode.

The use of electroluminescence and semiconductor
lasers in optical integrated circuits is promising in
view of their small dimensions, large efficiencies, and
other advantages over lasers of other types.

''Inasmuch as the main structural elements of this input device is a
prism, it is frequently called a prism input.

2)This figure differs somewhat from Fig. 2 of [31] because we have used
the opposite orientation of the χ axis relative to the direction of the
incident beam.
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