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The theoretical structure of the pion-photon interaction amplitudes at low energies and the possibility

of studying them experimentally are reviewed. It is pointed out that it is possible to measure the ττπ

scattering lengths in photon-pion transitions. For processes involving an odd number of pions, a

discussion is given of the fundamental role of the π0—>2y decay amplitude, which determines the

form of all more complex amplitudes. This fact is connected with the anomalies in the axial-vector

current that appears in the weak interaction. In processes involving an even number of pions, the

radius and polarizability of the π~ meson appear as basic parameters. The polarizability is related to

the weak decay amplitude.
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1. INTRODUCTION

This review is concerned with the properties of the
pion-photon interaction amplitudes. Some of the simplest
amplitudes of this type are shown in Figs. 1—7. In these
figures a wavy line denotes a photon, and a dashed line
denotes a pion.

The experimental and theoretical investigation of the
electromagnetic vertex of the pion (Fig. 1) and the de-
cay π0 — 2γ (Fig. 2) has a long history. Interest in more
complex processes has grown in recent years as a re-
sult of the development of colliding beam techniques. It
is obvious that there exists a fundamental possibility of
studying the amplitudes for γ — (n)ir (n = 2, 3, ...) in
accelerator experiments with colliding beams (e*e~ — γ
— (η)ττ). There have also been many discussions of the
possibility of studying the processes γγ —• (η)π (η = 1,
2, ...) in the reactions e*e~ — eV(n)tf in those cases in
which the two-photon production mechanism correspond-
ing to the diagram in Fig. 8 is definitive. This mech-
anism was first considered in the early work11' (see
also[21, p. 471). Various aspects of the two-photon pro-
duction mechanism in colliding beams have been con-
sidered in recent years in numerous works (see,

[ 3 1 3 ]

Coulomb field of a nucleus. Thus, the Primakoff effect[14]

—the photoproduction of a single pion in a Coulomb field
—is currently a principal method of measuring the life-
time of the 7Γ0 meson (see[15]).

The processes in Figs. 1—7 represent a rich and
interesting object of study from the theoretical point of
view. Gauge invariance and the low-energy pion tech-
nique make it possible to establish relations among the
amplitudes under consideration and to make a number of
statements which have very high accuracy. Certain
features of these amplitudes reflect the deep dynamical
properties of the strong interactions.

The above-mentioned circumstances have led to a
voluminous literature. The results of many authors
overlap to a great extent. Unfortunately, in this torrent

FIG. 1 FIG. 2 FIG. 3

In connection with the possibility of studying the pion-
photon interaction experimentally, it should also be
noted that there are genuine prospects for achieving in-
tense intermediate-energy meson beams ("pion
factories") in the near future. When the exploitation of
"meson factories" begins, it will become possible to
study with a high accuracy a number of the amplitudes
for the Coulomb scattering of pions by nucleons and
atomic nuclei which are considered here (Fig. 9). The
experimental investigation of the processes of Coulomb
production on nuclei is evidently sufficiently practicable
even at the present time.

The amplitudes in Figs. 2, 4, 5 and 7 can also be
studied in the reactions of pion photoproduction in the

FIG. 4 FIG. 5
/ \
FIG. 6

FIG. 8 FIG. 9

20 Sov. Phys.-Usp., Vol. 17, No. 1, July-August 1974 Copyright © 1975 American Institute of Physics 20



there are also a large number of works which are in
error. In short, we have the usual situation that follows
from crowds and haste, although in this sense the sit-
uation is not as strained as in certain other, more
"fashionable" fields.

By now the problem is apparently settled to a great
extent, and it is possible to quote theoretical results
concerning each of the processes in Figs. 1—7. This,
as well as a qualitative discussion of the prospects of
making experimental measurements in a number of
cases, is the main content of the present review.

As many of the processes in question are related to
the 7ΠΓ scattering amplitude, we also consider (very
briefly) the current theoretical and experimental infor-
mation on the 7Γ7Γ interaction.

It should be stressed that photon-pion interactions
at low energies constitute, in a sense, a self-contained
area of physics. All the amplitudes in question can be
calculated by making use of a limited set of initial hy-
potheses. These hypotheses are not arbitrary. They are
supported by a whole series of theoretical arguments
and experimental facts.

The theoretical results that will be discussed below
consist mainly of the derivation of formulas which ex-
press all the pion-photon amplitudes in terms of a small
number of initial parameters: the radius of the pion, its
polarizability, the π° — 2y decay constant, and, in a
number of cases, parameters which characterize ππ
scattering. All these input parameters can be measured
independently in other processes. Thus, the low-energy
physics of pions and photons is very rigidly determined.
Consequently, the experimental data in this area should
have an unambiguous interpretation. Unfortunately,
practically no data exist at the present time, but it
seems that we can expect an accumulation of a large
amount of experimental information here in the near
future.

The following notation is employed in this review.
The system of units is ft = c = 1, e = 4πα = 4π/137. The
metric is given by a^b^ = aobo - a-b. The normalization
of the states corresponds to choosing the phase space
of a particle in the form (2ir)~3d3p/2p0. The following
matrices are used:

- ί ° ι ) - / = 1,2, 3).

The matrix element for each process, Tfj, is defined
by the relation

Sft = 6/i + Ι (2π)4 δ (ρ, - ρ,) Τti, (1.1)

where S is the scattering matrix.

If the process contains a photon in the initial or final
state, we consider the vector Tv (or the tensor Τνμ for
the case of two photons) defined by the relation

Tti = ivZV (1.2)

where either !„ is the polarization 4-vector of the
photon or £„ = Αμ(ς)/(2π)4, where Aj;(q) is the external
field.

2. BASIC HYPOTHESES

a) We shall discuss mainly the consequences of gauge
invariance and the following assumptions:

A. Conservation of the vector current:

d^(x) = 0. (2.1)

B. Partial conservation of the axial-vector current
(PCAC):

dva*(z) = K2/W(z). (2.2)

In (2.1) and (2.2), v£ and a£ are the vector and axial-
vector hadronic currents, k = 1, 2, 3 are isotopic in-
dices, φ^ is the pion field, μ is the pion mass, and F^
is the π — ev decay constant.

C. Current algebra*':

(2.3)

(2.4)

(2.5)

(2.6)

D. The structure of the electromagnetic current

(2.7)

where ν μ is the isoscalar current (in the framework of
SU(3) symmetry, the eighth component of the octet). The
currents ν μ and v3^ have opposite G-parity (Gv° G"1

= -ν°μ, Gv^G'1 = ν3

μ; we note also that Ga^G"1 = -a£),

and the current v° commutes with the isovector cur-
rents andv and a .

We turn now to a brief discussion of the nature of
the hypotheses formulated above.

Equation (2.1) is a consequence of the isotopic in-
variance of the strong interactions.

The relation (2.2) is an identity on the mass shell of
the pion (here any operator is proportional to the pion
field). Off the mass shell, it actually serves as a def-
inition of the field <Pk(x) and is significant only if the
non-pole contributions to the matrix elements from the
operator 8 ^a^x) are slowly varying functions of the
momenta and allow a series expansion for small mo-
menta (~ μ). As a rule, the matrix elements of the
operator & ^a^(x) · exp(ipx) can be calculated for the
momentum ρ — 0 by using current algebra. The hy-
pothesis that a series expansion is possible allows the
result to be continued to the point ρ2 = μ2, where in
accordance with (2.2), the matrix element in question is
related to the amplitude for the emission of a pion. Thus,
by calculating the matrix elements of the divergence of
the axial-vector current for ρ — 0, we obtain informa-
tion on the amplitudes for the emission of a pion.

As a result, we can say that Eq. (2.2) is a conven-
tional representation of the hypothesis that certain had-
ronic amplitudes are slowly varying over a scale of the
order of the pion mass. For a more detailed discussion
of the physical content of the hypothesis (2.2), see[ 1 6 ' 1 7 ] .

Current algebra (2.3)—(2.6) was proposed by Gell-
Mann. It is realized in the theory of free fermion fields
(where v£ = ( 1 / 2 ) ^ 7 ^ and a£ = {1/2)φγνγ5τ*φ), in the
quark model, and in the σ model[18]. Its applicability in
the actual theory of the strong interactions can only be
substantiated by the agreement between the experimental
data and the predictions based on its use.
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Equations (2.3)—(2.6) imply simple commutation re-
lations for the charge operators Qj = J d3xvj(x, 0) and

Q 5 j = / d'xaJfx, 0). The "left" (Lj = Qj - Q 5 j ) and
"right" (Rj = Qj +Q51) combinations of charges generate

two independent (left and right) SU(2) algebras. The
axial-vector current â  is conserved when μ2 = 0, so
that Q5j, like Q-, is tiitfe-independent and the quantities

Lj and Rj are the generators of the "left" and "right"

SU(2) groups, respectively. Consequently, the hypotheses
A, B and C amount to the assumption that the strong in-
teractions possess SU(2) xSU(2) symmetry at μ2 = 0.
It is convenient to represent the strong interaction
hamiltonian in the form Jf = Jf0 + eJfj, where jf0 is in-
variant under the group SU(2) x S U ^ ) , . ^ is the sym-
metry breaking, and e is a numerical parameter char-
acterizing the scale of the symmetry breaking. It is
then readily shown that / d3x8 a) (x)/8 χ =-ie[Q5 i(t),

The above-mentioned possibility of continuing the
matrix elements in the momenta over intervals of the
order of μ implies that the pion mass is small with
respect to the scale of the strong interactions. This, in
turn, means that the violation of SU(2) xSU(2) symmetry
is small (e « 1). A detailed discussion of the relation
of the hypotheses A-C to the problem of SU(2) xSU(2)
symmetry can be found in[ 1 9 ].

The hypothesis (2.7) about the structure of the elec-
tromagnetic current, as formulated in D, contains, in
essence, two statements. First, the electromagnetic
current contains no isotensor component; second, and
more exacting, the current has an octet structure. Most
of the results which we propose to discuss are based on
the first, weaker assumption.

Unfortunately, both assumptions, while being ex-
tremely plausible from the theoretical point of view,
have few direct experimental confirmations (see,
e.g.,™).

The hypotheses A—D together constitute the basis of
the low-energy pion technique and lead to a large num-
ber of results that are in good agreement with experi-
ment (seeC i e' i 7 ]).

For the constant Fv in (2.2), we shall use the value

„ _ 0.83μ

' " - V2 '
which follows from the Goldberger-Treiman
relation [ 1 β ' 1 7 ]

(2.8)

(2.9)

here Gy and G^ are the constants associated with the
vector and axial-vector currents in β decay, m^ is the
nucleon mass, and g w N is the ττΝ coupling constant. The
value (2.8) differs slightly (~ 10%) from the value F | X P
« 0.93μ//2~which can be obtained from the data on the
η —· eu decay probability. The choice (2.8) can be just-
ified by the fact that Eq. (2.2) is usually applied not at
the pion pole (ρ2 = μ2), where it is exact if Fff = F ^ x p ,
but at the point ρ = 0, where it is approximate. It is at
ρ = 0 that Eq. (2.9) follows from (2.2), but it is satisfied
exactly for the choice (2.8). We may therefore expect
that the choice (2.8) also "rectifies" Eq. (2.2) at the
point ρ = 0 for other processes. However, from a "high-
level" theoretical point of view, we should not distin-
guish between (2.8) and the value Έτ = F ^ x p . This dif-

ference lies within the limits of the accuracy of the low-
energy pion technique. A possible ~ 10% uncertainty in
the choice of the value of the constant Fn in (2.2) should
be borne in mind.

b) The highly successful application of the low-energy
energy pion technique seems rather odd at first sight,
in view of the fact that the hypothesis (2.2) is incom-
patible with the occurrence of the decay ir° — 2y. ([t
follows from (2.2) that the decay π° — 2γ should be
strongly suppressed, and this is not observed experi-
mentally).

There should be some theoretical grounds for sup-
posing that Eq. (2.2) cannot be applied to the amplitude
for π0 ^ 2y.

In this connection, it was shown int 2 1 ] that in the
presence of an electromagnetic field the condition (2.2)
for the neutral components (k = 3) must be rewritten in
the form

c-^ενμαβί\,μ(χ)Fa» (x), (2.10)

where Fvil(x) is the electromagnetic field tensor, and
c is an arbitrary constant. This modification of the
PCAC condition does not show up in all the results of
the low-energy technique discussed int i e > 1 7 : !, but removes
the contradiction in the decay ττ° — 2γ.

We shall call relations for 9 va.u(x) that differ from
(2.2) anomalous PCAC conditions. The decay it° — 2γ
is allowed within the framework of the hypothesis (2.10),
although the corresponding decay constant f (0) cannot
be calculated, since the parameter c in (2.10) cannot be
determined without invoking additional model-dependent
assumptions. We shall employ the constant f(0) as an
"input" phenomenological parameter, which, as we shall
see, will determine the amplitudes with an odd number
of pions in Figs. 3 and 4. This is equivalent to the as-
sumption that an anomalous PCAC condition exists for
certain amplitudes. We shall not make use of the ex-
plicit form of (2.10) here. It is only important to sup-
pose that the usual form of PCAC undergoes certain
modifications in the presence of an electromagnetic
field, since f (0) f 0. This point is discussed in greater
detail in Sec. 5.

c) As we remarked in Sec. 1, some of the results
which we shall discuss depend on the irir scattering
amplitude. This quantity cannot be calculated completely
with the framework of the hypotheses A, B and C and
contains one arbitrary parameter y (see[17]). The
amplitude was nevertheless calculated inC22], and the
value γ = 0 was obtained. This was done, however, by
making use of an additional hypothesis about the struc-
ture of the commutator:

[a»ai (a), j dVa»(0, χ')] ~ μ2δίη. (2.11)

The assumption is in fact that the right-hand side of
(2.11) is proportional to δ^. This is quite natural and
can be justified in a number of field-theoretic models.

As we have already noted in considering the content
of the hypotheses Β and C, the divergence of the axial-
vector current is proportional to the term e3C1 which
breaks SU(2) xSU(2) symmetry. Isotopic invariance
requires t h a t ^ is an isoscalar. This means thatjfx

must transform according to some representation of the
group SU(2) XSU(2) of the type (n, n). By assuming that
Hj belongs to the simplest representation (1/2, 1/2), we
can easily reproduce the result (2.11). Certain the-
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oretical arguments for choosing the representation (1/2,
1/2) were given, in particular, in1-231 and have been dis-
cussed further in a large number of works.

Nevertheless, it should be stressed that Eq. (2.11)
lies outside the framework of the hypotheses Β and C
and determines the isotopic properties of the interaction
that breaks SU(2) XSU(2) symmetry.

We shall discuss the basic results as far as possible
without making use of (2.11), but in a number of cases
we shall point out simplifications which result if the
condition (2.11) is satisfied.

3. ELECTROMAGNETIC VERTEX OF THE PION

a) Phenomenological structure. We define the vertex
function τ,,(^, k2) of the pion by means of the relation

(na (ft,), π" (ft2) | ; v (0) | 0) = -ίβ&^^ΛΚ, k2), (3.1)

where ]„ is the electromagnetic current (2.7). The G-
parity selection rules exclude a contribution of v°v to
(3.1). At k2 = k2 = μ2, the function τ,,Ο^, k2) has the form

yv(fti,*2) = (A,-ft2)vi1(i1), (3.2)

where q = kj + k2, and F(q2) is the electromagnetic form
factor. At small q2, we have

ί·(?2)«1 + ̂ ί * , (3.3)

where (r 2 ) 1 / 2 is the electromagnetic radius of the pion.

The general structure of the vertex function T

v(^-1, k2)
off the mass shell (k2 / μ2, k2. / μ2) is of the form

(kt - ft,),/, (q\ k\, k \ ft·, k\). (3.4)

Exploiting conservation of the vector current, we can
use standard methods (see, e.g.,tl8]) to derive the Ward
identity for τν(^, k2):

(3.5)

here A(k) is the renormalized Green's function of the
pion, with a spectral representation in the form

*!<*) = i rq?+ ]' P>0. (3.6)

If k2 ~ μ2, the integral term in (3.6) can be expanded
in a series in the parameter k2/*2,- « 1. In this case,
it follows from (3.6) that

^ ) . (3.7)

It is significant that the terms ~ k4 in (3.7) cancel.
This circumstance makes it possible to determine the
functions F1 and F2 in (3.4) with an accuracy up to
second-order terms in the momenta. It turns out in this
case that, as before, the vertex function off the mass
shell is determined by the single parameter (r2) at
small momenta and is of the form

.5% (K k2) = (fc,-k2), (ι +<£> j») + g,<£> (ft; _ft;). (3.8)

We note that the vector dominance model yields
(r2)/6 = 1/m2 where nip is the mass of the ρ meson.
In this case, (r2>1/2 ~ 0.63 F. This value is in rather
good agreement with the experimental data. This means
that the characteristic scale of variation of the form
factor F(q2) (beyond the resonance region) is evidently
mp and that the expansion in (3.8) is actually made in
the parameter p2/m2 , where ρ is one of the momenta
q, k, or k2.

b) Possible methods of determining (r 2). The para-
meter (r2), as well as the entire from factor F(q2), are
fundamental quantities, the measurement of which is of
great interest.

The function F(q2) can be studied most directly (in
the region q2 > 4μ2) in the colliding-beam reaction
e+e" — ιτ+π~. So far, measurements have been performed
only in the resonance region at q ~ m ^ 2 4 > 2 5 i a n d in the
region q2 > 1 GeVa[26'27]. P

The most direct method in the region q2 < 0 is to
study pion-electron scattering. In this case, at acces-
sible energies, we can only discuss the region of small
q2 at the present time. So far, the appropriate experi-
ments [28>291 have a poor accuracy.

A number of experiments (see, e.g.,[30'31]) have been
performed with the aim of determining (r2) from the
scattering of pions by He. Such a possibility was pointed
out in[ 3 2 i. The interpretation of the data on ττΗε scatter-
ing encounters considerable theoretical uncertainties
and, on the whole, the method does not appear to be
reliable.

So far, attempts to measure the form factor in the
region 0 < -q2 < 0.5 GeV2 in pion-nucleon electropro-
duction experimentsp 3"3 5 ] have had the greatest success.
The theoretical feasibility of doing this was pointed out
i n [36,37] T h e p r o b l e m l i e s ^ t h e n e e d t o extract from

the full amplitude the contribution of the diagram in
Fig. 10, which contains the electromagnetic vertex of
the pion.

In the theoretical interpretation of the electropro-
duction data, it is customary to employ the results
of [38-40]

, in which the amplitude for photoproduction of
a pion by a virtual photon is reconstructed from dis-
persion relations. By applying such a procedure, the
form factor has been found in the form (see, e.g./34·1)

0.56 + 0.08 ι (3.9)

(q2 is measured in units GeV2/c2), for which (r 2 ) 1 ' 2

= 0.65 F.

An attempt has recently been made1·41-1 to extract data
on the form factor in the time-like region in studying
the reaction ir'p — e+e"n. Here again it is necessary to
isolate the contribution of the diagram in Fig. 10, but
now with a time-like photon. The results obtained in1-411

correspond to the value (r2)1 / 2 ~ 0.7 F, which is con-
sistent with (3.9).

A number of other proposals for measuring the form
factor can be found in the literature. More complex ex-
periments would be required to carry them out, although
the theoretical interpretation of the experimental data
would be more direct. In[ 4 2 1 it was proposed to study ire
scattering in final-state interactions in weak decays of
mesons and hyperons. This effect can be isolated by
measuring the T-odd spin correlations. In[ 4 3 ] it was
pointed out that it is possible to measure the form factor

FIG. 10 FIG. 11
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by studying spin effects in ne scattering. The feasibility
of measuring F(q2) in a pion-nucleus reaction of e*e"
or μ*μ~ pair production was discussed in1"1. Below (see
Sec. 8) we shall discuss the possibility of measuring
(r2) in the decay ir — e^eV.

4. ππ SCATTERING

As we have already pointed out, we shall make use
of the ππ scattering amplitude as an "input" parameter
in the calculation of the more complex amplitudes in
Figs. 3,4, 6 and 7.

The general structure of the ππ scattering amplitude
is of the form (the notation for the momenta and the cor-
responding isotopic indices is shown in Fig. 11)

r»« = δοί,δωΛί (ρ,, p2, p3, pt) + dacdbdM {pt, p3, p2. Ρύ (4.1)

pit p,, p2).

For small momenta, the function Μ can be repre-
sented in the form[17)22]i

M(Pl, P» P,) =

In[ 2 2 j it was found that

o = 0, β = /·;·, v = 0.

(4.2)

(4.3)

The equality α = 0 follows from the Adler self-con-
sistency condition: M(0, p2, p3, p4) = 0 for p2 = p2 = p2

= μ2. This condition is a direct consequence of Eq. (2.2).

The equality β = F^2 follows from (2.2) and the com-
mutation relations (2.5) and (2.4).

The condition γ - 0 is a consequence of the assump-
tion (2.11) about the structure of the commutator. Con-
siderations in the σ model are the main argument for
(2.11). The relation (2.11) does not follow from the basic
hypotheses A, B and C in Sec. 2. We shall therefore use,
in addition to (4.3), the more general possibility

α = ο, β = F;\ γ arbitrary. (4.4)

The τπτ scattering lengths enter a large number of
processes as parameters (see[45j). Until now, attempts
to measure TniI in peripheral pion-nucleon scattering
and in the decays Κ — 3π and K ^ decay have been most
effective.

The scattering lengths evaluated using the para-
meters α, β and γ have the form

where aj is the scattering length for isotopic spin I, and
g = γ + α μ'2 (seeCl7]). It follows from (4.3) that

μα0 = 0.2, μα2 = -0.06. (4.6)

We can appreciate the existing situation regarding the
determination of the ππ scattering lengths from Fig. 12.
The straight line 2a0 - 5a2 = 0.7 μ'1 gives the theoret-
ically expected values that follow from (4.4). The point
W corresponds to choosing the parameters (4.3). The
shaded areas A, B, C and D give the data (with allowance
for errors) of peripheral experiments1-451, the region Ε
gives the data obtained from the analysis of the decays
Κ — 3ir[4eJ, and the band F gives the data from Ke4
decayt47]. It would evidently be premature to draw a
categorical conclusion from Fig. 12 about the existence
of a contradiction between (4.3) and the experimental
data.

\\\

/ © ..

,-'-0.5

' " • & * <

0

-0.5

©

s

©

10.5 /ισ0

FIG. 12

In analyzing peripheral experiments, the assumption
is made from the very beginning that a ^ 0, β « 0 and
γ « 0, i.e., it is assumed that the function Μ in (4.2) is
practically constant over scales ~ μ2. Then α and the
corresponding scattering lengths are determined. It is
only with this procedure that it is possible, with small
statistics, to perform a well-defined extrapolation from
the physical region of momentum transfers (t < 0) to
the pion pole (t = μ2). It is clear that, if one of the sets
of parameters (4.3) or (4.4) is actually realized, the
scattering lengths obtained in this way (the regions A,
B, C and D in Fig. 12) have no relation to the actual
values.

Information about the ππ scattering lengths can be
obtained from the decays Κ* — π±π*π" by analyzing the
pion spectra and the distributions in the Dalitz plane.
However, it is then necessary to analyze the spectra in
a narrow band at the peripheries of the Dalitz plane,
where until recently the statistics have been poor. The
results of ii8\ where ~ 10e decays have been detected,
have not yet been analyzed in this way. The region Ε in
Fig. 12 is obtained by analyzing a combination of the
ratios of K* — 3π and K° — 3π decay probabilities[4<G:

-> η+π+π-)

*->π°π«π+)

3 Γ {Κ«

2 Γ (Χ°
• π+π-π»)

• π'π'π») '
(4.7)

The quantity ξ is proportional to (a0 - a2)
2, where a,,

and a2 are the ππ scattering lengths. Recent results'49*
which improve the accuracy of the probabilities of the
neutral decay modes of the kaon make it possible to
further narrow down the region E. Nevertheless, the
errors remain very large and do not enable us to cate-
gorically exclude the values (4.3) and (4.4).

The region F (data from K e 4 decay) is based on the
results of a single work1471. Owing to the large errors,
these results do not strongly contradict the value μa0

= 0.2 which follows from (4.3) and do not at all contra-
dict (4.4).

Nevertheless, the entire set of data indicates that the
values of the scattering lengths (4.6) and the correspond-
ing set of parameters (4.3) are improbable. However,
the values (4.e) and, even more so, the values (4.4) (the
line μ ^ 0 - 5a2) = 0.7 in Fig. 12) cannot as yet be re-
liably excluded .

Further measurements are required to clarify the
situation regarding the ππ scattering lengths, and the
processes in Figs. 3, 4, 6 and 7 may serve as a source
of important additional information about the structure
of the amplitude Τπ ι Γ .
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5. THE DECAY π 0 - ), (5.8)

a) Phenomenologlcal structure. The amplitude for
the process it" — 2y (see Fig. 2) is of the form

where the tensors

(5.1)

where ρ is the ir° momentum, q1 and q2 are the photon
momenta, ν and μ are the corresponding polarization
indices, and ε^μαβ is the antisymmetric tensor (e0123

= I) 3 ' . The constant

/ == / (μ», Ο, 0)

determines the lifetime of the u0 meson:

τ(π») =
64π

(5.2)

(5.3)

It is natural to adopt the assumption that f (p2, q2, q2)
is slowly varying over scales that are small in compar-
ison with
3a). We can then assume that

/ (0), (5.4)

where f is defined in (5.2), and f (0) = f (0, 0, 0). This
assumption will be of the utmost importance in studying
more complex amplitudes with an odd number of pions.
The slow variation of the function f (p2, q2, q2) can in pri
principle be verified experimentally by studying the dis-
tribution in the effective mass p2 of the system of two
photons near the mass of the JT° meson4', as well as by
considering the distribution in the mass q? of the Dalitz
pairs in the reaction X — X' + e+e" + γ. The dependence
on the variables q2 and q2 can be studied in the produc-
tion of ir° mesons in colliding e+e" beams by the two-
photon mechanism (see[4'9]).

b) Numerical value of the constant f. The current
value of Τ(ΤΓ°) is (0.84 ±0.1) x 10~16 sec (seeCl5]). This
gives

, 0.45g
; ~ ~ μ ~ · (5.5)

However, there exist data[5C] (some of the latest) which
imply the value τ(ττ°) « 0.56 x 10"1β sec. In this case,
f « 0.57α/μ. We shall use the value (5.5), but, in view
of the significant variation in τ (it0) in the experimental
data of recent years, it should be borne in mind that
th< {§ may be an uncertainty in the choice of the con-
s t f.

is important to emphasize for what follows that the
constant in (5.5) is not small, but is of a "normal"
order of magnitude, since it corresponds to a reasonable
value for the interaction radius ~ μ*1.

c) Contradiction with the PCAC hypothesis. It was
pointed out in[ 5 1 ' 5 2 ] that the hypothesis (5.4) is incom-
patible with the relation (2.2). In fact, the matrix ele-
ment (5.1) can be written in the form (for simplicity,
we consider only the case of real photons)

= -{p'- μ') (qu ? 2 | φ» (0) | ρ = qt

Using (2.2), we obtain

(5.6)

(5.7)

Let us assume that it is possible to make a series
expansion in the momenta in (5.7). Taking into account
the requirement of Bose symmetry, the pseudotensor
Αα μ μ can then be written in the form

αβγ
must be formed from the

momenta and are at least of third order. Gauge invar -
iance requires that the conditions q i p A a [ ^ == Δανμ$2μ
= 0 are satisfied, from which it follows that k = 0. Thus,
the entire expression (5.6) is of fourth order in the mo-
menta, which contradicts the hypothesis f (p2, 0, 0)
~ const in (5.1). It is easy to see that (5.6), together
with (5.7) and (5.8), implies thatf(p2, 0, 0) ~ p 2 , i.e.,
that f (0) = 0 and Eq. (5.4) cannot be satisfied.

As a solution of this problem, it is meaningful to con-
sider two possibilities: either 1) we have in factf(O)
= 0, in which case Eq. (5.4) is not valid and the function
f(p2, 0, 0) varies rapidly over scales ~ μ2, or 2) Eq.
(5.4) is satisfied, but the hypothesis (2.2) is incorrect in
the application to the decay under consideration.

Our further considerations will be based on the
second possibility, but in this connection it should be
stressed that this choice cannot be well substantiated by
theoretical arguments alone at the present time. Mean-
while, the criterion here is an argument of an esthetic
nature, connected largely with the result of an investiga-
tion of this problem in the σ model.

d) The decay it" — 2y in the σ model. The lagrangian
of the σ model has the form[53]

oC ~= <*-/ 0 ι <Α'ψφ Ι Χ φ Ι Ι '

where i?0 is the free lagrangian, and

(5.9)

(5.10)

(5.11)

Here m0 μ0 and KQ are the masses of the nucleon,
pion and σ particle, respectively. The index zero de-
notes "bare," nonrenormalized quantities. The vector
and axial-vector currents have the form

b mCd _ . /(• -I ns

), ift — —l&kcd* \Ό.Ιά)

0 ~a M - T — O n r — φ ο Ι . V»'.i-O)
gn 0Xy \ oXy σχν / '

Their divergences are, respectively,

<U=0, (5.14)
- a f t S m0 fe /E 1 C\

ο ι/θ.·,/ — μ ο φο • ν 0.10 )

Thus, Eq. (22) is satisifed in the σ model as an exact
operator equality. The "bare" η -~ ev decay constant
is then FnQ = mo/go·

By including the interaction of charged particles with
the electromagnetic field in (5.9) by means of the usual
substitution 9U — 8U + ieA^ and naively applying the
equations of motion, we obtain

d ft . rrikn ΤΙ Λ /ti Λ A ?\

vVy= —ieT3 vvAv, (5.14 )
dv^v — l̂ o — Φ? — ίβΤ3 ο^Αν. (5.1D )

Thus, the condition (5.15) for the neutral components
(k = 3) has been preserved, even in the presence of an
electromagnetic field. Applying further the arguments
of part c of this section to the decay tr° — 2γ, we im-
mediately find that f (0) = 0 in each order of perturbation
theory in the σ model.
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On the other hand, the decay it0 — 2y is described by
the contribution of the triangle diagram in Fig. 13 in the
lowest order in g0. We note that, in the lowest approx-
imation, the π° — 2y amplitude in the σ model has the
same form as in the conventional theory with a pseudo-
scalar JTN coupling. A direct calculation of the diagram
in Fig. 13 gives the non-zero result[54>55]

which contradicts the condition (5.15), since the latter
implies that f (0) = 0.

This paradox was formulated in [ 5 q . Its resolution is
connected with an insufficiently rapid convergence of
the diagram in Fig. 13. This can be seen from the
following considerations.

Using the conservation conditions, standard methods
can be used to derive the Ward identities in the σ model
for the vertices of the vector and axial-vector
currents[ 5 β ]:

4 ( 4 ) - S - i ( f c ' ) ) . (5.17)

(5.18)

where ρ = k' - k, r a (k ' , k) is the pseudoscalar vertex
for the emission of a pion, Σ0(ρ2) is the mass operator
of the pion, and S(k) is the fermion Green's function. To
lowest order of perturbation theory with ρ — 0,

and the conditions (5.17) and (5.18) are trivially satisfied.

It follows from the relation (5.7) (if it is valid) that
the diagram in Fig. 13 should be obtained by adding a
factor ipago/mo/^b t o t n e graph of Fig. 14, where the
plus sign denotes the vertex of the axial-vector current.
This property must follow from the Ward identity for
the axial-vector vertex.

The diagram of Fig. 14 is a third-rank tensor. It is
convergent and is given by -(ίβ2/8τ2) ^ανμσ^ ~ %)σ
to lowest order in the momenta. However, this struc-
ture is not transverse in the photon momenta ^ and q2.
The transversality property is usually a consequence of
the Ward identity (5.17). Here this is not the case, since
the degree of convergence of the diagram is worsened
when the identity (5.17) is applied to the vector vertices
and there appears a difference between the two linearly
divergent integrals. Thus, despite the fact that the graph
in Fig. 14 is convergent, it does not converge rapidly
enough and a subtraction (regularization) must be made
in it, defining it to within a gauge-invariant structure.
The form of the subtraction term is determined unam-
biguously to lowest order in the momenta, since it must
cancel the inadmissible structure ~ €av^(j(<ll - %}σ·
With such a regularization, the PC AC property is lost
and it is found that Eq. (5.7) is not satisfied if <q17

q2|a^(0)l0> is interpreted as the regularized and gauge-
invariant matrix element.

The modification in Eq. (5.7) is connected with the
occurrence of the subtraction term ~ ε α ^ μ ^ ^ - q2),

, 9» Ι Ψ? (0) 10) = J*±- (qly g21 a, (0) 10) „ , - J

which must be extracted from the matrix element of the
axial-vector current. After multiplying by p a = (qx

+ q 2 ) a in (5.7), the subtraction term takes the form
~ ^νβαβΊΐα^β· ^-a a result, we find that we must write,
instead of (5.7), a relation which is a formal consequence
of the anomalous PCAC condition (2.10) (if we choose
c = *Vogo/mO = * m (2-1 0)):

^ J ενμ^εν <?1) εμ ( Ϊ 2 ) ? I B o l S ,

(5.19)

where <q1( q2laa(0)|0>r e g is the gauge-invariant (reg-

ularized) matrix element of the axial-vector current,

and by definition (see (5.6) and (5.1))

μί(ίι. ?21 <P'(0) 10) = / (0) ενμα3εν (?,) εμ (ο2) qlaq2il.

The first term on the right-hand side of Eq. (5.19) is
of fourth order in the momenta (see Sec. 5c), so that the
quantity f (0) is related entirely to the contribution of
the second term in (5.19) and is determined by Eq. (5.16).
Thus, the paradox of[55] is resolved in favor of the sec-
ond of the two possibilities mentioned at the end of Sec.
5c. This solution of the problem was first proposed i n M .

It is clear from the foregoing discussion that the oc-
currence of the paradox and the violation of the PCAC
condition are due entirely to the poor convergence of
the triangle diagram in Fig. 14 containing the vertex
of the axial-vector current. In l 5 7 ] a complete classifica-
tion was made of the diagrams with fermion loops which
involve the vertices of the vector and axial-vector cur-
rents and in which, as in the graph of Fig. 14, the
formal consequences of PCAC and conservation of the
vector current do not hold simultaneously. All possible
anomalous diagrams are shown in Fig. 15. We see that
they contain an odd number of vertices of the axial-
vector current. Therefore we might expect anomalous
PCAC conditions to occur in amplitudes with an odd
number of pions.

We note that the condition (2.10) can be derived in
the <T model by using the equations of motion for the
fields that appear in the definition of a^ in (5.13). It is
necessary here to employ a gauge-invariant method of
defining the singular products of field operators at a
single point (see, e.g.,C58>59]). The necessity of such a
definition and the possibility that anomalous terms can
occur here were first pointed out int e o ].

The triangle diagram of Fig. 14 also shows up in the
occurrence of anomalous terms in the commutation re-
lations of the vector and axial-vector currents. By using
current commutators in accordance with the anomalous
condition (2.10), it can be seen in another way that there
is no suppression of the decay ir° — 2γ in the σ model
(see^).

For a detailed analysis of the anomalies associated
with the poor convergence of the diagrams with fermion
loops in perturbation theory, as well as references to a
large number of papers on this problem, seet e 2 ]. It is
interesting that the π° — 2γ decay amplitude can be cal-
culated in the σ model with allowance for all the approx-
imations in the coupling constant g0

te3]. Graphs that are
more complex than the triangle diagram of Fig. 13 have

FIG. 13 FIG. 14 FIG. 15
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a better convergence. The corresponding diagrams with
vertices of the axial-vector current do not require sub-
tractions and allow the simultaneous application of the
Ward identities (5.17) and (5.18). Thus, the normal
PCAC condition is found to be satisfied for the contri-
bution of the higher approximations for the amplitude of
7Γ° — 2γ. Consequently, the more complex diagrams do
not give a separate contribution to f(0), but merely lead
to a renormalization of the constants and masses in the
skeleton diagram of Fig. 13. The final result has the
form

/<»>—ΕΠΗ? (5.20)

where ga is the renormalized constant of the axial-
vector current (which appears in the β decay of the
neutron), g ^ is the physical πΝ coupling constant, and
m is the nucleon mass. It is remarkable that the quan-
tity (5.20) coincides with the physical it" —• 2γ decay
constant in (5.5) with percentage accuracy.

In conclusion, it should be stressed that all the fore-
going facts nevertheless do not constitute a proof of the
existence of an anomalous PCAC condition in the σ
model. This was emphasized in[ e 4 ]. Other ways of re-
solving the paradox formulated at the end of part c of
this section are also possible.

One of these possibilities was considered in[ 5 5 ]. This
ambiguity is connected with the following circumstance.

We have already seen that the matrix elements of
perturbation theory without an appropriate regularization
and definition may in general not possess the symmetry
which is formally built into the lagrangian. (For ex-
ample, the matrix element in Fig. 14 calculated accord-
ing to the usual Feynman rules is not transverse, where-
as conservation of the vector current is of course con-
tained in (5.9). Another example is the scattering of
light by light in ordinary electrodynamics, which is
described by a convergent box diagram that is not
transverse and requires a subtraction if we wish to pre-
serve gauge in variance in the matrix elements). The
variant of the regularization that we considered in con-
nection with the JT° — 2γ problem is, in a sense, a min-
imal one. In this case, we preserved gauge in variance,
but destroyed PCAC. However, the PCAC condition
(5.15) can in principle be imposed on the matrix ele-
ments by making a further subtraction in the well-
convergent diagram of Fig. 13 involving a pseudoscalar
vertex. (The subtraction term must be chosen to be
equal to +(e2g0/47r2m0) ^νβα0^\α^2β ta o r d e r t o cancel
the contribution of second order in the momenta in the
decay ττ° -~ 2γ. In this way we obtain f (0) = 0, but then,
to be sure, the renormalizability of the σ model is
violated). With such a subtraction (at any rate, to lowest
order in g0), Eq. (5.15) is again found to be satisfied.
In this sense, the result is dependent on the method that
is chosen for calculating the loop diagrams in the frame-
work of the lagrangian (5.9).

Thus, our considerations in the cr model indicate that
there are, in general, various possible solutions of the
problem of the decay π° — 2γ.

The most natural and simplest possibility is to intro-
duce the anomalous PCAC condition (2.10). In this case,
the decay n° -~ 2γ is allowed and the condition (5.4) is
satisfied. Some of the other possibilities that have been
considered lead to nonrenormalizable infinities in the
higher approximations of the cr model.

Finally, digressing from the σ model, it should be
stressed that the PCAC condition in the form (2.2) is
not a strict law. In this respect, the decay ir° — 2γ is
sensitive to the corrections. There are no grounds for
supposing that the physical PCAC condition (in its ap-
plication to the matrix elements) cannot be modified, if
there is a physical reason for such a modification. As
we have already noted, we are assuming that such a
modification actually occurs, so that the decay ir° — 2γ
is allowed in the sense that f(0) φ 0 and Eq. (5.4) is sat-
isfied. Our considerations in the cr model show con-
cretely how such a modification could occur. However,
the explicit form of the anomalous (modified) PCAC
condition will not be important in what follows.

e) Relation to the annihilation e*e" — hadrons. In
connection with the discussion in part d of this section,
it is of interest to consider the possible relation be-
tween the ir° -~ 2γ decay amplitude and the asymptotic
form of the total cross section for the annihilation
e*e" — hadrons, although this will take us far beyond the
basic hypotheses of Sec. 2. It is convenient to trace the
origin of this relation in the naive quark model.

If we considered the decay ττ° — 2γ in the quark
model, in which the pion is a composite particle, and
assumed, as before, that the PCAC condition is satisfied
for the interpolating pion field (which would appear to be
necessary), we would obtain, as a result of the contri-
bution of the triangle graph, the expression (5.20) for the
constant f(0), with the replacement

L·?,

where

(5.21)

(5.22)

here Qp and Qn are the charges of the proton and
neutron quarks. (Qp = 2/3, Qn = -1/3. We note that

QP - Qn = Qp + Qn. The quantity Qn appears with a
minus sign in (5.22), since the coupling of the neutron
quark to the ii° meson in the triangle diagram has the
negative sign). The summation Zj in (5.22) is carried
out over the number of quarks of the neutron and proton
types. In the usual quark model (i = 1), we obtain
L = 1/3, which gives a v° — 2γ decay width which is
smaller than that required experimentally (or by Eq.
(5.20)) by a factor of nine.

There exist models (see, e.g.,[e51) in which the num-
ber of quarks is tripled, in accordance with the values
of a new quantum number (quark "color" in[ 6 5 1). In this
case, L = 1, which is highly satisfactory from the ex-
perimental point of view.

We turn now to the annihilation e*e~ — hadrons. The
cross section for this process is determined by the
imaginary part of the vacuum polarization diagram cor-
responding to the real transitions γ — qq — γ. This
diagram contains contributions involving the multiple
scattering of quarks in the intermediate state and con-
tributions without multiple scattering that involve only
the imaginary parts of the exact quark Green's functions.

We shall assume that all the contributions involving
multiple scattering fall off at large q2 (q is the photon
momentum). This state of affairs should occur in a
theory with finite renormalization constants, as well as
in a theory with some (external) cut-off in the trans-
verse momenta of the particles. There is no field-
theoretic model in which such a picture could be con-
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sistently obtained by summing the graphs of perturba-
tion theory. However, "scaling" or self-similarity,
observed in the cross sections for deep inelastic pro-
cesses, indicates that the actual situation may corre-
spond in some way to models with a finite renormaliza-
tion.

After discarding the contributions involving the .
multiple scattering of quarks, the cross section for the
process e*e" — hadrons (the imaginary part of the
vacuum polarization) will be determined by the integral

Im G (kt) Im G (fc2) θ (km) θ (ka) δ (q - ft, - Α

tude has the form

w h e r e

* W . *l. Ϊ2) = j θ (*„) θ (km) δ (k\ - κ\) δ (k\ - κ,2) δ (? - ft, - A2) d'k, d'kz.

When q2 — "° (but « | e f f ~ *2eti ~ c o n s t > correspond-
ing to a theory with a finite renormalization), we obtain
J — const (the integral J is, in fact, the phase space of
two particles with masses κ1 and K2 and total 4-mo-
mentum q). The integrals with respect to κ| can then be
evaluated by exploiting the unitarity condition for the
spectral function / ρ(κ2) άκ2 = 1, and the total effect of
the strong interactions vanishes.

Finally, the total cross section for the annihilation
e V — hadrons at large q2 is related to the simplest
quark diagram corresponding to the transition γ —• qq
— γ with two free quarks in the intermediate state. The
ratio of the cross sections for annihilations into hadrons
and into a μ*μ~ pair is then proportional to the sum of
the squares of the quark charges:

R=- (5.23)

In the ordinary three-quark model, R = 2L = 2/3 (L
is defined in (5.22)). In the model with nine quarks[ ,
R = 2L = 2. Thus, certain quark models that give a good
description of the decay n° — 2y (L = 1) lead to a ratio
R = 2, which is in satisfactory agreement with the latest
experimental data on the annihilation e*e" — hadrons
(see[6e]).

The simple, although glaringly nonrigorous, argu-
ments outlined above were recently formulated by
Crewther'87-1, who succeeded in obtaining the relation

R = 2L (5.24)

independently of the specific quark model5'. If we now
make use of the experimental value of the constant f (0)
(which corresponds to L e x p * 1), we can obtain the ex-
pected value of the asymptotic ratio
<r(e*e~ — hadrons)/a(e*e" — μ*μ").

Ιη[ β 7 ] , instead of the naive assumptions inherent in the
quark model, a hypothesis is adopted about the behavior
of the products of current operators at small dis-
tances ' . However, it is possible that these ap-
proaches are equivalent.

The fact that the constant of the low-energy decay
ir° -» 2y can determine the asymptotic form (for q2 — •")
of the ratio (5.23) is a powerful and exciting statement.
Unfortunately, the physical basis for this fact remains
unclear.

6. THE PROCESSES 7 ̂  3π AND 77 -* 3π [ 6 9 7 2 ]

a) Phenomenological structure. T h e y - » 3π ampli-
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Γ ν = — ih(sn, S13, (6.1)

tor h(s1 2, s13, s23) depends on the invariant
= (Pi + Pi)2 and (off the mass shell) on the

es pj of the pions.

The form factor h(s1 2, s13, s23) depends on the invariant
variables Sjj = (Pi + Pi)2 (
virtual masses

The matrix element T?;bc must be a pseudovector
and third-rank tensor in the isotopic variables (the
photon in the process γ -> 3ir is isoscalar and has no
isotopic index). This requirement determines the struc-
ture of T^bc unambiguously. Bose symmetry determines
the obvious symmetry properties of the function h.

We begin with the assumption that h is a slowly vary-
ing function and that it can be expanded in a series in
the pion momenta. In the zeroth approximation,

h(s12, s,,, s23) » h(0). (6.2)

We shall consider below the validity of this assump-
tion and indicate the range of variation of the momenta
in which the expansion (6.2) seems to make sense.

Let us consider at the same time the amplitude for
the process yy — 37Γ. Its general structure is rather
complicated. We shall assume that the non-pole terms
of this amplitude are slowly varying functions of the
momenta and that they admit a series expansion. In the
lowest approximation in the momenta, the matrix ele-
ment for the process yy — 3π has a simple form

(6.3)
— Α (?ι — ? 2

where A and Β are constants, and P ^ b c 3 is the contri-
bution of the pole terms in Fig. 16. It follows from
arguments involving the conservation of G-parity that
one of the photons in the process yy — 3π is isoscalar,
while the other is isovector. The amplitude T^bc3 i S

therefore a fourth-rank tensor in the isotopic variables.
In other respects, its structure is determined by the
requirements of the conservation of spatial parity and
Bose symmetry.

The pole graph in Fig. 16a involves a block of mr
scattering (see (4.1)) and a ir° — 2γ decay vertex (see
(5.1)). The contribution of this graph is of order ~ p2

(like the contact term) and is given by

^ ( f t . f t . p».-<?)], (6.4)

The graph in Fig. 16b involves the y — Sir amplitude.
Its contribution is also of order ~ p2 and is given by

— eh (U) tabfiscl tP2S (Pa — ?

+ permutation Pi

aZ"tZc'] +permutationi

v

1:
(6.5)

The assumption that the functions f(p2, q2, q2.) (see
(5.1)) and h(s12, s13, s23) (see (6.1)) are slowly varying
is essential here. The difference between, say, f(0) in

FIG. 16
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itself, the contribution of the diagram in Fig. 16b van-
ishes when pt — 0). It turns out that

•3>
FIG. 17

(6.4) and f (μ2, Ο, 0) is in fact important in the terms of
order ~ p4 (if all Pj ~
account in (6.3).

Gauge invariance (<
ity of the relation

A = eh (0). (6.6)

p
μ), which are not taken into

= 0) requires the valid-

b) Calculation of the parameters A, B and h(0). To
obtain further restrictions on the parameters A, B and
h, we must consider separately the two amplitudes in
(6.3): T^"3 (describing the process yy — irVif) and
T3,333 (describing the process yy — 3ir°).

The amplitude for yy —· η°π*τΓ is proportional to the
integral

I dxe-^in'ip,), π+(ρ2), π" (Ρβ) | Γ (/ν (())/„(*)) 10>. (6.7)

In the σ model, it is described by the sum of the dia-
grams in Fig. 17. In this amplitude, we can employ the
normal PCAC condition in the form (2.2) for the neutral
meson. In fact, by using (2.2) and the reduction formulas
for ρ2 φ μ2, we obtain, instead of (6.7),

" (ft) IT (a»«« (i) u (0) u M) I o>

( 6 · 8 )

where we have made use of the fact that a.3

a commutes
with the electromagnetic current, which enables us to
remove the operation of differentiation from the T-
product.

Equation (6.8) implies that the amplitude for
γγ -~ 7τ°7Γ*π" is obtained by adding a factor ρ^α to the
diagrams in which the vertex for emitting only one
neutral pion is replaced by the vertex of the axial-vector
current. In the σ model, this replacement in the graphs
of Fig. 17 does not lead to any "dangerous" diagrams
(see Fig. 15), which are poorly convergent and require
re-definition. These arguments provide a basis for
applying PCAC in the form (2.2) for a single pion when
the others are on the mass shell.

We stress that, in going off the mass shell for the
three pions simultaneously and consistently applying
PCAC for each of them, dangerous diagrams appear
(after calculating the current commutators). This means
that the structure of the amplitude Τ^μ and the values
of the constants A, B and h(0) are in fact related to the
anomalous PCAC condition. However, we make use of
arguments which do not require a concrete discussion of
the structure of the anomalous terms. These terms
are taken into account phenomenologically in the section
in which we assume that f (0) f 0 and that the decay
ir° — 2y is not forbidden (see Sec. 5).

The PCAC hypothesis (2.2), when applied to the
neutral pion with momentum p l f leads to the condition
Τ " μ

3 = 0 for px — 0 (with ρ2 = ρ2 = μ2). This enables us
to express the constant Β in (6.3) in terms of the con-
tribution of the diagram in Fig. 16a when pi -— 0. (By

(6.9)

(We are parametrizing the nn scattering amplitude ac-
cording to (4.2) and (4.4)).

Thus, we have already expressed the amplitude Τ,,μ
in terms of the parameters f(0) and h(0). By using also
the PCAC condition (2.2) for one of the neutral mesons
in the amplitude τψβ

3, we find that Ύ3™ — 0 when
This condition leads to thept — 0 (with p2

z = ρ2 = μ2

further relation

It follows from (6.6), (6.9) and (6.10) that[69~721

The numerical value of h(0) is then found to be

M 0 ) - H i .

(6.10)

(6.11)

(6.12)

We note that, if f(0) = 0 and the decay π° — 2γ is for-
bidden within the framework of PCAC, the amplitude
(6.3) is in fact of fourth order in the momenta (while
(6.1) is of fifth order) and no predictions can be obtained
about the values of the parameters in these amplitudes.
In this sense, it is important to test the condition (6.11)
experimentally, in order to confirm the hypothesis that
anomalous PCAC conditions exist.

Equations (6.9)-(6.11) can be verified by direct cal-
culations in the σ model [ 7 0 ) 7 1 ' 7 3 ] . In the lowest approx-
imation, the process γγ — 3π is described by the dia-
grams of Fig. 17, and the process y — 3π by the dia-
gram of Fig. 18. As in the case of ττ° — 2y (see the dis-
cussion in Sec. 5d), it can be shown that, in the lowest
approximation in the momenta, the diagrams of the
following orders in the coupling constant are unimportant,
and the amplitudes for yy — 3π and γ — 3π are de-
termined in the σ model entirely by the graphs of Figs.
17 and 18, respectively.

Finally, we write the γγ -~ 3π amplitude at ρ? = μζ

for the various charge states, taking into account (6.6),
(6.9) and (6.11).

For the process yy -— 3π°

For the process yy — (p3

(6.13)

(6.14)

We see that, owing to cancellations, (6.13) (with
y = 0) is proportional to ~ μ2, and it is very small in
the case in which qi ~ pj ~ μ, Q2 ~ 9μ2 and (1 + 3yFp
~ 1. Thus, it is not likely that 1Vii{yy -~ 3π°) can be
evaluated correctly within the framework of the approx-
imations that are used. This fact was noted int74'75^.

FIG. 18
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A correct expression for the γγ — 3 / amplitude was For the process γπ - . rrrr (with a real photon, i.e..pressi r th γγ
first derived in ], although the γγ — ΤΓ*ΙΓ~ττ° amplitude
was evaluated incorrectly.

The γγ — 3ff amplitude has been used by a number of
authors to estimate the contribution of the 3π intermed-
iate state to the imaginary part of the KL — β*β~ decay
amplitude (see[76'T7)).

c) Estimate of the accuracy of the approximation
(6.2). In order to compare (6.11) with experiment, we
must consider in greater detail the relation between h(0)
and the quantity h(s1 2, s1 3, s2 3), defined for values of the
invariants in the physical region.

Our discussion was based on the assumption (6.2).
One can attempt to improve the accuracy of Eq. (6.2) by
allowing for a possible dependence of the function h on
the invariants, arising from the contribution of the reso-
nance graphs to the amplitude (6.1). In this case, we
must add to the resonance graphs the contribution of the
nonresonant (background) part of the amplitude in such
a way that the total contribution at zero momenta gives
the correct limit (6.11). Allowance for the diagrams
with ρ and ω exchange (Fig. 19) yields, instead of (6.2),
the following extrapolation formula1'83:

[

where, as before, h(0) = f/eF2, Q2 = (px + p2 + p3)
2 and

Sjj = (pj + pj)2; mp and ταω are the masses of the ρ and
ω mesons, and fp^, fpff7r and h2,, are coupling constants

that can be expressed in terms of the partial widths for
the decays of ρ and ω mesonsί79]:

I (6.16)

0.23, j
-ϊβλω is the vertex for the transition γ — ω, which is
related to the ω — e*e" decay width:

Γ(ω-

,[15]
Using the data , we obtain

/ρ π πί»5.5,

^ 3.5 Τ

(6.17)

(6.18)

This gives

Δρ=£0.5, Δ β «3 . (6.19)

Putting SH ~ 4μ2 and Q2 ~ 9μ2 in the process γ — 3π,
we obtain a value < 25% for the correction term pro-
portional to Δρ in (6.15); the correction from the term
proportional to Δ ω is ~ 100%. The large value of the
correction from Δ ω is due to the anomalously large
ω — 3ττ decay width: the constant h^ is almost 103 times
as large as the expected "natural" value ~ 1/m3,,. In
this sense, we may hope that the graph of Fig. 19b is
distinguished and gives the main Q2-dependence of the
function h.

Ύ^—ττ

FIG. 19
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p , ,
at Q2 = 0), we obtain (for Sij < 4μ2) a correction from
Δρ smaller than 10%, while the term ~ Δ ω generally
gives no contribution in this case.

Thus, we conclude that (6.2) and (6.11) can be used
for the process yvr — ππ (more precisely, for the de-
scription of the reaction ir — 2ir in the Coulomb field of
a nucleus); the more accurate formula (6.15) must be
used for the process e V - . γ -~ 3π. This claim can be
tested experimentally. We note that the corrections in
(6.15) depend on the sign of the product of several con-
stants.

d) Estimate of the cross sections. The cross section
for the process it — 2π in the Coulomb field of a nucleus
was calculated inC80"82], and the cross section for the
reaction e V — γ — 3π was calculated in[83~85].

Equation (6.12) can be used to obtain

da (π — 2n)
•10"2» cm" (6.20)

where Ζ is the charge of the nucleus, and q^ is the
square of the momentum transferred to the nucleus.

The differential cross section for the process π — 2π
(6.15) on nuclei is related to the cross section _ π π

for

the process yir* — irV by the standard formulas of the
method of equivalent photons (see, e.g.,[2], p. 464). The
differential cross section for the process yir* — Λ 1

has the form

(6.21)

where k is the momentum of the final mesons, and θ is
the scattering angle of the ir1 meson in the c.m.s.;

where s, t and u are the usual invariants characterizing
the two-body process γπ — ππ. Using (6.11), we obtain
h2/1287T » (1.5 x 10"3/μβ)α/τΓ, which determines the
order of the cross sections (6.20) and (6.21).

The total cross section for the reaction e+e" — 3ir
in 250 x 250 MeV colliding beams turns out to be of the
order of 10~35 cm2.

The analytic formula for the differential cross sec-
tion has the form

here Q2 = 4E2 is the square of the total energy in the
c.m.s., ω* and p± are the energies and momenta of the
ir mesons, and θ is the angle between the vector p+ xp-
and the direction of the collision. For h, we must use
(6.15) with Δρ = 0.

By integrating Eq. (6.22), the following expression
for the cross section for the process e*e~ -
obtained in£84>85]:

-3μ '

A detailed analysis of the cross section for the pro-
cess γγ — 3ir, as well as a calculation of the cross sec-
tion for γ — 3ττ on nuclei of charge Ζ by the method of
equivalent photons, were made in'8"1. At a total energy
W = 0.5 GeV in the c.m.s. (W =^07), we obtain the
notimofa fT _ <\W\ ~ 1 Π"33 n m 2

estimate σ
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Apart from photoproduction on nuclei, the yy — 3ττ
cross section can be measured in the reaction ee — ee
+ 3ττ (see Fig. 8) in high-energy colliding beams. The
corresponding calculations can be found in[ 8 6 > . To
estimate the cross section for the process in Fig. 8,
use can be made of the formula'91

da

2E is the total energy of the e* and e" in the c.m.s., and
m e is the electron mass.

e) Other methods of calculating the γ — 3π amplitude.
The vector dominance model (VDM), in which it is as-
sumed that h(0) is determined by the contribution of the
ω-exchange diagram (see Fig. 19b), gives

fevDM (0) = ^Φ-

We shall write h(0) in the form

Then it follows from (6.24) that

Λ-VDM ^ 0.33.

(6.24)

(6.25)

(6.26)

This exceeds the value of Λ which follows from (6.12)
by about a factor of three.

We note that the value Λ = 0.04 ± 0.15 was obtained
from an analysis of photoproduction data using disper-
sion relations in[ 8 8 ] . This value is compatible with
(6.12).

The y — 37Γ amplitude has been calculated theoret-
ically by a number of authors in various models. In the
table we show the values of Λ obtained in several r e -
cent works.

Current algebra and vector dominance are used int 8 9 ],
modifications of the Veneziano model supplemented by
assumptions about the values of a number of parameters
of the Regge trajectories are used in1-90"93-1, the hard-
pion technique and vector dominance are used in 941, and
anomalous Ward identities and again vector dominance
are used in[ 9 5 ].

It is interesting that the values of Λ. in the table differ
sharply. It seems to us that the value Λ ra 0.1 which
follows from Eq. (6.11) is the best substantiated one
from the theoretical point of view. At any rate, the
theoretical assumptions on which it is based are most
clearly formulated.

Λ

0.03

0.12
0.15

0.16—0.24

Reference

89
B0,91,92

93
94
95

A direct measurement of Λ would be of great interest.
Indirect information on Λ can be obtained from an
estimate of the contribution of the γ -— 3π vertex in the
process ττΝ -• πΝ^. In this case, one finds 7^ Λ » 3.
This is in sharp conflict with (6.11), as well as with any
of the other values of Λ from the table. It would be of
great interest to carry out a more careful re-analysis
of the data on the reaction ττΝ -— niiy.

i) Consequences of (6.11) within the framework of
SU(3) symmetry.

= h / / ^ 7 2 ' 9 8 ' " 3 .

1) Using SU(3) symmetry, we can relate h(0) to the
constant ηηπ7Γν which appears in the matrix element for
the decay η — ππγ:

T\ (ΐ) —*• ft+ (P2) π ~ (Pa) V (Pi)) — "—^ηππγεναβσΡιαΡ2βΡ3σ· ( 6 . 2 7 )

This relation has the form ^ηΉ7Ιγ

There is also an analogous relation between the
π — 2γ and η - 2γ decay constants: ί^γ = (l//3)f[18].

However, it is well known that SU(3) symmetry does
not "work" well in describing the decay η — 2y. The
situation is rectified by allowing for X-f) mixing, if an
appropriate choice is made for the X — 2y decay
width'18]. (We do not consider the possibility that the
experimental data on the η -~ 2y decay probability may
change, as has already happened in recent years).

If allowance is made for Χ-η mixing within the frame-
work of SU(3) symmetry, (6.11) implies the relation1"1

. ^ηνν /. Av In *5Q\
"ηππν= ρ V—")> \\}.Δθ)

Π

where f-.-, is the η -~ 2y decay constant, defined in the
same way as f in (5.1). The parameter Δ takes into
account the mixing:

Λ= - t g e - (6.29)

±10°where θ is the mixing angle. By using the value θ
that follows from the mass formulas in the pseudo-
scalar octet, choosing the ratio ίχγγ/ίηγγ = + 2.7 re-
quired for a correct description of the decay η — 2γ
in SU(3) symmetry, and making use of the bounds on the
χ -~ iriry decay probability, we can obtain an estimate
of Δ:

0.1 =€ A *£ 0.5. (6.30)

Taking into account (6.30), Eq. (6.28) is in rather
good agreement with the experimental data. If we intro-
duce the ratio R = hr,177ry/fr

(6.28) that
it also follows1·151 from

(6.31)

2) The γ — 3ιτ vertex and the form factor of the
vector current in Kg4 decay are also related in the
framework of SU(3).

The matrix element of the weak vector current in
decay is of the form

(0)|K+ —

The relation in question takes the form

, V2,

Using (6.11), it follows from (6.33) that [ 7 2 ) 9 9 ]

(6.32)

(6.33)

(6.34)

where is the kaon mass.

Experimental information on the value of f4 is de-
rived from the study of the P-odd asymmetry of the
positron emission in 1^4 decay, the result being[47]

f4 » (9 ± 3.6)/mL. Thus, (6.34) is in excellent agree-
ment with experiment.
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We note that the relation between f4 and the η -» wiry
decay constant was considered int l 0 O ]. This relation,
together with (6.28), can also be used to estimate f4.
(However, a factor 73iTthat was omitted in11001 must be
taken into account; see[ 9 9 ]).

3) It is interesting that the sign of the constant f can
also be determined by using the data on the spectra of

decay. A discussion of this point follows.

The consistency of the whole approach based on the
utilization of the anomalies of the simplest diagrams
with fermion loops requires that the sign of f corre-
sponds to the contribution of the triangle diagram. The
graph with a nucleon loop leads to the results (5.16) and
(5.20), from which it follows that

fgnH < 0, (6.35)

singe g a = 1.18 > 0.

In the general case (of an arbitrary quark fermion
loop), the right-hand side of (5.20) contains an additional
factor 2Q, where Q is the average charge of the funda-
mental fermion isomultiplet. Thus, according to (5.20),
the sign of f depends on the quantum numbers of the
fundamental fermions and is different in different field-
theoretic models.

There exist a number of experimental (see[101'102])
and theoretical (seeCl03~105]) arguments that the sign of f
corresponds to the diagram in Fig. 13 with a fermion
(nucleon) loop. However, the theoretical arguments are
based on model-dependent considerations. With the
present level of statistics, the experimental photopro-
duction data[ 1 ( u l, on the basis of which a conclusion was
drawn about the sign of f int 1 0 5 1, admit a different inter-
pretation (see[106]). The information on the sign of f de-
rived from the data on the Compton effect on the nucleon
at low energies11021 is also based on poor statistics and
makes use of an analysis of the amplitude for the Comp-
ton effectCl07] which seems to involve poorly justified
assumptions. However, it is possible in principle (with
high statistics) to extract unambiguous information about
the sign of f from data on the reactions yp — pir° and
λΡ — yP· As pointed out in'1 0 8', this sign can also be
determined in the reaction ir'p — nyy.

The experimental determination of the sign of f would
be a distinctive, although weak, way of testing the basic
relations discussed in this section, since a result con-
cerning the sign of f follows directly from (6.34)
( s e e [ 1 0 \ namely that the condition (6.35) is satisfied.

Parametrizing the contribution of the axial-vector
current in Kg4 decay in the form (cf. (6.32))

• P2/V ~~r 7 3 \P— Pi — P2/VI1 \Ό·οΌ)

it follows from the data[ 4 7 ] that il » -(4.91 ± 0.2)/mK,
provided that f„ > 0 in (6.32). Thus, ίχ/ί4 < 0. The
constant ίλ is related to the form factor f* of the vector
current in Kg3 decay11101. This relation has the form
fj = U/JWj,, and f* = 1 in the framework of SU(3) sym-
metry.

Thus, we obtain

(6.37)

By using (6.34) and (6.37), we obtain i/Fv < 0, from
which, taking into account the Goldberger-Treiman re-
lation (2.9), we have the condition (6.35).

7. THE PROCESSES γ -> (2n + 1)π AND
77-Μ2η+1)π(η>1)

a) Phenomenological Lagrangian. Relations among
the amplitudes for the processes γ — (2n + \)TS and
yy — (2n + 1)π with an arbitrary number of pions are
conveniently derived by employing the technique of
phenomenological Lagrangians. The main idea of such
an analysis is based on the following assumption. After
incorporating the minimal electromagnetic interaction
(bv _» ov + ieAj,) in the σ model, the amplitudes under
consideration can be calculated to lowest order in the
momenta of the participating particles and to lowest
order in the strong interaction constant. Moreover, it
is assumed that the contributions of higher order in the
strong interaction lead only to a re-definition of the
coupling constants (renormalization) in the resulting
expression. In this case, the ratio of the constants is
unchanged, since it is determined by the symmetry.
Thus, it is claimed that the relations among the am-
plitudes that are obtained in the lowest approximation
are valid when allowance is made for all orders in the
strong interaction.

This procedure can be substantiated by requiring
SU(2) XSU(2) symmetry in considering the interactions
in the JTN system. The situation is not so clear in the
presence of an electromagnetic field, since there is, as
yet, no rigorous proof that the result is independent of
the detailed structure of the σ model.

Nevertheless, as we have already seen, the relations
which arise when using the foregoing procedure for the
simplest processes η — 2y, yy -. 3ir and γ — 3π are
actually reproduced in the σ model even with a phenom-
enological model. To lowest order, these processes are
described in the σ model by the contributions of the dia-
grams in Figs. 13, 17 and 18, respectively. As we
pointed out earlier, the contributions of higher order in
the coupling constant are described by diagrams which
are better convergent and which permit the application
of the PC AC condition to all the pions simultaneously,
so that these diagrams do not contribute to lowest order
in the momenta. The complete result is related to the
anomalous properties of the simplest diagrams with
fermion loops. Thus, these examples justify the utiliza-
tion of the technique of phenomenological lagrangians
in the sense indicated above.

Turning to more complex processes, we see that the
number of diagrams in the <x model begins to grow
rapidly (their number is already rather large for the
process yy — 3ττ; see Fig. 17). An important contribu-
tion of lowest order in the momenta then occurs, owing
to non-trivial canaellations between the various dia-
grams . Therefore (just as in considering πΝ interac-
tions) it is convenient to begin with a non-linear mod-
ification of the σ modelt l l l ] . The corresponding lagran-
gian is of the form

r W . + 3.v™. (7.1)

where

X — Χ κ -\~ Xn

Χκ =

» = λ | i - ψχμγ5τ»ψΖ>μπ
α,

(7.2)

(7.3)

(7.4)

(7.5)
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with

If we incorporate the electromagnetic field

(7.6)

(7.7)

there appears an additional interaction:

JEint = X W>A) + X (JUKI) + Χ (ψψΛ4) + Χ (^ηπΑ), (7.8)

where

(7.9)

(7.10)

(7.11)

(7.12)

As the Lagrangian (7.1) is clearly nonrenormalizable,
it is not completely clear whether the procedure of in-
corporating the minimal coupling of the electromagnetic
field in (7.1) is equivalent to that of including the field in
the initial Lagrangian of the linear σ model. (We note
that there is even no rigorous proof of the equivalence
of (7.1) and the Lagrangian of the initial linear σ model).
However, direct calculations of the simplest processes
in the lowest approximation indicate that such an equiv-
alence seems to exist if the low-energy approximation
is considered.

b) The γ — (2n + 1)π vertex. Let us consider the
processes γ — (2n + 1)TT within the framework of the
Lagrangian <£ + ^ m t (see (7.1) and (7.8)). We shall con-
struct the corresponding amplitudes to lowest order in
the momenta, in this case the third order. The possible
diagrams are shown in Figs. 20 and 21. The single-
meson hadron vertex here corresponds to the interac-
tion (7.4) and actually involves the set of vertices with
emission from a single point of three pions, etc. The
two-meson hadron vertex corresponds to the interaction
(7.5) and describes the emission of two pions, four
pions, etc. It is significant that the photon in the pro-
cesses y -~ (2n + 1)π is isoscalar, as implied by the
conservation of G-parity. It is therefore not necessary
to take into account the diagrams in which a photon is
emitted from a pion line.

Since each meson vertex of (7.4) and (7.5) involves
an external momentum, it is not necessary, in the ap-
proximation in question, to take into account diagrams
that contain more than three pion vertices.

Moreover, we note that the diagrams in Fig. 20
actually give no contribution. The diagrams in Fig. 20a
are absent because the double vertex ¥(ipipnA) and
y(ij)ipwnA) occurs only for an isovector photon. The dia-
gram in Fig. 20b is of at least fifth order in the mo-
menta. In fact, this diagram contains three vector
vertices and one axial-vector vertex (a cross on a
fermion line denotes the axial-vector vertex ΎηΥ$, and
a circle denotes the vector vertex γ ). Therefore this
diagram does not refer to the number of anomalous
diagrams (see Fig. 15) which violate the formal conse-
quences of the conservation conditions imposed on the
Lagrangian. In our case, the integral over the fermion
loop must be transverse, by virtue of the condition of
conservation of the isoscalar hadronic current, so that

FIG. 20

FIG. 21

FIG. 22

it involves the external momenta. The presence of three
additional external momenta at the three meson vertices
renders this diagram unimportant.

Thus, we obtain the effective Lagrangian of the sys-
tem γ — (2n + 1 )ir by considering only the contributions
of the diagrams in Fig. 21:

X (y ->• (2n + 1) π) = ε 1 ε μ ν ρ 0 4 < ,ε α ί ) ΐ : Ο μ π ' Ι Ο ν π ι Ό ρ π ' : (7 .13)

Here cl is a constant which appears from the integral
over the fermion loop in Fig. 21a, and c2 is the corre-
sponding constant in the diagram in Fig. 21b. This con-
stant will be determined below.

c) The yy — (2n + 1)π vertices. For the processes
yy — (2n + 1)ττ, it follows from the conservation of G-
parity that one of the photons is isoscalar and the other
is isovector. To obtain the physical amplitudes, we
must therefore consider the contact terms which occur
as a result of the fermion loops, as well as all possible
pion pole graphs in which a photon is emitted by a pion.

Simple arguments based on the determination of the
number of external momenta in the diagram (cf. the
analysis in part b of this section) show that to lowest
order in the momenta—in our case, second order—the
contact terms are determined entirely by the contribu-
tions of the three diagrams in Fig. 22.

We note that the graphs in Fig. 22 involve identical
integrals over the fermion loop. On the other hand, the
graph in Fig. 22a determines the / — 2y decay am-
plitude. This enables us to express the corresponding
integral in terms of the constant f, defined in accordance
with (5.1). The final result for the contribution of the
contact terms to yy — (2n + l)?r has the form

(7.14)Χ (2γ-. (In +1) «) - 4- £

here FVil =-&ιΑμ. + θμΑμ.

Next, we note that the graph of Fig. 21b involves the
same integral as the diagram in Fig. 22a. Therefore c2

in (7.13) can be determined, and is found to be

A 2

(7.15)

The constant cx in (7.13) can be determined from the
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τ

FIG. 23

condition of gauge invariance of the yy — η ir'v am-
plitude, which is described by the contribution of the
diagrams in Fig. 23. We obtain in this way

c, = -i-A2. (7.16)

Thus, i?(y — (2n + l)n) in (7.13) and &(yy — (2n + 1)ττ)
in (7.14) are expressed in terms of the single parameter
f—the π° —· 2y decay constant.

As we have pointed out, we must add the contribution
of the pole terms, if they exist, in order to calculate the
yy — (2n + 1)π amplitudes in (7.13) and (7.14). This is
equivalent to introducing the total Lagrangian

«tot = X (v -* (2n + 1) π) + Χ (γγ -*- (2n + 1) π) + Χ (ηπ/1), (7.17)

where y(w7rA),y(y - . (2n + l)it) and &(γγ -~ (2n + 1)π)
are defined in (7.10), (7.13) and (7.14) (see also (7.15)
and (7.16)).

After algebraic manipulation, y t o t can be repre-
sented as

Here (7.18) should be supplemented by the prescrip-
tion that the amplitudes for the processes are to be
determined f romi^ t o t by the diagrams in the " t r e e "
(pole) approximation.

Equations (7.13)-(7.18) were derived in[ 1 1 2 ] . The
corresponding Lagrangian for processes with neutral
pions was obtained correctly int 7 4 ] .

In [ 1 1 3 ] the total phenomenological Lagrangian was
constructed by using the transformation properties with
respect to the group SU(2) xSU(2). When the electro-
magnetic field is incorporated in the phenomenological
pion Lagrangian of the non-linear σ model, the sym-
metry group SU(2) xSU(2) is violated in a completely
determined way, and this enables us to calculate the
variation of the total Lagrangian under a chiral trans-
formation (a transformation from the group SU(2)
XSU(2)). The Lagrangian of[113] coincides with (7.18)
with an accuracy up to a canonical transformation of the
pion field. The general problem of soft pion production
by external axial-vector and vector currents was solved
int 7 2 ], where, in particular, a Lagrangian was obtained
for the processes y — (2n + 1)π and yy — (2n + 1)π
that differs from (7.18) by a unitary transformation on
the pion field.

d) Suppression of the processes yy -- (2n + 1)π° with
η > 1. We have already pointed out (see Sec. 6) that the
yy —• 3π° amplitude vanishes at μ2 = 0. This assertion,
however, has a more general character and applies to

all the processes yy — (2n + l)ir° with η > 1[ 7 5 ]. (We
note that the processes y — (2n + l)ir° are also for-
bidden. This prohibition is strict and is connected with
the conservation of charge parity).

The Lagrangian (7.1) for neutral pions (ifl- = 63air
0)

with μ2 = 0 can be rewritten in the form

arctg W + ^

Redefining the it" meson field as

it0 = -j-arctg λπ°,

we arrive at the Lagrangian

§ _ m) ψ + λ i £ ψνμ ϊί· + <9"°)

·: (7.19)

(7.20)

(7.21)

It is obvious that the Lagrangian (7.21), after in-
cluding the electromagnetic field, yields, to lowest
(second) order in the momenta, the unique non-vanishing
π0 — 2y amplitude described by the diagram in Fig. 22a.

8. The 77 -• ππ AMPLITUDE

a) Phenomenological structure. The yy — ππ am-
plitude contains the contributions of the pion pole dia-
grams (Fig. 24) and a non-pole (contact) part. At small
particle momenta q̂  ~ p^ ~ μ, we may expect that the
contact part is slowly varying and that it can be ex-
panded in a series. We retain in this part the leading
terms (of zero order in the momenta) and the first cor-
rection (the terms of second order in the momenta). We
must then also include in the pole diagrams the next
correction in the momenta at the electromagnetic vertex
of the pion (see Sec. 3). When this is done, the amplitude
for the process can be written in the form

Pi', ill Ϊ2) =

[114]

(8.1)

where P a b is the contribution of the pole diagrams in
Fig. 2 4 : ^

« 2 ( « „ „ - (8.2)
1 — Pz, Pz)lJ

The vertex functions Tj,(p, p') are defined in (3.8).

In Eq. (8.1), Κ,,μ and ΙΙ,,μ are contact terms, where
Κ,,μ is chosen in such a way as to define the contribu-
tion of the pole diagrams up to a gauge-invariant struc-
ture , while R ^ is a manifestly transverse function in

the photon momenta (<1ιν^-νη
 = Κ ^ μ ^ μ = **)· T o second

order in the momenta, the unique transverse structure
has the form

Κ = (8.3)

here β and β0 are arbitrary constants. The isotopic
structure of is determined by the conservation of

G-parity, from which it follows that both photons in the
process yy — irn are either isoscalar or isovector.

Λ.*

Pi,"
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The tensor K~^ in (8.1), with an accuracy up to sec-
ond order in the momenta, i s uniquely determined by
the Ward identities :

p 2 ; Ji,

- ft, (8 -4)

p-(j

FIG. 25

The identity (8.4) is a consequence of the conserva-
tion of the electromagnetic current. It follows from
(8.4) that K*b must be chosen in the form

= 2e 2 ( 6 a b - 6,

The sum Τ?

ψ Μ + q\) Κ - ?1ν?1μ -

4)
in (8.1) will then satisfy

the relation (8.4).

After regrouping the terms, the final result for
in (8.1) with p.2 = μ can be represented in the form

= e2 (δαί) - tf) F (?»)
,, Γ (2Pl — ί
Χ L (ρ,

(8.6)

<*where F(q2) is the form factor (3.3), and R<* is defined
in (8.3).

b) Relation to the polarizability of the pion1 1 1 4·1 1 5 1.
Let us consider the yy — TTJT amplitude at small q2 and
Pi = β2 (i\ ~ nl « M2). In this region, it takes the
simpler form

«^-.-«.h + 2 6 ν μ ]
(8.7)

Equation (8.7) corresponds to the following phenom-
enological Lagrangian for the interaction of the pion with
an external field:

be evaluated by using the reduction formulas and the
PC AC condition (2.2):

(8.5) where

0. ft;

<(P. g) = i

x?,(ft, q>)\, (8.13)

(8.14)

Equation (8.13) (with ρ2 = μ2) follows from the chain of
equalities

(π" (ρ2) | Τ φΛα% (y) j v (0) /μ (χ)) \ 0)

(p2) | Γ (a% (y) j v (0) ; μ (χ)) 10}

)

Putting pt = 0 in (8.15) and evaluating the current
commutators, we arrive at the relation (8.13), if we
make use of the fact that <7rbl (T(acj )|0>

^ η ο ν μ
= e(ir iTia^v )|θ) by virtue of the conservation of G-
parity.

A more phenomenological expression for τνη(ν> <\)
at q2 = 0, ρ2 = μ2, with an accuracy up to second order
in the momenta, is of the form

Here φ and <p0 are the quantized fields of the π and ir°
mesons. In the nonrelativistic approximation, Eq. (8.8)
corresponds to the following effective single-particle
hamiltonian for the n~ meson in an electromagnetic field:

where

(8.9)

(8.10)

The parameter <*π is known as the polarizability of
the pion (the dipole moment of the pion in an external
electric field Ε is « T E).

Corresponding to this, we obtain for the neutral pion

where

2 " π ~
e!Po
2μ

(8.12)

is the polarizability of the π0 meson.

We note that the relation between the polarizability
of the nucleon and the parameters characterizing the
Compton scattering amplitude at low energies was dis-
cussed i n [ u e " 1 1 8 ] . The polarizability of the nucleon was
studied in detail in t l l 8 ] .

c) The polarizability of the v" meson. Let us consider
b (P i > pz; qt> q2) as pt — 0. The appropriate limit can

(It is intended that at q2 = 0 the matrix element rv^ is
multiplied by the photon polarization vector £ μ ^ ) , so
that the terms proportional to qμ are not written in
(8.16)). We have explicitly separated the contribution
of the pion pole graph (see Fig. 25, where the cross
denotes.the vertex of the axial-vector current:

- ip,,6..uF,J. The contact term -F_6,,

in (8.16) adds a gauge-invariant structure to the contri-
bution of the pole graph and guarantees the equality
Ίμτι>μ(Ρ> q) = - ^bc^n-Py» which is a consequence of the
conservation of the vector current and the commutation
relation (2.6).

Equations (8.13) and (8.16) imply, in particular, that
Τ υ μ ~ 5ab ~~ 5 3a 6 3b' a n d ) ** ®'® i s t a k e n i n t o a c c o u n t >
it follows from this that β0 = 0. Equation (8.12) then
indicates that

«4 = 0. (8.17)

The condition (8.17) means that the polarizability of
the JT° meson vanishes to second order in the momenta
in T ĵb , i.e., a° ~ a ^ / m 2 « ffj) where m » μ is

the characteristic range of variation of the hadronic
amplitudes.

d) Relation to the decay ir — evy. Calculation of the
polarizability of the π' meson t m > 1 1 5 ] . The ?f — evy
decay amplitude has the form

Γ μ = ieGy cos θ [MUWU + Fa, (k.) γμ (h + 'q- m,)'1 ρ (1 - γ.) it, (ft,)],

(8.18)
Λίμν = ihyZu.va&Pa9fi — Fn Ι δμν -] -^- } —hA (p?6uv— Pu3v)i (8.19)

\ PQ I
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where Gy is the weak interaction constant, θ is the
Cabibbo angle, lv = uey,,(l - y§)\iv is the leptonic current,
and ρ and q are the momenta of the pion and photon. The
matrix element Μμ^ can be written in the form (cf.[119])

in terms of the π" — 2γ decay constant by means of
(8.21) and (8.23), we obtain

Γ2βΛ/μ,= - j dxe">* (01Τ (/„(*), vi*'(0)-af(0))\n-(p)). (8.20)

The contribution of the weak vector current in (8.20)
after isotopic flip can be reduced to the ir° - . 2γ decay
amplitude[120]. The parameter hy in (8.19) is defined
here as

hv = -fl2e\ (8.21)

where f is defined in (5.1).

The contribution of the weak axial-vector current in
(8.20) after isotopic flip reduces to e r " (p, q) (see Eqs.
(8.14) and (8.16)). This fact was the reason for choosing
a single constant h A in (8.16) and (8.19).

Using (8.1) and (8.16), it follows from the relation
(8.13) with qf = q2 = 0 that

P=~hA. (8.22)

By employing (8.10), we obtain an expression for the
polarizability of the n~ meson:

α π =^-Α Α . (8.23)

The parameter h A can be obtained by measuring the
differential probability for the decay ν -~ evy1"11. In[ 1 2 1 ]

data on the total probability was used to obtain two solu-
tions for the ratio γ = h A /hy:

V = 0.4 or -2.1. (8.24)

Using the value y = 0.4 (this value is closer to the
prediction of the vector dominance model'1193:
yVDM = Fff/2 mphV ~ ° · 5 5 ) a n d E q s > ( 8 · 2 1 ) a n d (8·23)»
we obtain

0-3 F 3 (8.25)

The polarizability of the pion is found to be almost
5 times the value of the corresponding quantity for the
proton[122]7>. (The polarizability of the proton, defined
in analogy with at by the expression for the effective
energy of interaction with an external field Jfmt
= - 1/2α^Ε2, has the value a p = 0.9 x 10'3 F3). However,

it should be stressed that the values of γ in (8.24) are
very sensitive to variations in the constant hy'1 . In
this sense, a change in the experimental data on the pion
lifetime or, say, the absence of the relation (8.21) be-
tween hy and f8> could significantly alter our estimate
of the value of an in (8.25).

An interesting fundamental possibility of directly
measuring the polarizability of the iT meson was dis-
cussed ίηΓΐ23~125λ It was proposed to study the level
shifts in π-mesonic atoms due to the contribution of the
interaction -(1/2)απΕ2, where Ε = -Ze/r2 is the field
intensity of the nucleus at the pion orbit. The value of
the polarizability (8.25) leads to an energy shift ~ 2 eV
in the 6h-5g transition in'81-1 Tl. A measurement of such
effects would require a relative accuracy ~ 10"5 in the
determination of the transition energy. At the present
time, an accuracy ~ 6 x 10"5 (see'12*3) has already been
reached for this transition91.

We note that information on the sign of αΈ can be
deduced from (8.23). In fact, by expressing απ directly

' — V

Since f/Fff < 0 (see (6.34) and (6.37)), we have
Oj > 0 for γ = 0.4 > 0. This corresponds to an increase
in the level spacing in ir-mesonic atoms.

We emphasize that the sign of the polarizability
cannot be determined a priori in a relativistic theory.
In nonrelativistic quantum mechanics, the polarizability
of a particle can be represented in the form

n, j

l ( » ' ( 0 ) I J /o (*. 0) i j d*x| n)

where the sum Σ η extends over the states with zero
momentum ρ = 0 and En > μ, and ( Γ 2 ) 1 ' 2 is the radius
of the pion. It follows from this formula that α π > 0.
However, the picture is changed if allowance is made
for relativistic effects (pair production). The sum Σ η

must be replaced by the expression

Σ'-Σ-*«,
η η

where S v a c is the contribution of the disconnected
vacuum diagrams, corresponding to a sum of the form

Let |n) and In') be states that include a nucleon-anti-
nucleon pair (In) = |p, p), |n') = |p ' , p'>, where ρ and p '
are the momenta of the particles, and ρ and p ' are the
momenta of the antiparticles). If ρ f p', the contribution
corresponding to S v a c is also contained in Ση and can-
cels in the difference Ση - Sv&c. But if ρ = ρ', the cor-
responding contribution is contained in S v a c but is ab-
sent in Ση, owing to the Pauli principle. As a result, the
non-cancelled contribution of the states with ρ = ρ'
in S v a c leads to a negative component in the expression
for the polarizability, as compared with the manifestly
positive expression corresponding to nonrelativistic
mechanics.

A straightforward analysis in relativistic perturba-
tion theory (in the theory with y5 coupling) shows that
the polarizability of the π° meson is negative, while it
is equal to zero in the a model. The polarizability of the
τί meson is positive, owing to the term (r2)/3. The con-
tribution corresponding to Σ η - Syac separately is also
found to be negative.

e) The decay η — e^eV. We see that the decay
7Γ — evy is of interest from the point of view of meas-
uring the polarizability of the pion. It is significant that
one can determine the value of the constant h^ by study-
ing the electron and photon spectra in this decay and
thus choose between the two solutions in (8.24) (seei l 2 7 ]).

In connection with the discussion of Sec. 3, we note
that the process π — evy with a virtual photon (the
decay π -~ e^e^e") is also of interest from the point of
view of the possible measurement of the radius of the
pion'12*3. The it — e^e'e" decay amplitude has the form

Τ = -ίΐΰβγΙλιιΘΤΙι-permutation of the electrons, (8.26)

where Τμ is defined in (8.18), in which one must use
Eq. (8.20) for Μ μ ( , with q2 φ 0. By using in (8.20) the
condition of conservation of the vector current and
partial conservation of the axial-vector current, as well
as the commutation relations (2.5), we obtain
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(8.27)

(8-28)

where Τ μ is the vertex function (3.8). With an accuracy
up to second order in the momenta, it follows from
(8.27) and (8.28) that [ u 9 ' 1 2 8 1

-*Αΐϊ(Ρ-9)δμν-?τ(Ρ-ϊ)μ]—χ-

Thus, the π — eî e*e~ decay amplitude is completely de-
termined by a knowledge of the π0 — 2γ decay constant
(see (8.21)), the polarizability of the pion (see (8.23))
and the pion radius (r2).

f) Relation to the current spectral functions. We note
that there is a relation between the parameter β in (8.3)
and the spectral functions of the vector and axial-vector
currents. This relation appears when we consider the

quantity p 2 ; as 0 and p2 - 0. By^ ^ 2 i 2 χ 2

making use of the PCAC condition (2.2) and the com-
mutation relations (2.3)—(2.5), we can (in analogy with
the way in which we calculated the amplitude Τ ^ μ φ , ρ2;
q i ; q2) in (8.15)) derive the expressionT l 2 9 ) 1 3 0 ] l 0 >

T%iO,O;q,-q) ( 8 - 3 0 )

= -^r- (Sai, - 63.635) \ e1·" <01Τ (α· (0) α3

μ (χ) - ν3

ν (0) ν\ (χ)) \0)dx.

By using the spectral representation for the Green's
functions of the currents in (8.30)Cl31] and exploiting the
relation

(8.31)

which follows from the representation (8.1) (with β0 = 0),
we obtain

ρΑ(κ*)-ρν(χ2)

where p ^ and
currents:

5 i ^ i + j _ j Ρ·-(Χ·)-Ρ-(«·) d x 2 | (8_32)

are the spectral functions of the

PV(P2) = — S δ(p n -p) |<0114 (0)I n)'.\\

p A ( ή = - 1 2 ψ - Σδ ( Ρ » - Ρ) Ι <° Ι °ν (°) Ι ™>Ι2.

(8.33)

(8.34)

and Σ η in (8.34) does not include the state with a single
pion.

In principle, the functions p^ and p^· can be meas-
ured in the reactions e*e~ —• 2π + (everything else) and
e*e~ — π + (everything else)^132].

From (8.22) and (8.32) there follows an expression
for the parameter h^ in terms of the current spectral
functions, which was first derived in [ U 9 ] . The utilization
of the VDM in Eq. (8.32) leads to the value

β-Λ-. (8-35)
2mp

where mp is the mass of the ρ meson.

g) Quantitative estimates. The differential cross
section. From (8.22) and (8.24) with γ = 0.4, there
follows a value for the parameter β:

order in the momenta in (8.1) is then of order ~ μ2/ΐη2,
which confirms the expected range of the effective
expansion parameter in (8.1). An estimate of the terms
of fourth order in the momenta in the amplitude T ^ ,
which are associated with exchange of the ρ meson,
indicates that their range is ~ 10~3 ~ (μζ/πι*)2 (see[114]).

Thus, we may expect that Eq. (8.1), with the value of β
given by (8.22), actually determines the amplitude for the
process yy — irn with an accuracy up to radiative cor-
rections .

It follows from (8.1) and (8.36) that the amplitude
at low momenta is determined by the contribution

" Λ*·
of the pole graphs with an accuracy of the order of a few
percent . This fact has been pointed out in a number of
papers (see, e.g.,1·133»134-1)111·

The total c r o s s section for the p r o c e s s yy — TIT
with r e a l photons (the yy -— 2π° c r o s s section is equal
to z e r o a s a consequence of (8.1), s ince β 0 = 0) i s of the
form

σ = σ Β + σ \ (8.37)

where <Τβ is the contribution of the t e r m s (8.2) and (8.5)
(see1-136-1, p . 644; this contribution corresponds to the
Born approximation), and σ' i s the correct ion due to the
t e r m (8.3):

here s =

When 4M2/S

obtain

= 1 / 1 - ^ ; (8.38)

' 1, the cross section σβ is of order
For the value of β from (8.36), we

- 2-10-2.
"B

(8.39)

The cross section for the. process yy
region s ~ t ~ μ2 can be measured in the reaction e*e
— e^e'/ir" with colliding beams of high energy, when
the diagram in Fig. 26 dominates. The contribution of
the diagram in Fig. 26 with the block yy -, tn was cal-
culated in the pole approximation in[ 1 0 ' 1 3 3 1. In the lead-
ing, logarithmic approximation, the cross section for
the reaction e*e" — e*e~irV has a simple form (cf . [ 9 ] ) :

m » , ^ ' , „ . * ) ; (8.40)

here 2E is the total energy in the c.m.s., m e is the
electron mass, and σγγ __^ π ν is the cross section for the
process yy —• irV with real photons. Estimating the
cross section (8.40) for s ~ 4μ2 and 2E » 7 GeV, we
find σ ~ 10~33-10~34 cm2. Eq. (8.40) is valid in the
asymptotic region, where ln(4E2/s) » 1, and it has an
accuracy of ~ 30% for 2E - 7 GeV.

It has been proposed in a number of papers
(see[ 1 2'1 3 3'1 3 7 ]) to study the reaction yy — ττπ at low and
moderate energies in connection with the extraction of
information on the TTJT scattering phase shifts. We note
that, within the framework of the hypotheses of Sec. 2
(see also Sec. 4), pion rescattering gives a contribution

1.2-10-2 (8.36)

We note that β ~ 1/mp, where mp is the mass of the ρ
meson. The relative contribution of the term of second FIG. 26
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of second order in the momenta in the imaginary part
of the yy — 2JT amplitude and, accordingly, a fourth-
order contribution to the total cross section (seet U 4 )).
Therefore, for s ~ 4μ2, the correction σ' (see (8.38))
should give a larger contribution than inr rescattering.

h) The process yy — ππ with highly virtual photons.
Equation (8.30) can be used to derive an expression for
the amplitude T^> (pi t p2; qt, q2) in the region q2 ~ q2

2

» μ2, pj ~ μ. ItTEollows from (8.30)[70'134] that in this
region

-ψ) R (ϊ2),

where

(8.41)

(8.42)

We note that the amplitude for the process yy — 2π°
is equal to zero as a consequence of (8.41). At large qj,
it is far from obvious that the pion momenta in T^b c a n
be neglected, At any rate, we must require the validity
of the condition pjq « ml, where mp is the character-
istic range of variation of the hadronic amplitudes.
Since we have at the same time q2 ~ q 2 » μ2, the range
of applicability of Eq. (8.41) may be rather narrow.

In principle, it is possible to measure the amplitude
(8.41) in the reaction e V — eVt fV (see Fig. 26). The
bremsstrahlung (single-photon) mechanism of n*iT pair
production can be separated, since the corresponding
graphs do not interfere with the diagram in Fig. 26 and
are readily calculated. The contribution of the graph in
Fig. 26 to the differential cross section at high lepton
energies (e2 » q?) is

where ω± are the meson energies. Putting dq2 ~ q2

2 d ) μ d i t i R ( 2 ) b thm 2
g g

m , ω* do)t μ and approximating R(q2) by the
contribution of the ρ and AL mesons (see, e.g.,·1381; here
V = g2 δ(κ2 - m p pA = g2 δ(κ2 m ) m = 2m

L , g ,
= g2 δ(κ2 - m p ), m A = 2mp,p p

g2 = 2 F 2 m p and R(q2) « 2mp[(q2 - mp)(q2 - 2mJ)]"1), we
obtain <x ~ 10"38 cm2. Unfortunately, the cross section
is very small.

9. THE PROCESSES 7 -+ (2η)π AND 7 7 - * (2η)π (η > 1)

a) The phenomenological Lagrangian. To lowest
order in the momenta, these processes are described
by the contributions of the pion pole diagrams. The
calculation of the latter presupposes a knowledge of the
amplitudes for 2ττ — 2π, 2π — 4π, etc., which can be
evaluated in the framework of current algebra and in-
volve no arbitrary parameters if the condition (2.11)
is satisfied. All of them are contained in the phenom-
enological Lagrangian (7.1). To lowest order in the
momenta, all of the amplitudes for y -— (2η)ττ and
yy — (2η)π are described by the phenomenological
Lagrangian (7.18). However, the expressions obtained
on the basis of (7.18) may be rather remote from the
true physical amplitudes, since they are valid only in
the limit in which the momentum of each of the mesons
tends to zero. (Analogous remarks also hold, of course,
for the processes y —• (2n + 1)π and yy -» (2n + l)ir with
a large number of pions). The comparison with experi-
ment is a very difficult problem here, since it presup-
poses a prior study of the extrapolation formulas that

—

b

FIG. 27

would make it possible to continue results obtained at
low momenta into the physical region.

We shall consider the processes y — Ait and yy — 4π
in somewhat greater detail, since in these cases we
may still hope that allowance for the lowest and the next
order in the expansion in the momenta is sufficient for
a continuation of the amplitude into the physical region.

b) The y -~ 4π amplitude121. It follows from the con-
servation of G-parity that the photon in this process is
isovector. Therefore the general structure of the am-
plitude has the form (Fig. 27)

p,, Pi< i>s, Pi)+ permutations (9.1)

We note that it is not necessary to write any isotopic
structures of the type 6 3 a e b c d , since 6 3 b e a c d = 5 a b e 3 c d

+ 6bde3ac-

The function Mu can be written in the form

Afv = Pv (p,, p2, p3, pt) + B, (p,, pt, p3, P l ) ,

where Pj, is the pole term (see Fig. 27):

Pv(Pi, Ps, Pi, Pt) =

(9.2)

A . p,,

By is the contact term, in which we retain the terms of
lowest order (linear in the momenta) and of the next
order (cubic in the momenta). The function M(pj, p2, p3,
p4) in (9.3) is the ττπ scattering amplitude, defined in ac-
cordance with (4.2). In the approximation of interest to
us, we must take into account in M(p1; p2, p3, p4) the
terms up to fourth order in the momenta, inclusive.
The corresponding expression has the form

Μ (plt fy, pa, ρ,)=α— ( ! "

Λ , » aj, + aj, - μ«, Λ, = σ·, + σ?4 + < , + σ'» - 2μ\

R3 = σΙ2σ34, Rt = σ1 3σ2 1 + atia2,,

Λ5 = (σ12 + σ34) (σ13 + σ14 + σ2, + σ24) - 2μ4,

R, = (σ,4 + σ23) (σ18 + σ24) - μ«;

(9.4)

J
here <Jjj = PjPj with i f j are the independent invariant
variables in the amplitude M(px, p2, p3, p4). (In (9.4) we
do not write the contribution of the imaginary part due
to 7Γ7Γ rescattering, which at α = 0 is also of fourth order
in the momenta).

The self-consistency condition for the amplitude
(9.4), n a m e l y Μ ( ρ ι ; p 2 , p 3 , p 4 ) — 0 a s

= ρ 2 = μ 2 , l e a d s to the condit ion

α = 0.

0 if P2 = P2

(9.5)

With the additional assumption (2.11) about the structure
of the <r commutator, we also find that M(0, p2, p3, p4)
= 0 if ρ2 = ρ2 = μ2 and ρ2 φ μ2. This leads to the con-
ditions

a + 2c2 - ct = 0, (9.6')
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y = -2μ* {cg + ct - (9.6") /Pi·'

We shall next discuss briefly the consequences of the
assumptions A, B, C and (2.11) (see Sec. 2) for the
amplitude (9.2).

Gauge invariance (the transversality condition y
= 0, where Q = p1 + p2 + p3 + p4) leads to the following
constraints on the contact term By in (9.2). The con-
tact term contains two arbitrary constants a.l and a2,
which appear as the coefficients of the two manifestly
transverse structures formed from the momenta. Other-
wise, the structure of Bv is completely determined by
specifying the constants which appear in the amplitude
Μ in (9.3) and (9.4). The function of the contact term
is to add a transverse structure (on the mass shell) to
the expression for the pole term (9.3).

The self-consistency condition, when applied to the
amplitude (9.2) (M^O, p2, p3, p4) = 0 if p2 = p2 = p2 = μ2

with a = b = 3 , c ^ d ^ 3 ) , leads to the condition a.1 = a2

= 0. Thus, we have the very important fact that the
process γ —• 4π up to third order in the momenta is
completely determined by the structure of the ΤΓΤΓ
scattering amplitude and involves no new parameters.

We note also that by making use of current algebra
(2.3)—(2.5) in conjunction with the condition (2.2) we can
obtain (for a = b = 3, c ^ d ^ 3 )

7\,(0, p2, p,, p4)-*0 npa ps-*0, ν\ = ρ\=μ\ (9.7')

Ρι, Ρ2,Ο, , p4) npn ρ̂  = ρ1=μ2, (9.7")

where Ty(p', ρ) is the electromagnetic vertex (3.8). It
follows from these conditions, using (9.5), (9.6') and
(9.6"), that

β = ̂ -8μ 2 (ο β - ί ; 2 ) . (9.8)

It is useful to compare the parameters a, β and y
with those of (4.3), obtained in the lowest approximation.
Thus, it follows from (9.6) and (9.8) that nv scattering
up to fourth order in the momenta is described by five
arbitrary constants (which can be chosen as c1 ( c2, c3,
c4 and c5) and that the same constants appear in the
amplitude for γ — 4π. Moreover, as is usually done in
the low-energy technique, it is assumed that the relative
contribution of the terms ~ c< is small (~ 4μ2/ΐη1), so
that in the leading approximation the amplitude Tv is
known and is determined by the constant β = Ff f

2.

If no restrictions are imposed on the ιτπ scattering
amplitude other than the possibility of expanding it in a
series in the momenta, then in the leading approximation
the amplitude for the process γ -~ 4π will have the form
(9.1)-(9.3), where for the amplitude Μ in (9.3) we must
employ the expression (4.2), while the contact term Bv

in (9.2) is given by

B·, (Pu Pi, Pa, Pi) = —2? (p s — p t )v (9·9)

Thus, the γ — 4π vertex is of interest from the point of
view of studying the parameters of ππ scattering.

c) The process yy — 4ττ. The amplitude for this
process, T ^ c d ( q 1 ( q2; plt p2, p3, p4), can also be written

in the form of a sum of the pole term (Fig. 28b), which
is determined with an accuracy up to second order in the
momenta by the form of the amplitude Τ,,ίρ^ ρ2, p3, p4)
in (9.1), and the contact term (Fig. 28a).

FIG. 28

With an accuracy up to second order in the momenta,
the contactj;erm contains a single manifestly transverse
structure β^ι^^Ί/β ~ Ί ΐ μ ^ ι ^ involving an arbitrary
parameter β; in other respects, its form is uniquely
determined by the structure of the pole graph, as a con-
sequence of the transversality conditions for the total
amplitude: 1\ι/^νμ = ® and 2y

pj = μ2.

By using current algebra, Eqs. (2.3)—(2.5), we can
obtain the condition'129"

n;+-(?. - Ϊ ; Ο , Ο, Ο, ο) ( 9 - 1 0 )

= - ^ \ ?"" (01Τ Κ <*) "'μ (0) - 4 (ι) 4 (0)) \0)dx,

which is sufficient to calculate the parameter β. This
parameter turns out to be related to the radius and
polarizability of the pion, if use is made of the spectral
representation1131'138^ for the Green's function of the
currents in (9.10), as well as Eq. (8.32) for the integrals
of the spectral functions (cf. the analogous calculations
in connection with the process yy — TUT in Sec. 8).

Thus, the yy — An amplitude is also uniquely de-
termined to second order in the momenta by the struc-
ture of the 7Γ7Γ scattering amplitude (which appears
through the function Tv, Eq. (9.1), in the pole graph),
provided that the radius and polarizability of the pion
are known.

In the leading approximation (zero order in the
momenta), T ^ c d is determined entirely by the contri-
bution of the pole graph, which involves the ππ scatter-
ing amplitude in the lowest approximation, Eqs. (4.2)
and (4.3).

We note that the yy — 4ir° amplitude vanishes in the
leading approximation and in the next approximation in
the momenta (like the yy — 2ττ° amplitude; see Sec. 8).

10. CONCLUSIONS

Thus, the large class of processes y — (n)ir (n SL 3)
and yy — (η)π (η>2) can be described theoretically
within the framework of the assumptions formulated in
Sec. 2 and can be expressed in terms of a small number
of parameters, which are known or measurable in prin-
ciple in other phenomena. The assumptions of Sec. 2 are
used to different extents in calculating the y(2y) — (2η)ττ
and y(2y) -~ (2n + 1)π amplitudes. Thus, the structure
of the amplitudes with an odd number of pions is re-
lated to the anomalous properties of the triangle dia-
gram (see Fig. 13) and the hypothesis that there is no
prohibition of the decay π° — 2y in the framework of
PC AC. Unfortunately, there is at present no experiment
which could serve as a direct test of the resulting re-
lations, although the initial hypotheses have an experi-
mental basis.

The study of the amplitudes for the interaction of
soft photons with pions deserves special attention in
connection with the ambiguous situation regarding the
determination of the parameters of τη scattering (see

39 Sov. Phys.-Usp., Vol. 17, No. 1, July-August 1974 M. V. Terent'ev 39



Sec. 4). If the ππ scattering lengths are determined
correctly in peripheral experiments, we encounter a
serious contradiction, which requires an explanation.
In this situation, it is important to have the independent
information on ττπ scattering that can be obtained in
studying photon-meson interactions.

We enumerate below the basic experiments which are
required primarily for testing the main results in the
area of physics under consideration:

1) More accurate data on the form factor and radius
of the pion (see Sec. 3).

2) More accurate data on the Jnr scattering amplitude
in peripheral experiments, in Κ — 3π decays and in Ke4
decay (see Sec. 4).

3) Measurement of the cross section for the reaction
e*e" — 3TT (the determination of the properties of the
y — 3TT vertex, a test of the basic relation (6.11), a study
of the momentum dependence of the y — 3ττ amplitude,
and a test of the extrapolation formula (6.15); see Sec.
6).

4) Measurement of the cross section for the reaction
e V — e V + 3π (a study of the yy — 3π amplitude, a
test of Eqs. (6.13) and (6.14), a determination of the
parameter y, and a study in this way of the structure of
the commutator (2.11); see Sec. 6).

5) Measurement of the cross section for the reaction
π -. 2π in the Coulomb field of a nucleus (an independent
determination of the γ — 3π vertex and a test of Eqs.
(6.11), (6.15) and (6.21); see Sec. 6).

6) Measurement of the γγ — ττττ amplitude either in
the reaction e*e" — e*e~7r+7f or in the process γ — π* it'
in the Coulomb field of a nucleus (a test of the validity
of the representation (8.1), which determines the
γγ _ 7J-7T amplitude with an accuracy of the order of a
few percent, and a determination of the polarizability
of the pion; see Sees. 8a, 8b and 8g).

7) Measurement of the polarizability of the pion
according to the level shifts in π-mesonic atoms (see
Sec. 8d).

8) Measurement of the contributions of the vector
and axial-vector currents in the decay η —· evy (an
independent determination of the pion polarizability, and
a test of Eq. (8.23); see Sec. 8d).

9) A study of the decay it — eve*e~ in order to de-
termine the radius and polarizability of the pion (see
Sec. 8e).

10) More accurate data on the n° — 2y decay proba-
bility, and a study of the π° — 2y vertex as a function of
the virtual masses of the particles (a test of the basic
hypothesis that the vertex π° — 2γ is slowly varying as
a function of the momenta, and a more accurate value
of the constant f (see (5.5)), which appears as a basic
parameter in many relations; see Sees. 5a—5c).

11) Measurement of the π —• 3it amplitude in the
Coulomb field of a nucleus (a study of the properties of
the γ — 47Γ amplitude, a test of the validity of the extra-
polation formulas (9.1)—(9.3) and (9.9), and a study of
the parameters of mt scattering; see Sec. 9b).

12) Measurement of the cross section for the reac-
tion e*e" — e+e" + Air (a study of the properties of the
yy _» 4TT amplitude; see Sec. 9c).

13) A check of the fact that the amplitudes for
yy -» (2n + \)it° and yy — (2η)ττ° with η > 1 are sup-
pressed (see Sees. 7d, 8c, 8g and 9).

14) Measurement of the sign of the constant f (see
Sec. 6f).

''The right-hand sides of Eqs. (2.3>(2.6) generally contain schwinger
terms proportional to the spatial derivatives of the δ-function, which
we do not write. The detailed structure of these terms depends on
the model of the strong interaction and the formalism that is chosen.
These terms are, as a rule, unimportant in obtaining the physical re-
sults. Their role is to add a covariant structure to the expressions for
the matrix elements in terms of T-products of currents. Such an addi-
tion, however, is unambiguously reproduced in the phenomenological
form of the matrix elements. Usually, these terms are simply not con-
sidered, since the majority of the physical results are determined by
Eqs. (2.3H2.6) after integrations with respect to one of the coordinates
χ or x'.

2'After this review was sent to press, there appeared a paper [139] in
which the spectra in ΚΛ decay were analyzed with relatively high
statistics. It was found that μαο = 0.17 ±0.13, which, within the
errors, is an agreement with the prediction of Weinberg ["] (see
(4.6)).

On the other hand, the spectra of Κ -*3π decays obtained in f48]
have been analyzed in [ 1 4 0 > 1 4 1 ] . The corresponding results are: jia0 =
0.72 ± 0.07, μβ2 = 0.09 ± 0.09 [140] and μβο= 0 . 6 ^ , ;ua2 = -0.1 ±
0.1 orMa0= -0.5^;J, μβ2 = 0 ± 0.1 [""]. This is incompatible with
(4.6). However, as noted by VolkovitskiY and Dakhno [H 1] in particu-
lar, small values of /ua0 can be obtained from the data of t 4 8 ] at a
confidence level ^30%. Moreover, the experimental results of I4 8] do
not exclude systematic errors, whose probability is particularly large
in the region near the boundaries of the Dalitz plane, which is most
important for the analysis of πτ scattering.

3'As a rule, we shall not pay attention to the positions (upper or lower)
of the vector indices. However, in connection with Eq. (5.1), it
should be stressed (and this is important for the subsequent discussion
of the sign of the constant f) that a contraction with the tensor e ^ ^
should be interpreted as ej^a^q" q^ · Henceforth contractions with the
tensor e must be interpreted in this way, so that only lower indices
appear in the tensor ΐρμαβ-

4 'lt is proposed to consider the process X -* X' + 27. A pronounced
variation of the function f(p2) over scales ρ 2 ~ μ2 that are small in
comparison with the characteristic scale of the strong interactions
would lead to a pronounced variation of the nonresonant background
under the peak corresponding to the production and decay of a real
pion. A pronounced variation of the function f(p2) would show up in
the behavior of the background if the mechanism X -* X' + rr°->- X' +
2γ gives a significant contribution to the background part of the
amplitude for X -» X' + 27. We should expect that this mechanism can
be isolated, owing to the small pion mass and, accordingly, the large
value of the resonance factor (p2 - μ2)"' at ρ2 ~ μ2.

s )In fact, the more general relation (3/2) L = KR' was derived in [ 6 7 ],
where R' is the contribution of the isovector part of the current in
the process e+e" -> hadrons, and Κ is the constant in the commutation
relations of the spatial components of the electromagnetic current,
which can be measured independently. Equation (5.24) is obtained
under additional assumptions: a) the usual quark structure of the
current commutators (corresponding to Κ = 1), and b) the octet
character of the electromagnetic current (in which case R' =(3/4) R).

6*We showed in part d that the decay π° -»• 27 is in fact determined by
the high-energy contribution in the triangle diagram with two vector
vertices and one axial-vector vertex. The constant f(0) turned out to
be equal to the subtraction term, giving a correction to the high-
momentum contribution up to a gauge-invariant structure. This
makes it possible (see [6 8]) to relate f(0) to the matrix element of
the currents at small distances. On the other hand, as is well known,
the process e+e" -+ hadrons for q2 ->• °° is also determined by the con-
tribution of small distances.

7>Such a difference seems natural, for the following reason. One may
expect that the constant β in (8.3) or (8.8) must be of the same order
for the pion and for the nucleon, since it is the coefficient in the
covariant contact amplitude, which corresponds to Feynman graphs
of the same type for both yn and 7p scattering. The validity of this
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statement can hardly be significantly affected by the fact that there
are additional structures besides q ^ 2 5W — q^qjy to second order in
the qj in the 7P amplitude. We note also that the expression for the
polarizability in terms of the constant (3 (see (8.10)) contains an addi-
tional factor μ"1—the Compton dimension of the particle. Therefore
we might expect the polarizability of the pion to be greater than that
of the nucleon by a factor mp/μ « 7.

8)This possibility has recently been considered by D. Bardin and S.
Bilen'kil (private communication); see also [ 1 2 7 ] .

9>After the present review was sent to press, there appeared a paper [142]
reporting a measurement of the polarizability of the kaon in connec-
tion with a study of transitions in K-mesonic atoms. The result is
a K = -(4 ± 11) X 10~3F3. In the framework of SU(3) symmetry, it
can be shown that the constant β (see (8.3)) is the same for -γπ and
7K scattering and is determined, in particular, by Eq. (8.32) (see
below). Therefore the polarizability of the kaon must be smaller than
that of the pion by a factor mjc/μ * 3.5 (see Eq. (8.10)). From (8.25)
we then obtain the estimate a*™ * 1.2 Χ 10"43 F 3 .

io)In [ 129,130] E q (830) is in fact used as a representation of the
amplitude Τ^μ in the region pj ~ q; ~ μ; this is, of course, quite
incorrect, since the general phenomenological structure (8.1) con-
tains rapidly varying terms.

"'We note that the γγ -» ππ amplitude has been studied in a number
of papers (see, e.g., [ 1 3 3>1 3 5]) within the framework of dispersion re-
lations. Actually, such investigations are of interest in the region of
moderate energies (~1 GeV), since the pole diagram dominates at
low energies, as we have pointed out. We do not discuss the results
of the dispersion approach here, since this entails a number of ap-
proximations that do not fall within the scope of the basic hypotheses
of Sec. 2, to which we would like to confine ourselves.

12)V.V. Solov'ev and M. V. Terent'ev (to be published).
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