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An account is given of the theory of magnetophonon resonance—an effect arising from the inelastic
character of the scattering of electrons by optical phonons in strong magnetic fields. The
electron-phonon collision frequency depends nonmonotonically on the magnetic field: It increases
sharply when the optical-phonon energy -hcj0 becomes a multiple of the cyclotron energy nil.
Therefore, all kinetic coefficients of a dissipative nature should have an oscillatory dependence on the
magnetic field. The experimental study of the magnetophonon oscillations makes it possible to
determine the cyclotron mass of the electrons, and also its dependence on temperature, pressure, etc.
Thanks to development in technique for high magnetic fields, magnetophonon resonance has become
both one of the most important methods for determining the band-structure parameters of
semiconductors and a means for studying the interaction of electrons with optical phonons.

CONTENTS

1. Introduction 1
2. Magnetophonon Oscillations of the Transverse Magnetoresistance 2
3. Magnetophonon Oscillations of the Longitudinal Magnetoresistance 7
4. Magnetophonon Resonance in Semiconductors with Nonstandard Band Shapes . . . 12
5. Magnetophonon Oscillations of Other Kinetic Coefficients 14
6. Conclusion 16

Appendix 17
References 17

INTRODUCTION

Strong magnetic fields are a very important tool for
investigating the electron system of solids, and, in
particular, the energy spectrum of the electrons. By
strong magnetic fields, we mean fields satisfying the
condition

Οτ»ι, (1)

where Ω = eH/mc is the cyclotron frequency and τ is the
relaxation time.

When the condition (1) is fulfilled, effects associated
with scattering are suppressed and the characteristic
features of the electron dynamics are most clearly man-
ifested. This opens up the possibility of studying the
structure of the equal-energy surfaces of the electrons
by studying different kinetic and resonance phenomena in
a strong magnetic field (magnetoresistance, cyclotron
resonance, ultrasonic absorption, etc.). In recent years,
the effective masses of electrons in semiconductors and
the shapes of the Fermi surfaces of many metals and
semimetals have been determined in precisely this way.

The quantum-mechanical problem of the motion of an
electron in a magnetic field Η = (0, 0, Η) in the case of a
quadratic isotropic dispersion law was first solved by
Landautl]. With the choice of gauge in which the vector
potential is equal tp̂ A = (0, Hx, 0), the eigenvalues ep
of the Hamiltonian .sf0 and the wavef unctions ipv have the
form (neglecting the spin)
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L ( J V - 0 . 1 , 2 , . . . ) ,

exp (ikyy + iktz) <?N ( ±^- ) ;

(2)

(3)

(3a)

here, ν = (Ν, kv, kz) is a complete set of quantum num-
bers; iky = py and hkz = p z are the components of the
quasi-momentum of the electron along the y and ζ axes;
Xy = -Py/ηιΩ is the x-coordinate of the center of the
Larmor orbit; L = (ch/eH)1/z is the magnetic length; φ^
is a normalized oscillator wavef unction. From the form
of the Hamiltonian (2), it can be seen that the energy of
the electron in the magnetic field is quantized and the
spectrum is a set of Ν Landau sub-bands. Quantization
of the electron energy occurs not only for the simple
dispersion law considered, but also in the more general
case when the electrons undergo a finite motion over a
closed trajectory in a plane perpendicular to the mag-
netic field. Since, according to (3), the electron energy
depends only on the two quantum numbers Ν and kz, each
Landau sub-band is degenerate, the degeneracy being
proportional to the magnetic field. The magnetic field,
as it were, collects states distributed uniformly over
the band into discrete sub-bands. As a consequence of
this, the density of states is also changed substantially:

The density of states becomes infinite at the bottom of
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each Landau sub-band, i.e., for p z = 0. For brevity,
energy levels with p z = 0 will be called, simply, Landau
levels. The condition (1), which can be rewritten in the
form

ΛΩ>4· da)
means that in a strong magnetic field the spacing between
Landau levels is much greater than the broadening of
the levels that arises from collisions. It is obvious that
the fulfillment of this condition is necessary for the
observation of all the effects associated with the quan-
tization of the electron spectrum. Allowance for the
smearing of the Landau levels leads to smoothing of the
singularities in the density of states g(e)t2].

The nonmonotonic dependence of g(e) is the principal
reason for the oscillations of the various thermodynamic
quantities (de Haas-van Alphen oscillations) and kinetic
coefficients (Shubnikov-de Haas oscillations) which have
been observed in metals and semiconductors with a de-
generate electron gas at low temperatures. A large
number of experimental and theoretical papers (see the
review[3]) have been devoted to quantum oscillations in
semiconductors.

No less important is another consequence of the quan-
tization of the electron energy—the change in the char-
acter of the scattering. Investigation of the field and tem-
perature dependences of the magnetoresistance in the
quantum limitΐιΩ > e (e is the characteristic electron
energy, equal to k0T in the case of classical statistics,
or the Fermi energy ζ in the case of degeneracy) makes
it possible to obtain information on the dominant scatter-
ing mechanisms w . The influence of strong magnetic
fields on the character of the elastic scattering is also
demonstrated by the negative longitudinal magnetore-
sistance effect[5'e]. Thus, experimental investigations in
strong magnetic fields not only turn out to be fruitful in
the study of the electron spectrum, but also give infor-
mation about the interaction of the electrons with phonons,
impurities, etc. One of the effects due to the electron -
phonon interaction is the new type of oscillations of the
kinetic coefficients first predicted by Gurevich and
Firsov 'and KlingerM. This effect has been given the
name of "magnetophonon resonance" (MPR), since it is
due to inelastic resonance scattering of electrons by
phonons of a definite frequency—in particular, by optical
phonons, whose dispersion can be neglected. The average
scattering probability increases when the optical-phonon
energy ho>0 coincides with the spacing between any two
Landau levels, and this leads to a nonmonotonic de-
pendence of the kinetic coefficients on the magnetic field.

Magnetophonon resonance is the first example known
to science of an internal resonance in a solid, i.e., of a
resonance in which internal vibrations of the solid, e.g.,
optical phonons, are the perturbing agent. MPR differs
in this way from external resonances (cyclotron, para-
magnetic, etc.) in which the perturbing agent is an ex-
ternal oscillating electromagnetic field.

The first brief communication on the observation of the
new resonance effect in n-InSb is due to Prui and
Geballet9]. A detailed experimental study of the features
of manifestations of MPR in the transverse and longitud-
inal magnetoresistance was carried out in [ 1 0 > u l , again on
η-type indium antimonide, which has been found to be the
(MP) oscillations. Because of the large mobility of the
electrons, the criterion (1), or the equivalent criterion
uH/c » 1, is well fulfilled even in magnetic fields

~ 104 Oe. At the present time, because of developments
in technique for stationary and pulsed magnetic fields,
the range of fields ~ 105 - 10e Oe is fully accessible,
and extensive experimental data on MPR in different
semiconductors have been obtained. It may be said that
MPR is becoming one of the most important methods for
studying both the energy spectrum of the electrons, and
their interaction with the phonon system.

MAGNETOPHONON OSCILLATIONS OF THE
TRANSVERSE MAGNETO-RESISTANCE

a) Conductivity in a transverse magnetic field. In the
experimental study of galvanomagnetic effects, one
usually measures components of the magnetoresistance
tensor PJJ^H). In the theory, however, it is more con-
venient to calculate the conductivity tensor <^(Η) or the
current density j :

' h = ",k (H) Eh; (5)

Ε is the electric-field intensity; i, k = x, y, z.

We choose the ζ axis to be along the direction of the
magnetic field. Then, in the case of an isotropic electron
dispersion law, the tensor oik(H) has the form

(6)

The tensor σ has the same form, irrespective of the
electron dispersion law, in the more general case when
the ζ axis in a cubic crystal is a three-, four-, or six-
fold symmetry axis. The non-zero components of the
magnetoresistance tensor p ^ are related to the com-
ponents of the tensor σ ^ in the following way:

Pxx = - Pxy— —

If the electron isoenergetic surface does not contain
open orbits, then, in magnetic fields satisfying the con-
dition (1), the components ojij have, as is well known, the
following asymptotic forms :

σ0 (Ωτ)- (8)

where <*0 is the conductivity when Η = 0. Thus, the ratio
σ χ χ / σ χ ν ~ ( Ω τ ) " 1 « 1 is a small parameter, and in the
lowest approximation in this parameter we obtain from

(7)

Pxx=- Pxy — —
"xy (7a)

It is important that, for an arbitrary dispersion law in
this approximation, the Hall conductivity σ χ ν does not
depend on the scattering:

" . . - - Τ " ! 0)

η is the electron concentration. At the same time, the
conductivity (Τχχ is proportional to, and σ ζ ζ inversely
proportional to the scattering probability. This is con-
nected with the different character of the motion of the
electron parallel and perpendicular to the magnetic field.
This is most simply understood in the case of a quad-
ratic isotropic dispersion law, when the Hamiltonian has
the form (2). The matrix elements of the velocity op-
erator ν are equal to

" &
• = /

(10a)
_
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(10b)

Therefore, to calculate the macroscopic average values
of the current density j x along the electric field Ε = (E,
0, 0) and of the Hall-current density jy, knowledge of the
off-diagonal elements of the density matrix p^v is
necessary:

(11)

Thus, the problem of calculating the transverse σ χ χ and
Hall <τχν components of the conductivity tensor reduces
to finding the density-matrix operator from its equation
of motion:

W f' /

ι45-=[<». ΡΙ· (12)

In this equation, jf is the total Hamiltonian, including
the electric field and the interaction of the electron with
scatterers. This problem was solved in a paper by
Adams and Holstein[4] in the lowest approximation in the
parameter (Ωτ)'1 for elastic scattering. By an analogous
method, Argyres and Roth[12] obtained a formula for σχχ
in the case of inelastic scattering.

In the zeroth approximation in the scattering potential,

> . - T T * (13)

which agrees with the classical expression (9) for σ χ ν .
The Hall current has a nondissipative character and is
a consequence of the electron drift, with velocity
V(jr = cE/H, in the crossed electric and magnetic fields.
In this approximation, the current along the electric field,
j x = 0. Because an electron interacts with crystal im-
perfections, transitions of the electron between different
states, with change of the quantum number Xy, become
possible. The number of transitions per unit time against
the electric field turns out to be greater than in the
direction of the field, and this leads to an electric
current j x proportional to the transition probability.
Allowance for scattering in the Born approximation leads
to the following expression for the transverse conduc-
tivity:

^ 4 2 / 1 ( 1 - / ; ) ^ ^ . (Η)

where f° = i0Ua) is the equilibrium electron distribution
function and w.^ is the probability of transition of an
electron from the state μ to the state v. For the electron-
phonon interaction,

(15)

where Cq is the Fourier transform of the interaction
potential, N q = [exp(hc<>q/k0T) _ l]"1 is the Planck function,
and

| ν) =

J W = j Φινί^'φ.ν dx. (16)

Going over to integration over the energy, we can rep-
resent the expression (14) in the following form:

GKN- (ε): (17)

here, GjjN'(e) is a certain smooth function of the energy
and of the quantum numbers Ν and N':

FIG. 1. Scheme of electrons between Landau
sub-bands.

The dispersion of the optical phonons can be neglected,
and therefore 1ίωο and No do not depend on the wave
vector q.

The integrand in formula (17) has singularities at the
points e = ê j and e = e N ' -1ίω0, which reflect singular-
ities in the densities of initial and final electron states.
Each of these singularities is of the integrable type, and
consequently, for an arbitrary value of the magnetic
field, the integral over the energy, generally speaking,
has no singularities. An exception is constituted by those
values of Η for which the singularities of the initial and
final states coincide, i.e.,

ΜΩ = ω0 (Μ = 1, 2, 3, . . .). (19)

In this case, the integral over the energy diverges
logarithmically and, consequently, the transverse mag-
netoresistance increases sharply.

Similar behavior of PXX(H) near the resonance values
of Η determined by formula (19) leads to oscillations
that are periodic in the inverse magnetic field, with
period

Δ -ίτ (20)

(ε) = j dqx dqy | C, | 2 q· | (18)

The period of the oscillations depends on the effective
electron mass m and on the limiting frequency u>0

of the optical phonons. These oscillations are called
magnetophonon (MP) oscillations. Physically, the MP
oscillations are due to the discontinuous character of
the density of states (4) in its energy dependence. The
oscillation maxima of pxx<fl) should occur when electron
transitions between two Landau levels with absorption
or emission of an optical phonon ίίω0 are possible.

For the first resonance (M = 1) the possible transi-
tions are shown in Fig. 1 by the arrow 1. In general, as
follows from an analysis of expression (17), for the
oscillatory effect to appear a nonmonotonic variation of
some of the quantities characterizing both the initial and
final states is necessary. Therefore, transitions of, e.g.,
the type 2 in Fig. 1 make no contribution to the os-
cillating part of σχ χ(Η), since for these only the density
of final states has a singularity. Such transitions, and
also transitions of the type 4, produce the nonoscillating
"background" of the function <rxx(H). In addition,
horizontal transitions of the types 3 and 5, associated
with elastic scattering by acoustic phonons and impur-
ities, make a contribution to the nonoscillating back-
ground of the magnetoresistance21.

Since, in the lowest approximation in the interaction,
the transverse conductivity <7XX is proportional to the
scattering probability, the different scattering mech-
anisms do not interfere, i.e., they make an additive con-
tribution to Ρχχ:

(21)

Sov. Phys.-Usp., Vol. 17, No. 1, July-August 1974 R. V. Parfen'ev et al.



where J ^ is the nonmonotonic part (17) due to scatter-
ing of electrons by optical phonons, and o ^ a is a certain
smooth function of the magnetic field, associated with the
elastic scattering. The general formula (14) is valid for
σ^8-, if we substitute into it the appropriate expression
for the transition probability vt^y. In the quantum limit
-ήΩ > ξ or ϊίΩ » k0T, the transverse conductivity a^-

is a monotonic function of the magnetic fieldw.

b) Characteristic features of the MP oscillations.
We shall consider those characteristic features of MP
oscillations which distinguish them from Shubnikov-de
Haas (SH) and de Haas-van Alphen quantum oscillations.
First of all, we note that MP resonance is associated
with electron scattering and therefore cannot be man-
ifested in thermodynamic-equilibrium effects, i.e.,
effects of a nondissipative nature. As follows from (20),
unlike the period of SH oscillations the magnitude of the
period Δ(1/Η) does not depend on the electron concentra-
tion. The simple dependence of Δ(1/Η) on the effective
mass m and on the limiting frequency ω0 makes it pos-
sible to determine one of these quantities experimentally
if the other is known.

It follows from formula (17) that the nonmonotonic
dependence of <Τχχ(Η) is not connected with the form of
the distribution function fo(e). This means that MPR
should occur irrespective of the statistics of the elec-
trons. The case of Fermi statistics was investigated by
Efros[13], who showed that the MP oscillations remain
present in the quantum limiHin > ζ, where SH oscilla-
tions are impossible.

The amplitude of the MP oscillations of Ρχχ also has
a distinctive temperature dependence. At low temper-
atures Τ <£ θ0 (θ0 =1iu)0/k0 i s the characteristic excita-
tion temperature of the optical phonons), the quantity
σ£Ρ* (17) is proportional to exp(- Θο/Τ) and the main
contribution to the conductivity is made by the elastic
scattering processes. An increase in temperature leads
to an increase in the role of scattering of electrons by
optical phonons, as a result of which the amplitude of the
MP oscillations also increases. However, at temperature
comparable with the temperature θ0, thermal broadening
of the Landau levels, i.e., thermal spread of the electrons
over the Landau sub-band, becomes important. In this
case, in the region of magnetic fields Ω < ω0 in which
MP oscillations are possible, the average thermal elec-
tron energy k^T >/ηΩ. As shown in[ 7 ], for kS2 < k0T the
oscillating part of σ£Ρ* is a small correction of order
•nJi/kgT to the classical value of σ^Ρ* in the absence of a
magnetic field. Thus, the temperature dependence of the
amplitude of the oscillations is nonmonotonic. There
exists a certain optimal temperature at which the am-
plitude of the MP oscillations is a maximum. This tem-
perature, which is less than θ0, depends on the contri-
bution of the elastic scattering processes to the total
conductivity. It should be emphasized that the amplitude
of SH oscillations increases as the temperature is
lowered, down to those temperatures at which the broad-
ening of the Landau levels as a result of collisions be-
gins to play the principal role in "killing off" the os-
cillation peaks.

The logarithmic increase of (^(H) near the resonance
values of Η does not depend on the form of the function
GjjN'(e) (18) and is due only to the specific behavior of
the density of states. As is clear from (18), the form of
the function Gjjjj'fe) i s determined by the character of
the dependence of Cq on the phonon wave vector q. In

turn, the dependence of C q on q reflects the character of
the interaction of the electrons with the optical phonons.
Thus, in crystals with ionic bonding, in which electrons
interact with polarization vibrations,

(22)

κ0 and κ, are the static and dynamic dielectric constants.
In crystals with covalent bonding, in which the interac-
tion of the electrons with the optical phonons has a non-
polar character, Cq is a constant, independent of the
wave vector q:

Cq = Co. (23)

The explicit dependence <Τχχ(Η) near the resonances
for the case of interaction of the electrons with polar-
ization phonons was obtained in^7] (nondegenerate elec-
tron gas) and in t l 3 ] (degenerate gas). We introduce the
quantity δ, which serves as a measure of the deviation
from resonance:

H M — I f I (M = l, 2, (24)

Then, for Shft/k0T « 1 in the case of Boltzmann
statistics,

(25)

where cr"-. is the monotonic part of the conductivity:

In the case of Fermi statistics,

(25a)

(26)

t
"δ") V

In these formulas, α is the dimensionless electron-
optical phonon coupling constant:

ί Κ 2to, I » . xo I · (27)

c) Amplitudes of the MP oscillations of (Τχχ. The ex-
pressions (25) and (26) lead to infinite values of the
oscillation maxima. However, for sufficiently small δ
the conductivity σχχ ceases to increase proportionally
to 1η(1/δ). From a physical point of view, it is obvious
that there always exists some suppression mechanism
limiting the height of the oscillation peak. We introduce
the quantity δ0 (the minimum value of 6) by defining it in
such a way that In(1/0) in (25) determines the maximum
value of 'χχ at resonance, calculated with allowance for
the suppression. In practice, this approach, which does
not take into account the MP resonance line shape, can
give only a rather crude estimate of the amplitude of the
oscillations. Among the possible mechanisms that
remove the divergence in (17), we note the following1141:

1) Broadening of the Landau levels as a result of
elastic collisions, which leads to smoothing of the singu-
larities in the density of states. In this case,

60 « (Ωτ)"1. (28)

2) Broadening due to electron-electron interaction.
The role of the Coulomb interaction of the electrons
appears in the renormalization of the electron-phonon
scattering potential. As shown in t l 4 ! , the screening of
the electron-phonon interaction also limits the amplitude
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of the resonance peak, and the corresponding value of
60 is equal to

<»>
where e 0 is the base of the natural logarithms, and
C = 0.577 is Euler's constant.

3) The dispersion of the optical phonons. Let the
optical-phonon frequency be

ω, = ω0 (Ι — aV).

where a is a quantity of the order of the lattice constant.
Then for δ0 we can obtain

«o = e0 -r . (30)

A comparison of the quantities δ0 given by formulas
(28)—(30) shows that the phonon dispersion can practically
never play an important role. Collisional broadening
of the Landau levels is the decisive factor in conditions
when elastic scattering is dominant. The role of the
Coulomb interaction can become noticeable only at suf-
ficiently high electron concentrations.

For a correct calculation of the line shape and am-
plitude of the MP resonance it is necessary to take more
consistent account of the interaction of the electrons with
the optical phonons, and not confine ourselves to lowest
order of perturbation theory. Sufficiently strong inter-
action of an electron with polarization vibrations leads
to the formation of a polaron. For ct « 1, the energy
of the polaron is equal to t l 5 ]

^ • ^ r i 1 — τ ) - α ί ϋ ) ο . (31)

It can be seen from (31) that the polaron effect leads
to an increase of the effective electron mass and to a
lowering of the energy by an amount ahtoo. In weak mag-
netic fields, Ω « ω0, exact allowance for the electron -
phonon interaction also leads only to a renormalization
of the cyclotron mass '1β]. The situation is radically
changed in the region of magnetic fields Ω » u>0

tl7>18].
Because of the sharp amplification of the electron-phonon
interaction in magnetic fields satisfying the MP reso-
nance condition (19), a rearrangement of the energy
spectrum of the electron-phonon system occurs. In
particular, for Ω = ω0, the energy of the phononless state
in which an electron is situated in the first Landau level
(N = 1) differs from the energy of the state in which the
electron belongs to the zeroth Landau level and in which
there is one optical phonon with energy to0. The energy
level of the phononless state is found to be strongly
broadened as a result of resonance emission of optical
phonons. These features of the energy spectrum are
manifested in the study of the cyclotron resonance'191,
interband magneto-absorption ' and impurity combined
resonance in InSb[20].

Broadening of the Landau level Ν = 1 also leads to the
suppression of the MP maximum in the transverse con-
ductivity. With allowance for the broadening, Dworin[2i:l

calculated the quantity σχχ at the point Ω = ω0. Rigorous
allowance for the interaction of the electrons with the
optical phonons gives a finite value for the conductivity
at the resonance point:

"—3Sr«p(-Sf-)[1 + ife(W1'(-wT&)]. (32)
where F is a certain monotonic function, calculated in[ 2 1 ].
For a2/4ha>0/k0T < 1, this function is close to unity. The

appearance in the argument of F of the coupling constant
a to the power 2/3 reflects the fact that the expression
(32) cannot be obtained in the framework of perturbation
theory. Using the method of Green functions, Nakayama'221

calculated the spectrum and density of states of the
electrons under conditions of resonance interaction with
the optical phonons. A calculation of the transverse con-
ductivity in the region of magnetic fields Ω * u>0 shows
that, together with the suppression of the MPR peak,
there occurs a small shift in the positions of the MP
maxima in the direction of higher fields relative to the
resonance values (the polaron shift). This shift can be
interpreted as a renormalization of the electron mass
as a consequence of the resonance electron-phonon inter-
action. The renormalized mass for ft » ω0 is greater
than the polaron mass mpOi = m[l + (a/6)] determined
by formula (31).

In order to estimate the role of the polaron effect in
the suppression of the magnetophonon peak, we shall
consider the case of n-InSb (a = 0.02, u = 5 x 105

cm2/sec) at Τ = 100°K. In a magnetic field Η = 34 kOe,
corresponding to the first MP maximum, the value of
σχχ given by expression (32) is approximately seven
times smaller than that obtained from (25) and (28). Thus,
resonance emission of optical phonons is the principal
effect determining the amplitude of the MP oscillations.
This is all the more so for semiconductors with a lower
mobility and larger electron coupling constant than for
n-InSb.

Together with the broadening due to resonance
emission of optical phonons, the Landau-level broaden-
ing associated with multiple scattering of slow electrons
with p z « 0 by impurity centers'2 2 1 has been considered
by Barker i23\ A formula was obtained for the oscillating
part of the transverse magnetoresistance:

AnOSC , ρ

p 0 ΔΛ r ~ ' \ Ω / \— Q I •

The quantity Γ , which determines the amplitude of the
MP peak, depends on the coupling constant a and on the
scattering amplitude at the impurity center, and does
not depend on the magnetic field. According to'2 3 ], the
broadening due to interaction of the electrons with im-
purity centers is the determining factor for n-GaAs.

Formulas (25), (26) and (32) give the possibility of
an order-of-magnitude estimate of the ratio of the
oscillating part of σ χ χ to the background only in the case
when scattering by the optical phonons is dominant. If,
however, elastic scattering mechanisms dominate, then,
as can be seen from (21), the background is determined
by the additive contribution v^'· In the quantum limit

-hi2 > f, k0T, the dependence of σ ^ on Η has a monotonic
character. Gurevich et al. [ 2 4 ) give the following estimates
for the ratio of σ^° to the magnitude of the conductivity
o**a in the semiclassical limit -ηΩ « k0T. In the case
of Boltzmann statistics,

\V2uXl k0T '
(34)

The power η is determined by the scattering mechanism
(n = 0 for scattering by impurity ions, η = 1 for scatter-
ing by piezo-acoustic vibrations, and η = 2 for scattering
by the deformation potential). In the case of Fermi
statistics

(35)
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Β ' ' 20 Ίΰ

FIG. 2. Dependence of the transverse ( Δ ρ χ χ / ρ 0 ) and longitudinal
(Δρζ ζ/ρ0) magnetoresistances on the magnetic field (kOe) for InSb at
Τ = 90° K. Sample l : n = 6.5 X 10 1 3 cm^, u = 6.7X105 cm2/V.sec,
Sample 2: η = 4.1X1013 c n T \ u = 5.5X105 cm2/V.sec[11 ]. (The dashed
curves represent the monotonic background on which the oscillations of
a resonance nature are superimposed. In the upper part of the Figure,
the oscillating part of the magnetoresistance is given as a function of
the inverse magnetic field. The vertical straight lines correspond to
resonance fields with Μ = 1, 2, 3 . . . according to (19).)

It follows from these estimates that, for the observation
of MP oscillations, semiconductors with a high electron
mobility should be preferable, and the range of temper-
atures should not be too low compared with 0O in order
that the optical branch of the phonon spectrum be excited
to a sufficient degree. In the Appendix, values of the lim-
iting frequencies ω0 of the longitudinal optical phonons
and the coupling constants ot are given for a number of
semiconducting compounds.

d) Experimental results for MPR in ffvx. As already
noted, n-InSb is an extremely convenient material for
studying MPR, since the high electron mobilities make
it possible to use easily attainable stationary magnetic
fields[ 1 0 ' u ] . The relatively simple structure of the con-
duction band of InSb gives rise also to a simple experi-
mental pattern of oscillations. The characteristic tem-
perature θ0 = 275°Κ for InSb, and therefore the optical
branch of the phonon spectrum is excited to a sufficient
degree at Τ ~ 100°K.

The experimental data from the study of MPR in
n-InSb have confirmed the following principal con-
clusions of the theory:

1) The experimental dependence of the transverse
magnetoresistance for a pure sample of n-InSb (n = 6.5
x 1013 cm'3, u = 6.7 x 105 cm2/V.sec), shown in Fig. 2,
shows that the system of maxima of Ρχχ ( H m a x = 34, 17,
11.3 and 8.5 kOe) is periodic in the inverse field with
period Δ(1/Η) = (3.0 ± 0.2) x 10"5 Oe. The positions of
the maxima correspond to the MPR condition (19) for
transitions of electrons from the Landau level Ν = 0 to
the levels Ν = 1, 2, 3, 4.

From the position of the first maximum (from the
side of high magnetic fields) H1 = 34 kOe, with the known
value ω0 = 3.64 x 1013 sec"1, we can determine the mag-
nitude of the effective electron mass m. Since the con-
duction band of InSb is nonparabolic, and in resonance
scattering the electron energy is changed appreciably
(bynw0), the calculated value of the effective electron
mass m = 0.016m0 is found to be greater than the value

FIG. 3. Transverse magnetoresis-
tance as a function of magnetic field at
Τ = 90°K for samples of n-InSb with
different electron concentrations.
n(cm"3) = 5.2X1013 (13), 2.4X1014

(4), and 1.3X1015 (5).

Ζ -

m n = 0.014m0 for the mass at the bottom of the conduc-
tion band (m0 is the free-electron mass). The magnitude
of the period of the oscillations (calculated from formula
(20) for m = 0.016m0) Δ(1/Η) = 2.96 x 10"5 Oe"1 agrees
well with the experimental value Δ(1/Η) = 3 x 10'5 Oe"1.

2) As has been shown, an optimal temperature should
exist at which the oscillating part of the magnetore-
sistance is a maximum. From the experimental curves
given in[ 1 0 ]for Ρχχ(Η), measured on one sample of n-InSb
in the temperature range 63-195°K, it follows that the
height of the oscillation peaks is a maximum at Τ = 104°K
and amounts to ~ 15% of the background. The period
and phase of the oscillations in the transverse magneto-
resistance do not depend on the temperature.

3) As follows from the theory, the positions of the
maxima of the transverse magnetoresistance and the
period of the MP oscillations should not depend on the
electron concentration. The series of experimental
curves shown in Fig. 3, obtained for n-InSb samples with
different electron concentrations (from 5.2 x 1013 to
1.3 x 1015 cm"3) at Τ = 90°K, show clearly the difference
between the MPR effect and SH oscillations. The am-
plitude of the MP oscillations decreases as the mobility
decreases with increasing alloying of the sample.

The use of strong pulsed magnetic fields has made it
possible to display the MP oscillations of the transverse
magnetoresistance in n-InAst25], in which the effective
electron mass is greater and the frequency of the longi-
tudinal optical phonons higher than in InSb. It must be
noted that, because of the large monotonic component of
the magnetoresistance, the authors of£2el were able to
observe the MP oscillations of Ρχχ(Η) only as a result
of a substantial raising of the resolving power of the
apparatus, using a double differentiation technique. For
n-InAs at Τ = 300°Κ, two maxima of Ρχχ(Η) were de-
tected, corresponding to resonance transitions of elec-
trons between the zeroth and first d^ = 76 kOe) and
between the zeroth and second (H2 = 33 kOe) Landau
levels. Analogous results for the MP oscillations of the
transverse magnetoresistance in n-InAs were obtained
in the paper[27]. Using formula (19) and putting ω0 = 4.6
x 1013 sec"1, we obtain for the effective electron mass
the value m = O.O25mO) which, because the band is non-
parabolic, differs from the value of the mass at the
bottom of the band, m n = 0.023m0. The effect of the non-
parabolicity on the position of the MP extrema is con-
sidered in more detail in Sec. 4.

MP oscillations in the transverse magnetoresistance
have also been studied in n-GaAs[2e'28·291, n-Ge[ 3 0 > 3 1 ],
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3. MAGNETOPHONON OSCILLATIONS OF THE
LONGITUDINAL MAGNETORESISTANCE.

a) Conductivity in a longitudinal magnetic field. As
follows from (10b), only the diagonal elements (jz)NN
of the operator of the current density in the direction of
the magnetic field are non-zero. Therefore, to describe
longitudinal effects, only the diagonal elements of the
density matrix are necessary. The equation of motion
for the diagonal elements of the density matrix, i .e., for
the distribution function, in the linear approximation in
the electric field Ε = Ez has the form of the usual
Boltzmann kinetic equation:

FIG. 4. Dependence of d J p x x / d H 2 on Η at Τ = 163°K. (In the upper
right inset, the dependence of the amplitude A on temperature is depicted
for the maxima at Η = 34 kOe (curve 1) and Η = 82 kOe (curve 2) /*>/.)

1, n-CdTe[ 3 4 ], n-CdSe[ 3 5 ], ρ - Τ θ ^ p-Ge£ 3 1 ],
p-InSb and p-GaAst 3 ! 9. Investigations of MPR in sub-
stances with a relatively large coupling constant
β (n-CdTe, n-CdSe, p-Te) have shown that, under reso-
nance conditions Ω = ω0, the renormalization of the
effective mass can be described by the empirical formula

H'+T)· (36)

eE ^"W-= Σ (38)

The authors ofl , studying the temperature de-
pendence of the amplitudes of the MP peaks of Ρχχ(Η) in
n-InSb, observed that, for Τ > 100°K, along with the
principal maxima an additional maximum at Η =82 kOe
appears (Fig. 4). The anomalous temperature dependence
of its amplitude, which increases when Τ > 120°K when
the amplitudes of the ordinary MP maxima decrease,
makes it possible to assume that this peak is caused by
inelastic scattering with participation of two optical
phonons. The probability of a two-phonon absorption
process is proportional to exp(-20o/T), whereas the
probability of a one-phonon process is proportional to
exp(-#0/T). Therefore, the temperature at which the
two-phonon peak should attain its greatest magnitude
should be higher than the optimal temperature for the
one-phonon peaks. The MPR condition for two-phonon
processes has the form

EN' — ε̂  = 2Λο)ο. (37)

From condition (37), with allowance for the nonpara-
bolicity of the conduction band of InSb (cf. Sec. 4), the
value Η = 83.5 kOe is obtained, in good agreement with
experiment.

The contribution of multi-phonon scattering processes
to the kinetic coefficients is not great for Τ < #0, and it
is not possible to exhibit it in practice. It is only the
resonance character of the scattering in MPR conditions
that makes i t possible to detect this contribution clearly.

The intensity of the peaks caused by two-phonon pro-
cesses is not great. The amplitude of the maximum in
Pxx at Η = 82 kOe amounts to about 20% of the most in-
tense maximum (fly = 34 kOe) in the principal series, or
about 1% of the entire magnitude of Ρχχ. Some of the two-
phonon extrema are positioned close to much more in-
tense one-phonon extrema, and it is probable, therefore,
that it has not been possible to detect them.

Resonance peaks associated with multi-phonon pro-
cesses have also been detected in the study of MPR in
n-GaAs[ 4 1 ].

here ίμ = ρ μ μ is the nonequilibrium and f° = fo(eu) the
equilibrium distribution function, and w^^ is the transi-
tion probability (cf. (15)).

From the expression for the longitudinal-current
density

m ^ (39)

it follows that the non-zero current is due to the part of
the distribution function ίμ that is odd in kj.. We shall
seek the solution of Eq. (38) in the usual form:

/μ = fit + Χμ ^~- eE, (40)

where Χμ is a certain odd function of k z . Then from (38)
the following equation for χμ is obtained:

— (1— ft)= Ύ, »μν(1— /ν)(Χμ — Xv)· (41)

If the electron gas is not degenerate, we can neglect ίμ
and i°v in comparison with unity in (41).

As a rule, to solve Eq. (41) is an extremely compli-
cated problem. There are , however, cases in which we
can obtain an exact solution. We turn to expression (15)
for the transition probability. If Cq = Co and ojq = ωο

do not depend on q, then the summation over q in (15) is
simply performed if we make use of the relation

which is a consequence of the normalization of the wave-
functions !pu (3a). Then it is not difficult to show that
Wμ '̂ depends on k^ only through the energy ev = (N'
+ 1/2)ηίϊ + 65ak|/2m) and is thus an even function of k^.
Therefore, the "incoming" terms in Eq. (41), i.e., the
terms containing χν, give zero in the sum, and the func-
tion χμ has the following form:

where Τμ is the relaxation time:

(42)

(43)

Here we have introduced the discontinuous function 0(x):

In an analogous way, we can find an exact solution for
Χμ in the case of elastic scattering of electrons by
acoustic phonons and by impurities with a δ-function
potential0 0.

The physical reason for the magnetophonon oscilla-
tions is the inelastic character of the scattering of the
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electrons by the optical phonons and the nonmonotonic
quasi-periodic energy dependence of the density of states
in a quantizing magnetic field. The character of the
interaction of the electrons with the phonons, which de-
termines the form of the dependence of Cq on q, plays
a secondary role. Therefore, in order to elucidate the
important features of MPR of the longitudinal conduc-
tivity, it is convenient to consider the case of nonpolar
interaction of the electrons with the optical phonons,
Cq = Co. The longitudinal magnetoresistance in the case
of interaction of the electrons with polarization vibra-
tions is considered in[ 4 2'*3 ]. The collision frequency τ"1

has the same features as in the case under considera-
tion Cq = Co. The longitudinal conductivity is simply
expressed in terms of the relaxation time:

d
(45)

It can be seen from (43) that the collision frequency
τ~* becomes infinite for €μ ±1ίω0 = e^, when, as a con-
sequence of absorption or emission of an optical phonon,
the electron falls into a final state at the bottom of the
Landau sub-band. This singularity of τμ' appears as a
result of the summation over the final states in (41) and
does not depend on the form of the function Cq. Here, it
is not important which initial state the electron under-
goes the transition from, i.e., whether the initial state
belongs to one of the Landau levels. If we make use of
the analogy with optical interband transitions, we can
say that only "indirect" transitions with change of kz

make a contribution to the relaxation of the longitudinal
momentumlikz, i.e., to the quantity Τμ, whereas direct
transitions (transitions of the type 1 in Fig. 1) between
the Landau levels make the main contribution to the
transverse conductivity. This difference predetermines
the specific features of the MP oscillations of p z z .

Going over in formula (45) to an integration over the
energy, we obtain

(46)"ο h

>= 5 (47)

(48)

here σ0 is the conductivity for Η = 0; γ =-nn/k0T;
β ='ft<»>o/koT. The first factor in (46) is a monotonic func-
tion of the magnetic field, which describes the behavior
of <7ZZ in the quantum limit γ > β » 1 and determines
a certain monotonic background in the oscillation region
γ < β. The integral I(y) for γ < β is a nonmonotonic
function and describes the MP oscillations of the con-
ductivity. In the low-temperature region, e0 » 1, we
can omit the second terms in the denominators of
formulas (47) and (48), since the main contribution to the
conductivity is made by electrons with energy e <fiuo,
which are scattered only with absorption of an optical
phonon. The contribution of the remaining electrons is
proportional to the small parameter β~^β. Transforming
the functions po(x) and Pj(x + β) by means of the Poisson
summation formula and separating out from I(y) the
oscillating contribution ΔΙ = I(y) - Io, we obtain for
y < β (Ω < α>0)

Ar=-

(49)

(50)

%f. (51)
The expression (49) is completely analogous to the

formula (cf., e.g., (71) in[3]) which describes the SH
oscillations for elastic scattering of the electrons. How-
ever, the phases <pr (51) depend essentially on the tem-
perature. This means that the positions of the MP ex-
trema of PZZ(H) should depend on the temperature. A
direct investigation of this effect starting from (49) is
difficult, since the amplitudes Ar fall off rather slowly
with the index r and a large number of terms must be
taken into account in the sum. Therefore, we shall con-
sider in detail the behavior of Ι (γ) near the resonance
pointy = /3[44].

b) Temperature shift of the MP extrema. In the
region of low temperatures, β » 1, in expressions (15)
and (16) we can confine ourselves to integrating up to
χ = β. We shall study the behavior of I(y) in the region
y « β (Ω Μ ω0). For γ ^ β, we have

2V-P , „

2ν-βν
Β-2ν>"2 (52)

The first term in (52) describes the contribution to
the conductivity from electrons of the zeroth Landau
sub-band with energies e s 26Ω — ΐίω0, which on absorp-
tion of an optical phonon undergo transitions to the zeroth
or first Landau sub-band (these transitions are depicted
by arrows 1 and 2 in Fig. 5a). The second term takes
into account, in addition, the resonance transitions to
the second Landau sub-band (transitions of the type 3 in
Fig. 5a). Finally, the third term corresponds to the con-
tribution to the conductivity from electrons of the first
Landau sub-band.

The derivative dl/dy with respect to the magnetic
field at the point γ = β-, i.e., the derivative from the
left, is equal to

(53)

The positive term in (53) corresponds to an increase
of conductivity with magnetic field, arising from the
increase of the contribution from electrons for which
resonance scattering with a transition into the second
Landau sub-band, i.e., with a transition of the type 3, is
impossible. The negative term denotes the decrease in
the conductivity as a consequence of the increase in the
probability of a transition to the first sub-band. This

H-Z

FIG. 5. Possible types of transitions of
electrons with absorption of an optical //_\ V
phonon. a) Ω < ω 0 ; b) Ω > ω0
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probability, which is proportional to kg1, increases when
the leveliifi approaches-fi^,,, and transitions of the type
2 occur in the immediate vicinity of the point kz = 0.
For β > 2, the integral in (53) is approximately equal to

The accuracy of this estimate is higher the greater
is β. Hence, it can be seen that at very low temperatures,
β» I, the derivative (dl/dy )β_ is negative, i.e., to the
left of the resonance point y = β the conductivity falls
off. The absolute value |dl/dy| decreases with rise of
temperature, and at certain value 2 < β0 < 3 this de-
rivative becomes positive.

We now consider the behavior of I(y) in the region

/(V)= e-'xi/2(z + f,)l'2dx+ , Γ ϊ« . (54)

The first integral describes the contribution of elec-
trons which on scattering undergo transitions within the
first Landau sub-band (transitions of the type 1 in Fig.
5b). This term increases with magnetic field. The
second integral takes into account transitions to the first
Landau band (transitions of the type 2). It decreases
with magnetic field. As can be seen from (52) and (54),
the function I(y) is continuous at the point y = β. The
derivative dl/dy for γ > β is equal to

£ί = ί ϊ 7( Τ _β)

At the point γ = β*,

(55)

(56)

i.e., p z z increases with magnetic field for all β. We
shall find the position of the first MP maximum by
equating dl/dy in (55) to zero. The corresponding equa-
tion is easily solved in the limiting case β » 1:

ω0

(57)

to the right of the resonance is always negative, i.e.,
PZZ(H) increases. Therefore, the minimum at the point
Υ = β is manifested only in conditions when, to the left
of the resonance, (dl/dy )β_ 2 0. But this means that the
character of the oscillations of p z z depends essentially
on the temperature. If β » 1, there should be a max-
imum of PZZ(H) for Ω = ω0. With increase of temperature,
this maximum shifts toward higher fields and its am-
plitude decreases. Finally, at a certain temperature To

in the interval

θο (58)

For Ω > Ω 1 the quantity p z z falls off, since the number
of electrons for which transitions to the first Landau
sub-band are possible decreases. It can be seen from
(57) that the MP maximum of Pzz(H) is shifted toward
higher fields with rise of temperature. The reason for
this shift is that the electrons with kz = 0 at the bottom
of the first Landau sub-band make no contribution to the
longitudinal conductivity, since the velocity along the
field vz =1ikz/m = 0. The large density of states at
kz * 0 is compensated by the small value of the electron
velocity along the field, so that electrons with e z =
1i2k|/2m ~ k0T play the main role. A rise of temperature
leads to an increase of the mean energy ez and causes
a shift of the MP maxima toward higher fields.

Comparing (53) and (56), we see that the derivative
dl/dy displays a discontinuity at the point y = β. This
violation of continuity is due to the discontinuous char-
acter of the relaxation time in inelastic scattering by
optical phonons (the factor θ (χ - β) in (43)) and to the
discontinuities in the density of states at € = «N- Allow-
ance for the broadening of the Landau levels removes
the discontinuities in the density of states and in the
derivative dl/dy. However, in a small region of
ΔΩ = Ift - ωο|, dl/dy changes from (53) to (56).

It is important to note that the derivative (dl/dy )β+

there should be a minimum of PZZ(H) at the point
Ω = α>0. This minimum is not displaced on further in-
crease of the temperature. The next MP extrema at
Ω = ωο/Μ (Μ =2, 3, ...) can be treated analogously.

c) Pseudo-resonances in the longitudinal magneto-
resistance. Up to this point, we have not taken into ac-
count the contribution to σ ζ ζ from electrons with
energies e > ΐ ω 0 . The corresponding correction tol(y)
(52) can be represented in the following form:

(59)

The function IL(y) is finite and continuous for all y. How-
ever, by analyzing the behavior of the derivative dlj/dy
(in a manner analogous to the way in which we inves-
tigated dl/dy), we can show that dlx/dy has finite dis-
continuities at those points at which the singularities
of p^x +2/3) and pt(x) coincide i.e., for Ny - 2/3 =N'y,
or for

Λ/Ω = 2ω0. (60)

The discontinuities of the derivative dlj/dy lead to breaks
in the function Ix(y) at the corresponding points. The
nature of the breaks is such that Pzz(H) increases to the
right and falls off to the left of the values of Η deter-
mined by the equality (60). Thus, for sufficiently high
temperatures, when e ~ ^ is not too small compared with
unity, in addition to the ordinary MP minima, a new
series of minima with

(2M + 1) Ω = 2ω0 (Μ = 0, 1, 2, . . .). (61)

should appear in pz z(H). The depth of these minima in-
creases with increasing temperature, and, as shown by
the numerical calculations of Peterson[ 4 5 ), are com-
parable at Τ ~ 0Q with the amplitude of the MP extrema.
This is illustrated by Fig. 6 of[45]. It can also be seen
from this figure that with increasing temperature the

FIG. 6. Dependence of the longitudinal magnetoresistance on the
magnetic field, calculated for three values of the temperature (β =
hu>0/k0T = 3, 1.5 and 0.75). (Pseudo-resonances are indicated by the
arrows [45].)

Sov. Phys.-Usp., Vol. 17, No. I.July-August 1974 R. V. Parfen'ev et al.



positions of the MP maxima are shifted toward higher
fields and minima are formed in the resonance magnetic
fields.

The positions of the additional minima of p z z (H),
which Peterson called pseudo-resonances, coincide with
the positions of the two-phonon MP extrema (37). The
amplitude of both is proportional to exp(-20o/T). It must
be emphasized, however, that the pseudo-resonances are
due to one-phonon processes. In magnetic fields satis-
fying the conditions (60 and (61), electrons from a
certain state ν can undergo a transition either to one of
the lower Landau levels with emission of one phonon, or
to one of the upper levels with absorption of a phonon.
Since the contribution of one-phonon processes to the
resistance is proportional to the square of the coupling
constant of the electron-phonon interaction, while the
contribution of multi-phonon processes contains higher
powers of the coupling constant, it may be thought that
the experimentally observed^8'32'48"481 additional minima
of PZZ(H) are more likely to be due to pseudo-resonances
than to two-phonon processes. Nonetheless, the contri-
bution of resonance multi-phonon processes to the mag-
netoresistance may be observed explicitly not only in
PxX

[ 4 0'4 1 1, in which pseudo-resonances are absent, but
also in p z z . Investigating the longitudinal magnetore-
sistance in n-InSb, the authors of*49] observed, at
Τ = 150°K, a minimum corresponding to a resonance
three-phonon transition.

The theoretical study of MPR in the longitudinal mag-
netoresistance has also been the subject of papers by
Petersont 5 c l, who considered the cases of interaction with
nonpolar[5oal and polart 5 o b l phonons. In calculating the
longitudinal current j z , Peterson used a nonequilibrium
distribution function in the following form:

(62)

where the electron drift velocity ν along the field is
determined from the momentum balance equation. This
approach is equivalent to the variational method of[5ial

in the most crude approximation when only one trial
function, proportional to the momentum p z , is chosen.
This approximation is often used for the calculation of
the conductivity for elastic scattering of the electrons;
it is clearly inadequate, however, when inelastic scatter-
ing is considered. In the latter case, to obtain a correct
value for the conductivity at Η = 0 it is necessary to use
a set of at least two trial functions'481, one of which de-
pends on the electron energy. The same should be true
in a quantizing magnetic field. (In[ 5 1 b ], it is shown that
for inelastic scattering one must include functions with
a root singularity in the set of trial functions). It is not
surprising, therefore, that as a result of the numerical
calculations Peterson found neither the temperature
shift of the MP maxima of p z z , in contradiction with the
results of[43>44], nor the appearance of MP minima of
p z z in resonance magnetic fields[44J (int 4 3'4 4 ], the non-
equilibrium distribution function was determined by
solution of the kinetic equation).

d) MP oscillations in degenerate semiconductors. We
now consider the MP oscillations of p z z for a degenerate
electron gast52]. Again, Eq. (41) can be solved exactly
only for Cq = Co, and for the electron-phonon collision
frequency we obtain

The collision frequency, as in the case of a nondegen-
erate electron gas, becomes infinite if the electron, as
a consequence of absorption or emission of a phonon,
can fall into a Landau level. Now, however, only those
initial states which belong to the Fermi level are im-
portant. In the limit of strong degeneracy, we can replace
df^/deM in (45) by a 6-function:

* ι=-6(ε μ -ζ) . ( 6 4 )

Then the following expression is obtained for p z z :

r2 Σ IS + ftWo-ewr'^ + K-fooo-ejv)·""2]

* - * · * ^ s ^ · <65>
Hence it can be seen that Pzz increase without limit in
magnetic fields satisfying the condition

D , > ,

(63)

ΐωο=ΛΩ iJV-(--jl ; (66)

the signs ± correspond to transitions with absorption or
emission of a phonon. For ζ >"ηω0 both processes are
possible, and they make the same contribution to p z z .
In fact,the probability of transition of an electron with
emission of a phonon is proportional to [1 - fo(e -'ηω,,)]
(No + 1), and the probability of transition with absorption
of a phonon is [1 - fo(e +/n«">0)]N0, and these quantities
are equal for electrons at the Fermi level e = £.

If ξ </ίαι|), which is possible for not very high elec-
tron concentrations, only transitions with absorption of
a phonon are important.

The resonance condition (66) shows that MP oscilla-
tions of a completely new type can occur in the case of a
degenerate gas. As has been shown in Sec. 2, the posi-
tions of the MP maxima of Ρχχ are determined by the
condition (19) irrespective of the electron statistics. The
value of the Fermi energy £ does not appear in (19),
since in the calculation of the transverse conductivity
σ,^ the whole energy interval ζ -1iu>0 s e s ί is im-
portant, and not only the energy € = ζ.

The values of the magnetic fields determined by (66)
depend on the concentration of electrons (through the
quantity ζ), and also on their effective mass and on the
phonon frequency ω0. The oscillations considered have
features in common both with the ordinary MP oscilla-
tions and with SH oscillations. In essence, they are
Shubnikov oscillations under conditions of inelastic elec-
tron scattering. For £ » " ί ί ω 0 , the term ±-fiio0 in (66),
associated with the inelasticity of the scattering, can be
omitted and we then obtain the well-known condition for
SH oscillations. Therefore, the positions of the MP max-
ima can differ appreciably from the positions of the SH
maxima only for not too large values of the Fermi level.

The infinite amplitude of the peaks of p z z in (65) is a
consequence of the approximation (64). If we take into
account the incomplete degeneracy of the electron gas,
we can obtain the following expression for the nonmono-
tonic correction Apz z

[ 5 2bl:

(67)

(ξ± = £ ±Ίίω0). The oscillating part of Δρ ζ ζ consists of
two sets of harmonics, periodic in the inverse magnetic
field. At very low temperatures, the amplitude of the
oscillations will be determined, clearly, not by the
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thermal broadening of the Landau levels but by their
broadening as a consequence, principally, of non-Born
scattering of the electrons by impurities.

It is understandable that the experimental observation
of MP oscillations in conductors with a degenerate elec-
tron gas presents considerable difficulties. To fulfil the
condition for sufficiently strong degeneracy, low tem-
peratures and high concentrations of electrons and, con-
sequently, of the alloying impurity are required. In such
a case, the main contribution to the resistance is made
by elastic scattering by the impurity ions, and the prin-
cipal effect in quantizing fields will be SH oscillations.
The MP oscillations should probably appear as small
distortions of the SH oscillations. However, with increas-
ing temperature the amplitude of the latter decreases,
whereas the contribution of inelastic scattering by
optical phonons increases, and in a certain temperature
range the amplitude of the MP oscillations should in-
crease. Oscillations of precisely this type were observed
by Ponomarev and Tsidil'kovskii in an investigation of
p z z in degenerate samples of n-GaSb and n-HgTet52].

e) MP oscillations for mixed scattering. If, in addi-
tion to the inelastic scattering by optical phonons, the
electrons are also scattered elastically, the total col-
lision frequency is additive:

τ-ί = τ-ίτ+τ-γ]ΐρ_ (6 8)

Suppose that the elastic scattering is due to the inter-
action of the electrons with acoustic phonons. Then the
quantity τ~' is proportional to the density of states:

2π E\k0T
(69)

where Et is the deformation-potential constant, d is the
density of the crystal, and w is the sound velocity.

Since the different scattering mechanisms do not
make an additive contribution to p z z (unlike ρχχ) even
in the Born approximation, the theoretical study of MPR
in the longitudinal magnetoresistance is more com-
plicated. MPR in conditions of mixed scattering of elec-
trons by optical and acoustic phonons was first con-
sidered by Gurevich and Firsov[42]. As shown in[421,
when the contribution of elastic scattering to the col-
lision frequency is sufficiently large, the MP maxima of
Pzz(H) should be replaced by minima. However, the
criterion obtained in[421 is too crude and is in contra-
diction with the numerous experimental data. A more
rigorous treatment of the MP oscillations of Pzz(H) was
carried out in[44].

For mixed scattering of electrons, the expression
for σ ζ ζ has its previous form (46), but now the integral
1(γ) is equal to

11.Λ _ f Po (x) e-* i.
=-β)Λ(»-β); (70)

here λ = CoW2d/E2k0T is the parameter characterizing
the contribution of inelastic scattering to the collision
frequency. It is clear that at low temperatures, e^ » 1,
the oscillating part of p z z is proportional to \e~@.

It is possible to establish, analogously to the way this
was done in Sec. 3(c), that the derivative dl/dy is dis-
continuous at the points corresponding to the MPR con-
dition (19). To the right of the resonance, this derivative
is negative for all values of β and λ, i.e., Pzz(H) in-,
creases independently of the temperature and for arbi-
trary contribution from the elastic scattering. The

maxima of pz z(H) are shifted toward higher fields rel-
ative to the resonance values of H. The sign of the
derivative dl/dy to the left of the resonance depends on
the values of the parameters β and λ. In particular, for
β » 1 and λ -• °° (low temperatures and a small con-
tribution from elastic scattering) this derivative is
negative and the discontinuity of the function I(y) is
exponentially small. The discontinuity in I(y) increases
with decrease of the parameters β and λ, and when the
derivative (dl/dy)^_ becomes positive an MP minimum
is formed at the resonance point. The condition that the
derivative to the left of the resonance be equal to zero
is a fairly complicated equation for K, the solution of
which depends on the parameter β. We denote this solu-
tion by λο(0). Then, for λ < λ0, a minimum of pZz(H)
corresponds to resonance magnetic fields. But if λ > λ0,
the minimum of pz z(H) is attained at lower values of H,
while the maxima are shifted toward higher fields. In
this case, the resonance points are not extrema for the
function pz z(H) at all.

The quantity λ0 can be found easily for β » 1 and

4β. (71)

This expression is sufficiently accurate for β > 6. On
the other hand, for a certain β < 3, as follows from (58),
λ0 should increase to infinity, since even for purely
inelastic scattering there should be minima of pz z(H)
in the resonance fields. Numerical estimates lead to the
values λ0 « 30 for β = 4 and λ0 » 40 for β = 3. For com-
parison, we cite the estimate of the authors of[42], who
obtained λ0 ~ 2 independently of the temperature.

Thus, when the contribution of elastic scattering is
sufficiently large, PZZ(H) has a minimum in resonance
fields at all temperatures. Qualitatively, a decrease of
the parameter λ leads to the same consequences as an
increase of temperature under conditions of purely in-
elastic scattering.

We note that if several elastic scattering mechanisms
are important, the general parameter A is determined
by the formula

λ"1 =Σ λ;'. (72)

Expressions for Aac and λ^οη for elastic scattering
by acoustic phonons and impurity ions are given in1 .

MP oscillations have been investigated experimentally
by many authors in different semiconductors :
n-InSb[11>2e>46], n-InAs[25'26'47], n-GaAsl2e>53], n-Ge[54],
n-InP[ 3 2'4 8 ], n-CdTe[34], n-CdSe[35], p-InSb[551, and
p-Te[ 3 6 ) 3 8 ]. In all cases, the extrema are periodic in the
inverse magnetic field with period (20). In semicon-
ducting compounds with small coupling constant a < 0.1,
and also in n-Ge and p-Te, the minima of p z z in the
resonance fields are to be found in the whole temperature
range in which MPR is observed. In accordance with the
theory of[44], the parameter λ in these materials is found
to be smaller than the value λ0, i.e., the contribution of
elastic scattering leads to the formation of MP minima
at resonance, even at low temperatures Τ « θ0. in
materials with a sufficiently large coupling constant α
(n-CdTe, n-CdSe), certain intermediate phases of the
curves of pz z(H) are to be found in resonance fields for
Τ « θ0: the maxima are shifted toward higher fields,
and the minima toward lower fields.

11 Sov. Phys.-Usp., Vol. 17, No. 1, July-August 1974 R. V. Parfen'ev et al. 11



4. MAGNETOPHONON RESONANCE IN
SEMICONDUCTORS WITH NON-STANDARD
BAND SHAPES

a) Nonquadratic isotropic dispersion law. For an
arbitrary dispersion law, the MPR condition can be
written, starting from the law of conservation of energy,
in the form

&N* — ε ^ ' β ' = ft(Oo, (73)

where €JJS is the energy of the N-th Landau level with
spin quantum number s = ± 1/2. In the case of an iso-
tropic nonquadratic dispersion law, which is found, e.g.,
for the electrons of a number of ΠΙ-V compounds, we can
write down an explicit expression for e^s· The non-
parabolicity of the conduction band near the edge arises
in this case as a result of the interaction between the
conduction band and the valence bands at k = 0. The
energy levels in a magnetic field for the conduction band,
the light-hole band, and the band split off as a conse-
quence of the spin-orbit interaction are given, when
terms containing the free-electron mass m0 (which is
usually much smaller than the effective mass m n at the
band edge) are neglected, by a cubic equation analogous
to Kane's equation in the absence of a magnetic field[5e]:

(74)

where eg is the band gap at k = 0, Δ is the value of the
spin-orbit splitting of the valence band, and Ρ is the inter-
band matrix element of the momentum operator. In (74),
the bottom of the conduction band is chosen as the zero
of energy. For Η = 0, Eq. (74) goes over into Kane's
equation. The spin-de pendent terms are proportional to
L"2 and give a spin splitting of the levels, which is pro-
portional to the spectroscopic splitting factor g.

With the assumption € μ « *g + (2Δ/3), which is
valid in a wide range of energies for all the semicon-
ductors studied, the cubic equation (74) reduces to a
quadratic equation, the solution of which for the conduc-
tion band is of the form

[(^ + τ ) ' ι Ω » + ^ + 5 ^ / ί ] · (75)

where Ω = eH/mnc, μ Β = eft/2moc, gn = -(2m,/mn)A/
(2Δ + 3eg) is the g-factor at the bottom of the band, and

2P2
ε» + Δ , (76)

For the situation when-fit^ « c g , the MPR condition,
as follows from (73) and (75), takes the formt 5 7 ]

(73a)

where t = gnmn/2m0 = - Δ/(2Δ + 3eg).

Using the expression (75), from the position of the
magnetoresistance peaks and with the aid of the reso-
nance condition (73) for s = s' we can determine the
effective electron mass mn at the bottom of the band, if
ω0, 6 g and Δ are known. For n-InSb, e.g.,1*61 the values
of m n calculated with allowance for the non-parabolicity
of the conduction band coincide with the cyclotron reso-
nance data and differ markedly from the values obtained
for a simple parabolic band (for 120°K, the relation
Ω η = ω0 gives mn/m0 = 0.016 (cf. Sec. 2), while the true
value is m n = 0.014m0).

Allowance for the nonparabolicity of the conduction
band, i.e., use of formula (73a), has made it possible to
interpret the results of MPR measurements correctly
and to determine the dependences of the effective mass
m n (76) on pressure for InSb[58] and on temperature for
InSb, InAs and GaAst29].

As follows from (75), the Landau levels e N s are in-
equivalent for a nonparabolic band. In connection with
this, the values of the resonance magnetic fields depend
not only on the difference Ν' - Ν , but also on the labels
Ν and Ν'of the levels (cf. (73a)). This should lead to a
specific asymmetry in the MPR lineshape (a broadening
of the lines on the high-field side), which should in-
crease with increasing temperature. Such features have
been observed in InSbt28]. The contribution of transitions
between high Landau levels, when these transitions
cannot be resolved, leads to a shift of the MP extremum
toward higher fields. Allowance for such transitions in
InAs at room and higher temperatures (0O = 340°K)[29'59]

leads to good agreement between the calculated (76 kOe)
and experimental (76 ± 4 kOe) resonance magnetic field
values corresponding to a transition between the zeroth
and first Landau levels (if we disregard the contribution
of transitions between levels 1—2 and 2 — 3 , the cal-
culated value of H r e s = 71 kOe).

b) Anisotropic quadratic dispersion law. In many-
valley semiconductors of the N-Ge type, the MPR can be
of two types. One of these, which has been discussed
above, is associated with the scattering of electrons by
optical phonons, the electron remaining within a given
energy valley. The second type of MPR is due to elec-
tron-phonon scattering with a transition from one energy
valley to another[60]. In intervalley scattering, the elec-
tron absorbs (emits) an "intervalley" phonon with quasi-
momentum'nq12 equal to the distance between the centers
of the valleys 1 and 2, and with energy Ίιω The funda-
mental conditions for the appearance of MPR in the case
of intervalley transitions remain the same as for intra-
valley transitions: it is necessary that the density of
electron states have singularities and that it be possible
to neglect the dispersion of the phonons.

The resonance condition in a transition between
equivalent valleys, i.e., valleys in which the cyclotron
masses are equal and which, consequently, are not shifted
in energy in a magnetic field, have the same form as
(19):

= ΜΩ {Μ = 1, 2, 3, . . .), (77)

but the frequency ω0 is replaced by &q. In n-Ge, e.g.,
only longitudinal optical and acoustic phononst61, for
which the characteristic temperature 0q =<fiWq/k0

= 315°K[62], can take part in intervalley scattering. For
transitions between inequivalent valleys, displaced rel-
ative to each other by-fi^i - Ω2)/2, the resonance con-
dition has the form

Q,-at (ΛΤ, ΛΤ' = Ο, 1 , 2 , . . . ) . (78)

Since the electron scattering probability increases
sharply at resonance, the dependence of ΡχΧ on Η should
have maxima when the resonance conditions (77) or (78)
are fulfilled. The longitudinal magnetoresistance, most
probably, should have a minimum at resonance, since
usually the contribution of intervalley scattering is small
compared with that of elastic scattering1"33.

MP oscillations due to intervalley scattering in n-Ge
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have been observed in the investigation of Ρχχ[ 3 0 > 3 1 ] and

Pzzt51>e41·

The ratio of the oscillating part of the kinetic coef-
ficients to the monotonic background should be con-
siderably smaller for n-Ge than for, say, n-InSb, since
the contribution of scattering by optical phonons in InSb
is important while resonance scattering mechanisms
make only an insignificant contribution to the total
scattering in n-Ge.

The MP oscillations of p x x in Ge are so small that,
in the temperature range 30— 340°K, it has been possible
to observe themt 3 0'3 1 ] only by using the technique of
double time-differentiation of the signal from the
potential probes. In the curves Pzz(H) for the longi-
tudinal effects, the minima correspond to the resonance
conditions'^54' . Most of the extrema of p x x and p z z

correspond to intravalley transitions with Θ. = 430°K.
At the same time, in the curves of Ρ χ χ ί Η ) 1 3 0 " ^
p z z (H) t 6 4 ] for samples with concentrations 101 4-101 5 cm"3

for 90 < Τ < 180°K, peaks (at 155 and 80 kOe) that can
be attributed only to intervalley transitions with 0q
= 315°K have been reliably observed. That these peaks
are due to intervalley transitions can be confirmed by
the small amplitude compared with the other peaks (it
is approximately an order of magnitude smaller than
the amplitudes of the other peaks).

FIG. 8. Isoenergetic surfaces of the holes in tell-
urium for difference energies, and the types of extremal
cross sections.

1014 cm"3 and
1015 cm"3, the MP oscillations of p z z have been

In samples with concentrations η
n >
hindered from being clearly exhibited by the presence
of oscillations of unknown origin (it is possible that they
are associated with effects in the contact layers), the
frequency and amplitude of which are greater than those
of the MP oscillations. The reason for the absence of
MP oscillations of p z z in samples with η = 2 χ 1012 cm"3[31J

is unclear.

MP oscillations of ΡχΧ have also been investigated in
the p-type semiconductors p-Ge[31J, p-InSb and p-GaAst39].
Peaks for light and heavy holes have been observed. The
shape of the isoenergetic surfaces of the latter is not
spherical. Therefore, the MPR period depends on the
orientation of the magnetic field, and the effective masses
found are anisotropic (Fig. 7). The complicated band-
shape for the heavy holes leads to the appearance of fine
structure in the peaks[31].

c) Anisotropic nonquadratic dispersion law. An aniso-
tropic nonquadratic dispersion law holds, e.g., for holes
in tellurium, in which MPR has been observed[36"38].
Tellurium, a crystal with a sharply anisotropic structure,
belongs to the trigonal system and contains three atoms
in the unit cell. The latter fact and also the high atomic
polarizability (high atomic number) lead to the result
that, despite the dominance of homopolar bonding in

FIG. 7. Dependence of the cyclo-
tron mass m c of the electrons (1) and
holes (2) in germanium on the angles
between the magnetic field and the axis
[100] in the (110) plane, found from
measurements of MPR of p x x [ 3 1 1 .

tellurium, the long-wave optical vibrations can be ac-
companied by the appearance of dipole moments. The
existence of polar optical vibrations in atomic semi-
conductors with two atoms per unit cell (e.g., Ge) is
forbidden by symmetry i65\ The polar optical vibrations
in tellurium make a sufficiently effective contribution
to the scattering of the charge carriers to enable MPR
to be observed. As shown in , the greatest contribution
to the scattering of holes is made by phonons with energy

-fiw0 = 13.2 meV.

In the impurity regime, the conduction in tellurium is
p-type. The minima of the valence band3' of tellurium
are situated on neighboring edges of the six-faced prism
representing the Brillouin zone, near a vertex of the
prism. The dispersion law for the holes in the vicinity
of the band minimum is described by the expression

ε = Ak\ + Bk\ - ]//.2 + Ck\ -f D, (79)

| where kz and k^ = Vkx + ky are the components of the
wave-vector in the direction of the symmetry axis of
the Brillouin zone and perpendicular to it, and the con-
stants A, B, C, λ and D = (X2A/C2) + (C2/4A) have been
determined from experimental data[6e\

At energies below 2.3 meV, the constant-energy sur-
face is an ellipsoid of revolution with axis parallel to the
symmetry axis of the Brillouin zone Δ. For a hole energy
of e0 = 2.3 meV, two ellipsoids near one vertex of the
prism merge, forming a solid of revolution resembling
a dumbbell (Fig. 8).

The energy levels of the holes in a magnetic field
were found inC37]. For Η II c3 (c3 is the threefold axis),
two levels, arising from the maximum (Sm) and minimum
(Sc) cross sections of the dumbbell (Fig. 8), correspond
to each quantum number N. In the case H i e , , levels
with e < e0 corresponding to a pair of cross sections of
the ellipsoids are degenerate. For e = e0, the trajectory
of a hole in momentum space becomes a curve which
intersects itself, and the singular point Μ appears on it.
In this case (for e ~ e0), two types of trajectory can exist
simultaneously: an elliptical one and a dumbbell-shaped
one of twice the area, i.e., the degeneracy of the levels
is lifted as a consequence of the interaction of the orbits
through the energy barrier (magnetic breakdown).

Figure 9 shows the experimental dependences of the
magnetoresistance of tellurium for different orientations
of the magnetic field and of the current relative to the
c3 axis. The position of the oscillation peaks was found
to depend on the orientation of the magnetic field with
respect to the c3 axis. The positions of the peaks in the
range 20— 250°K does not depend on the temperature, but
the amplitudes are greatest near 80—100°K. For the
orientation Η ιι c3 i j and Η II c3 1 j , measurements on
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FIG. 9. Dependence on magnetic field of the longitudinal (a) and

transverse (b) magnetoresistance of tellurium at 77°K. (The hole con-

centration ρ = 1X 10 l s cm "3 [37 ] •)

samples with hole concentrations from 2 χ 1014 to
4 χ 101β cm"3 at 77°K have shown that the positions of the
oscillation extrema do not depend on the concentration.
Both these facts indicate that the cause of the oscillations
is MPR. It can be seen from a comparison of Figs. 9a
and 9b that the minima of the longitudinal magneto-
resistance correspond to maxima of the transverse mag-
netoresistance. This means that at 77°K the contribution
of the scattering of holes by optical vibrations is small
compared with the contribution of scattering by acoustic
vibrations. For Η II c3 II j , an additional minimum, the
nature of which is still unclear, is observed at Η = 280
kOe. The rest of the pattern of MP oscillations in tel-
lurium is in satisfactory agreement with the theoretical
analysis carried out by Bresler and Mashovets[37].

Recently, Miura et al. [ 3 8 ] investigating MPR in tel-
lurium, discovered that for Η I c3 the positions of the
MP peaks in the transverse magnetoresistance depend
on the direction of the current. Inasmuch as the cyclo-
tron mass depends only on the direction of H, the dis-
placement of the peaks can be caused by the participation
of phonons of more than one optical mode in the
scattering.

5. MAGNETOPHONON OSCILLATIONS OF OTHER
KINETIC COEFFICIENTS.

a) Thermomagnetic effects and the Hall effect. A
nonmonotonic dependence of kinetic coefficients on H,
due to resonance interaction of electrons with optical
phonons, can be manifested, obviously, not only in the
magnetoresistance but also in other effects of a dis-
sipative nature. We shall consider, e.g., the electron
thermoelectric power a e , which is due to the departure
of the electrons from thermodynamic equilibrium as a
consequence of a temperature gradient. The transverse
thermoelectric power a

x x ( H I VXT) in the lowest approx-
imation in (Ωτ)"1 does not depend on the scattering and,
as was shown by Obraztsov№], is simply related to the
entropy of the electron gas:

«i--4 · (80)

FIG. 10. Longitudinal (II) and
transverse (1) thermoelectric power
of n-InSb (n = 2.6X 10 1 4 cm ~3 at Τ =
1 3 0 ° K [ 6 9 ] .

a® can be expressed directly in terms of the electron
relaxation time1"1. Therefore, MP oscillations of a | z

are easily observed experimentally188"711. Figure
10te9' shows experimental curves of Δ α ζ ζ / α 0 and
Δ α χ χ / α ο a s a fu n ction of Η for n-InSb, and these clearly
illustrate the difference in behavior of the dissipative
and nondissipative effects. A study of the temperature
dependence of the MPR of a z z in n-InSbte9] shows that the
amplitude of the oscillations is a maximum at Τ ~ 200°K.
Since the monotonic part of the thermoelectric power
depends weakly (logarithmically) on Η[ β 8 > 7 0 ], the MP os-
cillations are manifested better in a | z than in the mag-
netoresistance. In favorable conditions, their amplitude
can be of the order of magnitude of the monotonic back-
ground[e9].

The positions of the extrema in the curve of a | z (H)
depend, as in the case of p z z (H), on the contribution of
the elastic scattering mechanisms and on the temper-
ature. Pavlov and Firsovt 7 2 ] showed that, in the case
when elastic scattering dominates, the minima of <*f z

should correspond to the resonance fields, but reliable
quantitative criteria were not obtained. From the ex-
perimental curves of [β9>70], the MP maxima are shifted
toward higher fields, and the minima toward lower fields.

In quantizing magnetic fields, a significant (and some-
times the main) contribution to the thermoelectric power
is made by the departure of the long-wave acoustic
phonons from equilibrium1·70'7 . This drag thermopower
aP is proportional to the electron-phonon collision fre-
quency. Although the optical phonons, which have a small
group velocity, do not take part in the creation of the
drag current, the quantity a ^ z , which is proportional to
the longitudinal magnetoresistance, can display MP os-
cillations if the contribution to p z z from inelastic scatter-
ing is important. MP oscillations of a z z in n-Ge, due to
both intervalley and intravalley electron transitions,
were observed in the work ofC74].

MP oscillations have also been observed in the study
of the Nernst-Ettingshausen (NE) effect in n-InSbr71].
The amplitude of the oscillations is considerably smaller
than in the thermoelectric power. This is connected,
apparently, with the effect of micro-inhomogeneiti.es in
the distribution of impurities, which in strong magnetic
fields (Ωτ » 1) lead to a sharp increase in the mono-
tonic NE effect but do not appreciably influence the
thermoelectric power[75].

As was shown in Sec. 2, the Hall current jy (13) is
nondissipative in the zeroth approximation in the para-
meter (Ωτ)"1. Oscillations in the Hall effect appear only
in the second order in (Ωτ)"1. It can easily be seen from
(7) that both the small quantity u ^ and the terms of
order (Ωτ)"2 from aXy make a scattering-dependent con-
tribution to Pxy. It is clear, therefore, that the MP os-
cillations in the Hall effect should be extremely small.

At the same time, the longitudinal thermoelectric power In fact, the oscillations of pXy observed in n-InSb
£76,77)
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and n-InP[ 7 7 ], with minima in the resonance fields, have
amplitude two orders of magnitude smaller than the os-
cillations of Οχχ. At the same time, in n-GaAs the ratio
of the oscillating part of p™ to the monotonic background
is considerably g r e a t e r ' , and the maxima correspond
to the resonance fields.

b) Hot-electron MPR. At sufficiently low temper-
atures Τ « θ0, ΜΡ oscillations in effects that are linear
in the electric field disappear, since the contribution of
scattering by optical phonons to the electron collision
frequency is exponentially small. However, in the region
of strong electric fields the emission of phonons by the
nonequilibrium system of electrons can be the principal
mechanism of energy relaxation in a number of cases.
In quantizing magnetic fields, the resonance character
of the relaxation of the electron energy should lead to
nonmonotonic dependences of the kinetic coefficients.
This effect is treated theoretically in the electron-tem-
perature approximation in'7 8 ' 8 0 1. The approximation of
an electron temperature T e may turn out to be inadequate
if the electron-electron collision frequency is less than
the electron-phonon collision frequency. However, it
enables us to elucidate the principal qualitative features
of the physical phenomena in the hot-electron regime.
In the review by Zlobin and Zyryanov'81-1, the limits of
applicability of the electron-temperature concept are
investigated, and cases are treated in which a direct
solution of the equation for the nonequilibrium electron
distribution function is possible. In the electron-tem-
perature approximation, the nonequilibrium distribution
function is postulated to be of the form

(81)

where R is a normalization constant and T e is de-
termined from the energy-balance equation

3Ε = έΡ(Γ,); (82)

here j · Ε = ^ Ε ί Ε ^ i s the Joule power and f(Te) is the
power transferred to the phonons by the system of non-
equilibrium electrons:

^-τ 2 (εμ-

o + 1 ) /μ-ΛΌ/ν) δ (εμ- ε,

(83)

-/"«in-

An analysis of the expression (83) shows that the
power loss ?(Te) at a fixed value of T e > Τ is an os-
cillating function of the magnetic field. When the MPR
condition (20) is fulfilled, #(T e ) diverges logarithmically.
If the resistance is due to elastic scattering of the elec-
trons, which is always the case at low temperatures, the
Joule power j · Ε is a smooth function of H. Consequently,
the electron temperature Te(H) defined by Eq. (82) must
be a nonmonotonic function. In particular, for ΜΩ = ω0,
T e becomes equal to the lattice temperature T. As a
consequence of the resonance increase in the frequency
of emission of optical phonons, a sharp cooling of the
electron gas occurs.

Since, in magnetic fields far from the resonance
fields, T e increases with increasing electric field, the
amplitude of the oscillations is determined by the elec-
tric field. Allowance for the broadening of the Landau
levels leads to the removal of the divergence of # ( T e ) ,
and therefore T e will be somewhat larger than Τ in
MPR conditions. Allowance for the nonequilibrium char-
acter of the optical phonons also limits the power ;?"(Te)
at resonance'823. The nonmonotonic character of the

dependence Te(H) can lead to MP oscillations of the mag-
netoresistance even when the relaxation of the momentum
occurs as a result of elastic oollisions, and "ordinary"
MP oscillations (in the ohmic region of electric fields)
are impossible. MPR has not been observed in any of
the materials investigated in weak electric fields Ε < 50
mV/cm in the temperature range Τ < 40°K. However,
in sufficiently strong electric fields, when T e apprec-
iably exceeds T, MP oscillations have been observed
even at liquid-helium temperatures in n-InSb'831.

Since hot-electron MPR is associated with relaxation
of energy, and not of momentum, the oscillations of ρ χ χ

and p z z should be similar both in amplitude and in
phase. Since Ρχχ and p z z are decreasing functions of
T e for elastic scattering by acoustic phonons or impur-
ities, they should attain their maximum values in the
resonance fields. This conclusion is confirmed by the
numerical calculations of Peterson'7 9'8 0 1. However,
minima of p x x and p z z have been observed experimentally
in resonance fields in n-GaAs[84) and n-InSb[ . It is
possible that this fact shows that the electron-temper-
ature approximation is not justified in the conditions of
the experiments of'84'851, i.e., the electron distribution
function does not have the simple form (81). Attempts
have been made'8 6'8 7 1 to determine the form of the non-
equilibrium distribution function in strong electric fields
directly from solution of the kinetic equation. It follows
from the results of'86'871 that there should be resistance
minima at resonance, but it is difficult to assess the va-
lidity of the approximations made (cf. also'811). Recently,
Stradling'39' has reported results from the observation
of MPR in the resistance for hot electrons in n-SnSb,
n-InAs, n-GaAs, n-InP and n-CdTe in the temperature
range 10-20°K. In all the cases studied, the MP ex-
trema were shifted toward lower fields relative to the
resonance fields. The magnitude of the shift correlates
with the ionization energy of the donors. Stradling ad-
vanced the hypothesis that, in the process of emission of
an optical phonon, the electron undergoes a resonance
transition from an upper Landau level to an impurity
level. It is not clear, however, under what conditions
this will be more probable than a resonance transition
to the zeroth Landau level.

The authors of[S8] observed MPR in n-InSb at Τ = 77DK
in the weakly non-ohmic region. A special sensitive
technique made it possible to observe oscillations of the
"non-ohmicity" coefficient β = (u(E) - uo)/E2. It is
interesting that the extremely small oscillations of the
coefficient β (Au ~ 10"eu0) were observed against the
background of the ordinary MP oscillations of <rxx, the
amplitude of which amounts to several per cent of the
monotonic part.

While studying the acousto-electric current in n-InSb,
Colat and Bray'8^ detected MP oscillations that could be
interpreted using the electron-temperature approxima-
tion'801. The acousto-electric current is inversely pro-
portional to Te, and therefore the effect has maxima at
resonance.

c) MP oscillations of the photomagnetic effect and of
the photoconductivity. In addition to SH oscillations, MP
oscillations have been detected in the study of the photo-
magnetic effect (PME) and the photoconductivity in n-InSb
at liquid-helium temperatures'9 0'9 1 1. In'9 0 1, the dependence
of the odd-PME voltage Vpjyj on the magnetic field was
investigated for samples with η = 2.2 x 1014 - 1.1 x 1017

cm"3. With decreasing electron concentration, the SH
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TABLE

Material

InSb

InAs
InP

GaSb
GaAs

GaP

AlSb

PbTe

τ, ·κ

4
100
300

4
4

300
4
4

300
4

300
4

300
4

u, X 10-"«c-'

3.72·'
3.641 „
3.59/
4.59»'
6.59 ι „
6.5 /
4.53"

If}"
7.6»

6.491,,
6.41/
2.07100.101

«*)

0.02

0.05

U . l l

0.025
0 07

0.2

0.13

Material

PbSe
PbS
CdTe

CdSe
(wurtzite)
CdS

(wurtiite)
HgTe
Ge
Te

τ, ·κ

4
4

20
300

20
30»

77
300

10
300
300

ω,Χ ΙΟ-''iec"1

2.5ioo
3.99ioo
3.23102.108
3.22 ιο·
4 Q9103
3.98105
5.7510·

2.17107
5.65 «

1)1.811
2)2.0 I"»··)
3)2.73 J

α . )

0.3

0.5

0.6

0.1

0.04 1
0.13 \ 108
0.01 J

'The coupling constants α are calculated from formula (27). For κ0 and Ko° in
the III-V compounds, the values given in the review [""] are taken. The values of
«ο and Koo in CdTe, CdSe and CdS are taken from [""], and in HgTe from [""].
The values of the effective masses m are tken from [ ' " ] .

"Three effective longitudinal optical frequencies from data on reflection in
the infrared region, with light polarized parallel to c 3 ( l ) and perpendicular to c3

(2 and 3), are presented. There is a misprint in the paper [""] for the coupling
constant α in case (1).

oscillations are displaced toward weaker magnetic fields
and, in the region of the quantum limit 1ίΩ > ζ, an ad-
ditional series of peaks, the positions of which do not
depend on the concentration, are detected. The additional
series of oscillations is periodic in the inverse mag-
netic field, with a period Δ(1/Η) = 3 x*10"5 Oe"1 that coin-
cides with the period of the MP oscillations of the kinetic
coefficients in n-InSb. The minima of Vp^iH) corre-
spond to the resonance values of the fields for the MP
oscillations. When the temperature is raised to 20°K,
the MP oscillations of the PME disappear. It should be
noted that 1) in the conditions of the experiment, the
principal carriers in n-InSb (the electrons) play the
decisive role, whereas, according to the diffusion theory,
the holes should make the main contribution to the PME,
and 2) the MP oscillations are detected at very low tem-
peratures. These facts cannot be explained from the
standpoint of the ordinary diffusion theory of the PME.
As the authors of*-92"941 have shown, to understand the
observed features of the PME it is necessary to take
into account the heating of the electrons by the light. In
samples with sufficiently high electron concentrations,
the frequency of collisions of photoelectrons with equi-
librium electrons is higher than the frequency of
emission of optical phonons. Therefore, the main part of
the excess energy of the photoelectrons is redistributed
between all the electrons. As a result, the electron dis-
tribution function has the Fermi form with an effective
temperature T e and chemical potential £e somewhat
different from the equilibrium values Τ and ζ, and T e

and te depend on the coordinates. In the photodiffusion
current, there appears, together with the usual term
proportional to the gradient of the electron concentration,
a term proportional to VTe. On application of a magnetic
field, this term gives the main contribution to the short-
circuiting photomagnetic current, and the PME is thus,
in essence, a NE effect with an electron-temperature
gradient. The appearance of MP oscillations of Vp M can
then be understood in the following way. The probability

of emission of an optical phonon by a photoelectron sit-
uated in a Landau level increases sharply when the con-
dition (19) is fulfilled. At the same time, the electron-
electron collision frequency is a smooth function of H.
Hence, it follows that near a resonance the amount of
energy transferred by the photoelectrons to the electron
system decreases. This corresponds to a decrease of
T e . Consequently, the PME voltage, which is related to
VTe, should have minima when ΜΛ = ω0. For sufficiently
low electron concentrations, the electron-electron inter-
action is weak and all the photoelectrons have time to
emit optical phonons. This leads to a decrease of the
PME signal and to the disappearance of the MP os-
cillations, and this is observed experimentally. MP
oscillations of the photoconductivity on heating of the
electrons by the light have also been observed in CdS[95].

6. CONCLUSION

In the decade that has passed since the first observa-
tion of MPR[9], this effect has become a new and power-
ful means for studying the band-structure parameters of
charge carriers in semiconductors. In many cases, the
effective masses and their dependence on the temper-
ature and pressure have been determined with high ac-
curacy, comparable with the accuracy of optical and
magneto-optical (cyclotron resonance) methods. How-
ever, the role of MPR in the study of semiconductors is
considerably wider, and it may be hoped that other
potentialities of MPR, which make it possible to study
complicated details of the electron-phonon interaction,
will be realized in the future Conjecturally, we can
point to such effects as the polaron interaction, multi-
phonon processes, and broadening of the Landau levels,
which all determine the lineshapes and amplitudes of the
MP oscillations. Both experimentally and theoretically,
these effects have not yet been sufficiently studied.
Another group of little-studied problems is associated
with the MP oscillations in the hot-electron regime—
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these problems are the mechanisms of the energy re-
laxation and the form of the nonequilibrium distribution
function in MPR conditions. Finally, the study of spin-
magnetophonon resonance, in which electron scattering
with a spin-flip occurs, could be promising. This effect,
which is treated theoretically in papers by Pavlov and
Firsovt 9 e ] and has been detected experimentally in
n-InAst593, can give information about the g-factor, the
magnitude of the spin-orbit interaction energies and the
spin-lattice relaxation time in semiconductors with
strong spin-orbit interaction.

APPENDIX

Values of the limiting optical-phonon frequencies ω0

and coupling constants a of the charge carriers with the
optical phonons for certain semiconducting materials.

do not consider the case of two types of charge carrier of opposite
sign and equal concentrations, e.g., pure semimetals or intrinsic semi-
conductors. For an equal number of electrons and holes in strong mag-
netic fields, σ χ ν = 0 and ρ χ χ = 1 Ιοχχ

2*The inelastic nature of the scattering of electrons by acoustic phonons
can only be important in the region of very low temperatures or in ul-
trahigh magnetic fields. However, this inelasticity cannot lead to the
appearance of oscillations similar to MPR, since the acoustic phonons
have strong dispersion ω - "^q.

3)The energy of the holes is assumed to increase on moving away from
the boundary - the minimum - into the interior of the band.
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