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F. I. Fedorov. The Theory of the Optical Activity of
Crystals. Optical activity is the most important mani-
festation of spatial dispersion, i.e., of the dependence of
the permittivity tensor on the -wave vector. Optical ac-
tivity has for a long time been inseparably linked with
the phenomenon of the rotation of the plane of polariza-
tion of linearly polarized light passing through a medium
in an arbitrary direction (for active isotropic media and
cubic crystals), or in the direction of the optical axes
(for active uniaxial and biaxial crystals) with which
another name, gyrotropy, is associated. On this basis,
crystals of the planar classes of the intermediate syn-
gonies, in which rotation of the polarization plane is
impossible for any direction, belonged to the set of
crystals which could not be optically active1-1"4-1. A dif-
ferent point of view was expounded in'-5'83', and in1-7^ a
plan for an experiment is proposed which allows the de-
tection of the manifestation of optical activity in the
planar crystals of the intermediate syngonies.

The electrodynamics of gyrotropic media is charac-
terized by the following matter equations:

Di = eihEk+ aikivhEi, Hi = μΛΗΗ + PjiiVjtf,; (1)

here the third-rank tensors a^ and β^ are responsi-
ble for the gyrotropy and, according to^'6^1 (see also1-8-1),
the nonvanishing of at least one of them is necessary
and sufficient for the medium to be optically active. In
the book^8] it was assumed that β-, , = 0, and, on the
basis of the symmetry principle for kinetic coefficients,
aikZ w a s fou nd to obey the condition

aihl = — alht = 'ilmamh (2)

(ei/m *'s ' n e Levl-Civita symbol), as a result of which
Eqs. (1) assume the form

D=eE+[aV, Ε], Β = μΗ. (3)*

In1-5-1 this problem is considered from other angles.
The restrictions on the tensors cvy^ and β^, are der-
ived from the requirement that from the constitutive
equations (1) and the Maxwell equations

rot Ε = — ί-'Β, div Β = 0,

rot Η = c~lD, div D = 0

(4a)

(4b)

should follow the energy conservation law in the usual
form

div S + w =, 0, (5)

where S is the energy current density vector and w is
the energy density. The condition (2) is again obtained
for the activity tensor, on account of which (1) assumes
the form

D = eE + [oV, Ε], Β = μΗ + [βν, Η]; (6)

in this case

*[aV, E] =aVXE.

where a^y. = a^. The role of the vector S in electro-
dynamics is well known; therefore the new expression
(7) (it differs from the standard expression c[ExH]/47r),
obtained for it i n [ 5 ] , is of definite interest. Note that the
energy relations are not considered in'-8-' at all, while
the expression (7) for β = 0 is used in the book11"3. In C l 0 ]

the method expounded in1-5-1 is applied to the case of
moving optically active media.

It subsequently becomes clear, however, that the re-
lations (6) and (7) together with the standard boundary
conditions (continuity at the boundary of the tangential
components of Ε and Η and the normal components of D
and B) do not guarantee energy-flux balance when light
is reflected and refracted at the boundary of a gyro-
tropic medium1'.

Thus arose the necessity to change either the rela-
tions (6) and (7), or the boundary conditions, or both.
Hence it is clear that we encounter in the theory of
gyrotropic media a number of fundamental problems
connected with the generalization of the basic electro-
dynamic relations.

A more detailed investigation shows that for the
constitutive equations (1) the energy conservation law
in the form (5) can be satisfied in more than one way.
For this purpose the relations (1) were used in their
original form in^ 5 ] . At the same time, we can, by de-
composing the tensors or^, and β ^ into their symme-
tric and antisymmetric parts with respect to the indices
kZ, separate out the curl operation and use the Maxwell
equations (4) in (1). By applying such procedure to Eqs.
(1) and (4), the authors of [ u- obtained the relations2 '

D = ε (Ε + α rot Ε), Β = μ (Η + α rot Η), (8)

for the case when the energy conservation law (5) in
which

S = (c/4ji)|EH], IU=(1/8JI) (De-'D + Bu-iB). (C)\

is fulfilled. In this case the energy-flux balance for
light incident at the boundary of a gyrotropic medium is
fulfilled when the standard boundary conditions

[E, - E2, n] = 0, (B, — B2) η = 0,

[Η, - H2, η] = 0, (D, - D2) η = 0,

(10)

(11)

where η is the normal to the interface, are used.
In the constitutive equations (8), as in (3), the gyro-

tropy properties are determined in the most general
case of a crystal of arbitrary symmetry by the single
tensor a, i.e., by nine parameters. It was shown in^13^
that a mutual correspondence can be established between
the formulas (3) and (8), at least up to terms of first
order in the small quantities a.

In this connection let us emphasize particularly the
known fact that the Maxwell equations (4) alone certainly
cannot uniquely determine the vectors Ε, Β, Η, and,D.
Indeed, it is easy to see that the vectors

D' = D + rot Q (12)E' Ε + c->P, B ' = B — r o t P , H' = Η + c-'

w Naturally, this difficulty pertains in full measure to the theory
expounded in the book [9], since the latter is based on the relations (6)
and (7).

Similar results were obtained simultaneously and independently by
a more complicated method in [1 2].
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will satisfy the same equations (4) satisfied by Ε, Β, Η,
and D, for completely arbitrary vector fields Ρ and Q.
Thus, until the constitutive equations are given, we can-
not, strictly speaking, ascribe an entirely definite mean-
ing to the field vectors entering into the Maxwell equa-
tions (4). Let us, followingL u l, set in the relations (12)
Ρ = 0 and Q = 3D. Using (8) and neglecting terms quad-
ratic in a, we can solve (12) for the unprimed quantities
and obtain, after substituting in (8)—(11), the constitutive
equations, the energy conservation law and the boundary
conditions expressed in terms of Ε', Β', Η', and D'. 3 ) In
consequence we obtain

D' = εΕ' + β"rot Ε' + rot βΕ', Β ' = μΗ' (β = at),

Ε;-Ε;, η]=ο, (Β;-Β;)Π=Ο,

(13)

, (14)

(15)

[HJ-Hj, η]=-[β,Ε;-β 2 Εί, η], η (D; - D;) = η rot (β^, - β2Ε2). (16)

It can be shown that if in place of β another tensor γ:
γ = Tr β — β is introduced, then the first of the equations
(13) assumes the form D' = eE' + [yAxE'l , i.e., we ob-
tain the constitutive equations (3). Thus, according to^ 1 3 ]

we can go over from (8) [ 1 1 ] to (3) [ s : l through a redefini-
tion of the vectors Η and D. On redefining Ε and Biul,
we obtain another variant of the relations (13)—(16); we
can construct as many of such variants as we please.

It is shown i n L " ] that the relations (13)-(16) can
also be arrived at not through a redefinition of Eqs.
(8)—(11), but directly, on the basis of the energy con-
servation law (5) and the constitutive equations in the
form Dj = e i k E k + « ^ ^ 7 + VikZEZ> B = ^ H ' u s i n S
the same method as in'-11-1. The boundary conditions (15)
and (16) may then be obtained with the aid of the stan-
dard procedure—integration around a contour close to
the interface. These computations conclusively confirm
once again the consistency and interconnectedness of the
above-cited relations, as well as the fact that the en-
ergy conservation condition in the standard form (5),
which was first used in'-5-', plays the major role in the
phenomenological construction of the electrodynamics
of gyrotropic media. This role will apparently remain
in other generalizations of electrodynamics.

It was noted above that by redefining the field vec-
tors , we can derive a multiplicity of variants of the
electrodynamics of gyrotropic media, the variants dif-
fering in the form of the constitutive equations, in the
corresponding expressions for S and w, and in the form
of the boundary conditions. The meaning of the field
vectors entering into the principal Maxwell equations
(4) may then be different. Phenomenology does not en-
able us to make an unequivocal choice out of the various
formulations, but in view of the simplicity and symme-
try, we should in the phenomenological framework pre-
fer the relations (8)—(11), which are characterized by
the standard form of the boundary conditions and the
vector S (and, formally, w). A very important feature of
this formulation is the fact that the gyrotropy enters on
equal footing into the electric and magnetic constitutive
equations. In other words, if it is present, then the

corresponding terms should certainly be taken into ac-
count in both D and B. Furthermore, it was shown in t l 5 : i

on the basis of a detailed microscopic quantum-mech-
anical analysis that the constitutive equations should
have the form (8)4). The relations (8)—(11) are thereby
conclusively justified and, it seems to us, the problem
of the basic equations of the electrodynamics of gyro-
tropic media apparently can now be considered to have
been to a considerable extent clarified.

In the report'-16-' V. L. Ginzburg proposes a some-
what different version of the constitutive equations.
V. L. Ginzburg used a slightly modified form of the
general equation (13) obtained in'-13-' for the particular
case of an isotropic medium, writing the equation in the
form D = eE + 6j curl Ε + curl δ π Ε . In the case of an
isotropic medium it follows from Eq. (13) that 5j = 6JJ.
The energy conservation condition then has the standard
form (5). V. L. Ginzburg suggests we assume 6 j ^ δπ,
in which case in the energy equation appears an addi-
tional term which is of unknown nature and which we
must associate with energy liberation at the boundary.
No physical justification for such energy evolution
(which has never been observed in transparent gyro-
tropic media) at a surface is not presented. Notice that
if such a procedure is applied to the case of crystals,
then instead of one tensor β, we shall have to use two:
βι and β2, i.e., 18 constants instead of 9. V. L. Ginz-
burg's assumption is at variance with'-8-', as well as the
results of the microtheory1-1^. The reasons inspiring
such an artificial and quite considerable complication of
an already existing theory, which satisfies all the basic
requirements, remains completely vague.

4)We became acquainted with the work [ l s ] only after the publica-
tion of [ " ] . It is worth noting that the comparatively cumbersome, but
necessary, analysis in [ l s ] yields the same results, which are derived in
[ u ] from phenomenological considerations in only about 15 lines.

3 ) For example, the equation D' = (1 + VX5)D can then be solved in
the form D = (1 - V x a)D', etc. (V* F = curl F).

: M . Born, Optik, J. Springer, Berlin, 1933 (Russ.
Transl., GNTIU, Khar'kov, 1937).

2 F. Pockels, Lehrbuch der Kristalloptik, Lpz., 1906.
3 G. Sziwessy, Handbuch der Physik, Bd. 20, 1929.
4 A. V. Shubnikov, Osnovy opticheskoi kristallografii

(The Principles of Optical Crystallography), AN SSSR,
M., 1958.

5 F . I. Fedorov, Opt. i Spektr. 6, 85 (1959) [Optics
and Spectroscopy 6, 49 (1959)].

6 F . I. Fedorov, ibid., str. 388 [ibid., p. 237].
7 F . I. Fedorov, B. V. Bokut', and A. F. Konstan-

tinova, Kristallografiya 7, 910 (1962) [Sov. Phys.-
Crystallogr. 7, 738 (1963)].

8 L . D. Landau and E. M. Lifshitz, Elektrodinamika
sploshnykh sred (Electrodynamics of Continuous Media),
Gostekhizdat, M., 1957 (Eng. Transl., Pergamon Press,
New York, 1960).

9V. M. Agranovich and V. L. Ginzburg, Kristallo-
optika s uchetom prostranstvennoi dispersii i teoriya
eksitonov (Crystal Optics with Allowance for Spatial
Dispersion and the Theory of Excitons), Nauka, Μ.,
1965 (Eng. Transl., Interscience Publishers, New York,
1966).

1 0M. Marvan, Czechosl. Phys. J. (in Russian) 10, 771
(1960).



J O I N T S C I E N C E SESSION 851

1 1 B. V. Bokut', A. N. Serdyukov, and F. I. Fedorov,
Kristallografiya 15, 1002 (1970) [Sov. Phys.-Crystallo-
graphy 15, 871 (1971)].

12 V. N. Aleksandrov, Kristallografiya 15, 996 (1970)
[Sov. Phys.-Crystallogr. 15, 867 (1971)].

13 B. V. Bokut' and A. N. Serdyukov, Zh. Eksp. Teor.
Fiz. 61, 1808 (1971) [Sov. Phys.-JETP 34, 962 (1972)].

14 B. V. Bokut', A. N. Serdyukov, F. I. Fedorov, and
N. A. Khilo, Kristallografiya 18, No. 2 (1973).

1 5 H. Nakano and H. Kimura, J. Phys. Soc. Japan 27,
519 (1969).

16 V. L. Ginzburg, See this issue, p. 839.
1 7 B. V. Bokut', A. N. Serdyukov, and F. I. Fedorov,

Κ elektrodinamike opticheski aktivnykh sred (On the
Electrodynamics of Optically Active Media), Preprint
IF AN BSSR, 1970.

Ν. Ν. Sirota. Electron and Spin Density Distribution
and the Physical Properties of Crystals. The report
dealt mainly with the structure and physical properties
of crystals, including semiconductors and semimetals.
The structure and physical properties of these bodies
are determined by the nature and energy of the inter-
atomic interaction. The widespread solid-state band
theory can, in this connection, only be considered as an
element of the general theory of the chemical bond. We
must apparently agree with Coulson that the determina-
tion of the bonds in any molecule and in a crystal simply
consists in the description of the electron distribution in
them.

The most direct methods for determining the elec-
tron density distribution functions in a crystal are the
methods used in the study of x-ray, electron, and neu-
tron scattering. Since the value of the electron density
p(x, y, z) at a given point in a crystal is numerically
equal to the square of the modulus of the wave function
\ψ(κ, y, z) | 2, it is clear that the experimentally deter-
mined electron density distribution function is at the
same time a function of the square of the eigenfunctions.

The experimentally determined electron and spin
density distribution functions allow us, when using the
methods of quantum mechanics, to determine more ac-
curately the form of the eigenfunctions, to partially
separate the wave functions according to the orbitals of
the atoms, and find with the aid of the tools of quantum
mechanics the correlations between the wave and spin
density distribution functions and a number of physical
properties, and even carry out quantitative computa-
tions of the magnitudes of some of these properties.

The possibility of finding the electron density distri-
bution functions in a crystal from x-ray scattering was
pointed out by Bragg. The first systematic experiments
and computations were carried out in our country by
N. V. Ageev and likewise by V. E. Loshkarev.

In recent years experimental methods have been de-
veloped which allow us to increase considerably the ac-
curacy of the measurements and computations.

Investigations have been carried out at the BSSR
Academy of Sciences Institute of Solid-State and Semi-
conductor Physics on the experimental determination of
x-ray, electron, and neutron scattering form factors,
of structure factors, and electron and spin density dis-
tribution functions on the basis of the measurements of
the absolute, Bragg-scattering intensities. The magni-

tudes of the temperature factors and the root-mean-
square displacements of various sorts of ions were
also determined, and the anisotropy of the ion oscilla-
tions were taken into account. As a rule, the space of
the ion oscillations in a crystal had the shape of a sphere
or an ellipsoid. The electron and spin density distribu-
tion functions in a crystal were computed from the ex-
perimentally determined atomic scattering functions
(form factors), which were scaled to absolute zero tem-
perature and to the state of stationary atoms when
eliminating the zero-point oscillations.

The electron density distribution functions were in
this case found by means of a subtractive three-dimen-
sional Fourier synthesis—summation of three-dimen-
sional Fourier series comprising of the differences
between the structure amplitudes which had been rigor-
ously computed for a given known distribution function
for largely inner-shell electrons (it is possible this dis-
tribution was close to the real one), and for experimen-
tally determined structure amplitudes. In such a com-
putational method one sums up small differences which
form comparatively rapidly converging series, and
series-cutoff effects are completely eliminated. The
experimental measurement procedures and the compu-
tational methods developed at the Institute yield rela-
tively high degrees of accuracy. The errors are of the
order of 2—3%, or, expressed in absolute quantities, of
the order 0.1—0.05 el/A3. Electron density distribution
charts were constructed for crystals of the group IV
elements and for compounds of the type A^"B^ with the
diamond, sphalerite, and wurtzite structures. The ex-
perimental methods developed have enabled us to dis-
tinguish comparatively clearly bridges of sp3- couplings
in crystals with the diamond and sphalerite structures,
and to find in crystals regions with depressed electron
density.

For a number of substances, e.g., C, Si, Ge, and
certain compounds of the type Α ^ Β ^ ; potential distri-
bution functions have been found for the lattice, and po-
tential distribution charts have been constructed for
different planes. The values of the mean potential,
which are proportional to the diamagnetic susceptibili-
ties, are in good agreement with independent magnetic
measurements.

The effective charges of the ions were determined by
integrating the electron density over the volume of the
ions within the boundaries constructed from the elec-
tron density charts by comparing the theoretical struc-
ture amplitudes for neutral atoms with the experimen-
tally determined amplitudes for neutral atoms with the
experimentally determined amplitudes, as well as by
determining the ionicity coefficient λ, assuming that the
wave function comprises of component functions: φ = ψ^
+ λί/)β. The results of the estimates obtained by the
three indicated methods are close to each other and
coincide in sign. The magnitudes of the effective char-
ges of the ions have been determined for the majority
of the AlUgV-type compounds. It has been established
in this case that the A^I iOns are always positive. For
the A"%V-type compounds which have been investiga-
ted the values of the ionicity λ lie between the limits
0.745—0.715. A method has been developed for deter-
mining from x-ray patterns (from experimentally de-
termined form factors f) the dia- and paramagnetic


