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1. INTRODUCTION

U NTIL recently, the theory of stellar evolution, like
the theory of the internal structure of stars, had been
developed for single stars. At the same time, there are
fewer single s t a r s t l ] than there are double, triple, and
multiple stars in general. True, the evolution of a
"multiple" star like the sun is no different from the
evolution of a single star because the planets of the
solar system are comparatively far from the sun and
have negligible masses. The same can also be said of
the majority of the so-called visual binary stars, in
which the components1' have comparable masses but
are separated from one another by distances hundreds
of times greater than their diameters.

Close binary stars are another matter: their com-
ponents have dimensions comparable with the distances
separating them, so that various kinds of interactions
take place between them—reciprocal tidal effects,
strong reciprocal irradiation, exchange of matter be-
tween their outer layers, etc. The orbital motions of
the components have velocities in the tens and hundreds
of kilometers per second that are easily observed and
measured through the Doppler shift of the spectral lines,
which varies periodically with the period of the orbital
revolution. Binary stars that have been identified on the
basis of this criterion have come to be known as spec-
tral binaries (SB). When the orbital plane of an SB
forms a small angle to the line of sight, the observer
may witness periodically recurring eclipses of one
component by the other, something that is easily estab-
lished with the aid of photometric measurements. Such
binaries are known as eclipsing binaries (EB). Two
minima—primary and secondary—may be observed dur-
ing one orbital period of an EB (Fig. la), but the secon-
dary minimum often escapes the observer, as when the
companion has a much lower surface brightness than
the primary component or is much fainter to begin with.
In this case, not even the spectral lines of the compan-

ion are observed, and the periodic line shifts of the
primary component alone, which reflect its motion
along its orbit, determine the dimensions only of this
orbit, while the orbit of the companion remains un-
known.

Every Ε Β is at the same time an SB, but the con-
verse is not true. On the other hand, other instrumental
aids equal, stars that are incomparably fainter than the
spectral binaries are accessible to photometric obser-
vations. For this reason, there are many more known
EB than SB. Thus, more than 4000 EB [ Z : i and fewer
than 800 SB [ 3 ] had been identified by 1970.

Analysis of spectral observations—the radial-veloc-
ity variations of the components and photometric meas-
urements taken from the plotted brightness curve (see
Fig. la)—yield much information on the physical char-
acteristics of the components: their masses 93ϊχ and W2,
radii Ri and R2, mean densities pi and p2, the inclina-

"That is, the stars composing the particular pair.

FIG. 1. a) Diagram of eclipsing binary with spherical components
in elliptical orbit (showing two positions of the components in their
orbits about the center of mass (X) and (at the bottom) the points cor-
responding to these positions on the brightness curve); b) diagram of
eclipsing binary β Lyrae with ellipsoidal components, and the correspond-
ing brightness curve (bottom).
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tion of the orbit to the line of sight, and the re lat ive
luminosit ies Li and L2 of the components (assuming
Li + L2 = 1 ) [ 4 ' 5 J , from which it i s easy to convert to the
absolute values of L in fraettons of the sun's luminosity
L ^ if the distance is known. On the other hand, if the

components a r e strongly deformed by tidal effects
(Fig. lb) , the degree of the deformation is determined.
When the br ightness curve is known with very high ac-
curacy, the distr ibution of brightness over the disk of
one or both of the components can be determined1-5-1.
All of these quantities a r e determined without supple-
mentary hypotheses, i .e., they may be regarded as ob-
served quantities. But when the l ines of only one com-
ponent of an SB a r e observed, the m a s s e s and dimen-
sions of the components cannot be determined without
additional hypotheses. In this case , the mass function
i(-))t), which has the sense1-4-1

/ (3R) = SK? sin31/(101, + 9Jl2)
2, (1)

can be derived from spect rogram m e a s u r e m e n t s ; h e r e ,
i i s the complement of the angle between the line of
sight and the orbital plane, which approaches 90° for
E B and is determined from observations. If we make a
hypothesis concerning the m a s s r a t i o a = W 2 : vitj (where
knowledge of Li and L2 somet imes helps), formula (1),
rewri t ten in the form

/(Si) = 3ft2sin;>i7(l +a~1)2, (1')

enables us to determine the m a s s 3.i;2 and then also
l«i = a'1^. We shall find a use for these arguments
l a t e r on (see Sec. 7).

One of the major achievements of Twentieth Century
astrophysics has been the establ ishment of a relation
between the mass of a s t a r and i ts luminosity, i .e., the
total amount of energy radiated by the s t a r per unit of
t ime. The luminosit ies of s t a r s a r e usually expressed
in units of the s u n ' s luminosity L ^ « 4 · 103 3 e rg/sec .

In view of the tremendously wide range of s te l la r lum-
inosit ies (from 10~" to 105 L ), they a r e represented

in logarithmic form as absolute s te l lar magnitudes M:

Μ = 2.5 lg L + const,

where the constant is so selected that the sun has
Μ « 5 m . 2 ) Statist ical ly averaged, luminosity is propor-
tional to the cube of the mass of the s t a r , or, more p r e -
c i s e l y [ 4 : i

where ρ < 1, but certain groups of stars may have ρ < 0.

Hence it is understandable that massive stars, e.g.,

stars with masses of 15— 30 5)!--., radiate energies in-

comparably larger than that of the sun.
Another fundamental advance of Twentieth Century

astronomy has been the construction of the
Hertzsprung-Russell (H—R) diagram, which determines
the positions of stars on the absolute magnitude vs.
spectrum or luminosity vs. effective temperature
plane.3 ' As we see from Fig. 2, the stars do not array

3D 20

2 )The superior m stands for stellar magnitude.

•" The effective temperature is obtained on the assumption that the
star radiates as a black body, i.e., the luminosity of the star expressed
in watts is L = 4πΚ2σΤ^«. where R is the radius of the star.

4J 4.3 4.0 3.7 J-S

FIG. 2. Hertzsprung-Russell diagram indicating the evolutionary
tracks of stars with various masses. The times (in millions of years)
spent by stars on the various path segments are indicated beside the
tracks. (The abscissa is -log Teff, with Teff at the top of the figure.)

themselves uniformly on the L - T e f f d iagram, but form
distinct groups or sequences.

Most of them lie approximately along the diagonal of
the sequence that has come to be known as the Main
Sequence (MS). The so-called dwarfs a r e represented
in the lower par t of the MS, and the hot s t a r s at the top;
the la t ter a r e known in l a r g e r numbers because, owing
to their high luminosit ies, we can observe them and
study them in detail even if they a r e distant from us.
However, we do not call them giants, s ince this name is
r e s e r v e d for a definite group of s t a r s that a r e cold but
radiate 50—100 t imes m o r e strongly than the sun (ob-
viously in virtue of their very large dimensions). Below
the giants we have the subgiants, which can also be r e -
garded as excessively luminous yellow and r e d MS
s t a r s . The fact that their m a s s e s a r e generally not
large inclines us to this interpretat ion.

The very top of the H—R diagram is occupied by the
super giants, which radia te colossal amounts of energy
and have correspondingly large m a s s e s . Conversely,
below the Main Sequence at the bottom of the H—R dia-
gram, we have the white dwarfs, which have compara-
tively high effective temperatures—the basis for differ-
entiating them from the ordinary Main Sequence dwarfs
(red dwarfs).

Because of their low luminosit ies, white dwarfs a r e
observed only in the immediate vicinity of the sun and
a r e known in comparatively smal l numbers , although
they may in fact constitute a highly numerous group of
s t a r s . Between the hot MS s t a r s and the white dwarfs,
there is a smal l number of s t a r s that a r e somet imes
r e f e r r e d to as the white-blue sequence. Still another
group, the subdwarfs, is observed below the middle of
the MS.

Theor ies of s te l la r evolution a r e tested by establish-
ing links between the various groups of s t a r s on the
H—R diagram, with s p a r s e population of a given region
on the diagram taken as signifying a rapidly unfolding
phase in the development of the s t a r . Needless to say,
it is necessary to take account of observational selec-
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tion here. Thus, although many giants are known to us,
their spatial density is extremely low. On the other
hand, the white dwarfs represent some extremely long
phase in stellar evolution, and the transition from the
hot stars to the white dwarfs (assuming that it does oc-
cur) takes place very rapidly, like that from the MS
stars to the giants. The evolution of a star can be de-
scribed in very cursory fashion as follows.

It is assumed that a star forms from a condensation
that has formed in a dense cosmic gas-and-dust cloud.
During the compression that follows, the condensation is
heated at the expense of a decrease in its gravitational
potential energy. This process unfolds comparatively
rapidly, and is accelerated by certain elementary
thermonuclear reactions that do not require high tem-
peratures. The result is a star; when its center has
reached a temperature on the order of 107 °K, which
supports a sufficiently effective "hydrogen-burning"
reaction in which four protons are fused to form an a
particle, the star enters a phase in which it exists for
a long time, its "maturity." At this time, the star is
represented on the H—R diagram by a point on the lat-
ter 's left boundary, which is known as the initial MS. It
radiates by the reactions 1H1 + 1H1 + χΗ1 — 2He3, 2He3

+ 2He3 —• 2He* + 2J.H1 (proton-proton reaction) or by the
fusion of four protons to 2He4 with participation of C l z

and the intermediaries 7N 1 3, sC
a, 7 N", 8O 1 5, 7N1 5 (Bethe

carbon-nitrogen cycle) ( L 4 ] , Chap. Γν; [ β ] , Chap. 1).

Depending on its original mass, the MS phase of the
star lasts from 1O10 years for stars of small mass to
107 years for the most massive stars. In this phase, the
star becomes slightly hotter at its center, its dimen-
sions and luminosity increase slightly, and its Tejff de-
creases, but the star does not leave the basic MS strip.
In the absence of mixing of matter in the star 's interior,
at its very center, its hydrogen is gradually exhausted,
and a helium core with no energy sources (except for
the gravitational source) is formed; it will be com-
pressed and heated, while the remainder of the star ex-
pands in the same way as a heated gas, &n$ the "burn-
ing" of hydrogen in a layer next to the isothermal hel-
ium core comes to be the basic reaction sustaining the
radiant emission of the star and the ejfcansion of its en-
velope. This process, which is attended by a substantial
(by tens and hundreds of times) increase in radius, takes
place very quickly—during a time 1—2 orders of magni-
tude shorter than the MS stage. Naturally, the effective
temperature T e g drops off sharply with the increase in
radius, and the star enters the giant phase. And since
compression of the core continues, its temperature
reaches ~ 200 million degrees near the center. This
gives free rein to the reaction in which three a particles
combine to form a carbon nucleus: 3ϊΗβ4 — eC12; the
reaction takes place so violently that there is not suffi-
cient time for all of the energy to escape, the core is
heated still more strongly and expands, and the layered
burning of hydrogen subsides somewhat owing to the
decrease in density, so that the luminosity of the star
decreases after the onset of the helium flash. This is
followed by compression of the envelope and an increase
in the temperature T e g . The combined release of en-
ergy in the layer and in the helium core heats the star
to a supergiant state with moderate temperature
('-e-1, Chap. 6;'-7a·1). However, this stage is reached only
by stars with large masses.

The subsequent development of the star is not quite
clearly understood, but since other nuclear reactions
with carbon and heavier elements are not sufficiently
effective, the star goes over into a short-lived phase of
radiant emission at the expense of gravitational energy,
shrinks rapidly, and, as the theory goes, enters the
white-dwarf state, i.e., that of a stellar configuration of
very (!) small size, most of whose volume is occupied
by a degenerate core. 4 ' Now its density reaches values
around 107 g/cm3, so that the degeneracy may be rela-
tivistic. It is supplanted by ordinary degeneracy in the
regions next to the core, where the densities are 1—2
orders of magnitude lower; only the layers at the very
surface of the white dwarf are free of degeneracy.

The shrinkage of the star—its collapse—occurs be-
cause the gas pressure is no longer capable of resisting
gravitation. Theory indicates that a white-dwarf con-
figuration with a mass larger than 1.2 33! „ is unstable.

Such white dwarfs cannot exist. If a massive star goes
over to the white-dwarf state, it must at some point
eject its excess mass. It is generally believed that this
ejection occurs catastrophically and is observed as a
supernova outburst'- -1.

2. BINARY STARS

Representatives of all groups of stars except per-
haps the pulsars are encountered among the components
of binaries (it is possible that two x-ray pulsars,
Cen X-3 and Cyg X-l, are components of binary sys-
tems). Further, combinations of components that we re-
gard as having widely differing ages are encountered
among the star pairs, e.g., the close pair BD + 16° 516,
where a KOV Main Sequence star is paired with a hot
white dwarf (see Table). The red dwarf is, of course,
by no means young, but the white dwarf is much older.
How could they have been paired? The combination of a
relatively young star of spectral class A2V with a white
dwarf in the Sirius visual binary system is even more
paradoxical. It differs from the first case in that the
components of the Sirius system are very far apart
(P « 50 years). But all of the many cases in which an
MS star is combined in a pair with a subgiant, the latter
having a mass smaller than that of the MS star, appear
no less paradoxical: do not stars with smaller masses
evolve more slowly, and does not the subgiant represent
an object that has already left the Main Sequence?

The physical characteristics of the most typical
representatives of the various classes of stars encoun-
tered in close binaries are assembled in the table.

Spectral observations of EB have shown that various
signs of the existence of hot gaseous masses in the
space between the components are frequently observed
in such systems.5 ' This is most frequently manifested
in the form of emission lines indicating either a gaseous
ring revolving around the main component or gas
streams in motion from one star of the pair to the other,
sometimes at very high velocity (in the hundreds of
km/sec). The case that we have in mind here is not the

4 )The reference here is to a degenerate electron gas ( [ 7 b ] , Chap. 5;
[ 8 a ] ) , whose pressure at Τ = 107—108 CK is considerably greater than
the ion and radiation pressures.

5)See the excellent review of observational data in Batten [ 9 ] , with
its extensive bibliography.
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Physical characteristics of the components of typical close binary systems
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Types of stars in combination

Both stars MS

Same

» »

Same, but contact system

MS star and subgiant

MS star and subgiant

Two giants

MS star and white dwarf

MS star and Wolf-Rayet star

Supergiant and?

Hot MS and?

Name of system

YCygni

TT Aurigae

YY Geminorium

W Ursae Majoris

U Cephei

f Aurigae

a Aurigae

BD +16°516

V 44 Cygni

c Aurigae

β Lyrae

Period,
days

2.996

1.333

0.814

0.334

2.493

972.1

104.0

0.521

4.212

9890

12.9

Spectral classes
of components

B0
B0

B3
B7

Ml
Ml

F8
F8

B8
G8III

K4II
B6V

G5III
G0III

K0V
Β

06
WN6
F2Ia

B8p
A7?

Μγ

- 2 " . 5
- 2 . 5

- 1 . 4
- 1 . 2

9.3
9.5

4.1
4.7

- 0 . 6
2.3

- 2 . 5
- 1 . 1

- 0 . 3
+0.1
+6.3

+11
- 5
-3.5

- 8

-3.4

Tell

22 000°
22 000

16 000
13 000

3 500
3 500

6 200
6 200

12000
4 000

3 700
14 000

4 650
5 300

4900
15 000

30 000
13 000?

7 000

12 000
7 700?

Mass in units

17.7
17.2

6.7
5.3

0.64
0.64

1.3
0.6
4.8
1.9

8.3
5.3

3.09
2.95

0.8
0.6

35 (27?)
19.5(11?)

35
23

10
20

Radius in
units of

5.9
5.9

3.7
3.4

0.62
0.62

1.1
0.6

2.7
4.6

160
2.3

14
8

0.6
0.012

12.5
18

290

15

Diameter
of orbit,
units of

28.5

11.7

1.98

2.5

14.7

960

169

3

42

7500

68

phenomenon of the so-called Wolf-Rayet stars (see
also p. 794), where a permanent gaseous envelope that
surrounds one star of the pair predominates, but that of
assymetrically disposed, rather dense streams that
vary in time. These streams are especially conspicuous
in β Lyrae, RZ Scuti, and others'^' 5*.

The existence of gaseous streams in close binaries
can be explained from the premises of celestial mechan-
ics, mainly with the aid of the classical limited three-
body problem Ll0'nl.

This problem examines the motion of a point of
vanishingly small mass in the gravitational field of two
likewise point masses 3JU and i);2, which are in motion
on circular orbits about a center of mass (CM) at the
Keplerian angular velocity ω^. The equation of motion
of this point in an (x, y, z) coordinate frame in rotation
at velocity ω^ will be

1 r + 2 ( % ¥ ) = 8 r » d 1 ' , (2)

where Φ is the potential function (taken with the minus
sign). This equation has the Jacobi's integral

where C is a constant determined by the initial condi-
tions and the equipotential surface Φ = C is the limiting
surface for motions of this kind, since we have Φ < C
on more distant surfaces and the velocity would be im-
aginary. Hence the surface

Ψ = C

is known as the zero-velocity surface.
The initial conditions determining the constant C are

as follows: if the point has the coordinates (x0, y0, z0)
and the velocity-vector components [dx/dt]0..., and its
distances from 5)!x and JDi2 are r 1 0 and r2o, respectively,
then

The values of the function Φ are large for small dis-
tances from Ώίι and "№2, and the surfaces Φ = const are
isolated spheres around each of the masses. With de-
creasing C, these spheres are drawn out toward one
another and ultimately merge into a single hourglass-
shaped surface (Fig. 3) with a figure-of-eight shape in
the cross section cut by the orbital plane. This surface
is the limiting Roche surface, and the point at which the
two cavities meet is the first Lagrangian point. With a
further decrease in the value of C, the surfaces envelope
both points Mi and M2, and they cease to be closed sur-
faces at the second Lagrangian point L2.

6>

As long as the limiting Roche surface remains the
region on which motions are possible, a material point
belongs to either one of the attracting masses 3)}i or 3.'ϊ2,
but if it arrives at point Lx with zero velocity, it must
remain there, since not only the velocity, but also the
acceleration vanishes at Li. Thus, matter may accumu-
late at the first Lagrangian point.

If a material point reaches the Roche surface with a
certain velocity, it will cross this surface, and our point
will be found inside the surface enclosing the entire
system, i.e., it will belong to neither of the masses Wn

or 3)?2. This may be either a short-lived or a long-lived
phenomenon, and matter may be transferred from the
cavity of ΐ'ίι to the cavity of 3)i2 or in the reverse direc-
tion. Such transfer will be easiest through point L1 ;

because grad Φ = 0 at this point and the transition is
accomplished without performance of work. In analog-
ous fashion, it is easiest for matter to escape the sys-
tem through point Le.

The solutions of the limited three-body problem can
be applied to the motions of gas streams within a binary
star system if it can be assumed that the mass of each
component is concentrated at its center (Roche model).

here μ = 3Ji2
consider here only some of the solutions to the limited three-

body problem.
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f
FIG. 3. Cross section of two zero-velocity surfaces in the equatorial

plane for the mass ratio 1:0.216. Points L, and L2 are the first and
second Lagrangian points.

FIG. 4. Equatorial and polar sections through limiting Roche sur-
faces for component rotating nonsynchronously with angular velocities
Ω = 0, 1, 2, 4, and 16ω κ for a = 0.43.

This is not, of course, the case, but calculations H12 3
made for stars constructed in accordance with poly-
tropic models with the matter concentrated to various
degrees indicate that the pattern of the motions remains
qualitatively unchanged, and that the dimensions of the
limiting Roche surface and the position of the Lagran-
gian points are affected very little.

The applicability of the limited three-body problem
to the motion of particles in gas streams of high density
is another problem. In this case, it is necessary to take
account of the gas pressure ρ in the equation of motion
(2) (specifically, to introduce the term — p"1 grad ρ into
its right member), concerning which the celestial-
mechanical theory set forth above tells us nothing. The
real—gasdynamic—problem has only been stated in ap-
plication to our case, and then only with very strong
simplifications t l 3 > u ^ . Rotation of one or both compon-
ents of the pair introduces certain changes into the
problem if they rotate with angular velocities Ω that
differ from the orbital angular velocity ω κ

Γ ΐ 5 " 1 7 3 . In
this variant of the limited three-body problem, it is
necessary to include in the potential expression an ex-
pression for the centrifugal-force potential in a coordin-
ate system (ξ, η, ξ) that rotates together with the star,
i.e., the term (1/2)(1 + f) 2(| 2 + η2), where 1 + f = Ω/ωκ,
and this has as a consequence that the limiting Roche
surfaces are significantly reduced in size at large f, as
is shown by way of example in Fig. 4. In this case, a
strong instability is created along the entire equator of
the rapidly rotating star.

The relative dimensions of the cavities in the Roche
surface depend only on the mass ratio SJli: 3J}2. Detailed
tables have been compiled for quantitative description
of the zero-velocity surfaces'-18-1.

Since both the mass ratios and the sizes of the com-
ponents are known for many EB, an inference can be
drawn as how far the surfaces of the components are
from the critical Roche surface of the particular sys-

tem. An analysis of this problem led Kopal1-19-1 in 1955
to the conclusion that close binary s tars are distributed
along three groups: a) detached systems, in which the
components have dimensions much smaller than their
Roche cavities, b) semidetached systems, in which the
surface of one component coincides with its Roche cav-
ity, and c) contact systems, in which both components
fill their Roche cavities. Referring to our list in the
table, for example, the first three systems would be
classified as detached, the fifth as semidetached, to-
gether with the first EB to be discovered—β Persei or
Algol. Finally, the contact systems are represented by
the fourth star on our list, W Ursae Majoris. While the
detached systems are accurately described by the dia-
gram in Fig. la, the contact systems are more similar
to Fig. lb, except that the components should be brought
even closer together.

3. ORBIT VARIATIONS OF A CLOSE PAIR

If a star in a close pair fills its Roche-surface cav-
ity, then even the simple thermal motion of the gas par-
ticles of its atmosphere will be sufficient for their es-
cape either into the space around the star or through the
point Li to the companion star. We have seen above that
stellar evolution brings an MS star to the giant stage, in
which its radius increases by tens and hundreds of
times, and at a rather rapid rate. But then this star, as
part of a close pair, must fill its Roche cavity and
"overflow" continuously across the rim of that cavity
or, more correctly, through the "spout" at point Lt. If
this process is sufficiently stable, one star of the pair,
namely the more massive one, will anticipate the evolu-
tion of its companion and begin to lose mass rapidly,
transferring it to the companion, which retains approxi-
mately the same size but increases steadily in mass.
As a result of such evolution, the components of the
pair exchange roles and the erstwhile companion be-
comes the Primary star. Precisely this "role-chang-
ing" mechanism was proposed by Crawford'-20·' in 1955
to explain the aforementioned paradox in which an MS
star is paired with a subgiant of lesser mass. This idea
has been exceedingly fruitful and has been developed in
numerous later studies.

Application of this mechanism to real stars requires,
first of all, work on the problem of orbital-diameter
variation in double stars, since the absolute dimensions
of the Roche cavity depend both on the mass ratio of the
components and on the absolute dimensions of the orbit.
In fact, the orbital angular momentum <$? of a binary
system is determined by the equation (see, for exam-

[ 1 ]

where G is the gravitational constant and a is the semi-
major axis of the orbit. If no matter escapes the sys-
tem, this quantity should be a constant. We then have
for a circular orbit (e = 0) with the notation TO = 3J!i + w2

^'(SBii + SBa) 1 const ( 3 )
a~~ G SKfa»! ~~ a»f (a»—a»,)2 ·

This function will have its minimum value when 5Uix = 9»2.
However, if there is isotropic escape of matter from

the system, the condition1119'21*

a (S3li. + 5ER2) = const, (4)
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is satisfied, but only for slow mass variations. And a
significant correction may be applied to condition (3)
when transfer of matter from one component to the other
is also accompanied by transfer of part of the rotational
("spin") momentum of the star that loses mass. Need-
less to say, this process is effective only if all rotations
in this system are out of synchronism.

A detailed analysis shows'-21'22-' that when mass
transfer takes place from the more massive to the less
massive component, the dimensions of the orbit (and the
period of revolution) diminish. The opposite effect takes
place in the reverse process. We note that the masses
i?u and M2 appear symmetrically in formula (3). If the
orbit becomes smaller on l'!i — 3J!2 mass transfer, then
as 33ix decreases further after having become equal to
3)!2, the dimensions of the orbit should be restored be-
fore the new ϊθ!2: Wi becomes equal to the original
33!i: W2. However, this does not occur if the matter
transferred from 3J!i to 3'i2 forms a rotating ring around
•JJ!2, since it is into this ring that the transferred angu-
lar momentum goes'-23·1. The interaction between the
rotational and orbital angular momenta is extremely
complex. Particles are either transferred to the other
component or returned depending on the velocity and
direction of the sample. The circumstances of transfer
will also be different depending on whether the axial
rotation of the star is faster or slower than its orbital
motion. For particles returned to the star, momentum
will be transferred from the axial rotation to the orbital
revolution in the former case and in the opposite direc-
tion in the latter. But for particles transferred to the
second component, as we noted above, it is important
whether transfer occurs from the less massive or the
more massive star. Thus, the period of a close binary
star will be subject to variations in accordance with the
predominance of one process or the other > 2 1 · 1 . In
addition, if matter leaves the system altogether, the
semimajor axis of the orbit will increase in accordance
with (4), and the period will increase steadily.

Observations of the changes in the periods of EB,
which can be made with high accuracy, are one of the
means available for quantitative verification of the
arguments advanced here. These observations have
shown that most EB have inconstant periods that vary
both jumpwise and continuously^24'2^, with alternating
increases and decreases in the period. There are as
many cases in which the period is increasing as there
are in which it is decreasing1-26^.

Another tool consists in spectrographic observations
of EB, primarily of their emission lines, which, as a
rule, do not indicate the same radial velocities as the
absorption lines, which belong to the photospheres of
the stars. In addition, even the absorption lines of cer-
tain pairs (U Cephei, RW Tauri) are found to be distor-
ted as a result of absorption by cold gas masses that
mask the star to the observer. But it is the higher
strength of the emission lines and the distortions of the
absorption lines that indicate a substantial optical thick-
ness for the gas streams and a rather high density of
the matter in them, and, as we noted above, the pure
celestial-mechanics approach to the mass-transfer
problem is inadequate for quantitative analysis in such
cases. However, if we look beyond the details, the popu-
lation of EB with emission lines agrees statistically

with calculations performed to find stable periodic or-
bits about a component that has captured matter from
the other component1-2^. Direct observations of the
eclipsing binary RW Tauri during a total eclipse of the
primary component indicate that when a vanishing frac-
tion of light from the companion arrives from the sys-
tem, otherwise invisible emission lines emerge dis-
tinctly in the spectrum, indicating gaseous masses in
motion around the primary component with enormous
velocities (up to 350 km/sec) t 2 8 ] . However, this effect
was found to be transitory. It did not recur at all in
later observations, in accordance with the theoretical
analysis, which indicated the absence of stable periodic
orbits under the given concrete conditions'·29-1.

Another factor that causes the period and, with it,
the orbital dimensions of the close binary system to
vary is tidal friction. It is absent when the orbital revo-
lution (ωκ) and the axial rotation (Ω) are synchronous.
If they are not synchronous, a force couple makes its
appearance and tends to reconcile the two angular
velocities through the viscosity of the star's matter:
in its presence, the tidal elongation does not coincide
with the line of centers of the two stars of the pair, and
the elongation itself shifts around the body of the star.
Depending on the sign of the difference ω κ - Ω , this will
cause acceleration or retardation of the star 's rotation
as rotational angular momentum is borrowed from or
converted to orbital angular momentum. The detailed
theory of this problem in'-3 0 ], which is hindered by the
uncertainty of viscosity estimates for stellar matter,
indicates that for a star with a convective shell (these
are stars with small masses, e.g., 1.0—0.6 f ), even

the total absence of synchronism between rotation and
revolution is eliminated after a few thousand years, and
if desynchronization arises at u g = Ω , it is eliminated
within a few hundred orbital revolutions. If, on the
other hand, the star has a convective core with radiant
transfer of energy in the envelope (this is a property of
massive stars), the tidal effects are much weaker be-
cause of the small dimensions of the core and the time
to synchronization is longer—on the order of tens of
millions of years for a star with 3)i = 2.5 •»}„ and

hundreds of thousands of years at ?«. = lOw _ , but in

either case no more than 10% of the time spent by such
a star on the MS. The tidal effect on the radiating layers
of the star is incomparably weaker, and a convection-
free core may retain its original rapid rotation long
after the convective envelope has arrived at synchron-
ism.

All of the above pertains to the interaction of stars
with constant mass. But if matter is transferred from
one component to the other, there is also transfer of
angular momentum, and the synchronism that has been
attained is disturbed. And even though it is restored
quickly, continuation of this process will result in a
continuously operative exchange of momenta between
rotation and revolution in the system. The possibility
of this mechanism was noted more than a quarter of a
century ago'-3ia-1, but it has still not been developed
quantitatively.

Finally, in very short-period systems with periods
of 12 hours or less, orbital angular momentum may be
substantially exhausted on the radiation of gravity
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waves without affecting the masses of the compon-
ents'1 3 2 3 (see Sec. 6 on this subject).

4. EVOLUTION OF STARS IN CLOSE BINARY SYSTEMS

Thus, we shall take as our basis the evolutionary
path of a single star, as developed on the basis of
theoretical conceptions as to its internal structure and
its energy sources and from comparisons of the ob-
served integral characteristics with those calculated
theoretically. What changes are produced in this pic-
ture when such a star enters into a star pair? As for
the internal structure of the star and its energy balance,
the rotational and tidal phenomena will evidently intro-
duce no substantial changes into this picture, at least if
the rotation and revolution are synchronous1-33-1. But,
beginning at a certain phase, the evolution of the star
will proceed along a significantly different path—one on
which mass is rapidly lost from the outer regions of the
star, which are richest in hydrogen.

As in investigation of the evolutionary path of a
single star, the problem is solved by integrating the
general equations of equilibrium, state, and energy
transfer, but with an additional condition of mass loss,
the rate of which is determined basically by the rate
at which the star leaves the limits of its Roche surface.
Since the dimensions of this surface decrease progres-
sively, the loss of mass proceeds at accelerating rates.
This last effect constitutes the difference between the
contemporary approach to the problem and its formula-
tion prior to Crawford's suggestion in the 192O's[34a^
and later1-34 -1, which considered that mass was lost
either with radiant energy or by corpuscular radiation.
Both of these processes result in the loss of an insig-
nificant fraction of the star 's mass.

While the star is on the MS, i.e., has moderate
dimensions (in detached systems), it evolves like a
single star, but when the hydrogen in its core has been
exhausted, its dimensions increase (C e : l, Chap. 6;1-353)
in a manner that varies in accordance with the mass of
the star (cf. Fig. 2), so that the surfaces of the stars
cross the Roche surfaces at different stages on their
stellar evolutionary path.

Combining an approximate expression for the mean
radius rx of the Roche cavity'-18-'

lg (rja) = -0.4221 - 0.2084 lg (Sflt,/Sfti)

with Kepler's third law in the form (see'-4-', formula
(12.28))

(RJRQY = 74.4 (rjaf P2 (3K, + 3K,),

we can find the orbital period Ρ at which component I
fills the Roche cavity for any values of HU and 5JI2. In
particular, Paczynski1-36-1 obtains for the values 3)ti
= 5 ίθϊ and 3)11 : 3)t2 = 2

lg P,day, = 1-5 lg (Λ,/Λ©) - 0.84.

Figure 5a shows values of Ri/R,-. and the corre-
sponding phases in the nuclear evolution of a star for
this case. The time scale begins at the point at which
component I leaves the Main Sequence (on which it has
spent about 108 years). A star with a mass of 1.2 3)!

shows the same pattern of variations'-37-1, but the proc-
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FIG. 5. a) Radius variations of star with mass 550?Θ during its evolu-
tion as part of a close binary system with a secondary component of
2.5 si© (showing the changes in the radius of the primary component
if it has reached the limiting Roche surface, and the corresponding values
of the orbital period Ρ; Α, Β, and C are possible mass-exchange stages)
(after [ 3 6 ]); b) evolution of components in a close binary system with
masses of 5 and 39J!0 (model of the U Cephei system) and evolution of
the Roche surface (the numbers indicate the masses of the components
at the given stage) (after [ s l ] ) .

ess takes five to ten times longer. Naturally, the corre-
sponding processes unfold much more rapidly for more
massive stars.

Depending on the orbital period in the particular
binary system and on the mass ratio, a given component
may fill its Roche cavity while in the phase of slow
radial growth (stage A in Fig. 5a), rapid growth with
heating of the core followed by the 3a process (stage B),
or renewed heating with activation of "carbon-burning"
processes (stage C). Only massive stars with 9)! > 10

can reach this last stage, and then only in long-period
systems (as, for example, W Cephei, Ρ = 20 years,
e Aurigae, Ρ = 27 years, etc.), since they would other-
wise be overtaken by mass loss at an earlier stage.

Over the past decade, the processes of stellar de-
velopment with mass loss at the various stages (A, B,
and C) have been treated in numerous papers, in which
a wide variety of initial-mass values were assumed. As
we noted above, this problem is solved by modelling in
a purely computational procedure. The exposition of the
results is usually prefaced by a description of the me-
thod, but independent expositions are also encoun-
t e r e d ^ 8 3 .

Since Morton's first calculations in 1960C 3 9 ], the
greatest progress in the study of stellar evolution in
close binary systems has been recorded in the papers
of Warsaw[40~57], GottingenC 5 8"7 0 ], and Prague
(Ondrejov)1-71"87-1 scientists. Scientists of other coun-
tr ies [ 8 8 9 e - 1 have also made appreciable contributions at
various stages in these investigations. It is not possible
to expound on all of these studies, which detail the de-
velopment of various component combinations in close
binary systems. We shall therefore confine ourselves
to a description of certain typical results. But first a
general remark on the process suggested by Crawford
is in order.



C L O S E BINARY STARS 793

Having lost a certain fraction of its mass, a star will
tend to recover its disturbed hydrostatic equilibrium,
something that is possible only when it recedes into its
Roche cavity. This will take place quickly, during a
time on the order of 104 sec. But there the star will be
at variance with its internal structure and energy re-
lease, which require that it leave the confines of its
Roche surface, which it does, with a new loss of mass
as a result. This process is, of course, continuous, and
it stops only when thermal equilibrium has finally been
established in the star, i.e., in the course of the Kelvin
time scale ( [ 4 ] , p . 217; [ 9 7 ] ):

τ = G3RVRL = 3-10' (3)!/3ΚΘ)2 ( % / # ) (Le'L)·

This is a very short time compared to the characteris-
tic time of the star 's nuclear evolution, even for mass-
ive stars (-)>} > 10in ).

Let us now examine a few particular cases. The
evolution of a not particularly massive star in a close
pair is among the simpler problems when the star
reaches the dimensions of the Roche cavity in stage A—
that of progressive exhaustion of the hydrogen in the
core. By way of example, we take a system that con-
sists originally of two MS stars with masses of 3 and

Figure 5b shows the relative positions of the com-
ponents and the Roche surface enveloping them. The
orbital period in the system is 1.23 days. After 50
million years on the MS, the more massive component
nears exhaustion of its core hydrogen, increases in
size, and gradually fills its cavity of the Roche surface
(stabe b), after which mass loss begins, slowly at first.
Maintaining equilibrium, the star contracts somewhat,
but its Roche cavity contracts more rapidly and the
transfer of mass from the massive star to its com-
pansion star proceeds at accelerating rates (see the
argument in support of this in1-9 4 3). The dimensions of
the orbit shrink progressively and the period of revolu-
tion on it also decreases; when the masses of the two
components have been equalized (stage c) at four sun
masses, the period reaches its minimum value of 0.9
day. Transfer of mass continues, but matter is now
moving from the less massive to the more massive
component, resulting in an increase in the size of the
orbit and, soon thereafter, an increase in the absolute
dimensions of the Roche cavity for the component under
consideration, which has become the secondary com-
ponent, while the erstwhile companion has become the
primary body in the system (stage d). Since the size of
the orbit is increasing, the mismatch between the growth
rate of the companion star and its cavity is reduced and,
finally, they have been equalized at stage e. The masses
of the components are now 5.8 + 2.2 SJ!Q, approaching

the contemporary component-mass values in the
U Cephei system—a typical EB in the group of semi-
detached pairs. But the subgiant companion in this real
system is much colder—it belongs to spectral class G2
or G5, and not F1III as in Fig. 6a, which illustrates the
described evolution through the H—R diagram.

The evolution of the path of the component with ini-
tial mass 5 SJt _ in Fig. 6a should be compared with the

evolutionary path of a single star of the same mass,
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FIG. 6. a) Evolution of star (U Cephei) with mass of 5 3»̂ , as part of
a close binary system with a secondary component of 353!Q(A) (this
scheme must be considered together with Fig. 5b and Fig. 2) [ 9 S ] ; b)
evolution of massive star in close pair with 16 + 83Ji0 (after [ 4 S]). The
16s»3 star passes through stages 1-4 in 7 million years and stages 4-8 in
4000 years. In stage 6-7, the star loses 0.0039B© P e r Year- Hydrogen has
been exhausted from the core at point 3, the masses of the components
are equalized at point 5, and the "burning" of helium begins at the knee
of the dashed curve.

which is shown in Fig. 2. The difference between them
is striking. It becomes especially conspicuous when we
consider the rates of evolution: our star covers the dis-
tance from b to c in 70 000 years, losing about 1028 g
(10~5 3)! ) per year, but then the process slows down and

900 000 years are required for the path from c to e.
And instead of entering the supergiant region (see Fig.
2), our star is found in the group of giants or even sub-
giants with absolute magnitudes M b ~ 0 m - l m . This is
because the star continues to lose mass in spite of the
equilibrium reached in the system. The central tem-
perature of the star (which is proportional to 3!!/R),
decreased during the rapid decrease in mass, the core
contracted, but the 4H —- He transformation continued, a
as on the MS, but now with a smaller mass. The star
expands, but this time slowly, losing approximately
10"89]ϊ^ per year, so that 40 million years (from e to f)

are required for a further decrease in its mass by
0.4 № „ . The mass of the star reaches 1.811! , and the

primary component of the pair now has a mass of
6.2 B l Q .

There was an insignificant decrease in core hydro-
gen content during stages b—d, which our star passed
through quickly. Its brightness dropped sharply, since
a substantial part of the nuclear energy was expended
on the mechanical work of expanding the star. A more
substantial depletion of hydrogen in the core takes
place during the comparatively long stage d— e, hydro-
gen is nearly exhausted during stage e—f, and the layer
source is activated, leading to growth of the helium
core. The degeneration of the electron gas in the core
protects it from rapid contraction, but when the mass of
the helium core reaches 0.4-0.5 SJi _ (Mfe κ - l m ) , the

degeneration stops (as a result of the increase in T c ) ,
the helium flash begins, and the star contracts rapidly,
detaching itself from its Roche cavity, and the semi-
detached system becomes a detached one. But this stage
in the evolution of the star is the same as for a single
star. It is another matter if the orbital period of the
pair is so large that its components develop without
mass transfer all the way to the stage of the strong
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layer source, when its radius increases rapidly (see
Fig. 5a) during stage b and brings the surface of the
star to the limiting Roche surface1-4 1 '5 8 3.

In particular, a star with mass greater than 10 33!.-.

will pass through the stage in which its Roche cavity is
filled in approximately 10 000 years. The chances of
happening upon a star pair in this phase of its develop-
ment are very poor. Here the helium core continues to
develop almost independently of the envelope on the
time scale corresponding to nuclear evolution. The
envelope is transferred almost entirely to the other
component, the core contracts and is heated, and the
surface of the star is also heated, so that the star
crosses to the left of the Main Sequence on the H—R
diagram until the vigorous course of the reaction
3a —• C12 stops the expansion of the star and the trans-
fer of mass (Fig. 6b). It is precisely for this reason
that during the evolution described above, the star loses
a large fraction of its mass from its outer layers,
nearly down to the layer source, where a substantial
part of the hydrogen has been transformed to helium;
it becomes a helium star in the spectroscopic sense. In
this case, determination of the helium and hydrogen
contents from the spectral lines of these elements indi-
cates that helium predominates by a considerable mar-
gin. Thus, the He :H ratio is 2.25 for β Lyrae instead
of the usual 1: 3— 1:41-"3. At the same time, this pair
can be observed as a close double one of whose com-
ponents is a Wolf-Rayet star. 7 1 The star spends a time
on the order of 105 years to the left of the MS [ 4 3 > e 2 3 .

If the stage-Β mass transfer overtakes a star of
smaller mass (3—5 33!.-.), the helium core that is formed

becomes degenerate without reaching the critical size
0.4—0.533! _ , and this will prevent its further contrac-
tion and expansion. Nevertheless, the layer source will
maintain the size of the star and its slow growth, so
that although mass will be lost, it will be lost slowly,
and the star will spend a long time in the subgiant stage.
But we shall observe this pair as a semidetached pair
of the Algol type, such as are frequently encountered
among close EB. Ultimately, the core of this star will
also grow to critical dimensions, the helium flash will
occur, and the dimensions of the star will decrease,
this time for good. The system remains semidetached,
but its subgiant is "undersized," with highly excessive
luminosity (up to 10m) for its mass and an almost pure
helium composition. This also applies to stars with
original masses greater than 10 33!.-.. The difference

between the two consists chiefly in the diameters of the
orbits and, as a consequence, in the periods of the orbi-
tal revolution. Semidetached systems with helium sub-
giants have periods that are longer the larger their
masses. But if the original mass was small (for exam-
ple, 9)h = 2 33!2), rapid transfer of matter to the other
component with 33Ϊ2 = 33!..-. will leave the first component

with a mass of only 0.26 Ώί,-Ρ9 3. The central tempera-

ture of such a star cannot rise high enough to initiate
burning of helium, and, having exhausted its nuclear
energy sources, the star will contract to a white dwarf.
At the same time, the second component, which has
become the principal one, evolves with a mass of
2.74»!^ and may reach the yellow- or red-giant stage.

In Sec. 2 we described the system of BD + 16°516B,
which consists of red and white dwarfs'-100'1013 (see
Table on p. 789). This pair is as yet the only one of its
kind known to us, but there are certainly many such
systems: they are merely difficult to detect owing to
the small amplitude and rapidity of the brightness
changes. Without mass transfer during its past history,
such a combination of stars would appear totally un-
natural, since, assuming normal evolution, their ages
differ by at least an order of magnitude. The age dis-

crepancy in a pair with (0.26 + 2.74) 33!
©'

10 l o -3

x 10 years, is even larger.
Mass transfer can occur in the 3a — C1 2 stage only

if a massive pair has escaped rapid mass transfer dur-
ing the earlier stages of its existence. This will occur
with a sufficiently long period (see Fig. 5a); in stars
with small masses, however, the carbon-burning reac-
tion cannot be initiated at all1-1023. The evolution of a
star during this stage is examined i n ^ 6 4 ' 6 5 ' 8 8 ] .

An example of a pair that has experienced or is ex-
periencing burning of carbon may be the aforementioned
eclipsing system W Cephei, which has a period of
20 years and consists of a red supergiant of spectral
class M2 (R = 1.3 · 103 R Q ) and a hot supergiant of

spectral class Be; their masses are 18.3 and 19.8 SH^,

respectively. Spectral observations indicate substantial
gaseous streams within the system1-1033.

There is one more possible variant of the evolution
of the close pair; it is intermediate between A and B,
and in it mass transfer occurs even while hydrogen is
being burned in the c o r e [ 5 4 " 5 7 ] . 8 '

The most common systems among EB—the contact
systems—are, unfortunately, not accounted for either by
the circle of ideas developed here or anywhere else.
Particularly numerous among these stars are the so-
called W Ursae Majoris stars, which are distinguished
by continuous brightness variation much as described
in Fig. lb but with a secondary minimum of approxi-
mately the same depth as the primary minimum. The
masses of the components differ little from one
another—the statistically averaged mass ratio is 2:1.
This is partly due to the similarity between the sizes of
the two Roche cavities, which are filled by the compon-
ent stars. The spectral classes of the components vary
within a comparatively narrow range, F-G-K (Teff from
8000 to 4000°). The nature of the brightness variations
of Ε Β of this class and the variation of the spectral-line
widths during the orbital cycle (which often appear very
broad, but do not split at the nodes9') suggest insistently

^These are stars with extensive outer envelopes and an abundance
of bright bands in the spectrum, which indicate rapid expansion of the
envelope and the presence of substantial amounts of carbon and nitro-
gen in the atmosphere.

8 )See the survey by Havec [1 0 4] for a more detailed nontechnical
exposition of all of the variants of mass transfer that have been studied
for close systems.

9 )The nodes of binary systems are the points at which a component,
in motion on its orbit, crosses the picture plane drawn through the
center of mass of the system.
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that the two components of contact systems have a com-
mon envelope. Equilibrium considerations indicate that
this envelope should be convective1-105-1. A considerable
fraction of the energy produced in the massive star is
transferred through this envelope to the other compon-
ent. But there is no basis for transfer of matter from
one component to the other, since both of them fill their
Roche cavities. It is no accident that among all EB, we
observe very short periods precisely in contact binaries
of the W Ursae Majoris type. Mass exchange according
to scheme A might occur here from the very genesis of
the system, but it is difficult to say whether it has
already taken place or is about to take place, because it
is unclear whether the components of the pair are still
moving toward the zero line of the MS or whether at
least one of them is leaving the MS [ 1 0 5 ~ 1 0 7 ] . It may be
that one of the components (the more massive one) has
already advanced so far that the reaction of the CN cy-
cle is in progress throughout its entire volume, while
the less productive proton-proton reaction may have
only begun in the fainter star.

In general, these systems exhibit much that is
unique. Thus, the luminosities of the components are
related as the first powers of their masses (instead of
the usual exponent 3—4), and this is because the more
massive component in a contact pair has deficient lum-
inosity and, at the same time, a lowered surface bright-
ness, so that it is the secondary rather than the primary
minimum that is observed when it is eclipsed.

Tidal phenomena should play an important if not de-
cisive role in the evolution of such a binary system, but
unfortunately the literature devotes no attention to this
problem.

5. SUCCESSES AND FAILURES OF THEORY

It is clear from the entire preceding exposition that
the theory of transfer of matter within close binary sys-
tems has explained a number of the observed phenomena
and factors. Some of them, as, for example, the ob-
served spectral criteria for the existence of gas streams
within close pairs, testify directly to movements of
matter from one component to the other. Others sug-
gest the same thing, but indirectly. Foremost among
these are the previously described "impossible" com-
ponent-age combinations, which are now described by
the theory not only qualitatively, but quantitatively.
Further, we should note the fact that there are no sub-
giants among the primary components in Ε Β sys-
tems'-94-1. At the same time, it is precisely the sub-
giants in EB that exhibit a wide variety of masses and
luminosities, something that is not the case with the
single subgiants. It appears that the lower mass limit
that exists in the Wolf-Rayet stars is also in harmony
with the scheme according to which these stars were
formed as a result of evolution of massive stars with
mass loss at stage Β before the helium flash, when a
convective zone appears at the surfaces of helium stars
at TO > 8 3J! C45'10»T.

The aforementioned variability of the periods of
many EB inevitably points to the conclusion that mass
transfer occurs1-24'109^. In some pairs, we observe a
secular decrease in the period (SV Centauri, Ρ = ld.66),
and in others an increase (β Lyrae, Ρ = 12d.9;

W Serpentis, Ρ = 14 .16), sometimes occurring step-
wise (RU Monocerotis, Ρ = 3d.58) and often changing
sign (XZ Andromedae, Ρ = ld.36). Period variation is
frequently observed in systems that are well separated.
True, all of these changes indicate only the ejection of
mass from one or both of the components, but tell us
nothing concerning the later fate of the ejecta. A syste-
matic increase in the period might, for example, also
suggest transfer of mass from a light component to a
heavier component, or the escape of matter beyond the
limits of the binary system (see (4)).

The statistics on masses in close systems offer
some indication as to the nature of mass exchange .
In detached subgiants and in contact systems, the mas-
ses Mi decrease statistically and the Mi increase with
decreasing mass ratio a = Μί/Μχ from unity to zero,
indicating acquisition of mass by the principal body. On
the other hand, this effect is not observed in detached
and semidetached systems—the M2 decrease and the Mx

remain unchanged as σ decreases; consequently, if
evolution with loss of mass by the second component
does occur here, the primary component gains nothing
as a result, and the lost mass leaves the system. These
conclusions are confirmed by statistics on the orbital
angular .momenta of many EB1-110'111-1.

A more radical point of view'-112^ that proceeds from
statistical comparison of the orbits and orbital momenta
in detached and semidetached systems is also encoun-
tered: in systems with moderate masses (Z/S3!j < 6 Si!_)

when the primary component loses 84% of its mass,
2/3 of this loss escapes the system altogether. In more

massive pairs (8 < Σ/ 3K;< 12), the companion receives
i

only 10% as the primary star loses 75% of its mass.
But if this is true, the constructions of the preceding

section are to a substantial degree rendered valueless,
since they are based on the hypothesis that the total
mass and total angular momentum of the system remain
unchanged. Since the mass ratio q = TO^SO^ decrease
much more slowly when the system as a whole loses
mass, while the dimensions of the system increase, the
loss of mass by the primary star will take place slowly
and perhaps only during stage B, which includes the
helium flash, during which the dimension of the star
increase sharply and rapidly. This variant has not yet
been treated mathematically.

Another problem is the evolution of the companion
that acquires mass from the primary star and itself
becomes the primary component of the binary system.
Evolution in the opposite direction when the companion
quickly picks up a substantial mass can be assumed
purely qualitatively; its normal evolution as an MS star
with the transformation 4H — He is accelerated many-
fold and results in a size increase in which its surface
moves out beyond the limits of its Roche cavity. This
results in formation of a contacting system, but one of
a singular kind: its components possess considerable
masses.

This process emerges in somewhat different form
when it is recognized that the descending masses of gas
are in motion at supersonic velocity [ 1 1 3 ) 1 1 4 ] and are
heated in a shock wave. They are heated even further
during the subsequent contraction. The secondary star
becomes much hotter and brighter, its radius increases,
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and it comes to exceed the dimensions of its Roche
cavity after having acquired a quite insignificant frac-
tion of the mass of the primary star. If this mechanism
really exists, it can result in the formation of a contact-
ing system of moderate mass even if a substantial part
of the mass escapes the system.

In any event, when substantial amounts of matter and
rotational momentum are transferred rapidly from one
star to the other, the latter may not be capable of ac-
cepting so much. Either the transfer is broken off at a
comparatively early stage and material is ejected out of
the system, in the manner just described, or a dense
disk containing a substantial fraction of the system's
mass and angular momentum is formed around the com-
panion. Then the companion continues to develop norm-
ally C 2 3 ] . We spoke of this earlier.

If it were proven possible for such a disk to exist
and to place the other component in deep eclipse, a
number of difficulties would be eliminated in the inter-
pretation of certain Ε Β and, in particular, one of the
most typical and celebrated systems—β Lyrae, where
the more massive component makes no imprint at all
spectroscopically but causes deep eclipsing of the com-
panion, which dominates in the spectrum (Fig. 7). In the
model proposed in 1- 1 1 5 ' 1 1 6 3, the disk is assigned a mass
equal to the mass of the star that it surrounds, on the
order of 10 3«^. The stability of such a disk requires

further investigation, but in spite of the doubts as to its
stability, the disk hypothesis finds a confirmation in
polarization observations of β Lyrae in'·1 1 7"1 1 9-'.

6. NOVAE AND BINARY STARS

Novae and their "softened" variant, the nova-like
stars (or recurrent novae) and dwarf novae occupy a
special position in the problem of stellar evolution. All
have outbursts—one or two, or even three, and many in
the case of the dwarf novae. During an outburst, the
brightness of the star increases by a factor of 104 for a
nova and 50—100 for a dwarf nova. Spectroscopically,
this is associated with ejection of a mass that is small
by comparison with the mass of the star—on the order
of 10"3 S)i _ or smaller.

A remarkable factor that has been established during
the last 15 years is that in all cases in which a star of
one of the above types has been subjected to thorough
photometric or spectroscopic analysis, it has proven to
be a close binary with an ultrashort period: with two
exceptions (T Coronae Borealis and GK Persei), they
have periods of a few hours, or as short as 81.5 minutes
in the case of one recurrent nova (WZ Sagittae).

In several cases, it has not been possible to prove
that the star is a binary, but it has not been possible to
exclude the possibility either, and this result has urged
us to the conclusion that the phenomenon of the nova and
its variations must arise out of the fact that the nova is
a binary star.

We enumerate the cases of binarism that have been
reliably established during recent years: four of the
novae with recent outbursts1-120-1—Ν 1891 = Τ Aurigae,
Ν 1901 = GK Persei, Ν 1918 = V 603 Aquilae, and
Ν 1934 Herculis1-122-110', two presumptive former novae—
UX Ursae Majoris and RW Trianguli, two recurrent
novae—Τ Coronae Borealis and WZ Sagittae [ 1 2 3 ], and
thred dwarf novae-U Geminorum1 1 1 2 4 '1 2 5 3, SS CygniC l 2 6 ],
andRUPegasiC 1 2 73.

In all of these pairs, a star of late spectral class is
combined with a hot star surrounded by a dense gaseous
envelope or a strongly flattened disk^1*3. It is the hot
component that exhibits explosive activity. On the H-R
diagram, this star is to the left of and below the MS,
but somewhat higher than the white dwarfs (see Fig. 2),
so that it is regarded as a subdwarf. However, it may
be a genuine white dwarf in some cases.

The gaseous envelope or disk possesses substantial
optical (and geometric) thickness, and to some degree
it screens the hot star, which excites the gaseous mas-
ses to emit spectroscopically manifest light. On the
other hand, the photometric pattern during and between
eclipses in the systems of DQ Herculis1-1223, UX Ursae
Majoris, and U Geminorum [ 1 2 4 > 1 2 5 : i is easily interpreted
by positing a powerful gaseous stream issuing from the
cold component, encountering the gaseous disk at
supersonic velocity, and causing strong heating of the
gaseous masses (in a cross section only 30 000 km in
diameter). Thus, there existed or there exists in the
biographies of such stars an evolutionary stage with loss
of transfer of mass within the system, and this process
caused ejection of particularly large amounts of mass
in the novae proper.

Theoretical analysis [ 1 2 8 > 1 Z 9 : i has shown that the ac-
cretion of hydrogen-rich matter by the surface of a
subdwarf or white dwarf may cause vigorous release of
energy in a thin layer source at the boundary with the
degenerate1 1 ' hot core, which contains nearly the entire
mass of such stars, the only exception being a thin sur-
face layer. Pulsating instability, which results in de-
tachment of external masses from the star, may occur
as one of the possible variants1-120-1.

FIG. 7. Diagram of the β Lyrae system. The system is shown in two
projections: at the top, it is given "in plan," the picture plane coinciding
with the plane of the orbit; at the bottom, it is shown "in cross section."
The symmetry plane of the disk surrounding the secondary component
coincides with the plane of the orbit. Also shown are the gas streams,
which can be observed spectroscopically [ 1 4 4 a ] .

""Systematic screening of explosive stars for binarism began with
the discovery of eclipses of this star by Walker [121 ] in 1954.

^ ' T h e conditions of degeneracy are important here, since pressure
is nearly independent of temperature when degeneracy is pronounced,
and therefore the star will not dissipate its heat on expansion and con-
figuration change. The fact that the hot core of a white dwarf is not far
beneath its surface is also important.
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Unfortunately, none of the authors of model calcula-
tions of this kind have applied them quantitatively to
real cases, because the process of change in the white
dwarf during "burning" of hydrogen has been regarded
as a series of static states, while development proceeds
so rapidly in the final stage that it is necessary to take
dynamic effects into consideration.

Sufficiently intensive accretion of matter from the
interstellar medium by a single star is, of course, im-
probable. Inclusion of a subdwarf or white dwarf into a
binary system makes this process much easier and quite
probable. But there is one difficulty inherent in the pat-
tern described above: the very short period in the binar;
system in which the outburst occurs. 1 2 ' If the component
that flares up has undergone accelerated evolution with
mass loss at stages b or c (to get to the degenerate
stage), this occurred in a wide long-period pair (period
in the hundreds of days), such as we find only in one
nova—Τ Coronae Boraelis (P = 227d). But there is no
evident mechanism that would close up such a pair,
leaving an insignificant mass to the component that has
developed precociously. As a rule, the masses of the
hot components in the systems of novae and nova-like
stars are insignificant (from 1 to 0.133!,-., except for

Τ Coronae Borealis, where it reaches 2.6-})! ). More-

over, if it has reached the white-dwarf state, it cannot

have a mass larger than 1.2 TO J:*^, and if it had this

mass earlier, it should have ejected it in some kind of
catastrophic process similar to a supernova out-
burst1-8^, but this would be ejection to the outside of
the binary system, whereupon the dimensions of the
orbit and the orbital period would increase.

Thus, only systems with very short periods and
small masses could constitute the stage preceding the
binary state with nova- like outbursts of the hot compon-
ent. This again suggests contact systems'-130-1. A strong
argument in their favor is found in the identical spatial
distribution and kinematics of star systems of the
W Ursae Majoris and U Geminorum types1-1303. But it
has not yet been possible to show how a contact system
consisting of two nonmassive stars of later spectral
classes is transformed into a semidetached system in
which one of the components is very hot.

In those ultrashort-period systems in which the times
of the minima have been recorded over a sufficiently
long span of time, we observe an increase in the period,
which, if it is interpreted as a consequence of mass loss
by the system as a whole, indicates the following mass-
loss rates (according to (4)): 2.03 χ 10~8Ώί /year for

DQ Herculis [ 1 2 2 : ! , 3.1 χ 10"7ST, /year for

U GeminorumC l 2 !°, and 1.8 χ 10"73««/year for

SS Cygni t l 2 <^. The mass loss of the cold companion
would be of the same order for the same change in the
period under the hypothesis in which matter is trans-
ferred to the hot star. But as soon as lengthening of the
period is observed, it is necessary that the companion
be the less massive body in the system (see p. 791). In
fact, this is the case in some systems (GK Persei,

U Geminorum, WZ Sagittae), while the converse is true
in others (DQ Herculis, RU Pegasi, SS Cygni). No great
importance should be attached to this subdivision, since
the mass determinations were made unreliably in all of
the cases described (except for GK Persei and RU
Pegasi).

In addition, there exists a mechanism that makes
shortening of the period possible even when 5)!2 < A'ii.
This is the gravitational radiation'·32-1 that we mentioned
earlier, which becomes appreciable when the period is
sufficiently short. According to 1- 1 3 1 3, the loss of energy
with gravity waves in a system of masses in rotation on
circular orbits is given by

ΛΕ 2 . .

(ω = 2π/Ρ), from which we can derive the following ex-
pression for the variation of the period1-32-1:

— =—1.169-10-6 1 WiW* 1 / 3 P-5's. (5)

At values of Ρ = ΙΟ3—104 sec, this results in a rapid ap-
proach of the components to one another, with the result
that the companion star may prove to be larger than its
Roche cavity even at very small mass values
(3tf2 « 0.1—0.3 -VifO· Transfer of matter to the hot

component begins and will be self-sustaining if s.i}2 > ?Bi,
and result in an increase in the period in spite of (5) if
3Xi2 < 3J!i. Quantitatively, this process depends on the
chemical composition of the companion1-32'132'133-'. If the
process were constant, it would result in the formation
of a system composed of a star and a satellite of plane-
tary dimensions. If no mass transfer occurred, gravi-
tational radiation would result in merging of the two
components. However, it is well to remember that the
existence of gravitational waves has not yet been con-
firmed experimentally.

7. "BLACK HOLES"

The theory of stellar evolution considers it possible
for a star to take a path such that when its nuclear en-
ergy sources are exhausted, the star collapses catas-
trophically1-134-1 to an extremely small size, smaller
than the Schwarzschild gravitational radius (G is the
gravitational constant):

Ra =

1 2 )The 1934 nova in Hercules was a binary, and had the same 4 hour
34 minute period before the 1934 outburst as after it.

The force of gravitation becomes infinite on the sur-
face of a sphere of radius R (Schwarzschild sphere),

and processes unfold infinitely slowly to an outside ob-
server1-135-1. Thus, a star that has withdrawn inside its
Schwarzschild sphere no longer has any communication
with the external universe other than gravitation.
Evolving toward the white-dwarf state, a star will avoid
this state as soon as its mass is below the limit estab-
lished by Chandrasekhar1 1 1 3 6 3:

S R i i m = 1.44 SRg.

Cold spherical bodies at hydrostatic equilibrium have
no equilibrium configurations if their masses exceed
this limit. Incidentally, consideration of other effects
lowers this limit even further, to 1.250Ϊ,-. (the corre-
sponding radius is R = 250 km). If the star had a mass
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larger than this, it would avoid total collapse by eject-
ing the mass excess " in t ime," perhaps by the process
that is manifested as a supernova outburst. If for some
reason this does not happen, it becomes a "collapsar"
or "frozen s t a r " t ? b ' 1 3 5 3 . The term "frozen" proceeds
from the phenomenon described above in which time
slows down near R = R . The process in which the star

withdraws inside the Schwarzschild sphere and all
phenomena on it are, as it were, frozen for an outside
observer.

Otherwise, if a small mass excess (on the order of
(0.5—0.8) ΚΝνΟ has not been eliminated, the star will not

withdraw inside the Schwarzschild sphere, but will ac-
quire such a high density (10 1 4-10 1 5 g/cm3) that the bulk
of its matter is transformed into neutrons. The upper
mass limit for neutron stars has not yet been accur-
ately established (it is probably near 2Sft^). The re-
cently discovered pulsars are apparently nothing other
than such neutron stars. It is probable that the rotation
of a star is of no small importance in determining its
fate—whether it becomes a neutron star or retracts
within the gravitational radius. Only a very few stars
could be collapsars 1 1 7 1 3 ' 1 3 5 ' 1 3^.

It would be extremely interesting to find among the
stars one for which densities greater than ΙΟ14—1015

g/cm3 were established from observation. They should
be looked for among the components of binary s t a r s -
stars with large masses and negligible dimensions, a
state that would be manifested in negligible or evert
zero luminosity coupled with substantial mass. These
collapsed stars are referred to fancifully as "blaok
holes."

Cases are encountered among the SB in which the
value of the mass function (see formulas (1) and (1')) is
large and the companion is in no way in evidence. Thus,
for example, in the eclipsing system β Lyrae f(9J!)
= 8.5TO · varying a = TO

pr
TOCO from 0 to 2, we ob-

tain (with i = 90°) values from 8.5 to 76.5 TO „ for TOCO

and from 0 to 153 TO— for 3H . A reasonable choice

can be made on the basis of indirect considerations.
Needless to say, the extremes of the ranges given here
are naturally discarded, since the visible star of the
pair, the primary, has an absolute visual magnitude
My = - 3 m . 4 , which requires a substantial but by no
means exceptional mass. At the same time, when o"1

= 1, TO = i!Kco = 34 TO and the masses of the com-
ponents are even larger when a'1 > 1, which is possible
only if the primary component is very deficient in lum-
inosity. A simpler hypothesis is that a ' 1 < l,u) e.g

1 /with a'1 = 1/2 we find TO_n = 20
C O

and = 10 TO ,
0 " " " -"'pr ~ *" -- ©·

Now an even more conspicuous luminosity deficiency
appears for the companion. Nevertheless, we can con-
cur with this version, since several other arguments
support it!-139-1.

The experience of spectroscopists has shown that
the fainter component in a binary system cannot, as a

1 3 ' l t is curious that the first investigator of β Lyrae as an SB, A. A.
Belopol'skiy, made precisely this assumption [13S ] and found 3Jipr =
8.4»iS and M c 0 = 19.0TO©.

rule, be observed in the spectrum even when the com-
ponent luminosities are related as Li: Le < 1:3—1:4,
since its spectral lines have too little contrast against
the background of the primary's brighter spectrum.
The eclipses that occur in the β Lyrae system enable
us to establish a ratio Li : Lg = 1 : 5. But we have just
assumed that a = 2. In normal stars, the luminosity
ratio should be of the order of 8 with a mass ratio of
20:10. This means that the luminosity of the companion
in the β Lyrae system is deficient for its mass by a
factor of 40 or by 4 m . In fainter stars (e.g., R Canis
Majoris), we observe an even greater discrepancy be-
tween mass and luminosity in the other direction.
Generally speaking, therefore, we should not conclude
from a large value of the mass function for an SB with
one spectrum that the companion is a "black hole" or,
more generally, a collapsar. Such SB have been dis-
cussed in the literature'-134'110-1, but in no case has there
been even the slightest conviction that there is a collap-
sar in any of them. Statistical considerations'-141"1433

have also been invoked, and also unsuccessfully.

The same uncertainty would still prevail for the
β Lyrae system if it were only an SB. But the eclipses
observed in this system have left the collapsar hypo-
thesis as good as refuted, since the eclipsing of the
primary means that the companion has nonzero size,
and the secondary brightness minimum suggests that
the companion has nonzero luminosity. Moreover, a
spectral class has been arrived at for it from photo-
metric observations: from A7 to F2 (i.e., Teff
« 7000-8000 degrees).

We have already said that difficulties in interpreting
the brightness curve of β Lyrae have made it necessary
to depart significantly from the classical scheme of
Fig. lb and to assume that the companion is surrounded
by a large gaseous disk that is strongly flattened toward
the plane of the orbit. We have noted that the possibility
of the existence of such a disk has been neither proven
nor refuted dynamically^144 3 . But while a disk with a
mass equal to the mass of the star immersed in it1-115-'
had previously appeared highly improbable, the hypothe-
sis of the collapsar, in which almost the entire mass of
the companion is concentrated, enables us to assume
the possible existence of such a disk. There is no limit
on the stationary gravitational field of the collapsar. Its
great mass tends to favor the "black hole" rather than
the neutron star.

On accretion of particles to a collapsar in a binary
system, the particles acquire nearly relativistic veloci-
ties (from the very strong gravitational field), and strong
x-ray emission1-7b>135'145^ appears in combination with
weak optical emission in the resulting shock wave with
its temperatures on the order of ΙΟ7—108 °K: L
L f« 10 —1031 erg/sec. The same thing might result
from synchrotron radiation of a magnetized plasma
compressed by accretion. In one way or another, an
x-ray and optical aureole forms around the collapsar.
It goes unnoticed in the light of the bright primary com-
ponent. In a binary star, a collapsar behaves as an
x-ray source—the only one in the system, since the
other component, a normal star, does not emit x-radia-
tion. The theory indicates the possibility of x-ray flares
on such stars, and several flaring x-ray sources—Cen
X-2, Cen X-4, and Cyg X-l—are known to us.
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But the β Lyrae system itself has not been identified
as an x-ray source, although its distance from us is
small (260 parsecs « 8 x 1020 cm). The collapsar hypo-
thesis fails in this case. Nor have other stars closely
similar to β Lyrae'-146-1 been identified as x-ray sources.

The well-known x-ray source Cygnus X-l, from
which radio emission at frequencies of 1495 and 2695
MHz was recently detected1-147·', is a more encouraging
prospect in the search for collapsars. Its exact position
in the radio band has been determined (to within a few
seconds of arc), placing it close to the star HD 226868
= BD + 34°3815. Its magnitude is 8m.89 (V), and its
spectrum is that of a hot BOIb supergiant L1483. In 1971,
this star was subjected to thorough and exhaustive
study1-149-1, which failed to bring out any significant
deviations from the norm, but it was found to have a
periodic radial motion and was therefore classified as
an SB with one observable spectrum [ l s o : l . Its period of
revolution Ρ = 5d.6O, f(9H) = 0.12 SJ! and the semi-
major axis of the orbit of the bright star agsin i
= 6.6 R_ , so that the orbit is smaller than the star

itself. The previously observed variations in the flux of
x-radiation from the Cygnus X-l source are also sub-
ject to a period of 5^.60, but the sharp decreases in the
flux occur at phases in which the supergiant is behind
the invisible companion, so that the x-ray source is
eclipsed by that companion or, more accurately, the
source is above the surface of the companion on the
side toward the primary star. This is consistent with
our conception in which a stream of matter is trans-
ferred from the supergiant, which in this case has over-
grown the limits of its Roche cavity. The authors of[15o:l

find from their ingenious calculations that the BOIb
supergiant has a radius Rg ar 10 R _ and a mass in the

range 10 TO . - < TOB - 3 0 ?llVri' S i v i n g a mass in the

range 2.5—6.0 9J},-. for the invisible companion. It may,

of course, be a normal B0V or B8I star, but the fact
that it emits x-radiation justifies regarding it as a
collapsar that has withdrawn into its Schwarzschild
gravitational radius. Needless to say, everything that
we have said here holds provided that the identification
of the Cygnus X-l source with HD 226868 is correct.

Our refusal to grant collapsar status to the compan-
ion of β Lyrae is not categorical. New facts'- ls ia-1 and
arguments'-151'3-1 that have recently become known in-
cline us in this direction. Photometric measurements
in six segments of its ultraviolet spectrum from 3300
to 1380 A have indicated1-151^ that the secondary mini-
mum in this system becomes deeper the shorter the
wavelength and would be as deep as the primary mini-
mum somewhere around 1200 A. This should not happen
if both stars radiated as black bodies (at any tempera-
ture, a hotter body radiates more from 1 cm2 of surface
than a colder body at any wavelength). We may there-
fore suppose that the hot, massive companion in this
system emits a great wealth of short-wave radiation
that is transformed in the surrounding gaseous disk.
However, the companion cannot have a high luminosity,
since the light pressure would make the existence of the
disk impossible.

In actuality, as we have seen above, x-ray radiation
arises during accretion near and around a collapsar, in

the dense parts of the disk. This radiation is trans-
formed in the disk to ultraviolet and visible radiation
with a power of ΙΟ35— 103β erg/sec or more (which we
indeed observe). However, the x-radiation finds egress
in directions nearly normal to the disk, where the opti-
cal thickness is lowest. Only in these directions can a
binary system of this kind be observed as an x-ray
source. But as we observe an eclipsing system, we are
always at a certain angular elevation above the plane of
the orbit (and the disk).

We encounter one more collapsar candidate in the
e Aurigae system. This is the binary system with the
longest period among EB—its period is about 27 years
(~ 104 days). Difficulties arose in its interpretation due
to the fact that when its primary component, an F2Ia
supergiant, was in total eclipse, its spectrum remained
visible. One of the latest models of this system1-152-1

supposes that the primary minimum occurs when the
disk of dust around the companion eclipses the primary
star. Support of the disk would require a massive body
(with 50! > 23 9J! ), and if this body is not manifested in

the spectrum, we might suppose it to be a collapsar'-153 .
All of the systems considered here require intensi-

fied study, since we still cannot state with confidence
that collapsars have been discovered among the eclips-
ing binaries.

8. USE OF CLOSE BINARIES TO TEST THEORIES OF
THE INTERNAL STRUCTURE OF STARS

Existing theories of the internal structure of stars
are tested by comparing the calculated and observed
characteristics of the stars, such as mass, luminosity,
and radius. The two latter quantities are related to one
another by the effective temperature T e g , which deter-
mines the total energy flux leaving the star:

on the (quite reasonable) assumption that the star
radiates as a black body. The mass of a star is also
connected with its luminosity by a relationship that is
different for different groups of stars. Nor is the posi-
tion of a star on the H-R diagram (f(L, Te)) arbitrary;
it is determined by the group to which the star belongs.
In modelling stars, however, the theoretician invokes
definite relationships pertaining to the mode of energy
generation in the star and the mode of radiant-energy
propagation from its center toward its periphery. No
assumption is sacrosanct in this plan, and this com-
bination of properties of the star—L, 23ί, and R—can be
arrived at by different paths, i.e., with different den-
sity, temperature, and pressure variations with move-
ment from the surface toward the center of the star.
The values of these quantities in the interior of the star
cannot be observed. Only in the case of the sun does the
neutrino radiation produced in its central regions in the
thermonuclear reactions that determine the generation
of energy in it become an object of observation. The
stars are too remote for detection of their neutrino
radiation.

However, the dependence of the density ρ on the dis-
tance r from the center of the star, i.e.,

p = / Μ,

determines the moment of inertia of the star quite ex-
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actly, and for a rotating star that is part of a binary
system, the rotational flattening and tidal deformation
are definite functions of the moments of inertia about
the axes, and of the velocity of rotation as a function of
the mass of the perturbing body and its distance from
the star in question.

Thus, the deviation of the figure of a binary compon-
ent from sphericity depends on its internal structure.
Unfortunately, the nonsphericities of the components
can be determined only very roughly for Ε Β and can
serve only for rough qualitative estimates of p(r).

But there is another quantity that can be derived
more reliably from observations. Newton himself knew
that the attraction of an ellipsoid of revolution decreases
along the equatorial plane more rapidly than in accord-
ance with the law of inverse squares. Then the orbit of
another body in rotation near this ellipsoid will not be a
closed ellipse, but an ellipse that rotates in its own
plane, so that its major axis—the line of apsides—ro-
tates uniformly forward in the direction of the orbital
motion at a velocity that depends on the moments of
inertia, masses, and relative dimensions of the com-
ponents t 3 1 '1 5 4 '1 5 5 3.

The theory of rotation of the line of apsides in binary
systems has now been elaborated most completely in
the papers of CowlingC15"3 and Sterne1-1573 under the
following assumptions: the periods of rotation and revo-
lution of the stars are the same (synchronism of rota-
tion); the components rotate as though they were solid
bodies (rigid rotation). Then the ratio of the orbital
period Ρ to the period of revolution U of the line of
apsides is determined as the sum of terms of the fifth,
seventh, etc. powers of the relative sizes (sizes re-
ferred to the sizes of the orbits) rj and r2 of the com-
ponents. If we write only the first few terms, the
expression will be

here the functions f and g are pure functions of orbital
eccentricity, for which tables have been compiled1-1SB-1.
The terms feu and lfe reflect the inhomogeneity of the
component stars and are determined by the p(r) law.
These coefficients (and coefficients for higher-order
terms) have been evaluated in the theory of rotationally
and tidally deformed polytropic gaseous spheres, which
has been elaborated to high perfection by Chandrasek-
har [ l 5 9 : i . For the homogeneous model, kz = 3/4, ks = 3/8,
k = 1/4, and for the Roche model they all vanish.

The rotation of the line of apsides can be obtained
from observations of the radial velocities of SB, since
they also yield the eccentricity and the position of
periastron14> relative to the line of sight (the so-called
longitude of periastron ω). If the observations are re-
peated after a sufficiently long interval of time, the
change in ω will give P/U. Unfortunately, ω is not de-
termined accurately, especially when e is small, and
the variations of ω are very slow: the smallest values
of U are of the order of 30 years, and they usually range
into the hundreds of years.

14)This is the name given the point on the orbit where the distance
between the components is shortest, i.e., to one of the vertices of the
orbital ellipse.

Much more accurate results can be obtained from
observation of the epochs of the minima of EB, since
the times of the primary and secondary minima as the
line of apsides rotates are shifted periodically in anti-
phase. An example of these periodic shifts is shown in
Fig. 8, where we have assembled the brightness curves
of RU Monocerotis at five epochs from the beginning of
this century to 1971 and the positions of the orbital
ellipse implied by these curves. For greater ease of
inspection, the relative displacements of the secondary
minimum between successive primary minima are also
indicated.

The rotation of the line of apsides has now been
proven conclusively for around 15 systems, and the
values of P/U have been reliably determined^1503. To
obtain the parameters k from these results, it is neces-
sary to know Ti and Γ2, and since they appear in higher
powers, beginning with the fifth, they must be known ac-
curately. Study of the rotation of the line of apsides re-
quires thorough photometric analysis of the EB system.

Strictly speaking, Eq. (3) is inadequate for a deter-
mination of k, since two unknowns, k2i and kz2, appear
in it. They are usually assumed to be equal, and this is
justified if the two components have similar physical
characteristics, as they do in most cases. The value
found for k is compared with the theoretical values,
and in particular with those calculated for various
classes of polytropism (see above). The values of k
usually correspond to class 3 to 4 polytropism, indicat-
ing that the ratio Pc/pm of central to mean density
ranges from 54 to 623. But if the stars are not con-
structed in accordance with the polytropic model, the
ratio pc/pm may be quite different.

Let us consider the example of the so-called general-
ized Roche model, which can be constructed from a real
star by transferring all matter to the center, so as to
form a homogeneous core of radius ro with a density
equal to the central density p c , while an atmosphere of
vanishing mass surrounds the core out to the radius R
of the real star. The model has the same ratio
D = pc/pm = (R/r0)

3 as the real star, and the smallest
of all possible values of the moment of inertia. A star
constructed after such a model must possess the high-
est possible homogeneity, i.e., the smallest value of D,
so as to produce the motion of the line of apsides that

FIG. 8. Progressive changes in brightness curve of RU Monocerotis
due to rotation of the orbit. The diagrams on the right indicate the
positions of the orbit with respect ot the observer (who is assumed to
be below it). The first curve was derived from Wendell's observations,
and the others from those of the author [ 3 1 b ] .
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is actually observed. As was shown by Sterne1-157-1,
k2 = (3/4)D"5/3 for this model, but all systems with ob-
servable motion of the line apsides give values of D m i n

from 10 to 30, i.e., a substantially lower degree of con-
centration of the matter.

In fact, the internal structure of stars deviates
strongly from poly tropic models, especially in chem-
ically inhomogeneous configurations; for this reason,
an effective polytropic exponent, i.e., one that yielded
the same values of k2, k3, and k4 as the model being
tested, was calculated when it became the practice to
test a constructed stellar model against the rotation of
the line of apsides'-154'161-'. However, it would be more
reasonable to test models of real stars in systems with
apsidal motion by stating the (calculated) quantities k2,
k3, and k4 themselves and comparing them with obser-
vations. This has been done in a series of papers
by a progressively improving method.

The problem reduces to finding the solution of the
generalized Radau geodetic equation (see, for exam-

ple, C l 6 9 ] ) :

,[162-168]

i
dr

(7)

which is solved with the initial values ηη = 0, 1, 2 for
η = 2, 3, 4 when r = 0. For η = 2, η has a simple mean-
ing: η 2 = d In e/d In r, and r = R on the outer surface of
the star (e is the rotational flattening of the star).
Equation (7) is solved numerically for a given distribu-
tion ρ = f(r). This is followed by determination of

Κι = [3 - η 2 (Λ,)]/[4 + 2η2 (Λ,)],

and then

and similarly for k2,2, k3,2, and k4 j 2.
The same method has also been used in attempts to

fit the chemical composition of the star'-16"-' or the
thickness of the outer convective layer for subgiants'-168-'
to the observed values of k. However, little should be
expected from such comparisons of theory with obser-
vations, firstly because of the large number of possible
theoretical variants and secondly because it is neces-
sary to have more thoroughly studied cases of apsidal
motion with accurately determined physical characteris-
tics of the components.

Difficulties of theoretical analysis are associated
on the one hand with the depth of the convective zone,
which increases during the evolution of a star of insig-
nificant mass ((1.0—1.5)50! ), in which case energy

transfer is accomplished by both radiation and convec-
tion. In this case, the values of k2 may increase sharply
(by an order of magnitude), and if we inspect 1% as a
function of time, we may also observe a deep minimum
of this quantity and a substantial increase in its value
for the component at the initial subgiant stage, while the
fraction of hydrogen in the stellar matter χ s 0.57 [ 1 β 7 : ι.
However, when it is recognized that Τχ and ra in (6) can
be in error by no more than 10%, the theoretical value
of k> in this model may nearly double.

On the other hand, complications arise when we con-
sider the stage of rapid evolution with transfer of mass
from one component to the other. The theoretical value

of the coefficient k2 may decrease by one or two orders
of magnitude as compared with the value obtained for
single stars at the same stage but without the rapid
e volution [ ι β 8 ].

Thus, although the velocity of rotation of the line of
apsides is a function of the density distribution inside
the star, it cannot be used without circumspection for
selection of the ρ = f(r) law in the model, but only for
selection of the model—one of the many different admis-
sible or possible models; this, of course, is important
but not compulsory for the theory of the internal struc-
ture of stars.

Nor may we forget the constraints used in solving
the problem of rotation of the line of apsides (see above).
Attempts to inject synchronism of the orbital revolution
and axial rotation into the analysis have indeed been
made1-170-1, but it is still a long way to successful analy-
sis of nonrigid rotation of the components. The contri-
bution of rotational flattening to the motion of the line of
apsides (the separate term g2(e) in formula (7)) is much
smaller than the contribution of tidal deformation. As a
result, the nonsynchronism of revolution and rotation
has only a slight influence on the rotation of the line of
apsides.

We have deliberately avoided problems of the forma-
tion of binary stars in our exposition. This is a special
and extremely difficult problem whose solution is of
universal significance for astrophysics, since double
and multiple stellar systems are common phenomena
in the starry universe.
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