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HYPERSONIC WAVES IN CRYSTALS
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The fundamental results of recent research on the propagation of elastic microwaves (hypersonic
waves) in crystals of various types are considered. The procedure for experiments with hyper-
sonic waves is briefly described. The characteristics of the propagation of elastic waves in
crystals (polarization, velocity, energy flux) and methods of their calculation are given. The
principal mechanism of damping of hypersonic waves are considered, such as interactions with
thermal phonons by the Akhiezer mechanism and by the Landau-Rumer mechanism, and interac-
tions with free carriers and with defects. A separate chapter is devoted to problems of the propa-
gation of hypersonic waves in magnetically-ordered crystals and their interactions with spin waves.
The scattering of light by hypersonic waves is also considered, the singularities of this phenomenon
are discussed, as is its use for the investigation of the characteristics of elastic-wave propagations.
Some conclusions are drawn from the point of view of the prospects of using hypersonic methods in
solid-state physics research.
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1. INTRODUCTION

M.ANY fundamental physical properties of crystals
are connected with phonons. The interactions of pho-
nons with phonons, electrons, magnons, and lattice de-
fects underlie many important physical phenomena.
The existing experimental methods for the investiga-
tion of processes in which phonons take part are
mostly integral methods, which do not yield detailed
information on the phonons. Such integral methods in-
clude, for example, measurements of the specific heat,
the thermal conductivity, and thermal expansion. It is
undoubtedly of interest to be able to investigate phonon
processes by using "artificial" phonons of given fre-
quency, wave vector, and polarization. Such a possi-
bility can be realized with modern acoustic research
methods, in which high-frequency elastic waves with
frequencies exceeding 108 Hz (hypersonic waves) are
used. The experimental use of such frequencies started
relatively recently, following the publication of a paper
by Baranskii[1], who used the method of surface piezo-
electric excitation to obtain elastic waves of frequency
~109 Hz in quartz crystals. The technique of hyper-
sonic experiments has reached a high level by now and
continues to develop. The frequency band up to 1010 Hz
has been well mastered, and individual investigations
of the propagation of elastic waves of still higher fre-
quencies in crystals have been reported12'31 Figure 1
shows an approximate form of the Debye spectrum of
a crystal, in which hypersonic oscillations of a certain
frequency are excited. The shaded region in the figure
show the frequencies whose excitation is already pos-

sible at present. As can be seen from the figure, when
compared of the most intense thermal phonons, which
exist in a crystal without any action on our part, the
artificial hypersonic phonons are so far of the low-
frequency type, which the exception of the case of very
low temperatures and the highest frequencies usable at
the present time. There is no doubt, however, that
further development of the experimental techniques
will make it possible to obtain and investigate hyper-
sonic waves with frequencies comparable with those of
the most intense thermal phonons. It is of interest to
note in this connection, recent experimental research
on the propagation of high-frequency elastic waves ex-
cited in crystals by thermal pulses[4]. The method of
thermal pulses makes it possible to obtain elastic
waves with frequencies almost to 1012 Hz, but such
experiments have been made so far only on a small
number of crystals, and therefore are not considered
in the present review.

FIG. 1. Debye spectrum of a crystal in
which hypersonic oscillations are excited
at ~10 1 0 Hz.
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Elastic waves with frequencies lower than 10s Hz
have been in use for a long time to investigate physical
properties of crystals, and it is therefore of interest
to consider more specifically the advantages of re-
search methods in which high-frequency (hypersonic)
elastic waves are used.

The interactions of elastic waves with thermal pho-
nons can be investigated only at sufficiently high
elastic-wave frequencies. To investigate three-phonon
interactions in which two thermal and one artificial
phonon take part, it is necessary to satisfy the condi-
tion Ωτ » 1, where Ω is the frequency of the elastic
waves and τ is the thermal-phonon relaxation time.
The frequency Ω satisfying this condition depends, of
course, on the temperature, but as a rule it exceeds
109 sec"1. The investigation of the interaction of elastic
waves with thermal phonons in the other limiting case
Ωτ « 1 does not require high frequencies physically,
but from the experimental point of view even this case
can be investigated sufficiently well only at Ω ~ 109

sec"1, since the contribution of the phonon-phonon in-
teractions at lower frequencies small enough to be
completely masked by other effects (diffraction losses,
defects produced by working the crystals, etc.).

Methods that use elastic waves enable us to investi-
gate the interactions of elastic waves with spin waves
(magnons). Such processes become particularly im-
portant if the frequencies and the wave vectors of the
elastic and spin waves are equal. When account is
taken of the gap existing in the magnon spectrum, this
condition also leads to the requirement Ω > 109 sec"1.

High-frequency elastic waves are frequently needed
to study interactions with free carriers in semiconduc-
tors or with conduction electrons in metals [ 5 ], and to
investigate acoustic and parametic resonance [ 6 ].

Very high frequencies are necessary also in the
study of direct scattering of elastic waves by point de-
fects in crystals, for only at very high frequencies it
is possible to investigate the interaction of elastic
waves with the soft phonon mode in phase transitions.

The use of hypersonic research methods is very
interesting and fruitful in many regions of solid-state
physics, and it is impossible to cover all these regions
in a single review. We confine ourselves to a discus-
sion of only several problems connected with the prop-
agation of hypersonic waves in nonmetallic crystals.
We consider in this review the main mechanisms of
hypersonic-wave damping due to interactions with
thermal phonons, with free carriers in piezosemicon-
ductors, and with defects. In addition, we consider the
interaction of hypersonic waves with spin waves in
magnetically ordered crystals, and the scattering of
light by hypersonic waves. We begin with a brief de-
scription of the procedures used in hypersonic experi-
ments and present the basic information necessary to
calculate the characteristics of the elastic-wave
propagation in crystals.

2. EXPERIMENTAL PROCEDURE

Hypersonic waves are excited in crystals mainly
with the aid of the piezoeffect. If the crystals in which
the propagation of hypersonic waves is investigated
have themselves a sufficiently strong piezoeffect, then

the method of surface excitation of elastic waves
directly in the crystals is used [ 1 ]. For crystals with-
out the piezoeffect, plates or films of piezoconverters
are attached to the investigated samples. The piezo-
converter or crystal possessing the piezoeffect is
placed in a coaxial line or in a microwave resonator,
at the antinode of the electric field produced by an
oscillator tuned to the corresponding frequency. In the
case of surface excitation, the frequency of the elastic
oscillations is determined only by the frequency of the
generator, i.e., there are no resonance effects. When
piezoelectric converters are used, the elastic oscilla-
tions are excited at resonant frequencies that are
harmonics of the fundamental frequency of the con-
verter. These frequencies are determined by the
formula

ν = (2n + 1) v0 = (2ra + 1) v!2d;

here ν is the velocity of the elastic waves in the con-
verter, vo and d are the fundamental resonant fre-
quency and the converter thickness, and η = 0, 1, 2 , . . .

Converters used in the form of plates are usually
50—100 μ thick. The average fundamental resonant
frequency is 50—30 MHz in this case, so that to excite
the hypersonic waves it is necessary to operate with
very high harmonics. Film converters can have a
thickness of approximately 1 μ, so that hypersonic
oscillations can be excited at the fundamental resonant
frequency of such converters.

Experiments with hypersonic waves are usually
carried out in a pulsed regime (Fig. 2). A pulse of
electromagnetic oscillations from a microwave genera-
tor is fed to the piezoelectric converter and is con-
verted into a pulse of elastic oscillations of the same
frequency. The elastic pulse propagates through the
crystal and is partly reconverted into an electromag-
netic pulse by a second converter or by the very first
one operating "in reflection." The converted electro-
magnetic pulse is amplified in the receiver and
registered with a pulse oscilloscope. The greater part
of the elastic pulse is reflected in this case, and after
passing again through the crystal it is registered anew,
and this continues until the elastic pulses are attenu-
ated by various damping mechanisms in the crystal.
As a result, the oscilloscope displays a damped series
of pulses, from which it is possible to determine both
the damping of the elastic waves of the crystal and

1 JL
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FIG. 2. Experimental setup.
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their velocity. This, in general outline, is the proced-
ure for experiments with hypersonic waves.

Let us examine now the main difficulties that arise
in such experiments. One of the difficulties is the low
efficiency of conversion of electromagnetic oscillations
into elastic ones. The conversion losses frequently
reach 30-40 dB, i.e., only ΙΟ"3—10"4 of the electro-
magnetic-oscillation power is converted into elastic
oscillations. Since the elastic waves are registered by
reconverting them into electromagnetic oscillations,
the total conversion loss is 60—80 dB. Such large
losses are due to the difficulties of matching the
microwave channel to the piezoconverter or the con-
verter to the crystal, and also to the fact that when
converters in the form of plates are used it becomes
necessary to operate not at the fundamental resonant
frequencies of these plates, but at high harmonics.
Better results are obtained with film converters
(cadmium or zinc sulfide, zinc oxide, etc.), which oper-
ate at the fundamental resonant frequency. With such
converters, if the microwave channel is well matched
to the converter, the conversion efficiency can be
raised to several percent or even several dozen per-
cent.

Other difficulties peculiar to hypersonic experiments
are raised by the stringent requirements that the in-
vestigated samples must satisfy. At approximately
1010 Hz, the wavelength of the elastic oscillations is on
the average 0.5 μ. The ends of the samples, i.e., the
surfaces perpendicular to the direction of propagation
of the elastic waves, must therefore be optically
polished, otherwise these surfaces produce additional
scattering of the elastic waves. The end surfaces must
also be plane and parallel to a very high degree. Their
deviation from parallelism reduces the observed num-
ber of elastic pulses and leads to a decrease and to a
modulation of the pulse amplitudes, thereby greatly
complicating the measurements. The pulses are at-
tenuated and modulated because reflection takes place
from non-parallel end faces alters the angle at which
the plane elastic wave reaches the piezoconverter. As
a result, the phase of the elastic wave is different, in
different sections of the converter, thus causing a de-
crease of the signal in comparison with the case when
the front of the elastic wave is parallel to the plane of
the converter.

Estimates show that in many exact measurements of
elastic-wave damping the deviation from parallelism
must not exceed 2". Samples for hypersonic measure-
ments should thus be finished with " l a s e r " accuracy.
Of very great importance is also the quality of the
junction between the converter and the sample. This
junction is either by optical contact or with the aid of
various adhesives (ceresin, vacuum lubricant, GKZh
oil). The layer of the adhesive should be thin and homo-
geneous enough not to introduce additional losses. The
problem of obtaining good acoustic contact is frequently
simplified by using film converters that are deposited
directly on the sample.

3. PROPAGATION OF ELASTIC WAVES IN CRYSTALS

In this chapter we present concise information on
the calculation of such characteristics of elastic-wave

propagation in crystals as the polarization, i.e., the
direction of the displacement of the particles in the
elastic waves, the velocity, and the direction of the
energy flow in the elastic wave. Knowledge of these
characteristics is essential for a correct organization
of hypersonic experiments.

a) Velocities and polarizations of elastic waves. The
question of calculating the velocity and polarization of
an elastic wave in a crystal is considered in sufficient
detail in a number of papers [ 7 a ' 8 > 9 ] . We confine our-
selves therefore to citing the fundamental equations
necessary for such calculations.

Starting from the equation of motion for the elastic
displacements

we can easily obtain the following equations for the
calculation of the velocity and polarization of the
elastic waves:

and

- X)\i[Vyzi\y -

- rIJt (Γχχ - ; - r,a (Γ Ι 2 - X)\,

(3.1)

(3.2)

Here γι are the direction cosines of the displacement
vector, X = pV2 and Γι/ = Cik/mKkKm> where ρ is the
density, ν the velocity of the elastic waves, and κ^ the
direction cosines of the wave vector.

An analysis of the solutions of the equations of
motion shows [ 8 > 9 ] that for any propagation direction
there exist in a crystal three independent elastic waves
with displacements along mutually perpendicular direc-
tions. In the general case, none of the three displace-
ment vectors coincides with the propagation direction.

A wave in which the displacement vector is closest
to the propagation direction is customarily called
quasilongitudinal, and the two other waves are called
quasitransverse.

In any crystal there are, in addition, two types of
special directions. Along one of them, which we shall
call "pure," the elastic waves propagate in the form
of pure modes, i.e., the displacement vector of one of
the waves is parallel to the propagation direction
(longitudinal wave) and the displacement vectors of the
other two waves are perpendicular to this direction
(transverse waves). The second special direction is
characterized by the fact that one of the three waves
propagating along this direction is purely transverse,
and the other two are quasitransverse and quasilongi-
tudinal. Some of the special directions in crystals can
be obtained by starting from symmetry considerations.
Thus, it is easily seen that the pure directions are the
symmetry axes of any order, and also the directions
perpendicular to the symmetry planes. We also note
here that if the propagation direction coincides with a
symmetry axis of order higher than second, such a
direction is degenerate for the transverse waves, i.e.,
any displacement vector is possible for such waves in
a plane perpendicular to the propagation direction, and
the velocities of these waves are equal. Similarly, it
follows from symmetry considerations that for any
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propagation direction lying in the symmetry plane one
of the waves must be purely transverse.

In addition to the pure directions determined on the
basis of symmetry, other pure directions can also
exist in a crystal.

To determine such directions, there is no need to
solve the problem for each crystal separately. As is
well known[10], the elastic properties of crystals are
determined by nine symmetry groups. General formu-
las that determine the pure directions were obtained
for these groups i n [ l i a ] , where expressions are also
given for the velocities and polarizations of the elastic
waves along the pure directions.

b) Energy flux. The components of the energy flux
vector in an elastic wave a r e [ 9 ] Pj = - u ^ k . Changing
over from stresses to strains and assuming, as before,
that the elastic wave is plane, we find that the direc-
tion cosines of the energy flux vector are proportional
to

Pi (3.3)

In the general case, i.e., when an elastic wave propa-
gates in an arbitrary direction, the direction of the
energy flux does not coincide with the propagation
direction, and the deviation can reach several dozen
degrees. There are no such deviations in most cases
of pure waves.

In experiments with hypersonic waves, the devia-
tions of the energy flux from the propagation direction,
which usually coincides with the sample axis, can
cause errors in the measurements of the velocity and
of the damping. It is therefore always preferable to
use as the propagation directions in such experiments
pure directions for which there are no deviations of
the energy flux. This raises the question of how the
characteristics of the elastic-wave propagation are
affected by small and experimentally unavoidable in-
accuracies in the sample orientation. This question is
considered in [ 1 2 ] . It turns out that insignificant devia-
tions of the sample axis from the pure direction can
lead to appreciable deviations of the energy flux from
the sample axis. Thus, an inaccuracy of 1° in a
crystal of symmetry lower than cubic produces in
individual cases an energy-flux deviation of 10% from
the sample axis. These deviations are as a rule
smaller in cubic crystals.

c) Internal conical refraction and acoustic activity.
In concluding this section, we consider two interesting
effects that accompany the propagation of transverse
elastic waves in anisotropic media. The first effect is
that in certain cases the energy flux in a purely trans-
verse wave deviates from the propagation direc-
tion [ 9 ' 1 2 " 1 4 ] . Such deviations occur, for example, when
transverse waves propagate along a threefold axis in
a crystal of any class. When the displacement vector
in the transverse wave rotates around the threefold
axis, the energy-flux vector describes a cone about
this axis.

Using (3.3) we find, for example, that for propaga-
tion along the (111) direction in a cubic crystal, the
expression for half the apex angle of the internal-re-
fraction cone is

a = arctg {(<·,, — ciz — 2c 1 4 )/[ '/2 (cn — c 1 2 + c 4 1)]}.

When the displacement vector in a transverse wave
is in the {110} plane, the energy-flux vector lies in
the same plane and makes an angle a with the propa-
gation direction. When the displacement vector rotates
around the propagation direction, the energy-flux vec-
tor also rotates, but in the opposite direction and at
double the speed, describing in this case a cone about
the threefold axis. A similar phenomenon takes place
when an elastic wave propagates along a threefold axis
in a crystal of lower symmetry. The internal conical
refraction angle depends on the elastic constants of the
crystal and can amount to ~10°. There have been a
number of experimental studies of internal conical
refraction1 1 3 '1 5 1, but this phenomenon has not yet been
conclusively investigated.

Another interesting effect is a cone?quence of spa-
tial dispersion of the elastic constants'^161. The influ-
ence of spatial dispersion can be quantitatively de-
scribed by the coefficients of the linear terms in the
expansions of the elastic constants in terms of the
wavevector components. These coefficients form a
fifth-rank tensor, and this leads to a number of com-
plicated effects for elastic waves propagating in
crystals of definite symmetry classes. When a trans-
verse wave propagates along a threefold axis or an
axis of higher order (in the absence of an inversion
center and of symmetry planes), there should be ob-
served effects analogous to optical activity produced
by light propagating in the same directions. The
normal elastic modes for such directions are left- and
right-circularly polarized transverse waves with dif-
ferent propagation velocities, so that a linearly polar-
ized transverse wave experiences rotation of the plane
of polarization (natural acoustic activity. Acoustic
activity should take place, for example, in the propa-
gation along a threefold axis in crystals of quartz,
tellurium (point group D3), in bismuth germanate
Bi12GeC>2o (point group T), and others.

The acoustic activity is proportional to the square
of the frequency[16] and is estimated at 1 rad/cm at
109 Hz. Calculation [16] shows that the specific acoustic
activity of tellurium at this frequency is 165 deg/cm.
The phenomenon of acoustic activity was first observed
experimentally in [ 1 7 1 in the propagation of transverse
waves along a threefold axis in a quartz crystal. The
value obtained for the specific acoustic activity at
109 Hz, was approximately 100 deg/cm.

4. PRINCIPAL MECHANISMS OF DAMPING OF
HYPERSONIC WAVES IN CRYSTALS

The propagation of hypersonic waves in crystals is
accompanied by energy dissipation, i.e., the waves are
damped when they propagate. In this chapter we con-
sider the following principal hypersonic-wave damping
mechanisms: interaction with thermal phonons, inter-
action with free carriers, and scattering by defects.

a) Interaction with thermal phonons. 1) The Akhiezer
mechanism. The character of the interaction of the
hypersonic waves with thermal phonons depends on the
ratio of the frequency of the hypersonic waves Ω to the
reciprocal thermal-phonon relaxation time 1/r. If
Ω « 1/τ, it is meaningless to consider individual in-
teractions of hypersonic and thermal phonons, since
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the energy of the hypersonic phonon turns out to be
less than the uncertainty in the energy of the thermal
phonon, ΚΩ « fi/τ. The relation Ωτ « 1 can be re-
written in the Τ » τ or A » I, where Τ and Λ are the
period and wavelength of the hypersonic oscillations,
and I is the thermal-phonon mean free path. Under
such conditions, the elastic wave will interact with an
ensemble of thermal phonons as a whole, and the
elastic deformations ejk in the hypersonic wave can
be regarded as a classical field that leads to a change
in the frequencies of the thermal phonons

— ylk = YiTft + («mtn/2f) (Cihmn + Cikmpru, frtq), (4.3)

(q. ί) = ω ο (q, 1) 11 — yih (q, i) (4.1)

where

ι
e>o(q, /)

r <9ω (q, /) -I
L 9eth J e

is the Griineisen coefficient and q and j are the wave
vector and polarization of the phonons.

The change in frequency causes the distribution
functions of the thermal phonons to deviate from their
equilibrium values, the deviations being different for
different phonon branches. The phonon-phonon colli-
sions lead to relaxation of these deviations. During the
relaxation, the entropy of the crystal increases and
irreversible losses of the elastic-wave energy oc-

The problem of damping of elastic waves in crystals
at Ωτ « 1 was first solved by Akhiezer [ 1 8 ] with the aid
of the Boltzmann kinetic equation. The theory of damp-
ing by the Akhiezer mechanism was subsequently de-
veloped in [ 1 9 ' 2 0 1 .

Woodruff and Ehrenreich [ 2 0 ] present a detailed de-
rivation of the expression for the damping of the
elastic waves from a solution of the Boltzmann kinetic
equation. This expression for the damping can be
written in the form

/) v

a (q. (4.2)

where β is a numerical factor of the order of unity, Ω
and v0 are the frequency and velocity of the elastic
waves, and C is the specific heat of the phonon branch
(q, j). This formula does not make it possible, how-
ever, to calculate the magnitude and the temperature
dependence of the damping of the elastic waves, since
we have not enough knowledge of the characteristics τ,
γ2 and C of the phonon spectrum, so that approximate
calculation methods must be employed at present. One
such method, used in many papers to calculate damp-
ing in cubic crystals, was proposed by Mason [ 2 i a i . In
this method it is assumed that the damping of the
elastic waves is described by an effective relaxation
time that is equal to or close in magnitude to the aver-
age relaxation time Tph of the thermal phonons; the
latter is determined from the expression for the
specific heat κ = Ο ν 2 τ ρ η / 3 , where ν is the average
speed of sound in the Debye approximation and C is
the specific heat of the crystal. This assumption con-
cerning the relaxation time, which is common to all
the approximate calculation methods, is of course dif-
ficult to justify1-22', but one is nevertheless forced to
use it.

The Griineisen coefficients are calculated by using
the elastic constants of second and third o r d e r s [ l l b l :

where γ and κ are the direction cosines of the parti-
cle displacement vector and of the wave vector, respec-
tively, and c = cmpnqKmKnrpyq. The index r denotes
the phonon branch (q, j), the indices i and k pertain
to the elastic wave, and the indices m, n, p, and q
pertain to the considered phonon branch.

Assuming furthermore that the thermal energy is
the same for all the phonon modes and is equal to E r

= CTF/n, where η is the number of modes considered
and F is a slowly varying function of the temperature,
equal to 0.25 at Τ = 0 and to 1 at Τ » T D (the Debye
temperature), Mason obtained the following formula
for the damping (for details s e e [ 2 i a i ) :

(4.4)

To calculate the damping in cubic crystals by means
of this formula, Mason has proposed, by way of an ap-
proximation, to sum over 39 phonon modes (n = 39),
corresponding to 13 pure directions in a cubic crystal:
three (100 ), four (111 >, and six ( 110 >. The described
method was used to calculate the damping in many
crystals: Si, G e [ 2 i a l , L iF [ 2 3 ' 2 l b l , MgO [ 2 4 b ], and
NaCl [ 2 5 ]. The experimental values of τ ρ η (obtained
from thermal conductivity) and elastic moduli of
second and third orders were used. The calculated
values of the damping agreed well with the experi-
mental results. In particular, the calculation of the
Griineisen constants with the aid of the elastic con-
stants explains the anisotropy of the damping in the
crystals, i.e., the dependence of the damping on the
elastic wave propagation direction, and also the differ-
ence between the damping of longitudinal and trans-
verse elastic waves (see Fig. 3 and Table I, which lists
the damping of elastic waves dB/^sec in certain cubic
crystals; the elastic waves propagate along [110], the
frequency is 100 MHz11, and the temperature is 300°K).

It follows from the table and from the figure that in
many cases the damping depends strongly on the
polarization of the elastic waves. In addition, as seen
from Fig. 3, the frequency dependence of the damping
is quadratic, as it should be in accordance with the
Akhiezer damping mechanism. (The straight lines in
Fig. 3 are drawn under the assumption that the damp-
ing has a quadratic frequency dependence.)

Mason's method was criticized in [ 2 2 ] because of a
number of arbitrary assumptions made in the deriva-
tion of (4.4). The most serious objections concern the
assumption that the thermal energy is equal for all
phonon modes, which holds true only at sufficiently
high temperatures, and the neglect of the possible
dispersion of the Gruneisen constants, which are cal-
culated in Mason's method from the elastic moduli and
are considered to be independent of the temperature.
These assumptions do not make it possible to use
formula (4.4) to calculate the temperature dependence
of the damping. More realistic is the approach of[2e],
where the contributions of the different phonon
branches to (4.1) is taken into account with a weight

"Damping values higher than ~10 dB^sec were obtained by extra-
polating the frequency dependences of the damping.
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Table I

Crystal

Ge
Si

InSb
NaCl*)
NaF
LiF

TD, 'K

370
650

200
310
470
700

Polarization along

[110]

10

a
40
15

6.5
2.5

[001]

2
1.6

5
2.5
1.8
1.0

[110]

2
1.6

8
25
20
12

Crystal

MgO
BaF 2

SrF 2

CaF 2

Y 3 P e 5 0 1 2

3 5 1 2

TD,°K

920
280
380
500

500
700

'These values were obtained by extrapolating the data of [ 2 5 ] .

Polarization along

[110]

1.5
3.5
2.5
1.5

1.0
0.4

[001J

0.6
2.4
2.0
2.0

0.3
0.3

[110J

6.3
2
1.6
1.0

0.3
0.3

V i

1.0

as

02

ι·, MHz 200
r.'K

300

FIG. 3 FIG. 4

FIG. 3. Frequency dependence of the damping of hypersonic waves
propagating along a twofold symmetry axis at room temperature for
longitudinal waves (a) and transverse waves with polarization along
[001] (b).

FIG. 4. Temperature dependence of the damping of elastic waves of
1000 MHz frequency in silicon.

determined by the specific heat of the branch. The
damping in a number of crystals (InAs, GeSi) was
calculated by this method in [ 2 e ] . This method, however,
calls for definite information (or assumptions) about
the specific heat of the phonon branches. In addition,
the question of the possible dispersion of the Gruneisen
constants (4.1) remains open as before. A seemingly
more fruitful approach in this respect is one i 2 7 ] in
which the temperature dependences of the effective
anharmonicity constants y 2 are determined from the
temperature dependences of the damping. Formula
(4.2) is rewritten in the form

where

or, if we express Tph in terms of κ and neglect a
numerical factor of order of unity,

A = y*xTQ*/pv*l2. (4.5)

Comparing further (4.5) with the experimental data on
the damping, we can determine the temperature de-
pendence of the eJf^c_ULyj_^Tunei^en_constant γ2. Ac-
cording to (4.5), if y 2 does not depend on the tempera-
ture, the damping and the product κΤ should have

A re l

12-

OA

ω

A, dB/cm

10'

0 WO 200 τ · κ 300 Β ZO SO 100 200 300

FIG. 5 FIG. 6

FIG. 5. Temperature dependence of the damping of 1000-MHz
elastic waves in LiF crystals.

FIG. 6. Temperature dependence of the damping of 1000-MHz
elastic waves propagating along a twofold axis in quartz crystals for fast
transverse (1), longitudinal (2), and slow transverse waves (3).

τ,'κ

2 -

0

ΰ

100 W τ · κ 300

FIG. 7 ' FIG. 8

FIG. 7. Temperature dependences of the product κ Τ for crystals
of topaz (1), Si (2), Y3A15O12 (3), and SiO2 (4).

FIG. 8. Temperature dependences of the effective Gruneisen con-
stant, calculated from formula (4.5) using the experimental data on the
thermal conductivity and damping of hypersonic waves for LiF (1), Si
(2), Ge (3), and InSb (4) longitudinal waves along [110]).

similar same temperature dependences, Figures 4—7
show such dependences for a number of crystals (in
Figs. 4 and 5 the longitudinal waves propagate along
[100] (1), [110] (2), and [111] (3), and the transverse
waves propagate along [110] with polarization along
[001] (4) and [110] (5); for Fig. 6 [ 2 8 ], the Akhiezer
criterion Ωτρη < 1 is satisfied at Τ > 50°Κ). The dif-
ferences between the temperature dependences of the
damping and the product κΤ can be related to a definite
temperature dependence of y 2 (Fig. 8). We note that
the Akhiezer criterion Ωτρη « 1 is satisfied in a suf-
ficiently wide range of frequencies and temperatures.
In practically all crystals at room temperature and
higher we have Ωτρη < 1 up to frequencies ν = Ω/2π
= 1010 Hz. Lowering the temperature causes a rather
rapid growth of the relaxation time, but at the tempera-
ture of liquid nitrogen, for example, and at ν ~ 109 Hz,
this criterion is again satisfied for most crystals.

Many experimental data on the Akhiezer damping
were analyzed in [ 2 9 ] from the viewpoint of the thermal
properties of crystals. A distinct connection between
the damping at 300°K and the thermal properties of the
crystals was established. A connection of this type can
be observed also for the crystals whose characteristics
are listed in Table I.

Table I gives in addition to the elastic-wave damp-
ing also the Debye temperatures. A comparison of the
Debye temperature with the damping shows that within
each group of crystals having similar structures and
properties there is a correlation between the damping
and the Debye temperature, namely, the higher the
Debye temperature the smaller the damping. This
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result is indeed a consequence of the fact that the
damping of the elastic wave is connected with the inter-
action with the thermal vibrations of the lattice. It is
interesting to note that no such correlation exists for
crystals having different structures and compositions.
Thus, in the series of crystals Si, LiF, and Y3Al50i2,
which have approximately the same Debye temperature,
the damping decreases by practically one order of
magnitude on going from Si to Y3AI5O12. This agrees
with the conclusion proved in [ 2 9 ] , that crystals of more
complicated composition are characterized by smaller
damping, other conditions being equal, owing to the
decrease in the thermal-phonon relaxation time.

Summarizing, we can conclude that investigations
of the damping by the Akhiezer mechanism make it
possible in principle to determine such interesting
characteristics of the phonon spectra as the anharmon-
icity constants and the relaxation t imes t 2 7 b ] , but the
number of completed investigations in this direction is
still quite small.

2) The Landau-Rumer mechanism. In those cases
when the frequency of the hypersonic waves satisfies
the inequality Ωτ « 1, the energy of the hypersonic
phonons turns out to be larger than the uncertainty in
the energy of the thermal phonons. The energy and
momentum conservation laws then impose definite
limitations on the possible interactions between the
hypersonic and thermal phonons.

For three-phonon interactions, the conservation laws
are

Ω + ω4 = ω2, q0 + q, = q2, (4.6)

where Ω and qo are the frequency and wave vector of
the hypersonic phonon, and the subscripts 1 and 2 per-
tain to thermal phonons. Since the relation Ωτ » 1 is
satisfied at low temperatures, Umklapp processes are
not taken into account.

Recognizing that the momentum conservation law
reduces to q0 + qi > q2, we can easily show that in an
isotropic medium without dispersion only the following
three-phonon interaction processes are possible: the
process Lo + Sx —· L2, in which a hypersonic phonon Lo

interacts with a transverse thermal phonon Si to pro-
duce a longitudinal thermal phonon Li, is allowed for
longitudinal hypersonic waves. For transverse hyper-
sonic waves, the allowed processes are of the type

for transverse waves

S0 + Si —>• S Q -j-

(4.7)

(4.8)

So
L2, So + S, —• L2.

In addition to the indicated processes, collinear inter-
action processes, in which the wave vectors of all
three interacting phonons are parallel, are also possi-
ble, namely

LQ -(- //i —>- L%, ο α -\- ο ι —>- Λ 2·

Recognizing further that the hypersonic phonons are
of low frequency ( Ω < kT/K) and they interact most
effectively with high-frequency thermal phonons (wi,
a>2« kT/R), we find that the thermal phonons partici-
pating in the interaction processes should have identi-
cal polarizations. This leaves for an isotropic elastic
medium without dispersion only the following possible
interactions:

for longitudinal waves

It is easily seen that the relation v0 s Vph, where
v0 and Vph are the velocities of the hypersonic and
thermal phonons, is satisfied in processes (4.7) and
(4.8). This relation, which follows from the conserva-
tion laws, can be illustratively explained to mean that
the effective energy exchange between the hypersonic
and thermal phonons occurs under conditions when the
interacting phonons propagate "together" for a suf-
ficiently long time. When v0 = Vph this condition is
satisfied only for thermal phonons propagating in the
same direction as the hypersonic phonon (collinear
interaction). When v0 < Vph the thermal phonons that
can interact with the hypersonic phonon propagate in a
certain cone with angle a = cos"1(v0/vph).

If the dispersion of the phonon velocity is taken into
account, then it turns out that collinear interactions are
forbidden, since for any one phonon branch we always
have v0 > vph. The only process left from among the
processes (4.7) and (4.8) is therefore

5 1 r r

An expression for the damping of transverse elastic
waves as a result of three-phonon processes was first
derived by Landau and Rumer (see r 3 0 ]). They used
quantum-mechanical perturbation theory with allow-
ance for the anharmonic third-order terms describing
the three-phonon processes. The damping was found
to be proportional to As ~ ·)/2ΩΤ4, where γ2 is the
anharmonicity constant. As for the longitudinal elastic
waves, according to the theory their damping should be
much smaller, since longitudinal waves cannot interact
with high-frequency thermal phonons, and they inter-
act only with phonons of comparable frequencies in
processes of the Lo + Si — L2 type. Experiments show,
however, that the damping of longitudinal and trans-
verse waves is close in magnitude, i.e., there exists
for longitudinal waves a certain sufficiently effective
mechanism of interaction with the thermal phonons.
One can assume four-phonon processes to be possible
interaction mechanisms, but calculations show f 3 i a l that
the contribution of these processes is very small.
Another possible mechanism is the Herring mecha-
nism1^32·1, whereby anisotropy causes lines of intersec-
tion or tangency of different phonon branches in the
wave-vector space to exist in crystals. This causes
processes that are forbidden in an isotropic body to
become allowed in an anisotropic crystal. Even this
mechanism, however, results in a very small damp-
ing [ 3 3 ]. In addition, in both the four-phonon processes
and in the Herring mechanism the resultant frequency
and temperature dependences of the damping differ
from those observed experimentally [331.

The effect of the finite relaxation time of the thermal
phonon on the possible interaction processes was first
taken into account in [ 3 4 ] . A finite relaxation time leads
to an uncertainty in the energy of the thermal phonons,
ΔΕ ~ fi/τ. If this uncertainty exceeds the energy
"unbalance" in the conservation law for a given for-
bidden process, then this process becomes allowed.
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According to (4.6), the energy "unbalance" in a pro-
cess for which the conservation law is not satisfied is

Since

ΠΑΩ = Ά ( Ω + ω, — ω2) = δΩ [1 — ( ω 2 —

( ω 2 — ω,)/Ω =

Ω" 1].

where α is the angle between q0 and q2, it follows that

ΆΑΩ = fiQ [1 - (vpb/v0) cos a ] .

The smallest "unbalance" occurs at a = 0 (collinear
process):

i n = ΤιΩ [1 - (i> p h /!;„)].

Recognizing further that (vph/v 0) = (1 - bq2a2), where
b is a numerical factor and a is the lattice parameter,
and that q V ~ q 2 /q m a x * ( T / T D ) 2 , we obtain ulti-
mately

hAQ.mlB « ίΩ (TITD)\

If Κ/τ » Β Ω ( Τ / Τ Π ) 2 , then the collinear processes
(4.7) turn out to be possible.

Thus, if Ωτ « ( T D / T ) 2 (but at the same time
Ωτ » 1), then the conservation laws impose no limita-
tions on the collinear interaction of hypersonic waves
with high-frequency thermal phonons. The damping is
calculated in this case also by quantum-mechanical
perturbation theory1·301, but one introduces into the
expression for the transition probability not the δ-
function 5(Ei - Ef), which gives the energy conserva-
tion law, but the smoother function (Κ/ιτ)τ/[Κ2 + (Ei
- Ef)2T2]. The damping of the longitudinal waves turn
out to be proportional1351 to A L ~ 72ΩΤ4, just as for
the transverse ones.

We note that the condition Ωτ » 1 is usually satis-
fied at T i O . I T D , i.e., the inequality Ωτ « ( T D / T ) 2

is always possible in a definite range of frequencies
and temperatures. When the temperature is lowered,
the thermal-phonon relaxation time, which is deter-
mined mainly by the normal processes, increases
more rapidly than χ- 2

;£
3 61 ; and the inequality Ωτ

< ( T D / T ) 2 no longer holds. In the opposite limiting
case, Ωτ » ( T D / T ) 2 , the uncertainty in the energy of
the thermal phonons becomes less than the "unbal-
ance" of the energy in the process (4.7), the process
becomes forbidden, and the damping decreases abruptly.
Calculation [37] shows that the damping of longitudinal
waves does not depend in this case on the frequency
and is proportional to A L ~ Τ 2 /τ. Inasmuch as the

steepest temperature dependence of τ corresponds
to[36] T -5 ( w e h a v e A L ~ T 7 ( g e e a i s o [3ia]_ I n analogy

to the longitudinal waves, the finite relaxation time
also lifts the forbiddenness of the collinear interaction
So + Si — S2 for the transverse waves.

In t 3 5 ) 3 7 ] they considered also the influence of the
finite relaxation time on the process Lo + Si — S2.
This process does not satisfy the conservation laws at
all, whether or not dispersion in present in the medium.
Nevertheless, it is shown in^371 that when the finite τ
is taken into account this process can make a notice-
able contribution to the damping. In this case the damp-
ing turns out to be likewise independent of the fre-
quency and proportional to Τ 4/τ, which can lead to as
steep a temperature dependence of the damping as T 9.

We present now formulas for hypersonic-wave
damping due to the considered three-phonon processes,
in the same form as given in [ 3 5 ) 3 7 ] . The formulas were
obtained by perturbation theory with allowance for the
finite relaxation time of the thermal phonons:

transverse waves, processes So + La — L2 and So

+ Si — S 2 :
As = (π'ΗΊίβΟρη (kT/hy {{Fyvw) + Fllv's") [(a/2)-&rctg0,32QxX}}, ( 4 9 )

Longitudinal waves, processes Lo + Si —- S 2 and
Lo + Li —» L2:

AL == (π2δ/30ρ3) (kTihy {τ"1 [ i > ' L ^ (vl- u|)] ( 4 · 1 0 )

-f lp.F\!2vl£) [(π/2)-arctg0,32ΩτΧ]};

here F is the anharmonicity constant (the phonon-
phonon interaction constant) and is a combination of
the second- and third-order elastic moduli:

f = T0l7l/V2).«0^lmX2n (CnjmJm + Cilmn6jk + Cjmln6ik + Chnlm6ij).

where γ and κ are the direction cosines of the particle
displacement vector and the wave vector, while the
indices 0, 1, and 2 pertain, as before, to the hyper-
sonic and thermal phonons, respectively. The parame-
ter X is given by X = k2T2a2/fi2v2, and its order of
magnitude is X ~ (T/Trj)2.

From formulas (4.9) and (4.10), in accordance with
the already considered results, it follows that when
Ω Τ « (Trj/T)2 (relatively high temperature and low-
frequencies) the damping of the hypersonic waves is
proportional to ΩΤ4. At Ωτ » (Trj/T)2 (lower tem-
peratures and high frequencies), the damping of the
longitudinal waves is independent of the frequency and
depends on the temperature like T n , where η ranges
from 7 to 9, depending on the relative contributions of
the first and second terms in (4.10). As to the trans-
verse waves, their damping is proportional in this
case to Ω ΐ η Τ η , where m ranges from 1 to 0 and η
from 4 to 7, depending on the relative contributions of
the terms in (4.9).

We now compare the conclusions of the theory with
the experimental results. Damping of hypersonic waves
in crystals at Ωτ << 1 was investigated in a number of
papers. in [ 2 3 '3 3>3 S>3 9 ] they investigated the cubic crystals
LiF, CaF2, MgO, and others. The lower-symmetry
crystals SiO2, A12O3, and TiO3 were investigated
inr24C,2e,33,35,37,38,40-42] ^ h y p e r s o n i c . w a v e d a m P i n g

was measured at frequencies from 5 χ 108 to 1010 Hz
and at temperatures from 100 to 4.2°K. The most
general frequency and temperature dependences found
for the damping in the cited papers consist in the
following: the damping of transverse waves is propor-
tional to ΩΤ4 in a wide range of temperatures and
frequencies. For longitudinal waves at relatively high
temperatures, the damping is also proportional to ΩΤ4,
and when the temperature is lowered the damping
ceases to depend on the frequency and becomes pro-
portional to T7. At still lower temperatures in cer-
tain crystals, the damping of the longitudinal waves
turns out to be proportional to T 9. Such a sharp tem-
perature dependence of the damping was observed in
the crystals LiF 3 9, SiO 2

2 4 C ' 4 0, A12O3

37'41, TiO2

4 2. By way
of illustration, Fig. 9 shows the temperature depend-
ence of the damping of longitudinal and transverse
waves in Al2O3

f411. Figure 6 shows the temperature
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FIG. 9. Temperature dependence of the
damping of elastic 1000-MHz waves propa-
gating in A12O3 along the twofold axis: 1)
slow transverse, 2) fast transverse, 3) longi-
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dependence of the damping in quartz crystals'-281 (the
condition Ωτ > 1 is satisfied in this case at tempera-
tures below 40°K).

Thus, the character of the frequency and tempera-
ture dependences of the damping agrees well in general
with the predictions of theory. The absolute value of
the damping, calculated from formulas (4.9) and (4.10),
also agrees satisfactorily with experiment. The latter,
however, should not be assigned too much significance,
since the formulas for the damping contain such
parameters as the anharmonicity constant F, the av-
erage elastic-wave velocity v, and the relaxation time
τ, the values of which are not known accurately. Con-
sequently, the only criterion for the correctness of the
considered theory is for the time being the agreement
between the theoretical and experimental temperature
dependence of the damping.

It must also be borne in mind in the analysis of the
experimental results that the temperature dependence
of the damping can be strongly influenced both by
singularities of the phonon spectrum[471 and by the
anisotropy of the phonon-phonon interaction con-
stants t " \

We have considered so far the case tiQ «kT. In [ 2 ]

they investigated the damping of longitudinal waves in
quartz crystals at a frequency 7 χ 1010 Hz correspond-
ing to ΒΩ as kT at helium temperatures, when both
three-phonon decay processes of the type Lo — Si + L2

and processes of the type Lo + Si — L2 are effective.
In the experiment of[21, the observed damping depended
on the temperature like T4 as against T7 or T9 at
lower temperatures. Such a dependence is possibly due
just to the additional interaction processes that in-
crease the damping at low temperatures. The case
fifi « kT was not investigated in greater detail.

b) Interaction with free carriers. A contribution to
the damping of hypersonic waves in crystals can be
made not only by scattering by thermal phonons, but
also by interaction with free carriers. For piezoelec-
tric crystals, such an interaction is due to the fact that
the propagation of elastic wave in the piezoelectric is
accompanied by alternating electric fields that act on
the free carriers. In addition to this interaction mecha-
nism, which operates only in piezoelectrics, coupling
between the elastic waves and the carriers may be

produced by a deformation potential, i.e., to a change
in the width of the band by elastic deformation. The
latter mechanism, however, usually leads to a damping
that is much smaller than the damping due to scatter-
ing by thermal phonons. As to piezoelectric semicon-
ductors, their main damping mechanism is frequently
the electron-phonon interaction.

The theory of electron-phonon interaction in piezo-
semiconductors was developed by Gurevich, Hutson,
and White [ 4 5 a '4 6 1.

The main results of the theory are obtained by
solving the following system of equations'^61

· · dT

3D dJ _ dn . .
i)x ' dx dt ' ν ο ι

These equations, written down for the one-dimensional
case, are respectively the equation of state for the
piezoelectric, the equation of motion of elasticity
theory, the Poisson equation, the continuity equation,
and the equation for the current. Here e is the elec-
tron charge, β and e are the piezoelectric and die-
electric constants, μ and D are the mobility and the
diffusion coefficient of the carriers, n0 is their equili-
brium concentration, and η is the deviation from the
equilibrium concentration, and is caused by the elastic
wave. In the linear approximation, this system of equa-
tions reduces to the equation of motion

where Ceff is the complex elastic modulus, whose
imaginary part determines the damping of the elastic
waves due to the coupling with the carrier1·461:

A (dB/μ Sec) =- 4.34.10-«χ* [QHC/(1 + ΩΗ'υτΙ + 2ΩΗητ, + Ω2τ?); (4.11)

here χ = (β 2/οε) 1 / 2 is the electromechanical coupling
constant, TQ, = e/σ is the Maxwellian relaxation time,
and TD = kT/ev2 is the "diffusion t i m e , " where σ is
the electron conductivity and ν is the velocity of the
elastic waves.

Thus, the damping of the elastic waves is in general
a complicated function of the electric characteristics
of the semiconductor. At certain ratios of the fre-
quency Ω to the elastic waves and the characteristic
parameters TC and TQ, formula (4.11) assumes a
simpler form. We consider in this connection two
limiting cases. If all the terms in the denominator of
(4.11) are small in comparison with unity (Ωτ < 1),
then the damping turns out to be

A = 4.34 -ΙΟ-6 χ2εΩ2ρ, (4.12)

where ρ is the electric resistivity. The damping is
proportional in this case to the square of the elastic-
wave frequency to the resistivity of the crystal, In the
other limiting case, when Ω τ 0 > 1 and Ωτο < 1, we
have

A = 4.34·10-°χ2σ/ε, (4.13)

i.e., the damping does not depend on the frequency and
is proportional to the electric conductivity.

Elastic-wave damping due to interaction with free
carr iers was investigated in a number of crystals such
as CdS t 4 7 1, GaAs [ 4 8 ], and T e t 4 9 ] . The experimental re-
sults are described well by formula (4.11). By way of
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FIG. 11

FIG. 10. Temperature dependences of the damping of longitudinal
elastic waves (a) and of the electric resistivity (b) in tellurium crystals.

FIG. 11. Temperature dependence of the damping of longitudinal
100-MHz waves (a) and of the electric conductivity (b) of lithium
niobate crystals reduced in a hydrogen atmosphere (σ is in units of

example we present the temperature dependences of
the damping of longitudinal waves in tellurium crys-
tals^ 9 1 (Fig. 10a) and in lithium niobate crystals'^01

(Fig. l la) .
In the case of tellurium (point group D3) the piezo-

electrically active elastic waves, i.e., the waves that
produce electric fields in the crystal, are longitudinal
waves along the χ (C2) axis. Consequently, the free
carriers can contribute to the damping of these waves.
At ~108 Hz, this contribution, as shown by measure-
ments of the electric properties, should be described
by formula (4.12). The experimental points in Fig. 10a
actually coincide with the theoretical relation (12),
which is represented by the solid curves (for an un-
doped sample; 1, 2, and 3 correspond to 200, 150, and
90 MHz, respectively).

The points 4 for 90 MHz in this figure pertain to a
doped sample with carrier density 3.5 x 10~16 cm' 3 at
77°K. The small value of the damping and its independ-
ence of the temperature are connected in this case
with the fact that the decrease of the resistivity, due
to doping, decreases the contribution of the carriers
(4.12) to a value small in comparison with the lattice
damping. The damping of the longitudinal waves along
the ζ (C3) axis also turns out to be independent of the
temperature (in both pure and in doped samples),
since these waves are not piezoelectrically active,
i.e., they do not interact with the carr iers [ 4 9 ] .

Figure 11 pertains to lithium niobate crystals re-
duced in a hydrogen atmosphere. According to'-51-', the
electric conductivity of such crystals is of the n-type.
Measurements of the electric properties show that the
characteristic parameters j c and TQ of the reduced
crystals are such that the damping connected with the
free carriers should be determined by formula (4.13)
in the frequency and temperature interval investigated
in r 5 0 ] . In the case of lithium-niobate crystals (point
group C3V), the piezoelectrically active waves are
longitudinal waves along the ζ (C3) axis. It is the tem-
perature dependence of the damping of these waves

which is shown in Fig. l l a . It follows from it that when
the electric conductivity of the crystals increases with
increasing temperature, the damping also increases.
When the degree of reduction decreases, as shown by
the measurements, the electric conductivity decreases
and the growth of the damping begins at higher temper-
atures. The dashed curve in Fig. l l a is the damping
calculated from formula (4.13). Some discrepancy be-
tween experiment and calculation is possibly due to the
fact that a definite contribution to the temperature de-
pendence of the damping can be made by the point de-
fects produced in reduced crystals.

Investigations of the electron-phonon interactions
are of great interest, particularly since the character
of these interactions can be controlled with an external
electric field. Thus, if the carrier drift velocity in the
external field exceeds the propagation velocity of the
elastic waves, then the latter are not attenuated but
are amplified^521. Of considerable interest are also
other effects connected with electron-phonon interac-
tion, for example acoustoelectric effects and nonlinear
interactions. These questions are considered in the
reviews [ 4 5 b ' 5 3 1.

c) Scattering by defects. A real crystal always
contains defects or of one kind or another, which can
affect the damping of the elastic waves. In principle,
defects of any size can scatter elastic waves directly,
thereby increasing their damping. However, an apprec-
iable contribution to the total damping should be ex-
pected only in scattering of elastic waves by defects
having dimensions close to the elastic-oscillation
wavelength1 ] . Since the wavelength is on the average
0.5 μ even at 1010 Hz, a noticeable additional damping
will be caused by defects having macroscopic dimen-
sions. Such defects can be pores, inclusions of a
foreign phase, etc. Scattering by such defects is con-
sidered, for example, in [ 5 4 1 .

Point defects in a crystal (impurities, vacancies,
interstitial atoms) are defects of atomic scale. The
dimensions of these defects, even when account is taken
of the strong crystal-lattice distortion produced by
them, do not exceed several dozen Angstrom, i.e., they
are much smaller than the wavelength. Consequently
direct scattering of elastic waves by such defects makes
a negligible contribution to the total dampingf3*1.
Nonetheless, point defects can affect the damping of
elastic waves, by acting on them via thermal phonons.
As already noted, damping both by the Akhiezer mecha-
nism and by the Landau-Rumer mechanism is deter-
mined by the thermal-phonon relation time. In crys-
tals with point defects, the relaxation time decreases,
owing to scattering of the thermal phonons by the de-
fects. This should cause a corresponding change in the
damping. Thus, in the case of the Akhiezer mechanism,
according to (4.5), a decrease in the relaxation time
(a decrease in the thermal conductivity) in a crystal
with point defects should cause a similar decrease in
the damping. It was indeed observed in a number of
studies that the damping of elastic waves in crystals
with defects is smaller than the damping in pure crys-
tals. It was shown i n [ 2 i a ] that in silicon crystals with
5 χ 1017 cm"3 of oxygen, the damping of the longitudinal
wave is decreased by approximately 10% at 100°K in
comparison with silicon containing less than 1015 cm"3
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77'K

300
FIG. 12. Relative decrease of the

damping of 1000-MHz elastic waves in
silicon vs the germanium impurity con-
centration for longitudinal (1) and trans-
verse (2) waves.

of oxygen. A small decrease in the damping of longi-
tudinal waves was observed in quartz bombarded with
neutrons'55·1 and in the germanium-silicon system in
comparison with pure germanium and silicon'5"1. The
effect of an impurity on the damping of elastic waves
was investigated in greater detail in [ 5 7 ] for silicon
crystals doped with germanium. The results of this
study are illustrated in Fig. 12, which shows the de-
pendence of the relative decrease of the damping of the
elastic waves on the concentration of the germanium
impurity in the silicon. For longitudinal waves, the
effect is negligible, and the damping at room tempera-
ture decreases approximately 20% at a germanium
concentration of about 4 at.%. For transverse waves,
the damping changes more strongly, and at the same
germanium concentration the damping is decreased by
an approximate factor 3 at room temperature and by
a factor 5—6 at liquid-nitrogen temperatures. Measure-
ments show'571 that in silicon crystals with 4 at.%
germanium the thermal conductivity is approximately
one-tenth that of pure silicon at room temperature, and
one-thirtieth at liquid-nitrogen temperature. Accord-
ing to (4.5) this decrease of the thermal conductivity
should cause a similar decrease in the damping, but
this contradicts the experimental results.

The question of the influence of impurities on the
damping of elastic waves was considered theoretically
i n ' 1 , where it was shown that in the calculation of
the damping of elastic waves in crystals with impuri-
ties one cannot simply replace the thermal-phonon
relaxation time in the pure crystal by the phonon re-
laxation time due to their scattering by the impurities.
The reason is that the strong frequency dependence
causes the relaxation time in scattering by impurities
to increase strongly when the wave vector of the
thermal phonon decreases, and this leads to a diverg-
ence if the elastic-wave damping is rigorously and
consistently calculated. For long-wave thermal pho-
no ns, the phonon-phonon interactions may turn out to
be more appreciable than scattering by impurities,
and this must be taken into account in a quantitative
analysis of the influence of the impurity on the elastic-
wave d a m p i n g ' 1 .

The question of damping in crystals with impurities
was considered in greater detail also in' 5 8 1, where the
Akhiezer relaxation in crystals with impurities was
represented in the form of two successive stages.
First, the elastic scattering by defects causes phonons
of different modes but of equal frequency to relax to a
certain effective temperature. The phonon-phonon
interactions then cause relaxation of all the phonon
modes to a common average temperature. It is shown
in the paper that the influence of the impurities on the

damping depends strongly on the polarization and on the
propagation direction of the elastic waves, on the tem-
perature, and on the anharmonicity constant. One
of the conclusions of the paper is that for transverse
waves the influence of the impurities may turn out to
be stronger than for longitudinal waves, a fact that
agrees qualitatively with the results or 5 7 1 .

In addition to the influence exerted via the thermal
phonons, the point defects can also directly affect the
damping of elastic waves. This occurs when a point
defect has several equilibrium positions in the lattice,
but these positions become non-equivalent under the
influence of the deformations in the elastic wave. For
elastic waves, a relaxation peak of absorption will then
be observed, with a maximum corresponding to the
condition Ω = woexp(-U/kT), where ω 0 is the char-
acteristic frequency and U is the activation energy for
the jumping of the defect from one position to another.
A study of the dependence of the absorption peaks on
the propagation direction and polarization of the elastic
waves can yield information on the nature of the defects.

Relaxation absorption peaks for transverse elastic
waves were observed'501 in lithium-niobate crystals
with defects (Fig. 13). The defects were produced in
these crystals by annealing in a reducing atmosphere.
The activation energy determined from the frequency
shifts, and also from the widths and shapes of the re-
laxation peaks was found to be 0.25 eV. This activation
energy is apparently connected with the motion of the
lithium ions in the lattice.

Another example of absorption relaxation peaks is
illustrated in Fig. 14, which shows the temperature
dependence of the damping of the elastic waves in NaF
crystals irradiated with γ rays from Cu60. The activa-
tion energy for the motion of defects turns out to be
0.04 eV in this case. Absorption peaks connected with
defects were observed also in quartz after bombard-
ment with neutrons'5 5 1, and in reduced rutile crystals' 5 9 1.

We note in conclusion that the damping of elastic
waves can also be affected by dislocations, but the dis-
locations have apparently a much smaller effect at hy-
personic frequencies than in the ultrasonic band'6 0 1.
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FIG. 13. Relaxation peaks of absorption of transverse elastic waves
propagating along a threefold axis in LiNbO3 crystals reduced in an at-
mosphere of argon with a partial oxygen pressure 10"6 atm at frequen-
cies 80 (1), 200 (2), and 500 MHz (3).

FIG. 14. Relaxation peaks of absorption of longitudinal elastic
waves in the propagation along [110] in 7-irradiated NaF cyrstals at
frequencies 460 (1), 350 (2), and 260 MHz (3).
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5. FEATURES OF PROPAGATION OF HYPERSONIC
WAVES IN MAGNETICALLY ORDERED CRYSTALS

The propagation of hypersonic waves in magnetically
ordered crystals is accompanied by singularities con-
nected with the direction of these waves with the spin
waves. These singularities will be considered in the
present chapter with cubic yttrium iron garnet crystals
as examples.

Spin waves, i.e., magnetization oscillations propa-
gating through the crystals, are characterized by the
following dispersion re la t ions [ 6 i a ) S 2 ]

coc = γ [(Η + Df) (Η + AnM0 sin2 θ + Dg2)]1'2; (5·1)

where γ is the gyromagnetic ratio, Mo is the satura-
tion magnetization, D is the exchange constant, θ is
the angle between the magnetization and the propaga-
tion direction of the spin waves, and Η = Ho + Ha + H^,
is the internal field (Ho, H a, and H(j are the external
field, the anisotropy field, and the demagnetizing field,
respectively).

In the general case there exists between the elastic
and spin waves a coupling that becomes particularly
strong under resonance conditions, when the frequen-
cies and wave vectors of the elastic and spin waves
are equal [ 6 i a ] . If we write down the dispersion equa-
tion for the elastic waves in the form ω = vq, then we
can easily find these conditions. Thus, at 6=0° and
in the absence of the external field we have u> = o)c

= γ (Ha + Dg2), which yields two values of the resonant
frequencies, u>i = yH a and ω2 = v2/yD, at which
"crossing" of the dispersion characteristics of the
spin and elastic waves takes place. Let us estimate
these frequencies for an yttrium iron garnet. Using
the values H a » 100 Oe, D = 5 χ 10"9 Oe-cm2 and
v » 5 x 105 cm/sec, we obtain ωι/2ττ ~ 3 Χ ΙΟ8 Hz and

5χ 10 u Hz.

In the general case of arbitrary θ, the frequency
remains practically unchanged, and

4πΛ/0 sin 2 0)]1-'2. (5.2)

The largest value of ω ι is obtained at θ = 90° and for
yttrium iron garnet (4πΜ 0~ 1800 Oe) it amounts to
ωι/2π« 10 9Ηζ.

Figure 15 shows the dispersion characteristics of
spin and elastic waves as well as the "crossing"
points (in fact, in the presence of interaction, a repul-
sion of the spectra occurs at the "crossing" points, as
is indeed seen from the figure; the dashed curves cor-
respond to the absence of interaction.

The frequency ω2 lies in a region not accessible to
experiment at present, but u>i lies in a convenient
frequency band. We note that the existence of a

FIG. 15. Dispersion characteristics
of spin and elastic waves.

"crossing" point at a frequency OH in the absence of
an external magnetic field is connected with the spin-
wave spectrum gap due to the magnetic-anisotropy
fields. The spin-wave frequency depends, according to
(5.1), on the external magnetic field, and this depend-
ence is particularly strong at frequencies where the
term Dq2 can be neglected (this corresponds to the
usual experimental conditions). Then, at a given
elastic-wave frequency u>, the resonance condition
are satisfied in an external field

- s i n 4 9 ] 1 / 2 — sin2 (5.3)

where ωΜ = 4ττ^Μ0. For spherical yttrium iron garnet
samples (Hd = -4πΜ0/3) at 103 MHz we obtain for the
resonance field Ho ~ 1000 Oe at θ = 0° and Ho ~ 700
Oe at θ = 90°.

So far we have considered fields and frequencies at
which the resonance conditions for the interaction of
elastic and spin waves are satisfied. For such an in-
teraction to take place, however, it is necessary that
a coupling exist between these waves. The question of
the coupling can be explained by obtaining the equation
of motion for the elastic displacements and the mag-
netization. The equations of motion are derived from
the expression for the total energy Ε of the crystal^1

-& -[aXVa£]; (5.4)

Here α is a unit vector along the magnetization direc-
tion. The total crystal energy is given approximately
by

Ε ^EZ + EE + EME.

where Ez, E E , and E M E are the Zeeman, elastic, and
magnetoelastic energies, equal to

Ez = —M o EE = c,jklsi}ekil2, EME = bukp.iaitkl. (5.5)

The expression for the energy includes neither the ex-
change energy, since its contribution is small at the
customarily employed frequencies, nor the magnetic-
anisotropy energy, since it leads to a change of the
resonant frequency in the considered approximation.

For cubic crystals, the expression for the energy
contains two independent magnetoelastic coefficients'-I7],
which are customarily introduced in the following
manner: b n - b1 2 = Bj and 2b44 = B2. When these coef-
ficients are used, we obtain

In the derivation of the equations of motion it is
assumed that all the perturbations are small, i.e., only
terms of first order relative to the variable displace-
ments and magnetization are retained in the equations
of motion. The solution of these equations is sought in
the form of plane waves, and the natural frequencies
and the dispersion relations are obtained by setting
equal to zero the determinant of the system of homo-
geneous equations for the plane-wave amplitudes. Such
a problem was solved in [ 6 3 ] for the case of elastic and
magnetoelastic isotropy and for an arbitrary direction
of propagation relative to the magnetic field. A solu-
tion is given inC641 for different directions of propaga-
tion of the elastic waves relative to the crystallographic
axes and to the magnetic field in a cubic crystal.
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Let us consider a case in which the elastic wave
propagates along the [100] direction (x axis), and the
magnetic field lies in the (010) plane (the χ, ζ plane).
Using (5.4) and (5.5), and also Maxwell's equations for
the a l ternat ing [ 6 i a i magnetization Μ and magnetic
field h (curl h = 0 and div h = -47rdiv M), we obtain
an equation for the amplitudes of the plane waves:

imM'x +yIIM'v—iyB2q cos θ-uy = 0, l

Y(-i/+4nA/0sin20)Mj— laM'v+iyB2q cos20-uz—iyBtq sin 29-u* = 0,

(iBtf/pMc) cos 2Θ·M'm + (ω2 — vsq*) uz = 0, '

(iB2qlpM0) cos θ • Μy - (ω2 - v%q2) uu = 0,'

{iBiqlpM0) sin 2Θ -M'x — (ω2 — vlq2) ux = 0;

(5.6)
here vs = (c 4 4 /p) 1 / 2 and vj_, = ( c n / p ) are the veloci-
ties of the transverse and longitudinal waves, while the
coordinate system x'yz' is connected with the field H,
which is directed along the z' axis.

In the case θ = 0, i.e., when the magnetic field is
parallel to the propagation direction, we seek the solu-
tions in the form of circularly-polarized plane waves
M* = My ± iM z and u* = u y ± iu z . It then follows from
(5.6) that

(ω + ω0) M± ± iyB2qu± = 0, 2 — vyq2) it± = 0,

where u>o = yH is the resonant frequency for the case
θ = 0. From the vanishing of the determinant of this
system we obtain the dispersion relation

(5.7)

(ω + ω0) ( ω 2 - v%q*) + (yBlqlpM,) = 0,

which yields two solutions

(?±) 2 = ω 2 {v% - [yB2lpMa (ω0 + ω)]}"'.

Thus, one of the circularly-polarized components of
the elastic wave (u") is practically not coupled with the
spin waves.

Let us examine in greater detail the dispersion
relation for the component u+ which is coupled with the
spin waves:

(ω — ω0) (ω2 — vlq2) — (yBlq2/pMa) = 0.

Since ω + v sq « 2ω0 in the resonance region, we obtain

(i>i,2 — 0-5{(j>0 + vsq) ± 0 . 5 [(ω0 — Vsq)2-',·

i.e., as already noted, a repulsion of the dispersion
curves occurs in the resonance region. The splitting
of the two branches Δω = ω! - ω2 is minimal at o>0

= vsq (the "crossing" point) and is equal to Δω
= (2 yB

2a> 0/pM 0v s)
l / 2.

Let us examine, further, the case θ = 90°, when the
magnetic field is perpendicular to the elastic propaga-
tion direction. In this case, as follows from (5.6), the
transverse waves with polarization perpendicular to
the direction of the magnetic field turn out to be not
coupled with the spin waves qi = u>2/v|. For the coupled
waves we obtain

(ω2 - v%q\) Κ - ω2) + (B\fH q\lpMa) = 0.

Hence

q\ = ω2/Κ· - [BlyHIIpM, (ω* - ω2)]}; (5 .8 )

here ω
0
 is the resonance frequency at θ = 90°, i.e.,

u>0 = y [H (II

It also follows from (5.6) that longitudinal elastic
waves are not coupled with the spin waves at θ = 0 and
90°. At other values of θ, the coupling does exist and
becomes maximal at θ = 45°.

We can determine in similar fashion also the coup-
ling of spin waves with elastic waves propagating in
other directions. We present the results for some of
the most interesting cases [ 6 4 ] . For propagation along
the [110] direction in a field perpendicular to the
propagation direction, the longitudinal waves turn out
to be coupled with the spin waves, and the coupling
constant is given by the expression((Bi - B2) sin 2 β,
where β is the angle between the direction of the field
and the [001] direction. It is interesting to note that a
coupling exists in this case in the presence of magneto-
elastic isotropy, when ( b n - bi2)/b44 = 1, i.e., Bi = B2.
For propagation along < 111 > in a field parallel to the
propagation direction, the normal modes are, just as
in the case of (100 ), waves with circular polarization.
The dispersion relation turns out to be the same as
(5.7), but the coupling is described by an effective mag-
netoelastic constant equal to (2Bi + B2)/3. The longi-
tudinal waves do not interact with the spin waves in
this case.

Transverse waves propagating along [110] in a field
parallel to [110] are connected with the spin waves, and
the coupling turns out to be different for waves with
polarization along the [1Ϊ0] and [001] directions. When
the field is perpendicular to the propagation direction,
a coupling exists for transverse waves with polariza-
tion along [lTO) and [001] if the magnetic field is
directed along the respective directions.

After the publication of the first theoretical papers
on magnetoelastic interaction1 ], detailed experimental
studies were made of the interaction of elastic waves
with spin waves, principally with yttrium iron garnet
crystals as examplest 2 ^' 6 4 - 6 6 '^. 6 *- 7 2 1 . These investi-
gations have shown that the predictions of the theory
of magnetoelastic interaction agree well with experi-
ment.

Let us examine some of the experimental results.
Ιη[β9»71^, in an investigation of the propagation of elastic
waves with frequencies 100—1700 MHz in yttrium iron
garnet crystals in the absence of an external magnetic
field, sharp damping peaks were observed (Fig. 16),
the frequencies of which depended on the propagation
direction. An investigation of the dependence of these

FIG. 16. Natural magnetoelas-
tic resonance in the propagation
of longitudinal (a) and transverse
(b) elastic waves along the [111]
direction in yttrium iron garnet
crystals at Η = 0 (1) and 4000
Oe(2).
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peaks on the temperature and on the external magnetic
field has shown that they are of magnetic origin. Since
the frequencies at which the damping peaks were ob-
served fall in the range defined by formula (5.2), the
following explanation was proposed for the results [ e 9 ' 7 1 ] :

The damping peaks are connected with the resonant
magnetoelastic interaction, and to calculate the reso-
nance frequency it is necessary to use formula (5.2)
with allowance for the fact that in the absence of an
external magnetic field the sample consists of mag-
netic domains. If it is assumed that the magnetization
of the majority of the domains is directed along the
easy-magnetization directions (111), it is necessary to
substitute for the angle θ in (5.2) all the possible
angles between directions of the (111) type and the
propagation direction of the elastic waves, and it is
necessary to choose for the anisotropy field the values
for the (111) direction i.e., H a = 4Ki/3M0, where Kj
is the anisotropy constant. Thus, for propagation along
(111) there exist two possible angles Θ, 0° and 70°3.2'.
According to (5.2), this leads to the resonant frequen-
cies 170 and 870 MHz, respectively. As seen from
Fig. 16, it is precisely at these frequencies that the
absorption peaks are observed. We note that no low-
frequency peak is observed for longitudinal waves be-
cause, as noted above, the longitudinal waves are not
coupled with the spin waves in the case of propagation
along (111) at θ = 0°. Good agreement between calcu-
lation and experiment was observed also for other
propagation directions, thus confirming the validity of
the proposed model (see Table II, which gives the fre-
quencies of the natural magnetoelastic resonance for
yttrium iron garnet crystals).

By analogy with natural ferromagnetic resonance,
the resonant absorption of elastic waves in the absence
of an external magnetic field can be called natural
magnetoelastic resonance, since this resonance occurs
in equivalent magnetocrystallographic anisotropy fields.
It should be noted that a similar phenomenon was ob-
served in^ 4 3 · 1, where the temperature dependence of
the damping of longitudinal 1000-MHz waves was
measured. Damping peaks were observed at a temper-
ature close to 250°K. These results agree with the
temperature dependence obtained in^ee^ for the resonant
frequencies at higher temperatures. The authors of[24a]

have drawn, however, the erroneous conclusion that
the damping peaks are connected with interactions be-
tween elastic waves and magnetic-domain walls.

Magnetoelastic resonance in yttrium iron garnet in
external magnetic fields was observed in

[ e 4>6 6>6 7 a>6 8 }. It

Table II

Elastic-wave
propagation

direction

[100]

[111]

[110]

1113]

θ

54°44'

0°
70°32'

35° i6 '
90°

30°
58°
80°

Resonance frequency,
MHz

Calculation

760

170
870

550
930

490
790
910

exper-
iment

750

180
850

550
940

470
750
900

FIG. 17. Polar diagram of the damping
of longitudinal elastic waves in magneto-
elastic resonance vs the angle β between the
magnetic field and the [001 ] direction for
an yttrium iron garnet crystal.

A, dB/cm

Bull

was shown in r 6 4 ] that the character of the interaction of
the elastic waves with the spin waves is well described
by the phenomenological theory of magnetoelastic in-
teraction. Thus, for longitudinal waves propagating
along (100), there is no resonance in a field parallel
or perpendicular to the propagation direction, as is
indeed called for by the theory. In the propagation of
longitudinal waves along (110), and in a field perpen-
dicular to the propagation direction, a resonance is
observed and its depth depends on the field direction
relative to the crystal axis (see Fig. 17, where the
elastic waves propagate perpendicular to the field
along the [110] direction, the frequency is 1470 MHz,
and the solid line is drawn under the assumption that
the damping is proportional to sin22j3). As indicated
above, the connection between the elastic and spin
waves is determined in this case by a constant propor-
tional to (Bi - B2) sin 2, where β is the angle between
the direction of the field and the [110] direction. It
follows from Fig. 17 that the experiment agrees well
with the theory (the sample used in these measure-
ments was a thin plate). We note also that the value of
the field at which the resonances are observed coin-
cides with the value calculated from formula (5.3).

For transverse elastic waves one observes, in addi-
tion to resonant damping, also effects connected with
the differences of the interaction of different displace-
ment components in the elastic wave with the spin
waves. In propagation along (100) or (111) in a field
parallel to the propagation direction, the normal modes
are circularly-polarized waves with opposite directions
of rotation. One of them interacts with the spin wave,
and this leads to a change in the propagation velocity,
while the other is practically non-interacting.

In experiments with elastic waves, it is customary
to use converters that excite and register linearly-
polarized transverse waves with definite polarization
direction.

A linearly polarized wave from an input converter
that acts thus as a polarizer is resolved in the crystal
into two circularly-polarized components that propa-
gate with different velocities. For the resultant
linearly-polarized wave in the output converter (or in
the input converter when working "in reflection") the
polarization plane is rotated through a certain angle
ψ I {I is the path traversed by the elastic wave) rela-
tive to the initial plane. The receiving converter,
which serves as the analyzer, generates a signal pro-
portional to cos (ψΐ). Since the change in the velocity
of the interacting component depends on the field, the
angle will change with changing field, and with it the
amplitude of the signal in the receiving converter. The
signal has a maximum value at φΐ = njr, where η = 0, 1,
2, . . ., and a minimum value at ψΐ = (2n + 1)π/2. Thus,
as the field changes, the elastic-pulse amplitude
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registered by the receiving converter oscillates. Such
oscillations should be observed not only when the field
changes, but also in a constant field if a series of suc-
cessive elastic pulses are obtained as a result of
multiple reflections from the ends of the sample. The
oscillations are connected in this case with the fact
that each succeeding pulse in the series traverses a
longer total path through the sample and its plane of
polarization is rotated through a larger angle. Since
Ψ = (<Γ - q")/2, we obtain from (5.7)

φ = ( - (ν/γ)2],

where γ = 2.8 MHz/Oe, and Β is equal to B2 when the
elastic waves propagate along (100) and to (2Bi
+ B2)/3 in the case of propagation along (111).

The above-described rotation of the polarization
plane, which can be called the acoustic Faraday effect,
was observed first i n [ 6 5 1 in cylindrical yttrium iron
garnet samples at 500 MHz. The Faraday effect was
investigated in [ 7 0 ] at 9 χ 109 Hz, and in [ 7 2 ] under con-
ditions of a homogeneous internal magnetic field
(spherical sample). The experimental results obtained
in the indicated studies agree well with the theory.
In [ e 4 ] we have also confirmed by direct experiment
that only one circularly-polarized component of the
elastic waves, with a definite direction of rotation,
interacts with the spin waves. A circularly polarized
elastic wave was produced by the method of quarter-
wave plates f14^. These were yttrium aluminum garnet
plates r ? 3 j approximately 0.5 mm thick, cut perpendicu-
lar to the (110) direction. At definite elastic-wave
frequencies, the plate operates like a quarter-wave
plate and converts the linearly-polarized wave pro-
duced by the input converter into a circularly-polarized
wave. The result of the experiment is given in Fig.
18, which shows the dependence of the transverse
elastic-wave pulse amplitude on the magnetic field at
two frequencies. The resultant wave entering the
yttrium iron garnet sample is linearly polarized at
one frequency, 1340 MHz (Fig. 18a), and circularly
polarized at the other frequency, 1500 MHz (Fig. 18b).
In Fig. 18, I and II denote the results for a field paral-
lel and antiparallel to the propagation direction; 1, 2,
and 3 denote the sample, the piezoconverter, and the
yttrium aluminum garnet plate. As seen from Fig. 18,
oscillation of the pulses is observed in the former
case (the acoustic Faraday effect), but in the second

case there are practically no such oscillations, only a
decrease of the pulse amplitude at resonance. Reversal
of the field direction changes the spin-precession
direction. For the linearly-polarized wave one observes
then, as before, oscillation of the pulses, while the
amplitude of the pulses of the circularly polarized
wave ceases to depend on the field. This experiment
shows that the spin waves, indeed, interact only with
the circularly polarized elastic wave with a rotation
direction determined by the direction of the spin pre-
cession and the magnetic field.

Oscillations of pulses of transverse elastic waves
are observed also in other cases^841, for example in
propagation along (100) for a field perpendicular to
the propagation direction, and in propagation along
(110) for both parallel and perpendicular fields. In
these cases the oscillations are connected with the
fact that the simultaneously excited linearly-polarized
waves with two possible polarization directions inter-
act differently with the spin waves. This is thus a
birefringence effect.

Figure 19 shows the dependence of the transverse
elastic-wave pulse amplitude on the magnetic field in
propagation along (100) perpendicular to the field. The
polarization direction of the elastic waves makes an
angle 45° with the field direction (frequency 1580 MHz;
1 and 2 denote the first and second pulses, respectively;
the region of very fast oscillations is shaded). Waves
with polarization parallel and perpendicular to the field
are excited simultaneously. For the specific phase-
shift angle between the components φ = qi - q2 we ob-
tain from (5.8)

φ = (πΒ*ν/Μορι;|) Η/[Η (Η + 4πΛί0) - (ν/γ)*].

This formula describes well the results shown in Fig.
19.

The interaction of elastic waves with spin waves
was investigated mainly and for the most part in
yttrium iron garnet crystals. Magnetoelastic interac-
tion was investigated also in a few other crystals with
garnet structure [ e 7 b > 6 8 ' 7 4 ] . Effects of acoustic bire-
fringence in magnetite and nickel crystals were ob-
served in [ e 7 C ] .

6. LIGHT SCATTERING BY HYPERSONIC WAVES

A survey of hypersonic waves would be incomplete
without a consideration of the scattering of light, which

1200

« ο Η, Oe

Η, Oe

FIG. 18. Amplitudes of transverse elastic-wave pulses in propagation
along [ 100], vs the magnetic field for yttrium iron garnet.

FIG. 19. Amplitude of trans-
verse elastic wave pulses vs the mag-
netic field for propagation along
<100> perpendicular to the magnetic
field.
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is a precise tool for the investigation of the elastic -
wave propagation characteristics^7 5 1 and makes it pos-
sible, in addition, to investigate elastic waves at high
frequencies at not too low temperatures. The scatter-
ing of light by elastic waves is a sufficiently broad and
interesting problem, which could easily be the topic of
a separate review. We consider only very briefly the
most important features of the phenomenon, and also
its use for.the investigation of hypersonic waves.

As shown by Rytov[7e], two limiting cases are dis-
tinguished when light interacts with elastic waves. If
the wavelength Λ of the elastic oscillations is suffic-
iently large, so that the condition Α2/λ > I is satisfied
where λ is the wavelength of the light in the medium
and I is the width of the beam of the elastic waves in
the propagation direction of the light, then the so-called
Raman-Natov diffraction takes place. After passing
through the crystal, the light splits into many orders
separated by an angle λ/Λ. In the other limiting case,
when Λ2/λ < I, which takes place at high elastic-wave
frequencies, only the first order is observed in the
diffraction pattern, and the diffraction of the light oc-
curs only if the light is incident at a definite angle to
the front of the elastic wave. This case is called
Bragg diffraction. At the usually experimental values
I Z, 1 cm for hypersonic waves (v > 108 Hz), the Bragg
diffraction conditions are satisfied. To determine the
scattering geometry in this case one can use the energy
and momentum conservation laws'-751:

ω2 = ω, ± Ω, k2 = k, ± q; (6.1)

here ω and k are the frequency and wave vector of
the light, Ω and q are the frequency and wave vector
of the elastic waves, and the subscripts 1 and 2 pertain
to the incident and reflected light, respectively, From
the energy conservation law we obtain k2 = k i [ l
± (Ω/ωι)], and since Ω « ω, it follows that k 2 « k1; i.e.,
the vector triangle (Fig. 20a) representing the momen-
tum conservation law is isosceles. From this triangle
we obtain θ! = θ2 = Θ& and sin ΘΒ = q/2k, or, in terms
of frequency,

sin ΘΒ = (Ω/2π) (λο/2ην) = νλο/2/ιι\ (6.2)

where η is the refractive index and ν is the velocity
of the elastic waves. The incidence and diffraction
angles θ ι and θ 2 are reckoned from the normal to the
vector q, i.e., from the wave front of the elastic wave,
and in the case of the geometry of Fig. 20a they are
taken to be positive. Thus, scattering of light by
elastic waves occurs if the light is incident at an angle
ΘΒ relative to the front of the elastic wave. The scat-
tered (diffracted) light makes in this case an angle #j$
with the front, so that the total scattering angle is
2ΘΒ. The geometry and the experimental setup on the
scattering of light by elastic waves are shown in Fig.
21.

FIG. 20. Law of momentum
conservation in ordinary Bragg
scattering of light (a) and in scat-
tering with rotation of the plane
of polarization in an optically
unisotropic crystal (b).

FIG. 21. Setup for experiments on the scattering of light by hyper-

sonic waves.

Formula (6.2) and Fig. 20a correspond to the ordi-
nary Bragg condition for the scattering of light in an
optically isotropic medium or in an anisotropic medium
when scattering is not accompanied by rotation of the
plane of polarization of the light. Scattering of light by
elastic waves in a crystal can, however, be accom-
panied by rotation of the plane of polarization of the
incident light [ 7 5 ]. In such a case, the refractive in-
dices for the incident and scattered light in an optically
anisotropic medium turn out to be different, with ki
= 2ττη1/λο * k2 = 2im2/\0, and the momentum vector
triangle ceases to be isosceles (Fig. 20b). This leads
to unique effects in the scattering of light. Such ef-
fects were investigated in^77^ for the case of uniaxial
crystals. From the triangle in Fig. 20b it follows that

sin Oi =

sin θ 2 =

) [1 + (ι>/λ0ν)2 (n\-n\)),

- (ΐ;/λ0ν)2 (η\ — rcs

2)].
(6.3)

Definitions are introduced for the signs of the angles
in order to emphasize the difference from the ordinary
Bragg scattering (Fig. 20a). Formula (6.3) shows that
the angles θ ι and θ2 differ from each other and depend
on the elastic-wave frequency in a manner different
from ordinary conditions (6.2).

Although formulas (6.3) are indeed the most general
formulas (they go over into (6.2) when nx = n2), they
are convenient for use only if the scattering is in the
(x, y) plane perpendicular to the optical axis of the
crystal. In this case the refractive indices are equal
to n0 and n e and do not depend on the direction of the
incidence and scattered light. In the case of scattering
in an arbitrary plane, the refractive index becomes a
function of the angles θ ι and 02, and it is therefore
more convenient to analyze the singularities of the
scattering geometry by using the wave-vector sur-
face[ ], the radius vector of which determines the
value of the wave vector of light propagating in a given
direction. In uniaxial crystals, this is a double-cavity
surface consisting of a sphere and an ellipsoid of
revolution which are tangent to each other at two points
on the k z axis'- ]. To determine the possible scatter-
ing geometry and its dependence on the frequency of
the elastic waves, it is necessary to take the interac-
tion of the wave-vector surface with the scattering
plane and to construct in this intersection all the pos-
sible vector triangles expressing the momentum con-
servation law (6.1). Such an analysis shows (see, for
example, Fig. 22) that scattering of light with rotation
of the plane of polarization in uniaxial crystals is char-
acterized by a number of singularities1-77-'.
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FIG. 22. Intersections of the wave-vector surface with the scattering
plane, and schematic dependence of the angle d t (solid line) and θ2

(dashed) on the elastic-wave frequency.

FIG. 23. The angles θ vs the frequencies of the longitudinal elastic
waves propagating along the χ axis in an LiNbO3 crystal.

(In Fig. 22, at q n x, the scattering plane is (z', x);
the z' axis makes an angle α = 0 (scattering plane
(z, x); Fig. a), 0 < α < 45° (b), and α = 90" (c) (scatter-
ing plane (y, x)).)

At a definite elastic-wave frequency vo, a collinear
interaction is possible, in which the wave vectors of
the elastic waves and of the incident and scattered light
are parallel. There exists a frequency v* at which one
of the angles, θ ι or 02, is equal to zero. In the case of
scattering in definite crystallographic planes, two
scattering geometries are possible in certain fre-
quency bands, i.e., two possible incidence angles θ ι
and correspondingly two diffraction angles θ 2 exist at
a given frequency. The frequencies v0 and 1/* depend
on the propagation directions of the light and of the
elastic waves, and their maximum values are, respec-
tively,

Vomax = (vIK) (no — ne) and vS,ax = (ΐ7/λ0) (nl-ηΐγ11.

Among the characteristic frequencies of elastic
waves are also the back-scattering frequencies (scat-
tering angle θ ι + θ2 = 180"), which are the maximum
possible frequencies satisfying the conservation laws
(6.1). These frequencies are equal to i<rnax = 2ηον/λο

at q II ζ and vmax = (ν/λο)(η0 + n e ) at q 1 z, where ζ
is the optical axis of the crystal.

The values of the indicated characteristic elastic-
wave frequencies (in MHz) in scattering of light in

Crystal

LiNbO 3

KH 2 [ 'O 4

Λ12Ο3

SiO,

Point
group

cM

DM

DM

•D3

no

2,286

1,5074

1,765

1,5426

Table

2,2

1,4668

1,757

1,5516

q

X

ζ

X

ζ

χ

ζ

χ

ζ

3
Type of

wave

L

Sf
s s
L

S

L

%
s s
L
S

L

Sf
s s
L
S

L

%
ss
L
S

v0 max

890
647
548

0
0

384

149

105

0

0

139

86

72

0

0

82

>2

48

0
0

v m a i

6428

4670

3955

7192

3520

3290

1278

900
2716

1278

2916

1792

1512

3000

1634

1517

1346

887

16672

1235

v max

46430

33744

28567

5294 ί

25937

28195

10945

7703

23575

11094

61388

37720

31835

63293

34474

28114

24936

16427

30812

22815

certain uniaxial crystals at λ = 6328 A are listed in
Table III (L, Sf, and S s denote respectively longitudi-
nal, fast transverse, and slow transverse waves).

The conclusions drawn concerning the singularities
of the scattering of light in optically uniaxial crystals
were confirmed experimentally for the crystals listed
in Table ΙΠ. By way of example, Fig. 23 shows the ex-
perimental dependences of the light incidence and dif-
fraction angles on the frequency of the longitudinal
waves in lithium niobate crystals. The elastic waves
propagate along the χ axis and the light is scattered
in the (x, z') plane, where z' makes an angle a with
the ζ axis (a = 0° (1), 5.5° (2), 7.5° (3), and 10° (4); the
solid and dashed curves are calculated from formulas
(6.4)).

If we consider the intersections of the wave-vector
surface with the scattering plane (see Fig. 22), then we
can show that in this case the dependence of the angles
θ ι and θ2 on the frequency of the elastic waves and on
the angle a should take the following form (at n0 > ne
and ki > k2):

sin θ, = (λον/ι>ηο) jn» ± ne [ [-~)\η2-η1) (η^-η^+η2]"2} /(«2-«1),

sin 9, = ± {[1 - (njnf cos2 θ,]/(1 + [(nalnef - (nalnf\ cos* Θ,)}"2, (g A)

where

n'- = n\n\l{n\ sin2 α + η\ cos2 a).

It follows from Fig. 23 that the experimental plots
agree well with those calculated from formulas (6.4).

So far we have discussed only the geometry of the
scattering of light by elastic waves, without consider-
ing the interaction mechanism. The interaction of
light with elastic waves is determined by the so-called
photoelasticity, i.e., the change of the optical refrac-
tive index of the medium by the strains in the elastic
waves. It is customary to relate the strain eic
the variations of the dielectric tensor t l 0 ] :

where the photoelasticity coefficients Pijkj form a
fourth-rank tensor that is symmetrical with respect to
permutations within the first pair of indices (optical
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indices) and within the second pair (acoustic indices).
The number of independent components of the photo-
elasticity tensor depends on the symmetry of the
crystal [ x o ] and ranges from 36 for triclinic crystals to
4 or 3 (depending on the point group) for cubic crystals.

It was shown recently^781 that the tensor PijkZ has
in fact a lower symmetry and turns out to be asymmet-
rical with respect to the acoustic indices. The reason
is that for an elastic wave propagating in an optically
anisotropic crystal it is necessary to take into account
in (6.5) not only the symmetrical combination ekZ of
the displacement gradients, but also their antisym-
metrical combination, which describes rotation of the
volume elements. The new symmetry properties pre-
dicted in r 7 s a i for the tensor p^kl were confirmed ex-
perimentally in the case of scattering of light by
thermal elastic waves in rutile [ 7 9 ] and calcite [80]

crystals. The photoelastic effect (6.5), which leads to
the scattering of light by elastic waves, is possessed
by all solids without exception. In piezoelectrics, in
addition, there exists an indirect photoelastic effect,
which, as shown in f78t>1, cannot be described by a
fourth-rank tensor.

We proceed now to examine the connection between
the intensity of the light scattered by elastic waves
with the characteristics of elastic-wave propagation
and with the physical parameters of the crystal. Such
a problem can be solved with the aid of Maxwell's
equations or by the method of integral equations. For
the relative intensity of the scattered light at small
deformations in an elastic wave, we obtain^811:

/// 0 = (JIV2) (n°pVpvs)Pa(l/hXlcos*B); (6.6)

here P a is the (acoustic) power of the elastic wave,
and I and h are the transverse dimensions of the
beam of elastic waves, I being the dimension in the
propagation direction of the light. In (6.6), ρ is an ef-
fective constant whose value depends on the propaga-
tion direction and polarization of the elastic waves,
and also on the polarization of the incident and scat-
tered light. It can be obtained from the usual transfor-
mation formulas for the components of a fourth-rank
tensor. In the calculations it is convenient to use the
formulap5]

P = (6.7)

where αϊ and j3j are the direction cosines of the
polarizations of the incident and scattered light, and
yk and κι are the direction cosines of the polarization
and of the wave vector of the elastic waves. Formula

0.5
-1

FIG. 24. Intensity of light scattering by longitudinal elastic waves
propagating along the ζ axis vs the angle between the light incidence
direction and the ζ axis in lithium niobate.

(6.7) shows that in the general case an anisotropy of
the intensity of the scattered light should be observed
in the crystal. Such an anisotropy is illustrated in
Fig. 24, which shows the dependence of the scattering
intensity on the direction of the incidence of light for
the case of longitudinal elastic waves propagating
along the χ axis in lithium niobater82]; the directions
of the axes y and ζ are such that a negative charge is
produced upon compression; the polarization of the
light is perpendicular (1) or parallel (2) to the elastic-
wave propagation direction; the solid curves represent
calculation by formula (6.6).

The question of the scattering intensity is important
in hypersonic-wave experiments where the scattering
of light is used to measure the propagation character-
istics of these waves. The scattering intensity is de-
termined by the physical parameters of the crystal,
and namely, according to (6.6), by the quantity n2p2/pv3,
which can vary strongly from crystal to crystal. Among
the most effective crystals for light scattering, for ex-
ample, are LiNbO3, Bi12GeO20, GaP, a-HIO3 and TeO2.
At \ 0 = 6328 A, the effectiveness of the scattering in
these crystals, relative to molten quartz, is 4.6[83],
6.6[84], 30[83], 55 [85], and 500[86], respectively.

In concluding this chapter, let us see how the phe-
nomenon of light scattering can be used to investigate
the propagation of hypersonic waves in crystals. Light
scattering makes it possible to measure all the char-
acteristics of hypersonic-wave propagation, and with
greater sensitivity than ordinary radio methods (see
Chap. 2). We note in this connection that light scatter-
ing was used to register these waves even in Baran-
skii's first work on the excitation of hypersonic waves
in quartz crystals. It follows from (6.2), (6.6), and (6.7)
that by measuring the angles and intensity of the scat-
tering we can determine the velocity and propagation
direction of the elastic waves, their polarization, the
direction of energy flow, and also the acoustic power
of the elastic wave. From measurements of the
acoustic power at two neighboring points in the crystal
along the propagation direction of the elastic wave we
can determine the damping.

The use of light scattering to measure damping
permits the experiments to be performed at higher
frequencies and temperatures than obtaining with the
aid of radio methods of registration. Thus, it is easily
seen that with ordinary radio methods, as a rule, it is
impossible to obtain, for example, elastic waves of
frequency 1010 Hz at room temperature. Indeed, for
most crystals, the damping under such conditions
amounts to 100 dB/cm and more (the Akhiezer mecha-
nism). If the power of the electromagnetic-oscillation
generator is 1 W, the crystal length is 1 cm, and the
double-conversion loss is 50 dB, then the signal at the
output of the receiving device will be 10~15 W. A good
microwave receiver has a sensitivity 10"12 W, i.e.,
such a signal cannot be registered. With the aid of the
light-scattering method^8'1, however, this becomes
perfectly feasible. The high sensitivity of this method
can be used also to register acoustic harmonics re-
sulting from the anharmonicity of the interaction
forces when elastic waves propagate in crystals.

Light scattering yields also other information that
is frequently of interest, such as the distribution of



726 V. V. LEMANON and G. A. S M O L E N S K I I

the acoustic power over the cross section of the
crystal. This can be obtained either by measuring the
scattering intensity at individual points over the cross
section, or by rotating the crystal in the scattering
plane about the position determined by formula (6.2).
In the latter case the angular dependence of the scat-
tering intensity is the Fourier transform of the distri-
bution of the elastic-wave intensity over the crystal
cross section.

Finally, the light scattering in itself can be used as
a source of intensive hypersonic waves of high fre-
quency. Such waves are produced, for example, in a
crystal by electrostriction mixing of two laser beams
that are shifted in frequency'89-1 or in stimulated
Mandel'shtam-Brillouin scattering of light [ 9 0 ].

7. CONCLUSION

Investigations of crystals by hypersonic methods
began approximately 10 years ago. During the elapsed
time, a large number of studies were devoted to the
main regularities of the propagation of hypersonic
waves in crystals of various types. The main features
of the interaction of hypersonic phonons with thermal
phonons, magnons, free carriers, and photons were de-
termined, and the applicability of different theoretical
models was established. These studies, the principal
results of which are described in this review, have
shown that hypersonic methods can be used to answer
many questions of interest in solid state physics, for
example, the characteristics of phonon and magnon
spectra (relaxation times, anharmonicity constants,
dispersion relations), the parameters of electron pho-
non interactions, and the properties and structures of
defects.

In addition to the investigations considered in the
present review, the use of hypersonic waves is also
promising for the investigation of the following: 1) the
electronic structure of metals and alloys, including
superconductors^5"1; 2) nonlinear effects in the propa-
gation of elastic waves in crystals, the study of which
yields information on the anharmonicity of the inter-
atomic interaction forces and on the phonon-phonon
coupling constant^911; 3) various aspects of the elec-
tron-phonon interactions in semiconductors'- 4 ];
4) effects connected with the interaction of hypersonic
waves with paramagnetic ions [ 6 ]; 5) investigations of
the anomalies of the propagation of elastic waves near
phase transitions, which yield additional data on the
mechanism of the transitions, and on the behavior of
soft phonon modes; some problems connected with the
latter are discussed in1·921.

We indicate also that hypersonic waves can serve
not only as a useful method of research in solid state
physics, but finds interesting practical applications.
By way of example of such applications, we can men-
tion delay lines in microwave technology, microwave
amplifiers and oscillators, and devices for the modu-
lation and scanning of laser beams.
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