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I. INTRODUCTION

I N any processes referred to as discharges, a gas
located in an external field remains in an ionized state.
The plasma state of matter is not only the result of
dissipation in it of electromagnetic energy, but is the
cause of dissipation of the field, for un-ionized gases do
not conduct electric current and, as a rule, do not ab-
sorb electromagnetic radiation over wide regions of the
spectrum up to the far ultraviolet. (By designation of
the frequency of the field we distinguish discharges in
constant or slowly varying electric fields, high-fre-
quency fields, microwave fields, and optical fields.)

Discharges have a characteristic tendency to propa-
gate. In fact, processes exist which result in ionization
of the gas layers adjacent to a discharge plasma: heat-
ing by a shock wave, thermal conduction, or thermal
radiation, accompanied by thermal ionization; indirect
ionization of atoms by plasma radiation or excitation of
atoms with subsequent ionization; and so forth. If the
ionized layers are still located in a sufficiently strong
field, then a great deal of energy is also dissipated in
them, ionization occurs in the next layers, and so forth.
In other words, the discharge is propagated in the ma-
terial. Here it is not at all necessary that the discharge
also shift in space; the gas can flow through a stationary
discharge. This principle is the basis of operation of
plasmatrons—devices intended for continuous production
of plasma by means of discharges.

Of course, the tendency for propagation of discharges
occurs only under appropriate conditions. For example,
the field can be localized in a limited region through
which there is no gas flow, or the field intensity may
turn out to be sufficient only for compensation of the
energy loss from a given mass of plasma but not suffi-
cient for conversion of new gas layers into plasma. In
these cases there occurs not a production but only a
maintenance of a definite plasma mass by the field.

It is important that for maintenance of a plasma and
propagation of discharges it is sufficient to have rela-
tively small fields, much smaller than those necessary
for breakdown of the gas. This suggests use of auxiliary
means for the initial formation of the discharge but, on
the other hand, opens up even greater possibilities for
control of discharges than with a breakdown, which ig-
nites spontaneously.
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The propagation of discharges is subject to laws
which in some respects are general and independent of
the nature of the field or the mechanism of propagation.
The effect can often be considered as the propagation of
some wave. The main theoretical problem—calculation
of the rate of propagation and the parameters of the dis-
charge produced—belongs in this case to the class of
problems of the theory of "modes", which includes
waves of many types: combustion, detonation, radiant
cooling, and so forth. A static discharge maintained in
a definite mass of gas is in some sense a limiting case
of a propagated discharge, that is to say, propagation
with zero velocity.

Effects of discharge propagation and plasma main-
tenance by electromagnetic energy are encountered in
many physical processes and devices, sometimes very
far removed from each other, such as, say, a laser
spark and an induction plasma torch. These processes
are the objects of physical investigations and are used
for practical purposes; rather extensive experimental
and theoretical information has been accumulated on
them. It is therefore desirable to systematize, general-
ize, and analyze this information from a unified point
of view, and that forms the subject of the present arti-
cle. This analysis will aid in better understanding of
well known phenomena and will create theoretical bases
for the investigation and prediction of new phenomena.

1. Analogy with combustion, and modes of propaga-
tion. A deep analogy exists between discharge propaga-
tion processes in dissipation of the energy of a field in
a plasma and the combustion associated with expendi-
ture of chemical energy in matter. Resort to the ideas
and methods of combustion and detonation theory (see
the books by Zel'dovich1-1-1 and Landau and Lifshitz'-2-')
has enabled us to discuss and understand certain impor-
tant features of discharge propagation and has stimula-
ted the theoretical study of the corresponding discharge
phenomena.

Chemical reactions in combustible mixtures do not
occur at ordinary temperatures and are sharply ac-
celerated on heating. As a rule the reaction rates
increase with increasing temperature according to a
law of the Boltzmann type—the Arrhenius law
exp(-U/kT), where U is the activation energy. At room
temperature k T C U and therefore the temperature de-
pendence of the rate turns out to be extraordinarily
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rapid. When the mixture is ignited at some point, trans-
fer of heat from the hot combustion products to layers
have not yet reacted leads to their ignition, and a com-
bustion wave is propagated over the material. Here two
main mechanisms are possible for heating of the initial
mixture and correspondingly two mechanisms of com-
bustion propagation: detonation and slow combustion.
In the first case the mixture is heated to ignition by a
shock wave which is directly adjacent to the zone where
the chemical reaction is occurring. The detonation wave
is propagated in the material with ultrasonic velocity,
and the reaction occurs at a high pressure and a density
greater than the density of the initial mixture. In the
second case the heat transfer is accomplished by the
slow mechanism of thermal conduction, the flame is
propagated with subsonic velocity, and the process oc-
curs at almost constant pressure, i.e., in the combus-
tion zone, where the temperature is high, the density is
appreciably lower than the density of the cold material.

Like the chemical reaction rates, the degree of ion-
ization rises very rapidly with increasing temperature,
also following a law of the Boltzmann type, exp(—l/2kT),
where I is the ionization potential of the atoms (mole-
cules). The field energy is expended in the gas in the
form of the Joule heating of currents or as the result of
absorption of radiation only for sufficiently high ioniza-
tion, so that in this case also it is appropriate to speak
of the ignition temperature, more accurately the ioniza-
tion temperature. The main (but not the only) mechan-
isms for discharge propagation—thermal conduction and
shock wave—are the same as those which account for
the propagation of combustion.

Of course, the analogy has limits. In chemical com-
bustion there can be expended in a given mass only a
limited amount of energy which is determined by the
heat-producing ability of the material, and the tempera-
ture of the combustion products is more or less fixed
by this value. The rate of propagation of detonation or
slow combustion has a corresponding definite value. In
discharges the energy expenditure and consequently
also the plasma parameters (temperature) and rate of
propagation depend on the intensity of the external field,
which can be arbitrary. A static discharge which is
maintained in a given mass of plasma in general has no
analogy in combustion. A given mass of combustible
material can react only once, and then the combustion
either transfers to neighboring layers or ceases com-
pletely. However, a given mass of plasma with an ap-
propriate heat outflow can take on the energy of the field
in any quantity and for any length of time.

In order to make the discussion which follows syste-
matic and for purposes of convenience in the physical
discussion of the various phenomena, we will break
them down into three groups, depending on the mode of
propagation involved. The first group is the ultrasonic
mode of propagation of a shock wave (Chap. II), the
second is equilibrium thermal-conduction modes in
which the gas can be considered as approximately in
thermodynamic equilibrium and the discharge is propa-
gated with subsonic velocity as in slow combustion
(Chap. ΠΙ), and the third group is the nonequilibrium
modes in which a gas of heavy particles, as the result
of the slowness of energy transfer from the electrons,
remains cold and stationary and the discharge propaga-

tion has the nature of an ionization wave (Chap. IV). We
will also include in the latter group certain other modes
for which the velocity of sound also is not a character-
istic quantity.

II. SHOCK-WAVE MODES

2. Optical detonation. Soon after discovery of the
breakdown of a gas by the focused beam of a high-power
pulsed laser in 1962, Ramsden and Davies^311 observed
that the plasma front formed initially in the focal region
where the light intensity is maximal moved rapidly dur-
ing the laser pulse along the light path in the direction
opposite to the beam (Fig. la). The motion of the front
was indicated by the Doppler shift of the frequency of
the laser light scattered from the front. The motion
could be seen also in photographic scanning of the proc-
ess. The greatest velocity (near the focus) reached
100 km/sec.

In order to explain this effect and to estimate the
propagation velocity of the plasma front, Ramsden and
Savic^4-1 proposed an optical detonation wave. The
velocity of ordinary detonation D is determined by the
heat-producing ability of the fuel q: D « q l / 2 1 ; . In this
case we understand heat-producing ability to mean the
amount of energy which is expended per unit mass of
gas as the result of absorption of the light beam. By
setting q « S0/pD, where So is the laser beam intensity
and ρ is the gas density, Ramsden and Savic found
D « (S 0/p) l / 3, in agreement with experiment. For So

~ 105 MW/cm2 = 1018 erg/cm2-sec and ρ ~ 10~3 g/cm3

(air at atmospheric pressure), D turned out to be
~ 107 cm/sec. In the work of Mandel'shtam, Pashinin,
Prokhorov, Raizer and Sukhodrev [ 5 ], motion of the front
of a laser plasma was also detected and, most important
of all, the plasma temperature was measured from the
intensity of thermal x-rays. The experiments were per-
formed in air with a ruby laser with an energy per pulse
of 2.5 joules, a pulse length of 40 nsec, and a radius of
the focused spot of 10~2 cm, i.e., the light intensity at
the focus was So ~ 1 χ 1018 erg/cm2-sec. Here the elec-
tron temperature turned out to be about 700 000°, and
the velocity of the front 110 km/sec.2 )

A general analysis of ultrasonic modes of propaga-
tion of an optical discharge—of the wave of light absorp-
tion and gas heating, as it was then called—has been
given in an article by the author [ 6 ] . In this article the
shock adiabat was derived, possible propagation mech-
anisms were discussed, and the plasma temperature was
calculated and found to be in good agreement with ex-
per iment [ 5 ] .

Suppose that a plane ionization front is moving
against the beam with a high ultrasonic velocity. The
gas being heated is not able to expand during the absorp-
tion of the light, and the light flux is absorbed in a thin
layer of plasma. For example, in air at atmospheric
pressure for Τ ~ 105-106° the absorption length for
ruby laser light, which determines the width of the wave.

" i n what follows the symbol ~ denotes approximate equality, and
the symbol ~ denotes equality in order of magnitude or proportion-
ality; in the latter case the meaning will be clear from the context.

2)Alcock, Pashinin, and Ramsden [ 3 3 I, in experiments with a more
powerful laser, recorded by the same method an even higher tempera-
ture, above one million degrees.
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b)
FIG. 1. a) Experimental arrangement for observation of optical

detonation (the plasma is shaded, and the dark band is the'wave front);
b) shock adiabat of an ultrasonic light-absorption wave (the vertical
straight line is the shock adiabat of a strong shock wave).

is ~ 10~2 cm. In a certain sense the wave can be con-
sidered a hydrodynamic explosion. If we assume ap-
proximately that the light energy absorbed is expended
only in heating of the gas to a final temperature Τ , then
on writing down the energy balance we find

where p 0 is the density of the cold gas, and e f = e(Tf)
is the specific internal energy acquired by it. This re-
lation is valid for any mechanism of wave propagation.
If ionization occurs as the result of heating of the gas by
the shock wave, then the propagation velocity is obvi-
ously of the order D « Te^and we obtain from (1) the
formula D « (So/po) given above, and we also find that
c f « (So/Po)2/3·

In a more detailed discussion it is necessary to take
into account the compression and the change in kinetic
energy of the gas during the explosion, i.e., to depart
from the general conditions of conservation of the fluxes
of mass, momentum, and energy. As a result we obtain
the equation for the shock adiabat of the light absorption
wave, which relates the pressure ρ and the specific vol-
ume 1/p of the gas beyond the wave front with the initial
density p 0 and the light flux So. The shock adiabat is
shown in Fig. lb. It differs from the shock adiabat of
an explosive material in that it passes through the
initial-state point O. The energy balance equation (1)
now is satisfied with an accuracy to the coefficient in
the right-hand side. However, this coefficient is close
to unity, since the change in the kinetic energy of the
gas turns out to be small in comparison with its heating.

As in the case of other hydrodynamic explosions, the
rate of propagation of the explosion is characterized by
the slope of the straight line drawn from the initial-state
point Ο of the gas to the final-state point on the shock
adiabat. It can be seen from Fig. lb that for a given
light intensity So there exists a minimum possible
propagation velocity of a wave in which compression
of the gas occurs. It corresponds to the final-state
point J. This is the so-called Jouguet point, which is
well known from detonation theory. The wave velocity
relative to the heated gas at this point coincides exactly
with the local velocity of sound.

If other possible ionization mechanisms, say, heating
of the gas by thermal plasma radiation or electronic
thermal conduction (see Sec. 12) cannot provide a more
rapid propagation of the light-absorption wave than does
a shock wave, then just this detonation mode exists.
The cold gas in this case is compressed and heated by

a strong shock wave to state A, and then, absorbing
luminous energy, expands along the straight line AJ
and reaches the final state J at the moment of termina-
tion of the energy release. The optical detonation veloc-
ity D and the internal energy which the gas obtains in
this case are

r 2 ( T 2_l)g 0 n

L Po J (2)

where γ is the gas adiabat exponent.
If any propagation me chair sm for a given intensity So

acts more rapidly than the shock wave, the wave veloc-
ity exceeds the "normal detonation" velocity. In this
case the shock wave is not formed and the gas is con-
tinuously compressed to the final state C along the
straight line OC. Here the wave is propagated in the
heated gas with ultrasonic velocity. (These modes will
be discussed in Section 12.) States lying on the shock
adiabat to the left of the point J are unstable under
ordinary conditions.

Calculations based on Eq. (2) give good agreement
with exper iment^ . Thus, for So = 2 χ 1018 erg/cm2-sec,
Po = 1.3 χ 1(Γ3 g/cm3, and an effective value γ = 1.33,
we obtain D = 133 km/sec and e f = 1.35 χ 1014 erg/g,
which in the equilibrium case corresponds to a tempera-
ture T f = 900 000°. Inclusion of the loss to lateral ex-
pansion of the gas permits still better agreement with
experiment to be obtained. Satisfactory agreement with
experiment is obtained not only for the absolute values
of the calculated rate but also for the theoretical depen-
dence D ~ (S0)

l / 3. It should be noted that the shock wave
and the detonation mechanism of propagation are possi-
ble only under the condition that the ionic gas has a high
temperature. Estimates show that under the conditions
of most experiments with a laser spark the exchange of
energy between electrons and ions occurs rather
rapidly.

The plane detonation mode discussed above, without
inclusion of losses, can exist in principle even for very
low light fluxes So, down to those values for which the
velocity D calculated from Eq. (2) is no longer com-
parable with the velocity of sound in the cold gas. In
actuality the threshold for existence of the mode in in-
tensity is much higher, for it is determined by the en-
ergy loss which is always present under real conditions.
The most important loss is due to the limitation of the
transverse dimensions of the light beam and to the
lateral expansion of the heated gas, which leads to out-
flow of energy beyond the luminous channel in the wave
zone.

The limit of optical detonation has been evaluated by
the author'-7-'. Consider a cylindrical light beam of
radius R along which an optical-detonation wave is
propagated. The high-temperature gas beyond the wave
expands and the surface of the shock-wave front has the
form shown in Fig. 2. The gas begins to expand immed-
iately beyond the leading front of the shock wave, even

FIG. 2. The detonation mode with
lateral expansion. The absorption wave
is shaded.
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inside the zone of energy dissipation, whose axial width
L is of the order of the pathlength of the laser radiation
at the plasma temperature lv(Tf). The role of energy
loss to lateral expansion of the gas in the wave region
is characterized by the ratio of the lateral and forward
surfaces of the cylindrical volume of the region of en-
ergy dissipation (the shaded area in Fig. 2), i.e., by the
quantity 27rRLAR2 « 1,/B.. If lv -C R, the loss is small
and Eq. (2) is valid. If /„ S> R, the loss is very great
and only a small fraction of the light flux ~ R/lv is ex-
pended in advancement of the wave, this being absorbed
in an axial distance of the order of the channel radius.
However, at not too high temperatures of ~ 20 000°, in
the vicinity of the first ionization of the atoms, the path-
length of the light increases extraordinarily rapidly as
the temperature is reduced. Therefore, for maintenance
of optical detonation at temperatures T^ < Tj. such that
lv(Tt) > R, the efficiency of utilization of the light en-
ergy is very low, and extremely high light power is re-
quired. Thus, the function S0(Tf) has a minimum S(-
which lies immediately at lv(T^) « R. This condition,
like the physical cause of the effect, completely corre-
sponds to the well known phenomenon of the limits of
detonation of cylindrical charges of small diameter.

For example, for air at atmospheric pressure a
neodymium-glass laser with a beam radius R = 0.1 cm
according to the calculation of ref. 7 produces a tem-
perature T t « 19 000°, a threshold light intensity St

» 80 MW/cm2 (a power of 2.6 MW), and a minimum
optical-detonation velocity of 8.5 km/sec. As we can
see, the threshold value Sj. turns out to be three orders
of magnitude lower than the intensities ~ 105 MW/cm2

which ordinarily enter into experiments with a laser
spark. These tremendous intensities are actually neces-
sary not to maintain optical detonation but only to ini-
tiate it by breakdown of the gas by the laser pulse it-
self3».

We concluded from t h i s t 7 ] that forced ignition of a
traveling laser spark is possible by means of an auxil-
iary plasma source for light intensities much lower than
the threshold for breakdown.

ΙΠ. EQUILIBRIUM THERMAL-CONDUCTION MODES

3. "Slow combustion" of a light beam. Forced igni-
tion was achieved in the experiments of Bunkin, Konov,
Prokhorov, and Fedorov^8-1. A neodymium-glass laser
beam with a millisecond pulse was focused in air with a
lens of long focal length (f = 50 cm). The diameter of
the focal spot was approximately 3 mm. The energy in
the pulse was « 1000 J, and the intensity of light at the
focus was of the order of 10 MW/cm2, which is far from
sufficient for breakdown. The initial plasma in the focal
region was produced by means of a spark discharge be-
tween two electrodes. After initiation the laser spark
propagated along the slightly divergent light channel in
both directions from the focus. However, in contrast to
experiments with high-power laser pulses, the plasma

3 ' l t is interesting that at other frequencies used in practice, for ex-
ample, in the microwave region, the relation is most frequently the re-
verse. Thus, to maintain detonation at 1 atm, a radiation intensity
greater than the breakdown threshold would be required, so that the
detonation mode cannot be achieved in this case: breakdown sets in
first.

front moved slowly, with an average velocity of
~40 m/sec. The movement gradually slowed down and
stopped even before the complete termination of the
pulse (Fig. 3).

The experimentally observed slow propagation of the
plasma front was interpreted by Bunkin et al. as a
slow combustion process 4 ' . The light intensity in the
experiments was actually insufficient for excitation of
optical detonation, which requires as a minimum
~ 100 MW/cm2. The velocity of the front was evaluated
by means of the well known Zel'dovich formula for flame
velocity. The rate of energy dissipation was expressed
in terms of the absorption of light. The plasma tem-
perature, which is necessary for the calculation, was
estimated on the basis of experimental determination
of the transparency of the plasma for the laser beam.
The plasma actually absorbed only a small fraction of
the light, which is responsible for the symmetry of the
motion of the plasma front in both directions from the
focus. In order to reconcile the theoretical front veloc-
ity with the experimental value, Bunkin et al.'-8-' invoked
the idea of combustion in a tube from a closed end. The
point is that the heated gas expands in all directions,
including the direction of motion of the front, leading to
motion of the cold gas in front of the front. Therefore
the velocity of the front in the laboratory system turns
out to be greater than its velocity of propagation in
matter by roughly the ratio of the densities of the cold
and heated gases (the pressures in them are the same).
Bunkin et al.'-8-' also measured the threshold for occur-
rence of this mode. For pulse energies less than 730 J
(intensity less than « 10 MW/cm2), combustion did not
occur.

Thermal-conduction propagation of an optical dis-
charge has been considered in detail by the author [ 1 1 ' 1 2 ] ,
and values have been calculated for the plasma tempera-
ture, wave-propagation velocity, and mode threshold. In
contrast to the detonation mode (without loss) in which,
on the basis of only the idea of a hydrodynamic explo-
sion, the main parameters of the wave can be deter-
mined and we are not interested in its internal struc-
ture, in the case of slow combustion we cannot avoid
investigation of the structure. The problems of the var-
ious equilibrium thermal-conduction modes have much
in common. Therefore, in the first discussion of one of
these modes, we will dwell in detail on the mathematical
formulation, in order to avoid repetition as far as pos-
sible.

FIG. 3. Experimental arrangement and plasma configuration
(shaded) from ref. 8. Ε denotes the ignition electrodes.

4 )The idea of similarity of the thermal-conduction propagation of a
discharge to slow combustion was expressed for the first time by
Velikhov and Dykhne [ 9 ] , who discussed an ionization wave in a con-
stant electric field, propagating as a result of electronic thermal con-
duction (see Sec. 10). The analogy was subsequently drawn in detail
by Raker [10] in study of a high-frequency discharge in a gas flow (see
Sec. 5).
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Let us consider an undamped process in which a
thermal wave, propagated along a light channel of radius
R in a direction opposite to a beam of constant power P,
is maintained as the result of light absorption. We will
assume the motion to be slow—subsonic, and the gas to
be in equilibrium. Here the pressure ρ is equalized, so
that the density ρ and temperature Τ are related (ap-
proximately pT « const). We will consider the process
as one-dimensional, neglecting the radial expansion of
the gas (Fig. 4a), but taking into account in effect the
energy loss due to thermal-conduction flow of heat in
the radial direction beyond the limits of the light chan-
nel. The wave formed moves as a whole; T(x, t)
= T(x + ut), where u is the absolute propagation velocity
of the wave in the cold gas, which is equal to the veloc-
ity of flow of the cold gas into the wave. The process is
stationary in the coordinate system in which the wave is
at rest, and in this system, to which we will convert,
dT/dt = vdT/dx, where ν is the velocity of the gas. Since
the mass flow is conserved, pv = pou (p 0 is the density
of the cold gas). ·

The temperature distribution T(x) in the wave is
described by the energy-balance equation

dT dJ . ρ τ . dT d0 /o\

ί- = 5μ(Γ)-μβ/Λ2)-Φ, θ=\λάΤ; (4)

here c is the specific heat, J is the heat flux, λ is the
thermal conductivity, Θ is the heat-flow potential, F is
a function of the heat source, S is the light intensity,
μ is the light-absorption coefficient, and Φ is the loss
by radiation, which, neglecting radiative heat-exchange
effects, will be assumed to depend only on the tempera-
ture. The quantity Α Θ / R 2 describes the thermal-conduc-
tion loss. Actually, the heat flow through the side sur-
face of the light channel is ~ ®/R, so that the loss per
unit volume is ~ (©/R)(27rR/7rR2) ~ ®/R2. The coeffi-
cient A depends only on the radial profile of the tem-
perature (for numerical calculations we can set
A « 3). The light intensity is given by the equation

dS
dx

(5)

The order of the system of equations (3)—(5) can be re-
duced if we exclude χ from them; we obtain

dJ

dT

XF{T,S)

7
'dS_
dT

Let us formulate the boundary conditions. In front of
the wave (for χ = - « ) T = 0 ,J = 0, and the light intensity
So is given by the beam power So = PAR2. AS the wave
moves into the medium the gas at first is heated and
then, as the result of attenuation of the light flux and the
existence of losses, is cooled (Fig. 4b). Behind the wave
for χ = +<*> Τ = 0, J = 0. We define the plasma tempera-
ture as the maximum temperature to which the gas is
heated. It is easy to see that one of the boundary condi-
tions for the systems (3)—(5) and (6) is redundant.
Consequently, the system can have a solution only for a
chosen value of the parameter u. This also permits the
unknown propagation velocity of the wave to be deter-
mined in the course of integration of the equations. The
situation is completely analogous to that'which occurs
in combustion theory.

5 , —

a) b)

FIG. 4. a) Schematic diagram of heat flow and gas expansion (cur-
rent lines and isotherms are shown); b) schematic profiles of tempera-
ture, heat flow, and electromagnetic-energy flow in the mode with loss.

FIG. 5. Schematic profile of temper-
ature for exclusion of the cooling zone. .

In the two limiting cases the gas, after reaching
T m a x , cools much more slowly than it it is heated, and
the zone of cooling can be excluded from consideration
if we assume that behind the wave for χ = +°° the tem-
perature approaches some final value T f (in actuality it
coincides with the maximum temperature (Fig. 5)).
These limits are as follows. If the plasma absorbs the
radiation very strongly, the role of loss in the zone of
intense heat dissipation is small and the heating is cut
off when the light flux is exhausted. This case is real-
ized when the penetration length of the radiation into
the plasma l(T£) = 1/μ «. R, i.e., when the width of the
wave-is much smaller than the channel radius. In this
case we can omit the loss -terms in F and impose behind
the wave the condition: for χ = +«> J = 0, S = 0. The
temperature T f to which the plasma is heated must be
determined in the course of the solution. If the light is
weakly absorbed, so that Z(Tf) » R (the plasma is
transparent), we can approximately assume S = const
= So. The gas is heated in the stationary wave up to the
time when the heat dissipation is not compensated by
loss. After this the heating must be cut off, or else the
process will be unstable. Thus, the final plasma tem-
perature T f is determined by the equation F(S0, Tf) = 0;
according to the stability condition, the final state
corresponds to that root of the equation for which
(dF/dT)T = T < 0. Here behind the wave (when χ = +«)

J = 0 and Τ = T { .
Figure 6a shows the absorption coefficients for light

of a neodymium laser (λ 0 = 1-06 μ) and a CO2 laser
(λ 0 = 10.6 μ) in air at atmospheric pressure. The
smallest absorption lengths are 170 cm and 1.2 cm,
respectively, whereas the radii of the light beams are
ordinarily of the order of a millimeter. Consequently
the limit of a transparent plasma is realized in this
case. In this section we will discuss this limit.5 '

5 )This case has much in common with the situation arising in a con-
stant electric field (sec. 10). The limit of low loss is characteristic of a
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ai?e,kW/cm

10.8 IJJ /S.5 17.5
b) T,(X10-3°)

FIG. 6. a) Absorption coefficients for light of CO2 and neodymium-
glass lasers in air at atmospheric pressure; b) curves of heat dissipation
and loss. Air, 1 atm; CO2 laser light; So = 10 kW/cm2; A = 2.9, R = 0.15
cm. At the bottom is given a temperature scale, i.e., the relation be-
tween Τ and Θ.

We multiply the first of the equations (6) by J and
integrate over the entire wave temperature interval
from 0 to Tf. We obtain

8 f Tf

p o u = \J\cpdT. (7)

We will represent the source function F in the form of
the difference between the heat dissipation F+ = &μ and
the loss F_ = (A©/R2) + Φ. Figure 6b, in which the con-
struction has been carried out for one specific case,
permits us to judge the nature of the behavior of F(©)
and of the integral occurring in the numerator of Eq.
(7). The final temperature Tj corresponds to the upper
point of intersection of the curves F+ and F. and at the
lower point Ti the state is unstable. The greater the
light intensity So, the greater the upper area σ+ between
the curves F+ and F_ in comparison with the lower area
σ_, and the greater the velocity of the wave. At some
value Sj. the areas are equal:

(8)

and the propagation velocity goes to zero. For S < Sj-
σ+ < σ_ and u < 0, i.e., there is no discharge-wave mode
(a cooling wave appears). Thus, the threshold for dis-
charge propagation is determined by Eq. (8). It can be
shown [ 1 2 ] that for S > St we have approximately

"1/2 σ + — σ_
(9)

where w = J codT is the specific enthalpy. In the limit
0

S ^S> Sj., where σ+ 3> σ_, Eq. (9) goes over to the
Zel'dovich formula for flame velocityC x ]. For a small
excess of the intensity over the threshold, the depen-
dence of the velocity on the light power is different6'.

Calculation of the threshold power for the conditions
of the experiments of Bunkin et al.'-8-' according to Eq.
(8) gave excellent agreement with the measured value.
The calculated temperature of the air plasma was about
17 000°. In the case of a transparent plasma, as for

high-frequency discharge (Sec. 6), and also for the "hyperdetonation"
thermal-conduction mode at optical frequencies (Sec. 12); the general
case must be considered at microwave frequencies (Sec. 7).

6 ) In the case of ordinary combustion the flame velocity near the
limit is different from zero.

optical frequencies, the final temperature necessarily
corresponds to the falling part of the μ(Τ) curve, i.e.,
to almost complete single ionization of the gas. For
infrared radiation from a CO2 laser with radius
R = 0.15 cm the theoretical threshold values are
St « 100 kW/cm2, P t = 7 kW. For a diameter not ex-
ceeding 1 mm the loss by radiation Φ turns out to be
small in comparison with the thermal- conduction loss
A©/R2 and the threshold intensity is Sj ~ 1/R2, i.e., the
threshold power Ρ = 7rR2St has its smallest value and
does not depend on the radius. For a CO2 laser this
value is theoretically 4 kW (T f ~ 18 000°). For an ex-
cess of power above the threshold by 1.5—2 times the
calculated velocities u are of the order of several
meters per second. The laboratory propagation velocity
can be an order of magnitude higher as a consequence
of expansion of the heated gas in the direction of motion
of the wave.

In the case of very thin channels where the loss by
radiation is unimportant, a simple approximate formula
for the threshold power can be obtained by replacement
of the rapidly rising function μ(Τ) by a step function:
μ = 0 for Τ < To (© < ©0), μ = const for Τ > To. The
quantity To evidently has the meaning of an ignition tem-
perature, or more accurately the ionization tempera-
ture. It can be seen from Fig. 6a that for air and optical
frequencies this is about 12 000°. In the step approxi-
mation and for the assumption c (T)A(T) = const, Eq.

(3) becomes linear in ®(x), and the problem can be
solved completely in analytical form. The threshold
power, as follows from Eq. (8), is equal in this case to

Ρ, =πΛΘ 0 /μ, (10)

where the final value for the plasma is ©, = 2©0.
Evaluations with Eq. (10) give quite satisfactory results.

Mul'chenko, Raizer, and Epshteln1-13-1 have studied
the forced ignition of a laser spark in argon at pres-
sures of 16—80 atm. Combustion of the focused beam of
a ruby laser operating in an ignition-free millisecond
mode was initiated by breakdown of the gas at the focus
by a pulse from another laser. The propagation of the
plasma front was recorded by a high-speed device and
the plasma temperature was determined photometric-
ally. The velocity of the motion was of the order of
100 m/sec, and the temperature increased with increas-
ing pressure from 18 000 to 33 000°. The threshold
values for occurrence of combustion were 50 MW/cmz

and 70 kW at 16 atm. With increasing pressure they de-
creased, at first rapidly and then very slowly, to
15 MW/cm2 and 20 kW at 60 atm. The reduction of the
threshold with increasing pressure is due to the in-
crease in the absorbing ability of the gas for constancy
of loss, since the loss by thermal conduction does not
depend greatly on pressure. The slowing of the rate of
reduction of the threshold is due to the fact that at
higher pressures the most important losses are those
by radiation, which increase with increasing pressure
in roughly the same way as the absorbing ability of the
gas. Therefore the threshold light intensity no longer
depends on pressure. In all likelihood an important
role in propagation of the wave at high pressures is
played by radiant heat exchange, which with increasing
density and opacity of the plasma takes on the nature of
radiant thermal conduction.
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4. A stabilized optical discharge maintained by a
focused beam. The continuous maintenance or produc-
tion of a plasma by means of radiation in the optical
region has one feature which is extremely attractive.
No structural elements are needed to supply the energy
to the discharge. There is no need for electrodes, coils,
or waveguides as in the use of constant, high-frequency,
or microwave fields—the energy is transported simply
by the light beam. In principle an optical discharge can
be ignited at any point, and can be moved in space as
desired (but not too rapidly) by moving the beam; the
discharge can be forced to run along the beam, and it
can be localized, say, by focusing of the beam. The
possibility of producing such an optical plasmatron
have been discussed by the author1-11-1 in an article de-
voted to estimation of the light power necessary for this
purpose. If we have in mind the extended maintenance
of a plasma, we must obviously think in terms of CO2

lasers, since these are the most powerful continuous
lasers at the present time.

The static discharge maintained by a parallel light
beam of the threshold power, which was discussed at the
end of the preceding section, is unstable. In fact, if the
power is somewhat increased, the discharge begins to
propagate, and if it is reduced, the discharge goes out.
Stabilization of the discharge is easy by focusing of the
beam. Here the discharge cannot go far from the focus,
since in this case the light intensity becomes steadily
weaker. Focusing of the light at a large angle generally
facilitates the maintenance of a plasma, since the energy
is concentrated; in addition the "useless" flow of heat
from the region of energy dissipation beyond the limits
of the light channel becomes relatively smaller.

A spherically symmetric model[12:i can be used for
a simplified description of the discharge at the focus,
particularly if the plasma is transparent and heat is
dissipated in the two cones of light touching at their
vertices. Let us consider a stationary process which
is maintained by a beam converging with spherical sym-
metry and of initial power P. All of the heat dissipated
is removed from the discharge by thermal conduction,
and the loss by radiation will be neglected. The distri-
bution of the temperature, or more accurately of the
heat-flow potential, is described by the equation

very well satisfied in the case of atmospheric pressure
(R R; 1(T2 cm, and μ <w 1 cm"1 for a CO2 laser), P(r0) is
described by the simple relations

1 d 2 άβ for Γ>Λ,

for r<R;

here R is the equivalent focusing radius, which it is
natural to define by equating the spherical focal volume
4TTR3/3 to the true focal volume in focusing of the beam
by a real optical system. The integrated curve ©(r)
must satisfy the boundary conditions that ®(0) is finite
and ®(°°) = 0.

A complete representation of the laws governing the
process, as well as numerical evaluations, can be ob-
tained by specifying the function μ(Θ) in the form of a
step (see the end of Section 4), as a result of which Eq.
(11) becomes linear. In the solution obtained, the dis-
charge radius r0, i.e., the radius of the sphere inside
which the temperature exceeds the ionization tempera-
ture and where the light is absorbed: r0 = r(©0), de-
pends on the beam power P. The function ro(P) turns
out to be double valued, and the inverse function P(r0)
has a minimum. On the assumption μϋ <C 1, which is

Ρ = (4πΘ0/μ) χ j
if ro<R,

>, , if : ro>R.
(12)

The curve P(r0) passes through a minimum at r o t

~ V4R73iT > R, and this minimum threshold power,
below which a stationary solution does not exist, is
given by7)

Pt « 4πθο/μ. (13)

For the two branches of ro(P), only the increasing
branch in which the discharge radius increases with
increasing power (rQ > rot) corresponds to stable
states. States on the falling branch (rQ < ro(.) are un-
stable. If the radius increases slightly, a power less
than the actual power Ρ will correspond to a stable state
and the discharge will begin to propagate although it has
not yet reached the radius ro(P) on the rising branch.
For air at 1 atm and a CO2 laser, To « 12 000°, @0

« 0.17 kW/cm, μ « 0.8 cm' 1 / 1 2 1 and the threshold
power is found from Eq. (13) to be P t « 2.7 kW. It is
clear from Eq. (7) and also from physical considera-
tions that a smaller power is required to maintain the
plasma at increased pressures where the light is more
strongly absorbed and a larger fraction of the beam en-
ergy is utilized. In addition, reduction of the power is
made possible by use of gases with low heat conduction
(such as the heavy inert gases). Thus, for example,
numerical solution of Eq. (11) for argon at a pressure
of 15 atm and for the light from a CO2 laser gives Pj.
« 43 W (the calculation assumed R = 0.01 cm). Further-
more, rQj. m 0.1 cm; we note that M m a x **• 80 cm"1 and
the corresponding temperature and potential are
Τ pa 20 000° and ® « 0.18 kW/cm.

A continuously burning optical discharge was first
achieved experimentally by Generaloz, Zimakov, Kozlov,
Masyukov, and Raizer1-14-1. A CO2 laser beam with a
power of 150 W was focused in a chamber filled with
xenon at a pressure of several atmospheres. The beam
was focused in the middle of the free volume far from
all surfaces, in a circle of radius 0.005 cm. The dis-
charge was ignited by another CO2 laser which provided
periodic pulses with a repetition frequency of 50—250
hertz, a power of 10 kW, and a duration of 0.3—1.5 μ sec.
On focusing of these pulses in the gas a breakdown oc-
curred, as a result of which the initial plasma appeared.
The focuses of the two lasers were carefully super-
posed. After the initiation the igniting laser was turned
off, and the discharge, fed by the beam of the first laser,
continued to burn under definite conditions—very stably
and as long as desired.

The properties of a continuous optical discharge have
been investigated in a study by the same authors1-15-1.
Figure 7a shows a series of photographs of a discharge
for different light powers and gas pressures. The
plasma has dimensions of the order of millimeters.
The discharge begins always at the focus and is then
shifted somewhat along the beam opposite to the direc-
tion of the light and comes to rest. The measured veloc-

7)This formula differs from Eq. (10) for a cylindrical beam only by
a numerical factor.
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W=200W Xenon p = 4atm

P - l a t m

a)
FIG. 7. a) Photographs of a continuous optical discharge in xenon

at various pressures and light powers (at bottom right is a diagram of
the behavior of the light rays; the rays are going from right to left, and
one division is 1 mm); b) threshold powers for existence of a stable
optical discharge in xenon and argon (the region of existence lies be-
tween the upper and lower curves, for a horizontal beam).

ities of propagation were of the order of meters per
second. For a horizontal beam the discharge lost its
stability at too high pressures and went out. This was
due to the floating of the discharge under the action of
Archimedes' principle and perhaps also to the action of
convection currents in the gas. Supply of the feeding
radiation vertically from below to above stabilizes the
discharge; in floating the plasma enters a region of
more intense light flux and again expands, displacing
itself downward against the beam. In Fig. 7b we have
shown the measured threshold powers of light for xenon
and argon for various pressures for a horizontal beam
configuration. For a vertical configuration there is no
upper limit to the pressure. As in the experiments^3-1

with a pulsed discharge, on increasing the pressure the
threshold decreases at first rapidly and then very
slowly. The causes of this behavior have been dis-
cussed above.

Generalov et al.'-15-' also determined the plasma tem-
perature. The electron density was determined from
the Stark broadening of the Ho line of hydrogen. In
argon at pressures of 4—16 atm the half-width of the
line was 100—130 A, corresponding to an electron den-
sity N e « 5 χ 1017 cm"3. For 2 atm N e « 3.5 χ 1017 cm"3,
which corresponds under equilibrium conditions to a
temperature of 23 000c. It is easy to see that the meas-
ured electron density corresponds to almost complete
single ionization of the gas, and the range of possible
variations of the temperature, with allowance for the
temperature difference of electrons and ions, is ex-
tremely limited. Direct evaluation also shows that the
temperature difference is small. Thus, the temperature
of an argon plasma at 2 atm is about 23 000°. The
plasma emits a blinding white light. It should be noted
that continuous light sources of such high brightness did
not previously exist.

5. Plasma temperature in a high-frequency dis-
charge. An induction discharge is easily obtained by
placing an evacuated vessel inside a solenoid carrying
a sufficiently strong high-frequency current (of the
order of a megahertz). Under the action of the rota-

tional electric field which is induced by the variable
magnetic flux, breakdown occurs in the gas and a dis-
charge is ignited. A high pressure gas (atmospheric
pressure) cannot be broken down in this manner, but if
a discharge is ignited by some means, it will continue to
burn, maintained by dissipation of Joule heat of the rota-
tional currents. The foundations of the contemporary
technology of induction discharges at high pressure was
laid by the work of Babat [ 1 5 ] about 1940. These dis-
charges have found serious practical application. They
are used to produce a dense low-temperature plasma
which, in contrast to an arc-discharge plasma which is
contaminated by the electrode disintegration products,
is absolutely pure.

One of the main questions which arises here is—what
is the plasma temperature in the discharge? An answer
can be obtained by considering the one-dimensional
static combustion mode of a discharge in a stationary
gas, in which the dissipated heat is removed by thermal
conduction to the cooled walls of the tube; in high-
pressure discharges the plasma can be considered ap-
proximately in thermodynamic equilibrium. This prob-
lem was formulated in the work of Soshnikov and
Trekhov'-17^. A cylindrical discharge of infinite length
is described by the energy-balance equations and
Maxwell's equations; in the latter we can neglect dis-
placement currents:

0> = 0, / = / Γ = - λ ~ , (

ο, I0tE=-^~-, Η = Ηζ,Ε = Εφ; (15)

here σ = σ(Τ) is the conductivity, Φ = Φ(Τ) is the loss
by radiation, Ε, Η ~ e i w t , where ω is the frequency of
the field, and the symbol (E2) denotes averaging over
time. On the axis (for r = 0), J = 0 and Ε = 0. At the
internal surface of the cooled tube (for r = R) we can,
for example, set Τ = 0. The magnetic-field strength is
determined by the ampere-turns in the solenoid: Ho

= 4irlon/c, where Io is the amplitude of the current and
η is the number of turns per unit length. Equations (14)
and (15) have been integrated for many situations and in
this way all of the discharge parameters have been de-
termined: temperature, input power, inductance, and so
forth. The temperature distribution along the radius has
the nature of a plateau (here Τ « 7000—12 000°) with a
small dip in the middle (« 500—1000°) and drops sharply
at the edges. The dip is due to the heat loss by radia-
tion: heat is dissipated only in the peripheral layer as a
result of the skin effect (numerous measurements also
indicate the existence of a small temperature dip on the
axis).

Gruzdev, Rovinskiif and Sobolev^18^ discussed the
same problem, but without including the loss by radia-
tion. They obtained an integral of Eqs. (14) and (15)
which permits determination of the plasma temperature
Tj (the temperature on the axis). (It should be noted
that for temperatures below about 10 000° the loss by
radiation is actually small.) In Eq. (14) we will express
the Joule heating in terms of the divergence of the elec-
tromagnetic energy flux S. Setting Φ = 0, we obtain

div(J4-S),-0, S^-^-dEH]). (16)*

From this result obviously follows the integral repre-

*[EH] =EXH.
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senting conservation of total energy flow:

/ + s = 0, S = Sr < 0, / = Λ > 0. (17)

However, Eqs. (14) and (15) with Φ = 0 also have a
second integral. Actually, Maxwell's equations (15) in
which the displacement current has been omitted permit
the flux S to be represented in differential form,

^-^^Vdr)=-^±Hl, (18)

where H a is the real amplitude of the field. If we sub-
stitute (18) and the differential expression (14) for J in
(17) and multiply the equation obtained by σ, it is easily
integrable. In the case of practical importance in which
the skin depth at the surface of the plasma column is
small compared to its radius and the field is rapidly
attenuated in the plasma, we obtain the simple relation

(19)

which determines the plasma temperature in terms of
the number of ampere-turns.

Gruzdev et al. ^ have developed a method of suc-
cessive approximations for finding the temperature dis-
tribution T(r), the power, and other quantities. We will
give as an example the calculated values for argon at
atmospheric pressure1-18-1. For Ion = 13.3 A-V/cm, T f

= 8000°; at a frequency 12 MHz and for a tube radius
R = 3.75 cm the input power per unit length of the dis-
charge is W = 0.21 kW/cm; the radius of the surface
with Τ = 4500° is r 0 = 0.91 R; the skin depth corre-
sponding to a conductivity Of = a(Tf) is 6f = C/V2m7f ω
« 0.45 cm. For Ion = 33 A-V/cm, T f = 10 000°,
W = 1.1 kW/cm, r 0 = 0.98 R, and 6 f = 0.3 cm.

The temperatures which are obtained in induction
discharges usually correspond to rather small degrees
of ionization of the gas, in which the conductivity is pro-
portional to the electron density and σ ~ N e

~ exp(-l/2kT), where kT <S I. In order to achieve a
noticeable increase in plasma temperature under the
conditions of a rapidly rising function σ(Τ), it is neces-
sary according to Eq. (19) to increase substantially the
current (and power) in the inductor, especially since at
high temperatures loss by radiation appears. In induc-
tion discharges at atmospheric pressure, temperatures
above about 10 000° are not obtained in practice.

The plasma temperature can be directly related also
to the electromagnetic energy flow into the discharge
(into the skin layer) So (W « 27rr0S0, where r 0 is the dis-
charge radius). If we compare the plasma approximately
to a wire with constant conductivity af, then we can use
for So the well known formula11"11

(20)<j _^ cHj ι ω \ l / 2 _ c*Hl 1
0 " " llin \ 2 i t o f ) ~~ 32π2 σ{&{

where 6f = c/42ua^u is the skin depth. From Eqs. (19)
and (20) we obtain

\ akal f5ytrf0|J,. \Δ1-Ι

0

The physical content of this formula becomes espec-
ially apparent if the temperature is low and
σ ~ e x p ( - l / 2 k T ) with kT f <C I. In this case the integral
(21) can be approximately calculated by expanding the
1/T in the exponent about the value l/Tf by the Frank-
Kamenetskii method.

The integral is approximately equal to
and according to (21)

50=4Xffc7'2f//6f. (22)

However, except for the numerical coefficient this r e -
lation can easily be obtained from very simple qualita-
tive reasoning. In fact, the Joule heat i s dissipated
mainly in the layer where the conductivity is sufficiently
high, say, no m o r e than e t imes smal ler than the final
value Of. The temperature in this layer var ie s from
T f - ΔΤ, where ΔΤ κ 2 k T | / l , to T f , and the thickness
of the layer is of the order of. Consequently the heat
flow which c a r r i e s to the walls the energy So fed from
the solenoid is of the order J o ~ AfAT/6f. Equating J o

and So, we obtain Eq. (22).

As has been shown by Meierovich and Pitaevskii^ 1 9- 1,
in the case of a thin skin layer and for the condition
kTf <C I the distributions of temperature , heat flow,
heat dissipation, and so forth at the discharge boundary
have a universal nature, i .e., the dimensionless quanti-
t ies such as T/Tf depend only on r/5f. These authors1-1911

derived and numerically integrated the equation for the
dimensionless temperature , constructed all the profiles,
and found the exact relat ion between the p lasma tem-
perature and the electromagnetic energy flow into the
skin layer. This relation is of course given by a form-
ula s imi lar to (22), but the correct value of the coeffi-
cient i s 3.14, r a t h e r than 4.

6. High-frequency discharge in a gas flow. A high-
frequency discharge-propagation wave a r i s e s in an
electrodeless plasmatron. An induction plasma torch,
as it i s sometimes called, was constructed by Reed1-20-1

in 1960. In this device a gas is blown through a solenoid
in which a discharge is burning, and the gas flows out in
the form of continuous p lasma s t r e a m with a tempera-
ture of the order 10 000°. In a typical contemporary
installation built by Kononov and Yakushin1-21-' (see Fig.
8) a coil consisting of several turns is supplied from a
high-frequency vacuum-tube osci l lator with a frequency
range 6—18 mHz. A power up to 40 kW can be fed into
the discharge. A quartz tube 6 cm in diameter and 35
35 cm long is placed in the coil. Air or argon is blown
through the tube; the gas feed is tangential, with a heli-
cal flow. For this reason the discharge is pushed away
from the walls of the tube. The axial components of the
velocity of the cold gas at the per iphery a r e of the order
of a meter per second; on the tube axis, as the resul t of
centrifugal forces, the p r e s s u r e i s reduced and a vortex
i s formed. There is practical ly no axial motion. The
author1-10-1 has proposed a model intended to explain how

FIG. 8. Photograph of a discharge and plasma jet in a plasmatron.
Two turns of the coil and the end of the quartz tube are visible.
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the cold gas is converted into a plasma in an induction
plasma torch. The principal element of this model is
the solution of the problem of the normal discharge
propagation, just as the explanation of the configuration
of the flame front in chemical combustion is based on
the solution of the fundamental problem of the normal
velocity of propagation of combustion.

As a beginning let us imagine the nonstationary proc-
ess of expansion of the plasma column in a solenoid
without gas flow at the stage in which the discharge be-
ing ignited on the axis has not reached the walls. Then
each portion of the surface of the discharge wave can
be considered plane. If the solenoid is long, the mag-
netic field is directed along the axis and the discharge
layer will be a long circular cylinder. Here the longi-
tudinal temperature gradients are very small. In addi-
tion, let the temperature be not so high that the loss by
radiation plays an appreciable role. We arrive at the
problem of propagation of a plane wave of a high-
frequency discharge whose front is oriented parallel to
the external magnetic field, in the absence of any en-
ergy loss.

We will consider a stationary mode in the rest sys-
tem of the wave. The energy-balance equation is sim-
ilar to Eq. (3k

The field is described by Maxwell's equations (15), ex-
cept now Η = Hz, Ε ^ E y , S s Sx. In front of the dis-
charge a t x = - » T = 0 and Η = Ho = (47r/c)Ion. In the
plasma (for x = + ° o ) j = 0 , H = 0. The temperature in
the wave behaves as shown in Fig. 5. The plasma tem-
perature Tf (for χ = +°°), like the discharge-propagation
velocity u, must be determined by solution of the equa-
tions. The system of equations (23) and (15) has an ob-
vious integral in which the total energy flow is con-
served,

pouw (T) + J + S — const = So, (24)

from which follows the trivial energy-balance equation
for the discharge wave as a whole

r=-- \ cpdT. (25)

An approximate solution of the system (23) and (15) or
(24) and (15) can be found if we utilize the sharpness of
the function σ(Τ). We introduce an ionization tempera-
ture To such that for Τ < To we can neglect the dissipa-
tion of the field. Obviously To is only slightly less than
Tf. By placing the origin of coordinates at the point
where Τ = To, we replace the sharp transition function
a[T(x)J by a step function: σ = 0 for χ < 0, σ - const
= Of for χ > 0, To < Τ < T f. In this approximation
Maxwell's equations give the well known solution (see,
for example, ref. 35): Η = Ho, S = So for χ < 0 and
Η = Ηοβ~ χ/δί, S = Soe~2x/6f for χ > 0, where the en-
ergy flow So into the skin layer is determined by Eq.
(20). We can now integrate Eq. (24) and find the tem-
perature distribution T(x) in the following approxima-
tion. In the heating zone χ < 0 Τ = Toe~ Ι χΙ/Δ, where
Δ = λ /̂ρομΟρ ·̂ (if we assume for simplicity that

tion of the final temperature we can write an integral
equation which is a generalization of (19).

The calculations lead to a quite natural result. For a
rapid dependence σ(Τ) the final temperature Tf is
nearly the same as the temperature of the static dis-
charge at the same field Ho (it is less than the static,
temperature). For the specific dependence σ ~ €
and kTf 3> I the correction to the static temperature is
of the order 2k(Tf)

2/I, as is the difference T f - To. The
physical reason for these results is that in the dissipa-
tion zone the flow-balance equation (24) is not very dif-
ferent from Eq. (17) which is valid in the static case.
In practice all of the field energy dissipated here is
carried away by thermal conduction to the forward zone
of the wave and is expended in heating eras to the ioniza-
tion temperature. Since the plasma temperature is de-
te* mined mainly by the flow balance in the heat-dissi-
pation zone itself, it is not very sensitive to how the
energy carried away from this zone is expended; either
it goes away to the walls or it goes into heating of new
portions of the gas. The situation is very similar to
that which occurs in ordinary combustion.

The wave-propagation velocity for a known tempera-
ture Tf is given by Eqs. (25) and (20). The characteris-
tic widths of the heating and dissipation zones Δ and
6f/2 are related as Tf and Tf — To, as follows directly
from the condition of continuity of the flow for χ = 0,
Τ = To. From this follows the formula for the velocity

B « M l £ ^ o f f y f--_ii_, (26)Pf

Pfpf

c (Τ)/λ(Τ) = const). For χ > 0 Τ asymptotically ap-

proaches Tf, where To is related to T f. For determina-

which is characteristic of the thermal-conduction
propagation mechanism (χ* is the thermal conductivity
of the heated gas). We note that the velocity can be
represented also in a form which is practically identical
to the Zel'dovich formula for combustion velocity. For
real parameter values the velocities u are of the order
of centimenters per second. Thus, for the examples
given in Section 5 (argon, 1 atm) u » 2 cm/sec for Ion
= 13.3 A-V/cm, T f ~ 8000°, and u « 7 cm/sec for Ion
= 33 A-V/cm, T f I 10 000°.

Let us return to the process of radial expansion of
the discharge. Let us assume that at some moment ther
there is turned on an axial gas flow which is concentra-
ted preferentially at the periphery of the tube, as in a
plasmatron. The thermal conduction wave maintained by
dissipation of Joule heat is propagated in the radial
direction, and simultaneously heat is carried away by
the gas flow. Obviously heat will propagate further
along the radius in the rear part of the solenoid where
gas particles arrive already heated in passing through
the foward part. Therefore the isotherm Τ = To which
bounds the discharge begins to be deflected relative to
the flow until the axial removal of heat exactly compen-
sates the radial supply. When the velocity of gas flow
into the discharge along the normal, which increases
with deviation of the front, becomes equal to the dis-
charge propagation velocity u, further rotation of the
front is cut off and the state becomes stable. The pat-
tern established in the induction torch has the form
shown in Fig. 9. In this figure the discharge wave, i.e.,
the skin layer together, with the preceding heating zone,
is shaded (it is assumed that the skin layer is thin).
Also shown are lines of gas flow or more accurately the
projections of the actually helical lines onto the plane of
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FIG. 9. Qualitative diagram of the combustion process in a high-
frequency plasmatron. The "flame" is crosshatched. Lines of gas flow
are shown. Vortices can be seen on the axis in front of the discharge.

a section of the tube through a diameter. The flow lines
are bent in the wave since, on being heated, the gas ex-
pands and is accelerated mainly in the direction perpen-
dicular to the discharge front, the tangential velocity
component here changing only slightly. The internal
cavity of the discharge ring is filled with plasma heated
to a final temperature Tf and the flow here is now
straight. The angle of inclination of the discharge front
to the axis is approximately equal to the ratio of the
normal discharge-propagation velocity u to the axial
flow velocity v0. Since v0 ~ 1 m/sec, while
u ~ 1—10 m/sec, the angle of inclination is small, and
this also permits us in calculation of u to assume ap-
proximately that the magnetic field is parallel to the
surface of the front. In the paraxial region of the tube
in front of the discharge the flow velocity is small (a
vortex is formed in that region), so that the cold gas
flows into the discharge mainly through the side sur-
face.

More detailed information on the physics of high-
frequency discharges and the plasmatron can be found
in the author's review ί 2 ^. A detailed bibliography on
experiments and applications is contained in the review
by Yakushin1- . Some considerations relating to the
stability of high-frequency discharges, which are close
in spirit to the principles of combustion theory, have
been published by Frank-Kamenetskii [ 2 4-1.

7. " F l a m e " propagation in a waveguide containing
atmospheric air. In high-power (kilowatt) continuous-
wave microwave devices it is common to observe this
"flame" propagation. Suddenly at some point in the
waveguide a discharge is ignited, and the plasma pro-
duction runs opposite to the high-frequency wave; this
occurs at a microwave power much less than the power
necessary for breakdown of air. The discharge is always
initiated by some nonuniformity—an impurity or foreign
material, for example, a metal chip accidentally left in
the guide, which is strongly heated in the microwave
field and results in a cloud of ionized gas. This effect
often creates serious difficulties, and to avoid it a care-
ful cleaning of the waveguide is recommended.

This phenomenon was described by Beust and
Ford [ 2 5 ; i in 1961. They intentionally initiated a discharge
by introduction of a small steel screw into the wave-
guide. The experiments were performed with a rectan-
gular guide 2.29 χ 1.02 cm intended for the X band
(5.2—11.9 GHz, vacuum wavelength λ 0 = 3.8—2.5 cm).

The effect had a threshold at a power of about 0.25
kW, whereas breakdown of air requires a thousand
times more power. The velocity with which the dis-

charge moved increased with increasing power from
« 25 cm/sec near threshold to 6 m/sec at 2.5 kW. The
plasma formation, judging from the photographs presen-
ted, has the shape of a column located in the center of
the waveguide perpendicular to the axis and parallel to
the narrow wall, i.e., along the electric field (the TEOi
mode was used). The diameter of the column, as far as
can be seen from the photographs, is several millime-
ters. In typical situations 75% of the incident micro-
wave power was absorbed in the plasma, and the remain-
der was reflected.

An acquaintance with the above facts leaves no doubt
that we are dealing here with an explicit case of dis-
charge propagation, this time a microwave discharge,
in the slow- combustion mode. On this basis the au-
thor [2e-) has given a physical interpretation of the effect
and has calculated the principal quantities.

Let us consider a plane stationary mode of discharge
wave. The loss by radiation is small in microwave dis-
charges, since the temperatures obtained here are not
high (in air at 1 atm about 5000°). We will assume at
the start that there are no losses by thermal conduction;
this is permissible for powers which are appreciably
greater than the threshold for existence of the mode.
The energy balance in the wave is described in this
case by Eq. (23). It is now impossible to neglect the
displacement currents in Maxwell's equations, as was
done for the high-frequency discharge, and the field is
a wave field. A monochromatic plane wave satisfies the
equation (see the books of Ginzburg1-27·1 and of Landau
and Lifshitz [ 3 5 ])

d'E (27)

The dielectric constant e and the high-frequency con-
ductivity σ are [27]

8 = 1 -
m (ω2 i-v?n)

(28)

where N e is the number of electrons per cm3, which we
take as the equilibrium value, and vm is the effective
frequency of electron collisions. For χ = - °c, τ = 0 and
J = 0, and the field strength or energy flux Sj in the in-
cident electromagnetic wave are given. For χ = +°ο in
the case of no loss, J = 0 and Ε = 0. Equations (24) and
(25) remain valid, and the energy flow So into the
plasma, which appears in (24) and (25), is equal to
So = Sj(l - R r ) , where R f is the reflection coefficient
for the electromagnetic wave from the plasma front
(which is not known beforehand).

The solution of Eqs. (23) and (27) presents difficul-
ties of two kinds. One of them, as before, is due to the
nonlinearity of the equations and the presence of the un-
known parameter u. However, in the present case we
have an additional difficulty due to the need of solving
the wave equation in a nonuniform medium. The first
difficulty can be avoided approximately in roughly the
same way as before if we take advantage of the extreme
rapidity of the dependence of e - 1 and σ on T. In the
zone where the field is dissipated and where the reflec-
ted wave is produced, the temperature is extremely
close to the final temperature and in this region Eq.
(17), which is characteristic of a static discharge, is
valid with an accuracy to order 2kT f/l <C 1.

In the high-frequency case it was possible to inte-
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grate this equation by reason of the fulfillment of the
condition 4πσ/ω 3> |e | (ω — 0), which permits displace-
ment currents to be neglected and the flow S to be
represented in the form of Eq. (18). The same proced-
ure turns out to be possible also in the opposite limiting
case 4πσ/ω <C e « 1 (ω — <»), in which the flux absorp-
tion equation (5) is valid (the geometrical optics ap-
proximation). Generally speaking, in a microwave
plasma at atmospheric pressure 4ησ/ω ~ |e | . However,
Eq. (5) can be preserved to a certain approximation if
we understand by S the flux in the traveling electromag-
netic wave and calculate the absorption coefficient μ in
terms of local values e(x) and o(x) by the formulas ap-
plying to a uniform medium. The reflection coefficient
can be evaluated to a first approximation if we consider
the plasma boundary as sharp.

Under these approximations we quickly obtain from
(17) and (5) the integral relation

μ (Τ) λ -RF{Tf)l (29)

which determines the discharge temperature.8 ' After
calculation of Tf we can also find the velocity u from
Eq. (25). Baltin, Batenin, Gol'dberg, Devyatkin, and
Tsemko [ 2 8 ] , who studied a stabilized microwave dis-
charge in nitrogen at atmospheric pressure (see Section
8), numerically solved the exact integral equation for
the function S(T), which follows from Eqs. (24), (25), and
(5), which are the parent system for Eq. (29). The re-
sults of the calculations—the dependence of T f on So, are
in satisfactory agreement with measurements.

Equation (29), which determines the final state of the
discharge plasma, permits a remarkable interpretation.
It can be shown^26-1 that it is practically equivalent to
the condition of equality to unity of the optical thickness

x(To)
of the heating zone in the discharge wave, τ0 ss ί μ dx.

This condition is completely admissible. In fact, we will
assume that τ0 < 1. This would mean that at the end of
the heating zone the absorption coefficient is still so
small that in the extent of some adjacent part of the
dissipation zone the absorption also will be small. If we
assume that τ0 > 1, this will mean that even in the
heating zone the electromagnetic wave is strongly ab-
sorbed. Both assumptions are inconsistent with the very
definitions of the concepts of dissipation zone and heat-
ing zone.

When energy loss is taken into account, the problem
of the propagation mode is formulated in the same way
as was done in Section 3. Since Eq. (5) is used to des-
cribe the field, the entire system (3) and (5) is pre-
served. For χ = +oo we now have Τ = 0 and J = 0. In
this formulation the problem is substantially complica-
ted. An approximate solution9' has been obtained by the
authorc . It permits determination of a threshold flux
S t such that for Sj < S i t the wave is not propagated.

8 ) It should be noted that Eq. (29), which is strictly valid in the limit
ω -> °°, gives reasonable results even in the opposite limit ω -> 0, in
which Eq. (19) is accurately satisfied [ 2 6 ] . This also provides partial
justification of use of the limit ω -*°°at microwave frequencies.

"We note that the method of solution can be somewaht simplified
in comparison with ref. 26 if we use as one of the conditions τ0 = 1.

Near the threshold of the mode the longitudinal and
transverse heat flows are comparable, i.e., the width of
the dissipation zone l/μ^ is roughly equal to the trans-
verse dimension of the discharge r 0 (the radius of the
discharge "column"). The condition ΐ / μ ( Τ Λ ) « r 0

gives us the minimum possible temperature of the dis-
charge plasma.

For the experimental conditions of Beust and
F o r d [ 2 5 ] - a i r at 1 atm, λ0 = 3 cm, ω = 6.3 χ 1010 sec"1,
and r 0 ~ 0.3 cm—the calculations give T f t κ 4200° and
threshold fluxes Sot « 0.2 kW/cm2, S i t « 0.28 kW/cm2

(R r = 0.28), which is in good agreement with the experi-
mental value of the threshold power if we calculate it
for the surface of the discharge column. As the energy
flow fed to the discharge increases, the temperature in-
creases slowly and the propagation velocity rises. For
example, for So « 1 kW/cm2, T f « 6000° and l/u f

« 0.02 cm, the velocity i s u « 30 cm/sec. The dis-
charge-propagation velocity relative to the heated gas
is ν = (po/jbf)u « 8.7 m/sec. The measured velocities
are in agreement with these values and not with the
values of u. This indicates that the situation in a wave-
guide is to some extent close to combustion in a tube
from the closed end (in contrast to a discharge inside a
solenoid, which is stabilized, being "attached" to the
coil). In a waveguide, where the discharge region is
quite concentrated, the heated gas expands in all direc-
tions, including the direction of propagation, and there-
fore the laboratory velocity of the discharge wave also
is found to be much greater than u. In general the
hydrodynamic process in the waveguide is greatly com-
plicated by the fact that the discharge does not cover the
entire tube. The transverse dimensions of the discharge
column are limited as the result of the sharp drop in
the field in the transverse direction in the presence of
a plasma in the waveguide; apparently the radius is
affected also by the hydrodynamics of the flow.

8. Microwave discharge in a gas flow. Discharge in
a resonator. A reverse pattern of microwave discharge
propagation, quite similar to that observed in electrode-
less plasmatrons, arises in microwave plasmatrons.
One of the first designs, described by Aksenov et al.'-29-'
and Blinov et al. , is typical; a waveguide carrying a
wave from a magnetron intersects a quartz tube (Fig.
10). Gas is blown along the tube, usually in a twisted
flow. A stabilized discharge burns in the region of in-
tersection. It is pushed away from the walls of the tube
by about half the radius as a result of the twisting of the
flow; a plasma stream flows from the tube. Microwave
radiation with λ 0 ~ 5—12 cm is ordinarily used, with a
power of the order of a kilowatt; the tube radii are of
the order of a centimeter; the axial gas-flow velocity
is of the order of tens of cm/sec. In microwave plasma-
trons an extremely high efficiency is reached—more

FIG. 10. Diagram of micro-
wave plasmatron (the plasma is
crosshatched).
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than 50% of the power generated can be fed to the
plasma, and in some cases 80—90%. The temperatures
obtained in a microwave discharge are lower than those
in a high-frequency discharge.1 0 ' In nitrogen at atmos-
pheric pressure only 5000—6500° is obtained. Measure-
ments of the vibrational and rotational temperatures,
on the one hand, and of the electron concentration on the
other hand (see ref. 31), show that the plasma is in a
state close to thermodynamic equilibrium. On the other
hand, in argon the electron temperature of 6500—7000°
appreciably exceeds the atomic temperature of 4500°
(see ref. 32). This also is natural: in atomic gases
there is no effective mechanism for equalization of the
temperatures, such as excitation of molecular vibra-
tions by electron impact.

We must assume that the shape of the surface of a
microwave discharge in a gas flow (the flame surface),
as in the case of an induction discharge, is determined
by the relation between the incident-flow velocity and
the normal discharge-propagation velocity u (see Sec-
tion 6). For powers appreciably above threshold, the
depth of penetration of the field into the plasma is small
(the skin depth is small) and the situation is close to
that which occurs in a high-frequency discharge,
although with the difference that in a waveguide the field
distribution is not symmetric about the axis of the dis-
charge column, as it is inside the coil. As was clear
from the preceding discussion, the temperature in the
discharge is almost independent of the gas-flow velocity
and should be close to the static temperature.

One of the difficulties which arises in calculation of
the dependence of the temperature on the power genera-
ted is due to the need of taking into account what frac-
tion of this power is dissipated in the discharge1 1 '. This
fraction has been calculated1130'31^ on the basis of the
known solution of the problem of scattering of a TEOi
wave in a waveguide from a very thin conducting rod
located in the center of the waveguide parallel to the
electric vector . In this approximation a maximum
of half of the incident power can be absorbed; here a
fourth is reflected and a fourth is transmitted. It cannot
be said that this approximation is satisfactory; the dis-
charge " r o d " is in no way thin and the absorption often
amounts to more than 50% experimentally. In order to
relate the plasma temperature to the energy flow into
the discharge, it is necessary to use a relation similar
to (29). Use of a minimum principle in analogy with the
channel model of an arc (see Section 9), as done by
Baltin et al.1-31-1, is not justified and can result in erron-
eous results.

Blinov et al.1-30-1 have described a microwave dis-
charge of still another geometry. The discharge burns
on the axis of a circular waveguide along which a TMM

wave is propagated. The cylindrical surface of the

1 0 )At high temperatures the reflection increases rapidly, but the re-
flected wave must be diverted from the magnetron and the reflected
power is lost. If we discuss the high-frequency discharge in wave lan-
guage, although the wavelength here is much greater than the dimen-
sions of the system, the reflection from the plasma is of course almost
complete in this case, but the reflected power is returned. The gener-
ator supplies only the small difference between the incident and re-
flected powers.

*'*Calculation of the reflection coefficients on the basis used for
plane waves does not give correct results [ 2 6 ] .

waveguide and the conducting plasma cylinder on the
axis form a coaxial line for the electromagnetic wave.
Gas is forced along the waveguide tube with a helical
motion, and a plasma stream flows out from the end
through an orifice. In this system the generated power
is absorbed almost completely and a very high plasma
temperature is reached. Note that the temperature can
be related to the input power by the same relations (29)
or (21) in which the flow into the plasma must be ex-
pressed in terms of the imaginary part of the propaga-
tion constant of the electromagnetic wave along the
coaxial line. The latter itself depends on the conductiv-
ity, i.e., on the plasma temperature. It should be em-
phasized that theoretical determination of the radius of
microwave discharges in a gas flow, as in the case of a
high-frequency discharge, requires consideration of the
hydrodynamic process with inclusion of the radial dis-
tribution of the incident-gas velocity and the vortex mo-
tion at the axis. Up to the present time this problem has
not been solved. The optimal mode of gas flow is usu-
ally chosen empirically.

In the experiments of P. L. Kapitza, which were be-
gun in 1950, long before the creation of microwave
plasmatrons, and which became well known after publi-
cation of a detailed article in 1969,'-36-1 a microwave
discharge was produced not in a waveguide but in a
resonator. The resonator was supplied with a specially
developed oscillator which could provide a continuous
power up to 175 kW and which produced oscillations with
λ 0 * 20 cm. Discharges were studied in hydrogen, deu-
terium, helium, and other gases at pressures of one to
several atmospheres. The discharge was ignited in the
middle of the resonator, in the region of maximum field.
The discharge had the shape of a filament drawn out
horizontally along the electric vector. On increasing the
power the length of the filament reached 10 cm (a half
wavelength), and the diameter 1 cm. A power of up to
15—20 kW could be fed into the discharge. In order to
stabilize the discharge the gas was given a helical mo-
tion in the resonator; in the absence of forced stabiliza-
tion the discharge filament twisted and floated under the
action of Archimedes buoyant forces. In the outer part
of the discharge the temperature (in hydrogen) amounted
to 6000—8000°, which is typical for microwave dischar-
ges (see above). The article described the results of
detailed theoretical and experimental studies of the
electrodynamic characteristics of the process, the
plasma parameters and the effect of an external mag-
netic field.

In Kapitza's work special attention was concentrated
on discussion of the proposed effect of formation inside
the discharge of a highly heated cavity with an electron
temperature of the order of a million degrees. It is as-
sumed that the high-temperature region is thermally
isolated from the surrounding low-temperature plasma
by a double electrical layer and is maintained at the ex-
pense of the energy which is dissipated as a result of
occurrence of the anomalous skin effect.

9. Plasma temperature in an arc discharge. Many
studies have been made of arcs and arc plasmatrons,
and we do not intend to discuss here the various aspects
of this subject. We will be concerned only with the ques-
tion of determining the temperature of the discharge
plasma in order to demonstrate the complete unity in
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this respect of equilibrium discharges in all frequency
ranges. We will consider a cylindrical arc column. The
column is the part of the discharge sufficiently removed
from the electrodes that the effect of the near-electrode
processes is not felt. A radial temperature distribution
and longitudinal electric-field strength Ε are auto-
matically established in the column such that a current
of definite magnitude Io flows through the arc. The
theoretical problem is to obtain the temperature and the
field as a function of the current (see the book by
Finkelnburg and Maecker1-37^.

In the absence of gas flow a stationary state in the
column is provided by radial outflow of the heat dissipa-
ted in the plasma by Joule heating, and the energy bal-
ance is described by Eq. (14), where (E) 2 s E 2 . The
loss by radiation we will not take into account in what
follows; this is permissible for low-current arcs. On
the axis at r = 0 dT/dr = 0, and at a sufficiently large
distance for r = R we can set Τ = T R « 0 (the "cooled
screen"). The current is

0 = E \ 2nradr. (30)

This problem is ordinarily solved12' by use of the
so-called channel model^37-1, in which the arc column is
approximately divided into a conducting channel of radius
r 0 with a constant temperature Tf and conductivity σ^
= o(Tf) and a nonconducting zone of heat outflow r 0 < r
< R, where σ = 0. Here

/ο = £σ Γ <. (31)

Integrating Eq. (14) in the zone of heat outflow and
noting that here the heat flow through the entire cylin-
drical surface is equal to the power dissipated in the
channel, IoE = ll/irrlaf per unit length, we obtain the
equation

0

which relates the two unknown parameters r 0 and Tf.
The missing equation in the channel model can be

obtained by use of Steenbeck's minimum principle, ac-
cording to which for given Io, R, and T R that tempera-
ture distribution should be established for which the
power dissipated, and consequently also E, are mini-
mal. Differentiating Eq. (31), say, with respect to r0,
substituting the derivative dT f /dr0 found from Eq. (32),
and setting dE/dr0 = 0, the missing second relation be-
tween Tf and r 0 is found to be:

Calculations for arcs on the basis of Eqs. (31)—(33)
give excellent agreement with experiment, but the ques-
tion of use of the minimum principle has been the sub-
ject of many discussions [ 3 7 : f. As a result the use of the
principle for arcs has been accepted as permissible. It
has been shown that it is an expression of the general
condition of the minimum production of entropy, which
follows from the thermodynamics of nonequilibrium
processes, and Eq. (14) can be considered as the Euler-

12)Equation (14) .inearized in Θ, which is obtained by linear ap-
proximation of the function σ(Θ): σ = 0 for Θ < θ , , σ = B(0-0!) for
σ > ©!, permits exact analytic solution (see ref. 38).

Lagrange equation for the corresponding variational
problem.

Nevertheless, there must remain a feeling of dis-
satisfaction with the fact that solution of the problem on
the basis of such a simple and natural model as the
channel model requires use of this additional and phys-
ically not completely clear condition. The fact is that
there is no necessity of invoking the minimum principle,
and the missing relation follows from the equations of
energy balance and electrodynamics in the same way as
in the case of other discharges, as has been shown by
the author [ 3 9 ] .

We will use the first Maxwell equation (15) to express
Ε in terms of Η and substitute the expression for the
flux S (E = E z , Η Ξ Η , S = Sr) into Fq. (16) which is
rigorously valid in this case. Multiplying the equation
obtained by σ and integrating it over r from 0 to R, we
find

(34)

We will convert this exact relation into an approximate
relation by using the channel-model approximation
σ = 0, const in order to express the right-hand part in
terms of a given quantity—the current. Outside the chan-
nel Η = H 0(r 0/r), where Ho = 2I0/cr0, and in the channel
Η = H0(r/r0). As the result of integration we obtain the
relation

(35)

which provides the missing relation between T f and r0,
determines the plasma temperature, and corresponds
completely to Eqs. (19) and (29) for the discharges dis-
cussed earlier. For a rapid dependence σ(Τ) the new
equation (35) gives practically the same result as the
old equation—(33), i.e., it provides agreement with ex-
periment. For example, when σ ~ exp(—l/2kT), Eqs.
(35) and (34) differ by a quantity of order 2kT f/l <§; 1.

It must be emphasized that use of the minimum power
principle requires extraordinary caution. Thus, in the
case of an induction discharge it gives incorrect results
(see ref. 22 in this regard). The same is true also of
microwave discharges.

We will also call attention to the fundamental simil-
arity of the spherical-model problem for an optical
discharge with the cylindrical problem for the arc col-
umn.

IV. NONEQUILIBRIUM AND OTHER MODES

10. The ionization wave and discharge contraction in
a constant field. Volkov's experiments1-40-1 on pulsed
discharges in inert gases with small additions of cesium
vapor revealed a rapid expansion of the current-carry-
ing channel. For example, in argon with 1% cesium at
a pressure of 100 mm Hg and a discharge current of
80 A, the velocity was initially ~ IO5 cm/sec; after a
time of ~ 100 μ sec it fell to ~ IO3 cm/sec. Here the
field decreased from ~ 50 to 5 V/cm. In the early stage
of the process the gas clearly could not be heated and
brought into motion, especially since a small energy
was fed to the discharge and the electron concentration
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was very small, even for complete ionization of the
cesium. It was suggested that the ionization is propa-
gated in the stationary gas as the result of thermal
conduction.

In this connection Velikhov and Dykhne'-9-' have con-
sidered a plane stationary mode of ionization wave,
propagating in a constant electric field Ε (in a direction
χ perpendicular to the field) as the result of electronic
thermal conduction, and have noted the similarity of the
process to slow combustion. This was the first formula-
tion of a problem of this type. It was assumed that the
electron density N e is related to the electron tempera-
ture Τ by the condition of thermodynamic equilibrium,
where kT <C I and the degree of ionization is very small.
The electrons collide with neutral atoms. Although the
electrons transfer energy to the atoms in these colli-
sions, the gas of heavy particles remains cold and sta-
tionary, as a result of its large heat capacity.

Under these assumptions (and without inclusion of
other losses) the electron balance is described by the
equation

TdNe

here σι = e2T/m and λι « veTk f» k2Tr/m are the elec-
trical and thermal conductivities calculated for one
electron, τ is the time between collisions of the elec-
trons (it was assumed constant), v e is the thermal
velocity of the electrons, Μ is the mass of the atom,
and T a is the temperature of the atoms (it is assumed
that T a -C T). For χ -— +°o the temperature approaches
the final value Tf, which is determined by the condition
of equality of the heat dissipation and the elastic loss:

1 f ~ 3
(37)

and ji = 0. As can be seen from Eq. (36), the leading
edge of the wave is sharp. The boundary condition at the
edge is that here, for Τ = 0, the heat flow for one elec-
tron is finite, or more accurately, j x = —ul.

The order of magnitude of the propagation velocity
and the width of the wave can be determined by com-
parison of the various terms in Eq. (36). On comparing
the leading term in the divergence of the heat flow,
which is proportional to the derivative with respect to
N e , with the term due to elastic loss, we find that the
length scale in the wave is the quantity L
= (M/m) l / 2(l/m) l / 2T. By comparing the divergence of
the flow with the convection term, we find the velocity
scale to be

— I —7T— I I — 7 — I <-*• UP \ " 7 7
, 3 / 2

/ ;
(38)

In the work of Velikhov and DykhneL 9 J, Eq. (36) is
transformed to the dimensionless variables & = / j
ξ = x/L, and then, by elimination of the coordinate, to
the variables y = Jdj/άξ and ,?. A qualitative study of
the field of the integrated curves as a function of the
parameter ν = u/U showed that the boundary condition
can be satisfied for one value ν ~ 1. Thus, the wave
velocity i s u « U. The velocity estimates given by
Volkov11403 on the basis of Eq. (38) gave agreement with
experiment in order of magnitude.

Munt, Ong, and Turcotte [ 4 1 ' 4 2 a : l have discussed the
same problem but without the important assumption of

equilibrium of the electron density and with inclusion of
electron diffusion. The rigorous equation for balance of
the number of electrons has the form

here D « VgT is the electron-diffusion coefficient, E x is
the longitudinal polarization field which arises as the
result of separation of charges in diffusion (it satisfies
the Poisson equation), q = KjNNe - K rNeN+, where Kj
and Kr are the ionization and recombination rate con-
stants for the atoms, which are related by the principle
of detailed balance and which depend on the electron
temperature T. If ion diffusion is neglected, udN+/dx
= q. The energy-balance equation, with the expression
for heat flow corresponding to Eq. (39), has the form

3NekT
DM

r-Ta)-Iq.

Beyond the wave, at χ = <*>, the electron temperature Tf
is determined by the same formula (37) (T f ~> T a ) , N e

= N+ = N e j , where Nef is the equilibrium density at
temperature Tf, E x = 0. In front of the wave under
these conditions, with inclusion of electron diffusion and
the final ionization velocity, the front is diffuse and at
x = — °oNe = N t = 0, while the temperature T_o oand the
polarization field E x _ o o a r e bounded but unknown be-
forehand.

In practice the Debye radius always turns out to be
so small that the charge separation is negligible and the
diffusion is ambipolar. These authors note that the
characteristic time of the ionization reaction, i.e., the
time for establishment of thermodynamic equilibrium,
τ, . . . = (KjfN.f)"1, is most frequently greater than the
time of energy transfer from the electrons to the atoms
Texch = T(M/m)> a n c * the equations are solved for just
this limiting case, which is directly opposite to that
considered in ref. 9. Here the temperature is almost
constant over the entire space. The width of the wave is
L' ~ u r r e a c . On the other hand, u ~ D/L, and hence
the velocity scale is U' = ν θ (τ/τ Γ 6 3 Χ .) . The parameter
v' = u/U' is the eigenvalue of the dimensionless system
of equations. It turns out that the system has two eigen-
values, one of which is of the order of unity, and the
second corresponds to the slow propagation velocity and
is apparently superfluous13*. For hydrogen and for the
conditions T f = 104°, Ν = 1015 cm"3, N e f = 1012 cm"3, and
Ψ ̂  Treac/Texch ~ l^5, w e obtain a numerical value
u ft! 36 m/sec; for argon for the same parameters
ψ Ρ» 54 and u PS 180 m/sec.

In the formulations of the problem set forth above, a
plane ionization front is propagated in an arbitrarily
weak field. However, the phenomenon of discharge con-
traction is well known; here the static discharge does
not fill the entire region where there is electric field,
and the region where the current flows coexists in a sta-
tionary mode with the un-ionized current-free region.
The cause of the contraction may be the dependence of
the electron-collision frequency on temperature, which
is due to the thermal expansion of the heated gas and to
the increasing role of Coulomb collisions with ions1-43-1.

1 3 'Note that in combustion theory, on inclusion of losses, two
flame velocities appear [ 4 2 b ] .
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Equation (36) in this case permits the existence of a
static solution with u = O."44] A radiative mechanism of
contraction is also possible1-44-114>. Vitshas, Golubev and
Malikov1-46^ have shown that in the case of very small
electron concentrations (for a discharge in argon with
admixture of cesium vapor), when the electronic thermal
conduction plays a small role in comparison with the
atomic conduction, the cause of the contraction is heat
release to the walls.

A corresponding plane model of the contraction of a
nonequilibrium discharge in a constant field for low
ionization (Fig. 11) has been constructed by Vitshas,
Dykhne, Naumov, and Panchenko'·47^. In order to show
more graphically the physical meaning of the relation-
ships, we will follow the course of the primary dis-
cussions -1 and consider here the much simpler case
of an equilibrium discharge of the same geometry. In
complete analogy with the derivation of Section 3 we
have

dT __ _ dJ , ρ 2 Α'θ

where Λ is the layer thickness (R in Eq. (3)). The
plasma temperature Tf corresponds to the upper, sta-
ble, point of intersection of the heat dissipation and loss
curves: a f E

2 = A'®f/A2. For χ = °ο τ = T f , J = 0; for
x = - ° °T = 0 ,J = 0. The static mode of the contracted
discharge (u = 0) corresponds to the threshold for
propagation of the discharge wave, which is determined
by the condition of equality of areas, Eq. (8):

) = 0. (41)

From this we find the field E t for which the discharge
boundary is stationary. For Ε > E(. u > 0 and the dis-
charge will be propagated; for Ε < E t (u < 0), the dis-
charge decays (a wave of cooling and deionization oc-
curs). In contrast to the cylindrical arc (Section 9), in
a static plane discharge neither the field nor the cur-
rent density j = σΕ depend on the total current Io. Only
the extent d of the current region along the χ axis de-
pends on the current: Io = jdA.

The calculation made by Vitshas et a l . [ 4 7 ] for dis-
charges in argon with a small concentration of cesium
is complicated because of the absence of equilibrium:
in that case the difference in the electron temperature
Τ and the atom temperature T a is important. An equa-
tion similar to (40) is written down for the atomic tem-
perature T a , and the relation between Τ and T a is given
by the condition σΕ2 = W e l, where Wej is the last term

FIG. 11. Drawing of a plane model of discharge contraction. The
plasma is shaded. Α-anode, K-cathode. A temperature profile is shown
at the top.

1 4 )The closely related question of the stability of a power discharge
from which energy is removed by thermal radiation has been discussed
by Pis'mennyi and Rakhimov [ 4 5 ] .

in Eq. (36). The analysis of the curves of heat dissipa-
tion and loss and of an equation similar to (41) is
correspondingly complicated.

11. Ionization waves in waveguides. This phenom-
enon has been observed and studied experimentally in a
series of papers by Bethke, Frohman, and Ruess1-48"50^.
If a localized plasma is created by a shock wave or a
spark discharge in a waveguide field with an inert gas
at an end remote from the microwave source, the
plasma front is separated from its initial location and
moves rapidly in the direction to the source. The ex-
periments were carried out in a cylindrical waveguide
of radius 2.5 cm and length more than a meter at a fre-
quency of 8.35 GHz (λ 0 = 3.6 cm) in Xe, Kr, and Ar at
pressures of 0.3—3 mm Hg. The effect occurred even at
low radiation fluxes, the threshold being only
0.2—1 W/cm2. A power of 40—200 W/cm2 is necessary
for breakdown of the gas under these conditions. When
the microwave power was increased the velocity of the
front increased from tens of meters per second near
the threshold to tens of kilometers per second at
~ 50 W/ cm2. The maximum electron concentrations
were (0.7—9) χ 1012 cm"3 (the critical concentration in
the waveguide was 0.72 χ 1012 cm"3). A special check
showed that the gas remains stationary, i.e., the
plasma-front propagation has the nature of an ionization
wave. Dielectric windows transparent to the microwave
radiation were placed along the path of the ionization
wave. The ionization wave stopped in front of a window
of plastic with a short-wavelength transmission limit
λ0 Ρ» 2000 A in the ultraviolet region of the spectrum,
but the wave penetrated a window of LiF, which trans-
mits the ultraviolet to about 1100 A, and continued to
propagate with the same velocity. This indicated that a
dominant role in the propagation mechanism is played
by the transport of atomic resonance radiation, whose
wavelength in the inert gases lies just in the range
1000—1500 A. As we can see, this process differs quite
substantially from that which occurs in a waveguide
filled with atmospheric air (Section 7), where the dis-
charge is propagated quite slowly.

V. I. Myshenkov and the author [ 5 1 ] developed an ap-
proximate theory for an ionization wave propagated in a
waveguide as the result of transfer of resonance radia-
tion. The simplest kinetic scheme was adopted: elec-
trons acquire energy in the microwave field and excite
atoms to a single resonance level, and the excited atoms
are ionized by electron impact. (Since the field is sub-
stantially below the threshold for breakdown, the elec-
trons are not in a state capable of ionizing unexcited
atoms.) The excitation from the plasma is transferred
to the unperturbed layer by resonance photons.

If we do not take into account recombination and
electron diffusion to the walls of the tube, which under
the experimental conditions [ 5 0 ] occur slowly and are
unimportant in the wave region, the electron density
satisfies the kinetic equation

»TT-«W. (42)

where N* is the density of excited atoms, and a is the
rate constant for their ionization by electron impact
(with inclusion of the electron energy spectrum). The
density of excited atoms is described a certain integral-
differential equation. For simplification the latter was
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converted to a differential equation of the diffusion type.
This equation, which corresponds to the energy-balance
equation in the case of equilibrium thermal-conduction
modes, has the form

dN* „.. &N* , σ<£«> Ν*
--D* dz*

(43)

here D* is the diffusion-excitation coefficient. It is
given by D* = Ζ2/3τ*, where τ* is the lifetime of the
excited atom with respect to photon emission, I is the
mean free path of the photons with allowance for the
dispersion shape of the resonance line in the wings,
Ι Μ 0.7 Zo/4R3/4, h is the mean free path in the center
of the line, and R is the radius of the tube. The last
term on the right-hand side describes the loss due to
removal of excitation to the walls of the tube, where
T* = R2/3D*. The excitation sources were chosen on
the assumption that the field energy dissipated σ(Ε2) is
mainly expended in excitation of atoms; I* is the exci-
tation potential; the field Ε satisfies the wave equation
(27); σ and e are given by Eqs. (28).

The ionization rate can be considered approximately
independent of the field at sufficiently strong fields and
equal to zero in weak fields where the elastic loss pre-
vents the electrons from reaching the energy I - I*
necessary for ionization of the excited atoms. Thus,
a = const for (E2> > E | and a = 0 for (E2> < E2·, where
we have, in Eq. (37),

£ 2

f = 2 m 2 (/• — /·)ν η (ιο' + vm)Ve2M'.

A similar formula with I* instead of I - I* determines
the field below which the electrons do not reach the en-
ergy sufficient for excitation of the atoms, i.e., below
which the mode under discussion cannot exist. An
evaluation gives for the corresponding energy fluxes
»0.4—1 W/cm2, in good agreement with the experimen-
tal thresholds for the effect. Thus, the mode threshold
is determined by the elastic loss. The boundary condi-
tions for the system of equations (42), (43), and (27) are
as follows: for χ = — « Ν* = 0, and the given quantities
are the energy flow in the incident electromagnetic wave
Sj and some low density of " b a r e " electrons N e Q . For
x = +oo Ε = 0 (since N e = const = Nef) and N* = 0 (as a
consequence of the removal of excitation to the walls).
As usual, the system is overdetermined.

The approximate solution of the system is based on
three principal factors. In the first approximation the
source of excited atoms is assumed concentrated:
o(E2> = S06(x). This permits integration of (43) and
then of (42), i.e., finding the form of the function Ne(x).
Then, instead of the wave equation (27), Eq. (5) is taken
for the flux S; finally, to establish the equation which
determines the propagation velocity, use is made of the
condition of equality to unity of the optical thickness of
the preionization zone (the heating zone in equilibrium
modes), where the ionization rises to such a value that
intense dissipation of the field begins. For purposes of
illustration we will present the results of a numerical
example for one version of the experiments of Bethke

and Ruess
[50]. xenon, 3 mm Hg, ω = 5.3 χ 1010 s e c 1

R = 2.5 cm. We have l0 = 2.6 χ 10"6 cm, τ* = 3.74
χ 10~9 sec, D* = 3.2 χ 105 cm2/sec, T* = 6.5 χ 10"6 sec,
I* = 9 eV, a m 4 χ 10"8 cm3/sec, vm & 2.4 χ 10 l c sec"1.
For a change of Sj from 0.6 to 40 W/cm2, N e f increases

from 1.8 χ 1012 to 9 χ 1012 cm"3, which is in good agree-
ment with experiment, N * i a x from 0.8 χ 1012 to 23
x 1012 cm"3, and u from 70 m/sec to 2 km/sec. The
function u(Sj) is found to be correct, but the theoretical
velocities turn out to be too low by several times in
comparison with the measured values. This is due first
of all to the fact that too simple a scheme was assumed
for the ionization. The gradual ionization must occur
more rapidly, and u in the solution is proportional to
the ionization rate constant a. It is interesting that the
experiments1-603 have revealed jumps in the rate (seem-
ing transitions to other modes) whose nature remains
unexplained.

The propagation of ionization fronts in a waveguide
has been studied also by Batenin et al.1-52-1, who worked
with argon at pressures of 0.1—1 atm—much higher
than those used by Bethke et al . [ 4 8 " 5 o : i , and also with
nitrogen at pressures of 16—40 mm Hg. The microwave
discharge was initiated by a spark gap and propagated
inside a quartz tube of radius 1 cm placed along the
waveguide axis. A frequency of 2.4 GHz (λ 0 = 12.6 cm)
was used, and the power was varied from 200 to
1300 W. The plasma absorbed approximately 70% of the
power. The electron concentrations in the argon were
~ 1013 cm"3 and in the nitrogen ~ 1012 cm"3. The elec-
tron temperature was of the order of 10 eV. The dis-
charge in nitrogen had the shape of a column oriented
along the electric vector, and in argon at higher pres-
sures the discharge had a complex shape of individual
filaments. Figure 12 shows the ionization-front veloci-
ties measured by Batenin et al. t 5 2^

It can be seen that for the same power level and ap-
proximately the same pressures (the lower curve in
nitrogen at 40 mm Hg and the upper curve in argon at
76 mm Hg) the velocity in argon, which is measured in
kilometers per second, is three orders of magnitude
greater than that in nitrogen. The velocities in nitrogen
at the highest pressure studied are of the same order
as the discharge velocity in air at 1 atm—meters per
second (see Section 7). It is clear that the discharge-
propagation mechanisms in molecular gases (nitrogen,
air) and the inert gases are completely different. In
molecular gases, where diffusion of resonance radiation
does not occur, the mechanism is thermal conduction,
even at comparatively low pressures, while in the inert
gases a much more efficient mechanism is acting—the
transfer of resonance radiation. This question requires
further theoretical study.

Another paper by the same authors1·53-1 showed that a
microwave discharge wave can be slowed down and
stopped completely if a sufficiently strong longitudinal
magnetic field is produced in it. In nitrogen at a pres-
sure of 40 mm Hg and a power of 1.3 kW, where the
velocity was 4 m/sec, a field of 1.7 kOe was required
to stop the discharge. The reason for the slowing down
and stopping of the discharge wave is the decrease in
the effective value of the electric field or the decrease
in the absorption coefficient of the plasma on applica-
tion of the longitudinal magnetic field.

12. Hyperdetonation thermal- conduction and radia-
tion modes. Breakdown wave. We have discussed above
the subsonic thermal-conduction mechanism of optical-
discharge propagation, which is similar to slow com-
bustion (Sec. 3), and the ultrasonic-detonation mechan-



PROPAGATION OF DISCHARGES 705

uAr, m/sec

moo -

Ρ, kW '

FIG. 12. Velocity of a microwave discharge wave in a waveguide
[ S 2 ] . In argon (left-hand scale): curve 1 -for a pressure of 76 mm Hg,
2—760 mm Hg; in nitrogen (right-hand scale): 3—16 mm Hg, 4—40 mm
Hg.

ism (Sec. 2). The first mechanism acts at moderate
light intensities, and the second at high intensities. It is
interesting that even at higher intensities, where the
plasma temperature reaches millions of degrees, the
thermal-conduction mechanism is most prominent, but
in this case it is not only ultrasonic, but even ultra-
detonation, for it provides propagation of the discharge
wave with a velocity exceeding the velocity of a shock
wave. The situation is similar to that which occurs in
the earliest stage of very strong explosions, where the
explosion energy is first propagated in air by a heat
wave and only later does the shock wave come forth
(see the book by Zel'dovich and Raizer '-54-1). It is true
that in explosions the heat wave is due to radiant thermal
conduction, while here we are speaking of electronic
thermal conduction (the radiative mechanism will be
discussed below).

In ultrasonic heat propagation the gas in the dis-
charge wave does not expand, but is compressed (or
does not change density) according to the shock adiabat
of the discharge wave (see Fig. lb). Therefore, in con-
trast to the case of the subsonic mode, the plasma is
opaque and the light flux is absorbed in a comparatively
thin layer, and the role of the losses is small. Conse-
quently, Eq. (29) can be applied to this case and by its
means we can determine the plasma temperature Tf (at
optical frequencies the reflection is negligible, R r « 0).
The propagation velocity of the wave after this is found
from Eq. (25) or Eq. (1), which are practically identical.
In a heavy gas in which at temperatures of ~ 106° the
atoms are multiply but still not completely ionized, the
average charge of the ions and the number of electrons
per atom Z, roughly speaking, are proportional to T l / 2

(the ionization potential is I(Z) ~ Z2, I(Z)/kT

const). [ 5 4 ] The absorption (stopping) coefficient for
the light quanta is μ ~ Ζ Τ " const and the thermal
conductivity, which is completely electronic, is
λ ~ T s / 2 Z - 1 ~ T2. Hence it is found from Eq. (29) that
the plasma temperature is Tf ~ Sj/3. The internal en-
ergy in the region of multiple ionization, roughly speak-
ing, is e ~ τ3 , 1 5 ) and consequently the propagation
velocity is u ~ S0/e ~ Τ3/2 ~ Sj/2.

The detonation velocity is ~ So

/3 and depends slowly
on So. This means that for small light fluxes the wave

1 5 1 The translational energy per atom is theoretically ~ ΖΤ ~ Τ 3 ' 2 ;
the energy expended in removal of electrons is j I(Z)dZ ~ Z 3 , i.e., it
is also ~ Τ 3 ' 2 . ο

should be a detonation wave with a small tongue of
thermal-conduction heating in front of the shock-wave
front1-54-1, while beginning with some value So the
thermal-conduction wave should travel more rapidly
than a detonation wave and in general there will be no
shock wave (see Chapter II, Sec. 2). Estimates show
that this transition should occur at T f ~ 3 χ 10Βο and
So ~ ΙΟ19—1020 erg/cm2-sec, which corresponds to
gigawatt powers in experiments with high-power laser
pulses.

An additional mechanism of discharge wave propaga-
tion is possible—radiative propagation, in which the
energy transport and ionization of the cold gas in front
of the discharge are due to radiant heat exchange. Light
quanta produced in the discharge plasma are absorbed
in the cold gas and ionize atoms, as a result of which a
propagation of the discharge occurs. It must be noted
that energy transport by equilibrium radiation is ac-
complished more rapidly than by electronic thermal
conduction, and in general it does not play a role in
such large-scale phenomena as strong explosions.1-54-1

The heat wave in explosions arises as the result of
radiant thermal conduction. However, if the size of the
heated region is small, as in experiments with dischar-
ges, the plasma usually turns out to be optically thin,
its radiation hap a volume nature, and the thermal-
radiation density is much less than the equilibrium
value. The efficiency of radiant heat exchange is also
correspondingly small.

The radiative propagation mechanism has been dis-
cussed by the author'-6" with application to experiments
on the propagation of a laser spark in the case of giant
laser pulses. For plasma temperatures of ~105—10°
deg, photons are emitted with energies of tens and
hundreds of electron volts, whose mean free paths in
plasma are ~ 1CT1—10 cm, which is much larger than
the size of the heated region, ~ 10~2—10"1 cm. These
photons are easily absorbed in the cold gas, since their
energy is greater than the ionization potential of the
atoms and molecules. In ref. 6 the propagation velocity
was calculated for the radiative mode at optical fre-
quencies. It turned out to be of the same order as the
detonation velocity, and its dependence on the light flux
is approximately the same, so that it is difficult even to
say which of the mechanisms, detonation or radiative,
is more effective. Discussion of the radiative mode in-
volves considerable difficulties, and all of the calcula-
tions have too approximate a nature to enable us to draw
reliable conclusions.

In the case of discharges with comparatively lower
temperatures of ~10 000°, the radiative mechanism is
less important than the thermal conduction, since the
fraction of photons with energies above the ionization
potential of the atoms and molecules is small in the
thermal radiation of a plasma, and the cold gas is
simply transparent for plasma radiation; the thermal
radiation is an energy loss in pure form. It should be
noted that this question has not been studied in detail,
and conditions may be possible in ordinary discharges
at higher temperatures in which radiant heat exchange
also plays a role.

We will note further the phenomenon of the "appar-
ent" propagation of a discharge—the breakdown wave.
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The breakdown wave differs fundamentally from all of
the discharge-propagation mechanisms discussed above
in that its propagation velocity is a phase velocity, and
here there is no energy transport. The breakdown is
achieved if the field intensity is sufficient for break-
down of the gas but for one reason or another the break-
down occurs at different times in different places. Thus,
in experiments with a focused laser beam the discharge
begins first of all in the focal region where the light
intensity is maximal, while at points located further
and further from the focus and closer to the lens an
electron shower develops with greater and greater de-
lay. In this way a breakdown wave arises. This mech-
anism has been considered by us^6-1 and independently
by Ambartsumyan et al.1-55-1, who explained on this basis
the experiments described in their paper. The break-
down wave travels more rapidly, the smaller the focus-
ing angle of the light beam. Breakdown waves are real-
izable also in other field-frequency regions.
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