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The application of a strong magnetic field creates
the following advantages:

1) For an isolated exciton, when ΚΩ » eo, where
Ω = eH/m*c is the cyclotron frequency, the binding
energy is of the order of e 0 In2 ( Β Ω Α Ο ) · In the Brandt -
Chudinov experiments Kn/e0 ~ 104, so that the binding
energy became of the order of several degrees.

2) In the metallic limit, i.e., for Eg < 0, it is suf-
ficient for the strong magnetic field to "one-dimen-
sionalize" the motion of the electrons and holes. In
consequence, the deleterious effect of the spectral
anisotropy is completely eliminated, and the formation
of an exciton dielectric is possible at any carrier
density, i.e., at any Eg < 0.

The theoretical investigation in the high-density
limit has revealed many different possible cases, de-
pending upon the direction of the magnetic field and
the sign of the effective interaction between the car-
r iers . Of extremely great help in this classification
and analysis was the method developed by S. A. Brazov-
skii for taking into account the transverse motion of
the carr iers , a motion which is described by zero-point
oscillator functions.

As a result of the theoretical analysis, the following
general conclusions were drawn:

a) Pairing of carriers of the same sign, i.e.,
superconductivity, is impossible.

b) If the effective interaction has the same sign as
the Coulomb interaction, then pairing of electrons with
holes, or of a quasiparticle of the electron type with a
quasiparticle of the hole type from different electronic
groups is possible if all these groups are not identical.
Pairing occurs between those two carrier groups that
interact most strongly. The rest remain free.

c) If the sign of the interaction is determined by the
phonons, i.e., is opposite to that of the Coulomb inter-
action, then the pairing of a quasiparticle of the elec-
tron type with a quasiparticle of the hole type to form
one electronic group is possible, but only if there are
a few symmetric (with respect to the direction of the
magnetic field) electronic groups. The holes and those
electrons which do not pertain to symmetric groups
remain free.

d) If the sign of the interaction is Coulombic and
there are several symmetric electronic groups, then
in the event of pairing of electrons from these groups
with holes or with a nonsymmetric electronic group,
even if all the electrons of the symmetric groups par-
ticipate in the pairing, the physical properties of the
system are such as if only one of the symmetric groups
participates and the rest remain free.

e) If the direction of the field is nonsymmetric and
all the electron groups are not identical, then the fol-
lowing sequence of transitions is possible: 1) the
pairing of two groups, 2) the pairing of two of the re-
maining groups, etc.

The mathematical apparatus of the theory is simi-
lar to the theory of superconductivity. The physical
properties of the material in the presence of pairing
are determined by the fact that as the temperature is
lowered from the critical temperature (the second-
order phase transition point in a metal) T c

~ (po/m*)exp (-/ffiv/e ) to zero, a portion of the car-
riers ceases to participate, mainly according to the

law ε"Δ/τ, where Δ ~ T c . This affects the thermal
and electrical conductivities, the electronic heat
capacity, etc. In particular, the electrical conductivity
takes the form

σ (Τ < i y = σ (0) + aTe~&'T.

The ratio a(0)/a(T c ) depends on the specified case. If
the effective masses of the electrons and holes satisfy
the inequality m e « m n , then the conductivity is deter-
mined mainly by the electrons. If a fraction a of all
the electrons remains after the pairing, then
a(0)/a(T c ) = a. If, however, all the electrons pair off,
then ff(0)/a(Tc)~ ( m e / m h ) 2 « 1. The transition
temperature T c and the energy "gap" Δ decreases
upon introduction of impurities. When the impurity
concentration is higher than a certain critical value,
such that the reciprocal collision time becomes equal
to R/TC ~ Tco (Tco is the critical temperature of the
pure substance), no exciton dielectric is formed. At
smaller concentrations (such that 0.91/TC < Ι/τ < 1/TC)
we get T c * 0 but Δ = 0, i.e., a phase is formed, but it
is a "gapless" phase. In the presence of pairing, the
appearance of a new small-amplitude periodicity of the
potential in the crystal should be observed.

These theoretical predictions are fully confirmed by
the experiments of N. B. Brandt and S. M. Chudinov
(the highest critical temperature reached is 7°K).
Furthermore, a second-order phase transition is ex-
perimentally observed when Eg > 0, i.e., from the
dielectric phase. The theory of this phenomenon has
not as yet been constructed.

I. B. Levinson and 6. I. Rashba. Bound States of
Electrons and Excitons with Optical Phonons in Semi-
conductors

A variety of the properties of solids is determined
by the dispersion laws of quasiparticles and the nature
of the interaction between them. Therefore, the ap-
pearance of quasiparticle bound states changes essen-
tially the various properties of crystals, especially the
optical properties. A well-known example is the Mott
exciton (an electron-hole bound state).

Bound states appear below the disintegration
threshold. The situation near the threshold of the decay
in which an optical phonon is emitted is shown in Fig.
1. Above the threshold, e =fiu>0, the decay is possible,
and there is no spectrum in this region. Therefore,
when the "bare energy" eo(p) approaches the threshold,
specific distinctive features appear in the intrinsic
spectrum e ( p ) r i ] . The approach of the energy e 0 to
the threshold Κω0 can also be realized when the ex-
ternal parameter controlling the spectrum (magnetic
field, pressure) is varied. In this case the threshold



664 MEETINGS AND CONFERENCES

y///////////,

n-3

-Jl-t

FIG. 2 FIG. 3

situation corresponds to a resonance situation: the
distance between two electronic and exciton levels co-
incides with Κωο· It is precisely by such means that
the threshold phenomena were experimentally ob-
served [ 2 > 3 ]. Henceforth we shall take ρ to mean any
parameter that controls the spectrum. Curves 1—3
show three typical ways in which the spectrum can be-
have: intersection with the threshold, tangency, and
asymptotic approach. In the last two cases it is cus-
tomary to speak of pinning t 2 '4"8 1.

The study of the interaction with optical phonons is
interesting, in that one can follow the variation of the
fractional phonon participation in the formation of a
quantum state as ρ is varied. A curve of the type 3
arises in the magnetopolaron problem (ρ is a mag-
netic field f 5 ' e ] or a component of the momentum along
Η [ ? 1) and in the impurity-center problem^41. When ρ
is appreciably larger than p0 we have a bound state of
a phonon of momentum q « p and an electron of mo-
mentum close to zero. In other words, the phonon has
almost the entire energy and momentum of the excita-
tion, and the electron determines only the charge. It
is clear that when the interaction between the particles
is weak (the coupling constant a « 1) it is impossible
to imagine another excitation with energy close to Βω0

and not depending on p. When ρ RS p0 the fraction of
the phonon falls to % (a hybrid state), while when ρ is
appreciably less than p 0 the fraction falls to α « 1.
The character of the states along a curve of the type 2
changes in similar fashion, the bound states occurring
near the end point. Such a curve arises, for example,
in the magnetoexciton problem (p is the magnetic
field[81). On the other hand, for a curve of the type 1
the phonon participation is everywhere small and there
are no bound states. It follows from the foregoing that
in the majority of cases the states below the threshold
turn out, as usual, to be the bound states of those
particles which exist as free particles above the thresh-
old.

The most significant theoretical result of the study
of the spectrum near the threshold is the proof of the
existence in this region of secondary spectral branches
which are bound states over the entire spectral range.
Such branches for a magnetopolaron are shown in Fig.
2; they form a sequence, crowding toward the threshold
and lying at a distance ~α2Κω0 from i t [ 9 ] . The experi-
mental search for such electron and phonon bound
states is an interesting problem, quite practicable, as
estimates show, in CdTe, for example. Bound states
should appear in the absorption spectrum of free car-
riers in the form of discrete lines (the transitions in-
dicated by arrows in Fig. 2). Similar branches exist

below the threshold for three-particle hole, electron,
and phonon) production in a strong magnetic field [ 1 0 ].
The role of the magnetic field in these cases consists
in creating a quasi-one-dimensionality—a high density
of states at the bottom, of the band, where the electron
falls after emitting a phonon (the arrow in Fig. 1). The
decay probability, i.e., the effective force of interac-
tion, increases as a result, and this favors the forma-
tion of a bound state.

Another factor that favors the formation of quasi -
particle bound states is the suppression of the recoil
kinetic energy for large quasiparticle masses. There-
fore, for strong coupling (a » 1), when the polaron
mass is proportional to a 4 and is very large, and a
sequence of polaron and phonon bound states arises in
the absence of a magnetic field r u ' ; it is precisely in
this problem that the secondary branches were first
obtained. The recoil is completely suppressed if the
electron is localized on an impurity center. Therefore,
even in a weak coupling there arises an infinite system
of levels (Fig. 3) describing the electron and phonon
bound states'^121. In contrast to the magnetopolaron
problem, a finite number of such levels lies above the
threshold (corresponding to the number of electronic
levels below the threshold). It is possible that bound
states of this sort have already been experimentally
observed [ 1 3 ].

It must be emphasized that bound states with optical
phonons arise in a problem in which the number of
particles is not conserved and, therefore, no simple
model of the interaction in configuration space exists.
In this connection the secondary branches can be found
only in the study of the integral equation for the scat-
tering amplitude or the wave function.

Notice also that the appearance of secondary
branches is in no way connected with a resonance situ-
ation.
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