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The review is devoted to exposition of the physical principles on which the current ideas on plasma
turbulence are based. A comparison is made of the results obtained in the theory of plasma turbu-
lence and the turbulence of incompressible liquids. The basic physical differences between hydro-
dynamic and plasma turbulence are pointed out. It is shown how the concepts of turbulent excitations
arise in the statistical description of turbulence. The fundamental difference is pointed out between
turbulent elementary excitations and elementary excitations describing a state close to thermody-
namic equilibrium. Special emphasis is given to explanation of the physical meaning of the concept
of effective turbulent collisions. It is shown that inclusion of turbulent collisions does not make pos-
sible construction of a theory of weak turbulence on the basis of simple expansions of the interac-
tion in the turbulence energy.

Examples are presented which show that effective turbulent collisions can fundamentally change
the theoretical predictions which must be compared with existing experiments. It is shown how the
inclusion of effective turbulent collisions permits construction of a theory of correlation functions
of turbulent plasma fields. In connection with the discussion of new approaches to the theory of weak
turbulence, taking into account effective turbulent collisions, an analysis is carried out of the theories
of anomalous electrical conductivity of a plasma in an external electric field.

1 HE idea of effective turbulent collisions is deeply
involved in the mathematical description of the turbu-
lent state of a plasma, and when effective collisions
are specifically taken into account, substantial changes
occur in the results which must be compared with
existing experiments.

1. THE CONCEPT OF ELEMENTARY EXCITATIONS
IN THE THEORY OF PLASMA TURBULENCE

a) Introduction. In recent years plasma turbulence
has been studied very intensively both experimentally
and theoretically (see the reviews of Kadomtsevf11 and
Vedenov and others'21) and has been utilized in many
astrophysical problems'31. This interest in the prob-
lems of plasma turbulence is due first of all to the
wide range of experimental plasma studies which have
demonstrated the important role of turbulent processes
in plasma. It frequently turns out that the principal
macroscopic characteristics of a plasma such as dif-
fusion, electric conductivity, thermal conductivity, and
so forth are determined by just these turbulent proces-
ses. This is easy to understand if we take into account
that plasma has turned out to an extraordinary degree
to be an unstable state in which very small deviations
from thermodynamic equilibrium are sometimes suf-
ficient for development of instability. Landau and
Heisenberg'41 noted that the origin of the development
of turbulence in liquids is instability. The same is true
for plasma. It has been shown also that turbulence is
possible not only in liquids or plasma but also in solid
mate rials'51. Therefore the term turbulence itself now
has a somewhat different and more general nature (see
part a) of Section 4). It is quite interesting that the in-
tensive research on plasma turbulence has shed more
light on the nature of turbulence as a free state of
matter than has the study of the turbulence of liquids
which has been carried on for decades. This is due

first of all to the variety of types of collective motions
of plasma. A special role is played by those motions
which can be roughly characterized by certain natural
frequencies. The best known of them are the Langmuir
plasma fluctuations. The existence of natural frequen-
cies has played a role of no small importance in the
theory of turbulent plasma.

Development of ideas about the nature of plasma
turbulence has proceeded along two paths. On the one
hand, use has been made of statistical averaging
methods similar to those previously used in liquid
turbulence1"1, the "elasticity" of plasma motions being
the basis for assumption of a weak correlation of the
fields of turbulent fluctuations'11. On the other hand,
the concept has been used of elementary excitations-
turbulent plasmons'71, whose interaction probabilities
were found from the correspondence principle.

A synthesis of these approaches has been obtained
recently on the basis of the concept of effective turbu-
lent collisions'81. As it turned out, the refinement of
the statistical averaging method of the weak-coupling
type and other types does not go beyond the bounds of
weak turbulence, but leads only to correct inclusion of
turbulent collisions and, in the last analysis, provides
equations which are used in the method of elementary
excitations.

On the other hand, the physical difference has been
clarified between turbulent elementary excitations and
excitations describing a plasma state near statistical
equilibrium. This difference is due to turbulent colli-
sions . It indicates the existence of unique ambiguities
in the energy and momentum of turbulent plasmons.
This throws light on the mechanisms which are in-
ternally present in the method of turbulent plasmons
and which place natural limitations on the accuracy
with which answers must be obtained by means of equa-
tions describing the interaction of turbulent plasmons.
In this path of development it has been possible not
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only to obtain rigorous bases for use of the method of
elementary excitations in turbulent plasma, but also to
consider anew the problems of Landau damping^91,
stochastic heating, and the irreversibility of processes
in the turbulent regime. Finally, but in no way last in
importance, is the variation of the effectiveness of dif-
ferent interactions, which is due to turbulent colli-
sions [ 8 ' 1 0 ] and which is directly reflected in the experi-
mentally measured macroscopic parameters of a
plasma. Inclusion of turbulent collisions also permits
us to obtain the form of the correlation functions^111

measured in most experiments with turbulent plasma.
All of these questions, which have been resolved re-
cently, will be the subject of the present article.

b) Comparison of plasma turbulence with the turbu-
lence of incompressible liquids. It is usually considered
that the success in development of the theory of plasma
turbulence is due mainly to the existence of a small
parameter which is not present in the theory of liquid
turbulence. In order to make clear what we are talking
about, let us recall some well known ideas from the
theory of turbulence of incompressible liquids. The
instability of a number of liquid flows leads to excita-
tion of vortices. In a developed turbulent state there
are present vortices of all possible scales, substan-
tially different from those due to direct excitation of
vortices. Subdivision of the scales of vortices occurs.
It is due to the nonlinear interaction of vortices of dif-
ferent scales and creates a flow of vortex energy to
smaller scales where they disappear as the result of
viscosity. According to Kolmogorov r i2] this flow is
constant in stationary turbulence. This leads to a
universal distribution in scale of turbulent vortices,
which is well known as the Kolmogorov spectrum [ 1 2 i .
If W is the turbulent vortex energy per cm3 and k is
the vortex wave number (i.e., the quantity inverse to
its scale /, k = 2n/l), then

and the formula for the Kolmogorov spectrum has the
form (Fig. 1)

Wh = const -K-^'3 (1.1)

(in Fig. 1 k (β k 0 is the region of excitation of turbulent
vort ices, L = 2v/k0 is the basic scale of turbulence,
and k » k 0 i s the region of the Kolmogorov spect rum).
Rigorous theoret ica l derivation of this formula, which
has been obtained from dimensional considerat ions, has
not yet been possible, in spite of numerous approaches
and many y e a r s of work in development of the theory of
liquid turbulence (for more detai l see ref. 13). In a
number of investigations the spectrum (1.1) is derived

FIG. 1. Turbulence spectrum of an
incompressible liquid.

at the expense of introducing new " p r i n c i p l e s " such as
the requirement of maximal generalized entropy^" 1

and o t h e r s [ 1 5 ] , which a r e not contained directly in the
initial equations.

It is considered that these difficulties have a funda-
mental nature and a r e due to the fact that in an incom-
press ib le liquid the turbulence is s t rong. This is ex-
pressed in the fact that vort ices in general do not have
any natura l frequency and the t ime of t r a n s f e r of en-
ergy from one vortex to a neighbor is of the o r d e r of
one revolution of the vortex. In contrast to this , in a
plasma there a r e many collective motions of the fluc-
tuation type which have definite natural frequencies.
The t ime τ for t r a n s f e r of the energy of these oscil la-
tions to neighboring sca les (or to neighboring wave
numbers) can substantially exceed the natura l period
of the fluctuations l/wk. As a consequence of this
" e l a s t i c i t y " of the collective motions, a smal l p a r a m e -
t e r can appear,

ε -- 1/ovt < 1. (1.2)

It i s c o n s i d e r e d t h a t t h e e x i s t a n c e of t h i s s m a l l
p a r a m e t e r p e r m i t s u s e of r e g u l a r m e t h o d s of e x p a n -
s i o n in t h e t u r b u l e n c e e n e r g y and c o n s t r u c t i o n of a
t h e o r y of w e a k t u r b u l e n c e . It w a s j u s t t h i s p a t h w h i c h
led i n i t i a l l y to t h e s o - c a l l e d q u a s i l i n e a r a p p r o x i m a -
tion 1 ^ 1 6 1 , which d o e s not t a k e i n t o a c c o u n t t h e i n t e r a c -
t i o n of f l u c t u a t i o n s wi th e a c h o t h e r , a n d in a d d i t i o n n o n -
l i n e a r e f fec t s h a v e b e e n t a k e n in to a c c o u n t ^ 1 ' 7 ' 1 7 1 . T h e
m e t h o d of e l e m e n t a r y e x c i t a t i o n s [ 7 ] , on t h e b a s i s of
w h i c h m a n y s p e c i f i c r e s u l t s h a v e b e e n o b t a i n e d on t h e
i n t e r a c t i o n of p l a s m o n s with e a c h o t h e r a n d with
p l a s m a p a r t i c l e s , h a s b e e n u s e d t o d e t e r m i n e t h e
s p e c t r a of p l a s m a t u r b u l e n c e 1 ^ 1 8 ' 1 9 1 . In a n u m b e r of
w a v e - n u m b e r r e g i o n s t h e s e s p e c t r a h a v e t h e n a t u r e of
a u n i v e r s a l p o w e r law 1/k", but u c a n be d i f f e r e n t in
d i f f e r e n t r e g i o n s , s i n c e t h e r e i s a c h a n g e in t h e r e l a -
t i v e r o l e of d i f f e r e n t n o n l i n e a r p r o c e s s e s r e s p o n s i b l e
for s h a p i n g t h e s p e c t r u m ( F i g . 2; t u r b u l e n t f l u c t u a t i o n s
a r e e x c i t e d for k » k · k + = ( o > p e / v T e ) ( m e / 9 n i i ) 1 ' ' 2 ,
K* = ( ^ e / v T e ) ( m e / 9 m i ) 1 / 5 ; t h e v a l u e of ν depends
on the total energy included in the fluctuations and lies
in the range 2.8 < ν < 4). Spectra of this type for a
plasma a r e the result of solution of the nonlinear equa-
tions describing the turbulence (in regard to numerica l
solutions of these equations and thei r correspondence
with the analytical solutions, see ref. 20). Detailed ex-
per imental study of the spect ra for development of
ion-acoustic turbulence also has shown that the ob-
served spect ra a r e close to power-law [ 2 1 > 2 2 ] . We note
that in most such experiments the p a r a m e t e r (1.2) is

FIG. 2. Schematic representation of the turbulence spectra of Lang-
muir fluctuations of a plasma.
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small. More accurately, a somewhat different quantity
turns out to be small-the ratio of the measured turbu-
lent energy W to the thermal energy of the plasma
particles nT:

ε' = WlnT < 1.

Thus, in certain experiments^231 e' was ΙΟ"1—10"2.
Specifically for ion-acoustic fluctuations it follows
from the existing theory [ 1 > 1 0 ] that e' is of the order of
e. Thus, it would appear that there is a small parame-
ter in a plasma for the "e las t ic" degrees of freedom,
that there is a satisfactory means of theoretical treat-
ment of the spectra, and that experiments exist to
which this theory should be applicable. However, the
further development of the theoretical ideas has led to
an understanding that existence of the small parame-
ter (1.2) still does not allow us to expand the interac-
tions in this parameter. The physical meaning of this
is associated with the resonance nature of the interac-
tions themselves. In order to make this clear, it is
necessary to dwell briefly on the description of the
interaction of turbulent pulsations with each other and
with the plasma "part icles" in the language of ele-
mentary excitations.

c) Balance equations for turbulent plasmons. In the
general case of anisotropic turbulence the spectrum
must be described by the energy density of the turbu-
lence referred to an element dk, i.e.,

W = [ Wkdk. ( I · 3 )

Since the turbulent fluctuations have natural frequen-
cies oik, we can introduce the number of quanta N^

For a number of quanta N^ we can write the equa-
tion describing their radiation and absorption by parti-
cles, scattering by particles, and nonlinear decays of
some quanta into others, introducing corresponding
probabilities^1. The equations taking into account both
induced and spontaneous processes will be nonlinear in
Nk and consequently also in Wk· This interaction
changes the wave numbers of the fluctuations and
creates an energy flux "along k" . Thus, the equation
describing the radiation of a wave σ by a charged par-
ticle moving along a helical line in a magnetic field Η
in the quasiclassical limit has the form

άΝί!άί = ύΝί + (2π)*ωϊι(%. (1.4)

The quantity Qj£ is the spontaneous radiation power,
referred to the interval dk:

<?£= 2 j K/(2jt)3]№°(k, ρ, ν)Φρώρ/(2π)3,

and

_
2π)»i s the damping o r buildup coe f f ic ient of the w a v e s ; u i s

an integer; i = 1, 2, 3; λι = ρ,,, λ2 = p±, λ 3 = y, pN

= (ρΗ)/Η, Ρχ = (ρ2 - ρ2,)1' ; y is the coordinate of the
t f th L i l k ( k 2 k2 k 2 )c e n t e r of the L a r m o r c i r c l e

Δ λ 2 = ye<«>H/Pl> Δ λ 3 =

+ m 2 ) 1 / 2 , k,, = ( k H / H ) .

Δ λ ι = k.n(k;2 = k 2 + k 2 ) ,

/ e = ( p 2

This result is obtained very simply^241 if we use the
quantum representation of particle motion in a magnetic
field (see refs. 25 and 26); then ν is the difference be-
tween the two quantum numbers describing the transition
between the Landau levels. The quantity \ν σ is the diff-
ferential probability of radiation, which in the quasi-
classical limit can be found from the correspondence
principle^1. In the limit Nk— 0 in (1.4) there remains
only the spontaneous radiation, whose intensity is
easily calculated in the classical limit by the Landau
method r 2 7 1 from the action of the field produced by the
particle on the particle itself. It has the following
specific form:

ρ, ν) = ( 2 π ) 3 ^ - - ο
Ίω Ιω=ω ]£

here ey is the linear tensor of the dielectric permit-
tivity and e £ is the normal unit vector of the wave σ.
The vector Tfc has the following components:

I t i s i n t e r e s t i n g t o n o t e t h a t i n t h i s f o r m E q . ( 1 . 4 ) c o n -

t a i n s m o s t o f t h e m o s t i m p o r t a n t p l a s m a i n s t a b i l i t i e s ,

i n c l u d i n g t h e d r i f t i n s t a b i l i t i e s ^ 1 1 ( t h e d e r i v a t i v e w i t h

r e s p e c t t o y ) , a n d d e s c r i b e s a l s o s y n c h r o t r o n r a d i a -

t i o n , i t s r e a b s o r p t i o n [ 2 8 1 , a n d t h e s y n c h r o t r o n i n s t a b i l -

i t y 1 : 2 9 1 . T h e s i m i l a r b a l a n c e e q u a t i o n s f o r t h e p a r t i c l e

distribution function Φρ

—J = i-n.,—Ε-ΐ__ϋ_Λ.φ /ι c\
at "Pi OP} dpi " \ ^ · * ' /

correspond to the g e n e r a l c a s e of quas i l inear equat ions

taking into account spontaneous p r o c e s s e s :

ΰί,= ρ, v)JVjdk/(2n)»,

Ι k, ρ, v)dk/(2n)K
V=-oo

These equations also are obtained by elementary means
from the conditions of balance of radiation and absorp-
tion. They contain as a special case all the results of
ref. 30 on generalization of the quasilinear equations
to the case of a magnetoactive plasma, the system of
quasilinear equations [ 3 1 ] for drift waves, and the quasi-
linear equations for a relativistic plasma^321 and for
the synchrotron instability.

The elementary process which is described by
these equations is shown by the diagram of Fig. 3. We
note that Eq, (1.4) is linear in Nfc and consequently in
the turbulence energy W^; in exactly the same way the
diffusion coefficient is linear in Wk, which results in
the name of these equations—quasilinear. In both Eqs.
(1.4) and (1.5) the terms quadratic in W^ give the
more complex processes of interaction of plasmons
with particles, for example, those shown in Fig. 4. The
decay process shown in Fig. 5 contributes only to Eq.
(1.4). These processes give a nonlinear interaction of

F I G . 3 . P r o c e s s o f r a d i a t i o n o f a

w a v e b y a c h a r g e d p a r t i c l e .
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A

p+krk2
teractions raises the question of applicability of the
small parameter (1.2) for description of the interac-
tions in a plasma. In fact, near a resonance we would
expect that the parameter (1.2) is replaced by

FIG. 4. Processes for scattering of waves by charged particles of a
plasma—Thompson scattering (a) and nonlinear scattering (b).

FIG. 5. Diagram of the decay process.

the waves, which leads to a transformation of the
turbulent energy along the spectrum. They were ob-
tained in general form in ref. 33. Let's turn our atten-
tion to the fact that the scattering process (see Fig. 4)
contains two diagrams, which describe the ordinary
Thompson scattering and nonlinear scattering. In this
connection we will make two important remarks. First,
the equations for elementary excitations obtained by
this means are similar to the equations for elementary
excitations for systems close to statistical equilibrium,
although under conditions of developed turbulence the
system is far from statistical equilibrium. It is well
known that the concept of elementary excitations is
fundamental in the current statistical theory of con-
densed media and can be justified most completely
near equilibrium by the Green's-function method^ 4 ] .
However, as will be evident from what follows, turbu-
lent excitations have a different nature, which is very
important for the specific application of the theory.

In the second place, all the interactions of turbulent
plasmons have a resonance nature. Thus, radiation
o c c u r s only f o r t h e c o n d i t i o n α)§· - ^ H ^ I I ~ I O J H = 0 , a n c ·

wi thout a m a g n e t i c f ield f o r t h e C e r e n k o v c o n d i t i o n

ω£ - kv = 0, scattering also requires similar condi-
tions but with the frequency difference of the waves
entering instead of the frequency and the difference in
wave numbers instead of the wave number. From the
quantum point of view these conditions describe the
conservation laws in radiation and scattering of waves,
and from the classical point of view they describe a
resonance between the waves and the particles. Non-
linear interactions in which particles do not partici-
pate, for example, decay interactions, also have a
resonance nature. Thus, even in the fixed-phase ap-
proximation, which is ordinarily used in nonlinear
optics f 3 5 ], the resonance conditions must be satisfied
for effective transfer of energy from one mode to
another. For random waves such as turbulent plas-
mons, these conditions are identical with plasmon mo-
mentum and energy conservation in decay. For the
process illustrated in Fig. 5, these conditions have the
form wkj = cok2 + o)k1-k2·

We note that the resonance nature of nonlinear in-

ε" = 1/(ω — o)k)-r,

w h e r e u>k i s s o m e r e s o n a n c e f r e q u e n c y and t h e b a r

d e n o t e s a v e r a g i n g , w h o s e m e a n i n g wi l l be c l e a r f r o m

what follows: The resonance factor 1/(ω - wk) aP~
proaches infinity for u> — wk, but in reality the reso-
nance must be smeared out, if only because of the
same nonlinear interactions. Then the average value
ω - wk is of the order of l/τ and consequently t " is
the order of unity. This leads to the idea that the
turbulence of liquids and plasma are not so different.
In reality, however, the concept of elementary excita-
tions is impossible in liquids, while in a plasma it is
possible and correct. The reason for this is just the
existence of the parameter (1.2). In addition, the reso-
nance nature of the interactions, strictly speaking,
does not permit them to be expanded in a series in the
turbulence energy. However, this inability to be ex-
panded effects only the structure of the resonance de-
nominators. In the approximation defined they are ap-
proximated by relations which lead to the form used in
the balance equations written down above. The possi-
bility of this approximation also determines the possi-
bility of using the concept of elementary excitations.

d) General remarks about the turbulent state of
matter. It is necessary to say a few words as to just
what is the turbulent state of matter. Turbulence arises
only in a nonlinear system having some collective
modes of motion. In a plasma this may be plasma
fluctuations, in a liquid—vortices, in solid materials —
phonons, and so forth. There are important differences
in the nature of the collective motions themselves.
Thus, in a plasma they usually are accompanied by
electromagnetic fields, and in a liquid they are not.
Another thing is also important. If a sufficiently large
amount of energy is introduced to some of the collec-
tive motions in a nonlinear system, the nonlinear in-
teractions , according to the general postulates of
statistics, must redistribute it over the other modes —
the other degrees of freedom. In this way energy is
pumped from those modes in which it is generated, i.e.,
an energy flow arises. The direction of the flow can
also be different. Thus, in liquids energy is trans-
ferred to pulsations with larger wave numbers (smaller
scale), and in a plasma to smaller wave numbers. This
difference is due to the nature of the nonlinear interac-
tions. In liquids energy is transferred from some
pulsations to others with conservation of the energy
involved in the pulsations. In a plasma energy can be
transferred to particles, heating them. The increase
in entropy as a result of this heating compensates the
loss due to reduction of the phase space occupied by
the fluctuations in the process of decrease of their
wave numbers.

It is clear that fluctuations in a plasma will die out
somewhere. The collective absorption of these fluctua-
tions due to Landau dampingf91 or cyclotron damping is
particularly effective. If stationary turbulence arises,
a balance of production and absorption occurs. It is
possible only in the presence of a flow of energy from
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the production region to the absorption region. Thus,
for occurrence of stationary turbulence it is necessary
that: 1) a large number of collective degrees of free-
dom are excited; 2) the energy associated with them is
sufficient for occurrence of nonlinear processes which
transform the energy from the production region to the
absorption region; 3) a separation of the production
and absorption regions exists. Nonlinear processes
play a composite part in the concept of turbulence. In a
plasma they lead not only to mixing of energy in many
modes but also to a rapid shakeup of the phase of the
plasma fluctuations, making them random and making
the plasmons turbulent (strictly speaking, we can dis-
cuss the phases only approximately, since in view of
the above the fluctuations are not linear). In spite of
this, up to the present time the role of nonlinear pro-
cesses in the theory of turbulence has often been un-
derestimated and the investigations have often been
limited only to quasilinear processes. With develop-
ment of the theory the region of applicability of the
quasilinear approximation has steadily become nar-
rower as the nonlinear effects have been evaluated
more accurately. Thus, for example, for weak beams
of particles the quasilinear approach has turned out to
be applicable only if the particle velocities are limited
by the inequalities 1 < v / v j e « (9miv/m eAv) 1 / 4. In
exactly the same way the role of nonlinear interactions
in creation of the anomalous resistance of a plasma to
an external electric field^101 has turned out to be sig-
nificantly greater. The statement is also made that the
random nature of the fluctuations can be preserved in
the quasilinear stage as a result of the fact that the
fluctuations are excited from the thermal level. How-
ever, the randomness of the fluctuations under condi-
tions of thermal equilibrium if they are due to binary
collisions of particles, corresponds to large time in-
tervals and it remains an open question whether these
fluctuations will be random in the small time intervals
in which excitation of the fluctuations occurs as the
result of instability. In addition, under conditions of a
sufficient but not very large level of the fluctuations,
inclusion of nonlinearities (which themselves spread
the fluctuations in phase) gives a rigorous basis for
the quasilinear equations (see below). Under these
conditions ordinarily the inclusion of quasilinear ef-
fects must be carried out together with nonlinear ef-
fects, which in many cases turn out to be more effec-
tive.

e) Effective turbulent collisions. The idea of effec-
tive turbulent collisions is often introduced by experi-
menters. It is convenient in connection with the fact
that all dissipation processes turn out to be sharply
increased in the turbulent regime. In practice one does
the following. Consider for example the formula de-
scribing the electrical conductivity of a plasma due to
binary collision:

σ = neVmevel, (1.6)

in which the binary collision frequency uei enters. The
observed electrical conductivity is many orders of
magnitude less than is given by (1.6). Then in (1.6) in-
stead of uei, veil * s substituted, and ueU is deter-
mined from the experimentally observed σ.Γ 3 β ] The
same approach is used for description of the anomal-

ous absorption of high-frequency fields which excite
turbulence in a plasma^371, for anomalous diffusion^11,
and so forth. It is clear that this approach is pheno-
menological. However, there are deeper physical justi-
fications for introduction of effective turbulent colli-
sions. In the first place, we note that values of μ eff
determined phenomenologically turn out to depend on
the turbulence energy W r 3 8 1 and can depend on the
angles and other quantities. In this respect the phe-
nomenological approach is taking revenge, since the
internal physical mechanisms on which such macro-
scopic characteristics as the average electrical con-
ductivity (1.6) in the turbulent regime are based are
different from binary collisions. The dependence of
i/eff on W indicates that they are associated with non-
linear processes. Under the conditions of stationary
turbulence we can define the characteristic time of
energy transformation over the spectrum, which de-
pends on W. The reciprocal quantity we can call the
effective turbulent frequency of collisions veii- The
existence of these effective collisions enters organically
into the concept of turbulence. Since the nonlinear
processes responsible for formation of the energy flow
can be different, the effective collisions can have a
different nature. These collisions must be distinguished
from those which are defined phenomenologically. How-
ever, the phenomenological values of yeff are uniquely
related to the corresponding nonlinear processes which
produce them, in the same way, for example, as uei in
(1.6) is related to the binary collisions described by
the Landau collision integral [ 3 9 ] . However, turbulent
collisions also play a more fundamental role, namely
that they must be organically taken into account in
constructing the theory of turbulence and in justifying
the method of elementary excitations (see below). If we
proceed from the idea of turbulent collisions, we can
easily understand qualitatively a number of simple
statements whose proof is given further on.

First, roughly speaking, the resonance denominators
should be smeared by turbulent collisions and instead
of l/(o> - u>k) w e should have

1/ (0) — o k + £v eff ).

Second, this smearing substantially alters the in-
tensity of the nonlinear interactions themselves. Use
of the random-phase approximation simultaneously
with the assumption that the resonance denominators
have the form 1/(ω - u>k + *δ) is suitable only in the
limit of infinitely small amplitude of the waves, 5 — 0 ,
when veii — 0, i-e., under conditions when the non-
linear interactions are negligibly small. However, just
this description was used in a number of the early
studies on the nonlinear interaction of random waves'^171.
This can be correct only when we can use the approx-
imation

Im (ω — iv —πδ (ω — tok). (1.7)

For many interactions this is not valid and it is neces-
sary to recognize that inside the resonance

1/ (ω — cot + iv e f f ) ;w — iv-*f.

Thus, effective collisions are a real physical process
which affects the very interactions which determine
them.
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Third, the problem of Landau damping[9] arises in
a quite different way. In the linear theory this damping
is reversible and describes the exchange of energy be-
tween the captured particles and the wave. In a turbu-
lent plasma the damping of collective fluctuations turns
out to be irreversible. This is due to the fact that just
the effective turbulent collisions produce the irreversi-
bility and lead to a quite different, nonlinear treatment
of this type of damping.

Fourth, effective turbulent collisions determine the
widths of the correlation curves which are measured
in experiments on turbulent plasma.

Fifth and finally, turbulent collisions create an am-
biguity between the frequency and the wave number of
a turbulent plasmon, i.e., an ambiguity in the relation
between the energy and momentum of the elementary
excitations of a turbulent plasma. A similar ambiguity
occurs also under conditions close to thermal equili-
brium, but it is due to linear damping (and is discussed
in the same way as done by Landau for plasma waves
in linear theory). In the present case ambiguity is
associated with the nonlinear process. From this dif-
ference the fundamental distinction between a turbulent
plasmon and a plasmon describing a state close to a
static equilibrium becomes clear. In addition, we can
speak of plasmons and of quasiparticles in the turbu-
lent regime when yeff is less than the natural fre-
quency of the plasmon:

duced by Eq. (1.3):

Veff/ < I- (1.8)

This condition is identical with (1.2).
f) The balance equation and the concept of elementary

excitations of a turbulent plasma. We will now discuss
qualitatively the question of what place in the general
theory of turbulence is occupied by the balance equa-
tions for turbulent plasmons, and what physical criteria
and approximations must be used to describe turbu-
lence in the language of turbulent plasmons. Assume
for the sake of simplicity that turbulent fluctuations
are electrostatic longitudinal plasma oscillations which
can be described by means of the potentials φ of the
electric fields. Ordinarily the potential correlation
function | <pk,w|2 is investigated. If we separate the
regular part φτ and the stochastic part φ^ in the
complete potential:

φ = φΓ + <ost, ( φ5*) = 0,

then the correlation function for stationary turbulence
is determined by the relation

Ι Ψν. ω I2 = (2it)"4 j <(ps'(r, ί)φ8*(Γ', i ' ))e i t < r ' ' r )" i f f l ( 1 '" 1 )rf(r-r')d(<-<')-

This correlation function is related to the quantity
wk,a>, the turbulence energy density for a wave num-
ber interval dk and frequency interval άω:

by the relation

W = j WKadkdu>,

Wk, ω = «k I <pk. ·

where ak for weak turbulence is a known function of k
(for Langmuir fluctuations, for example, <*k = k2/4vr).
It is evident that Wk,cu contains more detailed informa-
tion on turbulent fluctuations than Wk, which is intro-

= Γ , ω da>. (1.9)

For fixed k the distribution in ω is characterized by
some finite width determined by the effective turbulent
collisions. Let us write down symbolically the equation
describing the state of stationary plasma turbulence,
in the form

<D(k, ω, (1.10)

where Φ is some linear functional of W^,^ · Assume
that the specific form of (1.10) is known (see below).
From (1.10) we can obtain the consequence-the balance
equation. For this we integrate (1.10) over all frequen-
cies:

U(t,(1),wkii. i)ijB=o. ( l .n)

Here the question arises whether the balance equation
(1.11) can be written in such a form that it contains
only the integral characteristic Wk (1.9) describing
the turbulence spectrum? In other words, can (1.11) be
written approximately in the form

<D(k, (1.12)

where Φ is some new nonlinear functional obtained
from Φ? It turns out that this is approximately possible
if there is elasticity of the collective motions or, more
accurately, if parameter (1.8) is used. It is important
that Eq. (1.11) contains the integral over all frequen-
cies, which will not be very sensitive to smearing of
the resonances by turbulent collisions. Equation (1.12)
is obtained if we use the approximation (1.7) for the
resonance denominators and neglect the ambiguity in
the relation of the frequency and wave number in the
correlation functions, i.e., if we set

The latter is also possible only in the case when the
integral over W l enters into (1.11). Thus, Eq. (1.12)
arises as the first approximation to (1.11) in the
parameter (1.8). This equation is identical to that ob-
tained by the method of elementary excitations. It is
clear also that the conservation laws for interaction of
elementary excitations must now be satisfied only with
an accuracy to quantities veil· We will make one re-
mark in connection with a number of attempts to go
beyond the framework of weak turbulence, which are
known as the weak-coupling approximation^. These
attempts actually discussed going beyond the approxi-
mation in which the nonlinearities are expanded in a
series in W. However, in Eq. (1.10) such an expansion
is never possible even for weak turbulence, and in re-
gard to (1.11) we are actually discussing the correct
description of turbulent collisions, which in the last
analysis provide the justification for the method of ele-
mentary excitations. These conclusions were not drawn
in the work cited, and we will consider these questions
in the following sections. We will also note here that in
turbulence of incompressible liquids the parameter
(1.2) is absent, and therefore it is not possible to
separate the correlation effects and to write equations
for Wk. Under the conditions of a turbulent plasma we
can separate the theoretical problems of finding the
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turbulence spectrum and the correlation functions. The
spectra can be sought from the balance equations (1.12).
Knowing the spectra, we can return to the approximate
solution of Eq. (1.10) for the correlation functions. In
the following discussion we will find specifically an
equation of the (1.10) type by the method of statistical
averaging.

2. THE METHOD OF STATISTICAL AVERAGING FOR
DESCRIPTION OF PLASMA TURBULENCE

a) Averaging over a statistical ensemble. In order
to avoid complicating the discussion, we will limit our-
selves to the simplest case of longitudinal fields and
longitudinal waves.

The statistical description of turbulence is based on
the idea of stochastic variation of the physical quantity,
for example, of the electric potential of the longitudinal
fluctuations. This is possible if the results of measur-
ing such a potential are nonreproducible. Let us make
clear what the situation is. Let us assume that for the
same initial conditions of a macroscopic experiment,
at a time t 0 after the beginning of the experiment a
measurement is made of the potential of longitudinal
fluctuations and a complicated and irregular depend-
ence of the potential on time is obtained. The existence
of such irregularity in no way means that the potential
is a random stochastic quantity, since it can also de-
scribe a complex but regular process. It is necessary
to look at the results of many repetitions of the same
experiment under the same macroscopic conditions.
Nonreproducibility of the irregularities observed in
the fluctuations can serve as an indication of random-
ness. The cause of this is that small changes in the
initial conditions for the same macroscopic conditions
of the experiment lead to a substantial change in the
behavior of the entire pattern. For linear or almost
linear fluctuations, the phase can be such an initial
condition. However, in the general case fluctuations
are nonlinear and the frequently used expression—
random-phase approximation—is not completely accu-
rate. More strictly (as ordinarily in any statistical
description) it is necessary to use the representation
of a statistical ensemble as an ensemble of systems
differing in the initial conditions of development of
collective fluctuations^01. For a stochastic potential
the average value over a statistical ensemble is equal
to zero,

(<Pst) = 0 . (2.1)

In an ergodic system the average over the ensemble is
equal to the time average. The basis of the statistical
description of turbulence is the general postulates of
statistical physics, extended to intensely excited and
intensely interacting collective degrees of freedom
(for a plasma—collective fluctuations). In such a de-
scription it is automatically understood that effective
turbulent collisions associated with nonlinear interac-
tions are present. While in an ordinary molecular mo-
tion a uniform distribution over the various degrees of
freedom and ergodicity are achieved by particle colli-
sions, in collective motions they are achieved by non-
linear interaction of the modes. Therefore many modes
are always present in developed turbulence. We can

say a few words about the excitation of turbulence.
According to Landau f41, this excitation is due to insta-
bility. However, in the presence of instability many
modes can be immediately excited, but also possibly a
small number of modes. In both cases the interaction
of the modes can lead to redistribution of energy over
many modes, including those not directly excited by
the instability. In incompressible liquids only large-
scale vortices are usually excited directly, the remain-
ing vortices arising as the result of nonlinear division
of vortices. In a plasma, apparently, the so-called hy-
drodynamical instabilities also can lead initially to ex-
citation of several or even a single mode and only later
do the nonlinearities redistribute the energy. In the
examples given, the initial stage of development of
instability is not stochastic, and only with the passage
of time does this system transfer to a stochastic
regime. [ " 1

b) The general equations for the stochastic potential.
In the general case the potential will be the superposi-
tion of regular and stochastic parts

φ = φΓ 4- φΒί( (2.2)

where cps*- satisfies (2.1), i.e., φ τ = (φ). For example,
φ Τ can be the potential of external fields. If we carry
out the separation (2.2), it is necessary to do the same
with the distribution function:

f = f + /", </) = 0,

since the plasma particles always take part in the fluc-
tuations. We will use the collisionless kinetic equation
and the Poisson equation for f and φ to find the equa-
tions for fst and (p s t :

( 2 . 3 )

Δφ = — iaen = —ίπβ f / dp/(2jx)3.

Here for simplicity we have omitted in Eq. (2.3) the
sum over the types of charges. By averaging these
equations over the statistical ensemble and subtraction
of the averaged equations from the initial equations,
we obtain the equations for the regular and stochastic
components. We will write down these equations with
certain simplifications which are not fundamental for
what follows: 1) ψτ = 0, 2) the turbulence is stationary
and the average of the four-dimensional Fourier com-
ponents of any two stochastic quantities aiq and bk2 is
proportional to 6 ( k i + k 2 ) = δ (ki + ^)δ (ωι + 012);
k ={k, ω } ; dk = dkdw:

= δ (kj + k2) δ (ω, + ω2); k = {k, ω}; dk = dk (Ζω: (2.4)

= ie f kl-§-(
(2.5)

j . (2.6)
These equations are the exact consequences of the
initial equations. Equation (2.5) describes the nonlinear
relation of fĵ - and φ ^ and contains the resonance fac-
tor (ω - k · v). If (2.5) is solved and this relation is
found, then (2.6) gives the nonlinear equation for the
stochastic potential, and the right-hand side of (2.4)
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describes the action of the stochastic potential on the
regular part of the distribution function.

c) Expansion in the stochastic-potential amplitudes.
The simplest approach to solution of (2.5) under the
conditions of weak turbulence, it would appear, consists
of expanding i^ in φ^. The lack of validity of this
operation has already been made clear above and, we
may note, follows immediately from the result obtained
in the first approximation from (2.5):

Of course, the division by ω - k · ν is allowable if
there is no resonance. However, near a resonance
ω — k · ν the result loses any meaning. It would ap-
pear that the problem arising here is only one of avoid-
ing a pole, which has been discussed in detail by
Landau[91, and the result should lead to the well known
Landau damping. Actually this is not completely true,
and the entire problem discussed by Landau requires
reexamination here. Landau considered the problem
only in the linear approximation for weak perturbations
and showed that the exact initial formulation of the
problem of development of such a perturbation (which
is more convenient to discuss by means of a Laplace
transform) leads asymptotically to damping of the
perturbations, which can be described if we go around
the pole l/( ω - k · v) in such a way that it contains an
infinitely small positive addition, i.e., write
ΐ/(ω - k-v) in the form ΐ/(ω - k-v +ΐδ), δ— +0.
Why is it not possible to transfer these results to (2.7)?
It has already been emphasized repeatedly that non-
linearity is a necessary composite element entering
into the very idea of turbulence. Therefore it seems
evident that under the conditions ω - k-v — 0, when
the first term on the left-hand side of (2.5) becomes
small, it is not permissible to discard the nonlinear
terms. However, we can understand more clearly the
substance of the differences between the present dis-
cussion and that carried out by Landau if we take into
account that Eq. (2.7) was written down for the stoch-
astic components, for which the formulation of the
initial problem is impossible in principle. As was
emphasized above, it is just the lack of dependence of
the stochastic components on the initial conditions and
the nonreproducibility of measurements of the stoch-
astic components which are the starting point in the
concept of turbulence.

If, in spite of the above, we nevertheless continue
expansion of f£t in φ^?, then from Eq. (2.5) it is easy
to find the next terms of the expansion, which contain
φ? (Py. and φ^ φ^ φ^~ and so forth. We will not write

them out here.
d) The quasilinear approximation and nonlinearity

of the diffusion of particles in turbulent fluctuations.
If, in spite of what has been said above, we limit our-
selves to approximation (2.7), assuming that
1/(ω - k · v) is 1/(ω - kv + ΐδ), δ — +0, then, sub-
stituting (2.7) into (2.4), we obtain the well known
quasilinear equations

dt "+"v ~ a F ~ a P i

u · ' dfj· ^·°>

Du = At f k,k) | Wk |2 δ (ω - kv) dk,

(φΙ'φΙ*) — I ψ/t |2 δ (& + k'). (2.9)

We will see subsequently that ueii enters into the
resonance denominator and that the operation carried
out has some meaning when the diffusion coefficient is
approximately independent of ueii· We note immedi-
ately that the equation obtained is identical with that
which follows from the balance equations for elemen-
tary excitations and describes the processes of Ceren-
kov radiation and absorption of the waves. If we take
into account the next terms of the expansion of f|[ in
φξϊ, we can find the nonlinear terms of particle dif-
fusion in turbulent fluctuations, in particular, terms
containing <?g*?g**>{£> and < «eg*?{**>{*?{*>· w " h -
out going into the details of the calculations (see Ref.
42), we will emphasize here a number of factors which
are important for what follows. If a resonance u>k
= k · ν is possible, the nonlinear terms in the diffusion
contain higher powers of the resonance denominators
l/( wk - k · v) and it turns out that the approximation
in which these nonlinear terms do not depend on ueii
usually does not exist, i.e., perturbation theory cannot
be used. If a resonance wk = k-v is impossible, there
is no division by zero. However, in the higher approx-
imations resonance arises in the beats:

cok.-cok^k, — k)v, (2.10)

which can be generally satisfied even if wk ** k-v.
Nevertheless it remains an open question how to regard
the resonance denominators 1/[ω - ωι - (k - ki)v]
and what to insert, +ϊδ or -ίδ? The answer to this
question cannot be obtained within the framework of
perturbation theory, since it is necessary to take into
account turbulent collisions. If nevertheless a reso-
nance denominator of this form enters in the first
power, we can hope that in a certain approximation we
can use the approximation (1.7) and obtain a result ap-
proximately independent of ueii· If we follow this
course of action, it is possible to obtain the nonlinear
terms in the diffusion coefficient of (2.8), which con-
tain | </?ki|2 | <pk2|

2· This is obtained if in the term

containing ( ^ ^ ' f S ' i ' ? ) , the average of the four
potentials is broken down into the possible averages of
two potentials and if condition (2.10) is used to prove
that in the right-hand side of Eq. (2.4) all derivatives
with respect to momenta of power higher than second
go to zero. It is interesting that the result arising from
this nonlinear term coincides exactly with that obtained
in the theory of elementary excitations if we take into
account only the one scattering process shown in Fig.
4a. This is, so to speak, scattering by a bare charge.
However, there still remains a nonlinear term contain-
ing (φ&φ&φ^) • Η we completely neglect correla-

"M R - 2 * 3

tions, it goes to zero. Thus it is necessary to express
this average approximately in terms of the average of
four φ^-.

We will make use of the nonlinear equation for the
stochastic potential, which is obtained from (2.6) by
substitution of the expansion of f?t in φ^-;

---- j Sh,llli,,2(^t

t<fH-(<f'h\Vi
t

1))6(k-ki-k2)dkldkz

Ι')) 6 (fe — fc, - k2- k3) dk, dk2 dk3,

(2.11)
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where
ί3!ί-=^(*£)Α· (2.12)

Χ Γ 2 " ^ " ) k3v

Here we consider the fact that ejj is not a linear
permittivity, since it contains fr which depends,
generally speaking, on W, and does not contain the
initial distribution function. In the first approximation
we can use (2.11) to express φ ^ in terms of the two

φ? » (fc'e,)-» j Sk,hl,k2(^,<ff2-((fi\vf2))6(k-ki~k2)dkidk2. (2.14)

If we substitute this into the term with nonlinear
diffusion, which is proportional to ( φ ^ φ ^ ψ^) > the
final result of the calculation corresponds in the bal-
ance equation for elementary excitations to the inter-
ference term of scattering from the two processes
shown in Figs. 4a and b. It still remains, however, to
"find" the term corresponding to the square of the
matrix element of the process shown in Fig. 4b. Be-
fore turning to this question, let us consider the fact
that in (2.14) we have made one further illegal opera-
tion, namely division by ejj. The quantity e^ goes to
zero near a resonance corresponding to the natural
mode of fluctuations of the plasma u)k> i-e-> f° r

w —* u>k·

In reality, as can easily be seen, the interference
term involves l/Uk-k^· T h e approach to zero of
e k-k! = ek-k^oi-oij means that

cok-cokl = (uk!, k-k 1 = k2. (2.15)

However, this is precisely the condition for decay. In
this process the plasma particles do not exchange en-
ergy and momentum with the fluctuations, and Dy un-
der the resonance conditions (2.15) actually turns out
to be equal to zero. Proof of this can be obtained if
we use near resonance the relation

— πδ(εθ, (2.16)

which, as we will see, has only an approximate mean-
ing. Of course, the existence of effective turbulent col-
lisions of particles and waves creates an imaginary
part in ek, but in this case the effective collisions,
which are associated with the decay process itself
(see below), turn out to be more important. It is im-
portant that (2.16) has in principle an approximate
nature.

4) Nonlinear scattering and stochastic heating. Let
us turn now to the clarification of how purely nonlinear
scattering is obtained. This is a very important ques-
tion which requires explanation, since up to the present
time it has not been completely understood even in the
latest publication^43!. This in turn concerns the prob-
lem closely related to nonlinear scattering of the so-
called stochastic heating. The progress achieved in
this question is extremely important for interpretation

of experiments on stochastic heating (both by turbu-
lence and by external stochastic fields).

We will begin at once with a formal answer to the
question of just what term describes nonlinear scat-
tering. The fact is that nonlinear scattering arises
formally from the quasilinear diffusion coefficient (2.9).
This statement is at first glance at least not obvious.
In fact, we have specified that the resonance u>k = k · ν
is not satisfied, but Eq. (2.9) contains δ(ω - k-v).
Here we come to one of the important properties of
any stochastic fields, namely, that they cannot have a
definite unique relation between ω and k corresponding,
for example, to the mode ω = 01%. However, for a
given k the potential correlator I (pkl

2 is described
as a function of frequency by some curve with a maxi-
mum near ω = cok- The half-width of this curve deter-
mines the characteristic time of the correlations
Δω"1, which is of the order of l/uea (determined
mainly, as will be shown below, by turbulent collisions
due to interaction of the waves with each other). For
weak turbulence Δω ~ î eff « wk a n d the maximum is
sharply expressed. However, this in no way means that
the correlation curve | q>]a\2 does not extend beyond the
limits of Δω to smaller and larger frequencies, to
those frequencies which are separated from o>k by
amounts of the order of a>k or more. Thus, we are
discussing the remote tails of the correlation functions.
The structure of the correlation curves in their central
portion cannot be continued to their remote tails. For
example, in the center one attempts to describe the
correlation curves by a Lorentz formula r " ]

(2.17)

which corresponds to a field disordered by random
impulses with a frequency yeff. The same formula is
then used for the remote tails, for example ω « u)k,
and ueii/ω£ is obtained. The error in such treatments
lies in the fact that it is assumed a priori that veii is
the same in the center and in the tails of the correla-
tion curve. In reality veii turns out to be substantially
different. Of course, it would be possible in Eq. (2.17)
to consider yeff

 a s a function of ω and k (which
actually must be done anyway), but in this case the
meaning of (2.17) as a Lorentz formula is completely
lost. The interest in these tails of the correlation
curves is immediately associated with the problem of
stochastic heating. For example, for stochastic high-
frequency fields the condition ω^ = k · ν is not satis-
fied. In the tails of the correlation curves in general
there is no unique relation between ω and k, and the
condition ω = k · ν can be satisfied.

It turns out that the structure of these correlation-
curve tails can be obtained in very general form if we
utilize only the condition of weak turbulence, i.e., the
parameter (1.2). Here we must be convinced that the
structure of these tails does not depend on those yeff
which determine the centers of the correlation curves.
For this purpose we turn to Eq. (2.11), multiply it by
<p| , and integrate over k'. Using (2.14), we obtain an
equation for the correlation function | φ ^ \ 2 . Further-
more, since we are interested in the region of ω and
k far from resonance, ek is not close to zero but is
of the order of or substantially greater than unity.
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Therefore t e r m s proportional to | φ\α | in the right-
hand-side a r e at least W/nT t imes less than e^ and
can be discarded; this gives
ifk

 2 = (2/ft2) j | ̂ *. k l. i.. + -Sfc. fts. hi ΓΙ ε* l̂ 2

Χ Ι <Ρ»ι Ρ I <P», Ρ δ (ft- ft, — **) dki dk2. ( 2.18)

The formula can be used for explicit calculation of the
corre lat ion ta i l s if we neglect the corre la t ions in the
right-hand s ide. This approximation is the first t e r m
of an expansion in ueii/cuk, where the corre lat ion tai ls
in the right-hand side a r e already making a negligible
contribution. By substituting (2.18) into the quasil inear
diffusion coefficient, we obtain exactly the nonlinear
scat ter ing described in the method of elementary exci-
tations by the diagram of Fig. 4b. Thus, we have
actually shown that al l t e r m s describing the sum of
the matr ix e lements of nonlinear and Thompson scat-
ter ing appear . However, important consequences also
follow from th i s .

F i r s t , stochastic heating owes i ts existence not only
to the tai ls of the corre lat ion curves describing non-
l inear scat ter ing, but also to Compton scat ter ing and
to thei r inter ference. In addition we can say that there
is no other stochastic heating than that described by
induced scat ter ing (under the conditions which were
the subject of the discussion car r ied out above, in
which there is no strong l inear or nonlinear absorp-
tion of turbulent fluctuations).

Second, it must be kept in mind that the scat ter ing
is described by the square of the sum of the nonlinear
and Compton scatter ing matr ix e lements . The t e r m s
of this sum often have opposite s igns, and for e lectrons
the effect is reduced by a factor ^u^e/wpe.

Third, the stochastic heating of ions can be no less
than that of e lec t rons , since the nonlinear scat ter ing,
which for them is much greater than the Thompson
scat ter ing, depends only on the electron m a s s . These
conclusions have great pract ical significance for
plasma heating by stochastic fields.

f) Polar izat ion " c o a t s " of part ic les and F e r m i
excitations of a turbulent p lasma. No les s important i s
a general conclusion concerning the concept of e le-
mentary excitations. In obtaining the s a m e equations
as in Section 1, we have brought out the meaning of
what in elementary-excitat ion theory is called a
" p a r t i c l e " of a plasma. And in fact these a r e also
elementary excitations—electronic and ionic, clothed
in polarization " c o a t s " of charges of another sign. For
just this reason we have appearance of nonlinear scat-
ter ing, which is absent for individual part ic les in a
vacuum. This i s scat ter ing by the polarization coat.
These electronic and ionic excitations a r e described
by the regular part of the distribution function, i .e. ,
the function Φ entering into Section 1 is

Φ = p.

In dividing the microdistribution function f into fr

and f st we actually carried out a renormalization of
the distribution function, that is fr describes elemen-
tary Fermi excitations, and f st Bose excitations —
plasmons, the separation of fs being harmless since
fr describes already clothed particles. It is clear also
that the true particles taking part in the micromotions
are described both by fr and fs*, i.e., they part both

in the fluctuations and in the scattering of these fluc-
tuations. The order of the entire picture obtained as a
result of this division and, in particular, the fact that
the processes of interaction of plasmons and quasi-
particles are described by positive probabilities con-
taining the square of the moduli of the matrix elements,
are a good illustration of the simplicity of the physical
concepts established in the method of elementary exci-
tations .

g) The equation for correlation functions of a turbu-
lent potential. It still remains for us to carry out the
second part of the program, namely, to obtain an equa-
tion for the number of plasmons Nfe. For this purpose
we will carry out a number of additional almost illegal
operations whose justification will be given somewhat
below. By multiplying Eq. (2.11) by φ ^ we form an
equation for | φκ\2. Here we will use Eq. (2.14) for
calculation of (ψ^Ψ^Ψ^)· We have already discussed
to what extent this is not valid near t ^ = 0. In addition
we will write down the equation which is obtained by
this means:

+ Sk, k2, *, | 2 ε"Λ | tpftl Ρ [ fH | ! δ (ft - ft, - ft2) dft, dk2,

where

(2.20)

*1.,,, I k - k, |" 2 Sk.k

(2.21)

Equation (2.19), in contrast to Eq. (2.18) of which it is
a generalization, is, generally speaking, meaningless.
Actually, near a resonance ω = cok the denominator
of the right-hand side of (2.19) goes to zero. It is clear
that this has occurred as a result of the illegal use of
(2.14) near resonance. At the same time, the balance
equations, which are obtained from this equation on the
assumption of (2.16), turn out to be correct. Above we
wrote the equation for the correlation functions sym-
bolically in the form of the functional (1.10). Now this
functional can be written in explicit form, transferring
all terms of (2.19) to the left-hand side of the equation.
Then it is necessary to integrate over frequency as
indicated in (1.11) and, having taken the imaginary part,
to neglect correlations, assuming approximately | <pk|2

^ I <Pk 12 δ (ω - o>k )· Division by ek then takes on a
certain meaning if we use (2.16). In reality we must
remember that (2.16) is only an approximation of more
accurate resonance denominators which take into ac-
count turbulent collisions. The result is the balance
equations, which are identical with the equations of
Section 1 if we take into account the processes of radi-
ation, scattering, and decay. We will leave this veri-
fication to the reader, and emphasize here only a num-
ber of fundamental factors.

Second, the terms with Σ in (2.21) describe induced
Thompson scattering; the second term of (2.21) contains
both linear scattering and the interference of nonlinear
and Thompson scattering. Thus, in the equations for
the plasmons, all terms describing the sum of two
scattering processes also appear. Second, decays
arise when ek-k! * s c l ° s e to zero. In that case we
cannot speak of nonlinear scattering; in the second
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term of (2.21) l/ek-kx n a s the greatest imaginary part
(i.e., it is necessary to write Eq. (2.16) for it). Then
we can neglect the first term of (2.21) and convince
ourselves that the second gives induced decays, while
the right-hand side of (2.19) gives spontaneous decays.

Thus, with a number of assumptions, and using a
number of approximate relations which require justi-
fication and proof, we have obtained all the relations of
elementary-excitation theory of Section 1. Similar but
much more complicated calculations can be carried out
for the more general case of arbitrary modes (not only
longitudinal waves, as in this section), strong magnetic
fields, nonuniform plasma, plasma with admixture of
relativistic particles, relativistic plasma, and so forth.
The method of elementary excitations, which permits
calculation by independent means of the probability of
various processes, not only has a heuristic value for
numerous generalizations, but also permits many
errors , both theoretical and physical, to be avoided
(for example, inclusion of only nonlinear scattering in
the problem of stochastic heating, as was done in ref.
44, or inclusion of only Thompson scattering in the
problem of electron momentum loss in a plasma with
Langmuir turbulence, as was done erroneously in ref.
43). Presentation of the final result, when the method
of statistical averaging is used, in a form containing
the square of the matrix element of the corresponding
probability, sometimes requires rather laborious cal-
culations and, where cancellations occur as the result
of the difference in sign of the matrix elements, ex-
tremely high accuracy in the calculations.

3. EFFECTIVE TURBULENT COLLISIONS FOR
INTERACTION OF PARTICLES AND WAVES,
AND IRREVERSIBILITY IN THE THEORY OF
PLASMA TURBULENCE

a) The turbulent collision operator. As has already
been remarked, turbulent collisions must be integrally
contained in turbulence theory and are due to nonlinear
processes. In view of the fact that various types of
nonlinear interactions exist, and also various reso-
nances, for example, between waves and particles, be-
tween different waves without participation of particles,
and so forth, there are also various turbulent collisions.
In particular, the quantity t>eff which we have used
above is generally different for different processes.

We will begin here with choice of turbulent collisions
of the simplest type, due to interaction of particles and
waves in radiation, absorption, and scattering. In other
words, we will consider the resonance ω = k · ν. The
question of the broadening of such resonances was
taken up by Dupree [ 4 5 ' 4 e ] (see also Weinstockf471 for the
purpose of describing strong turbulence. In reality,
however, under conditions where the parameter (1.2)
exists, the turbulence is always weak. In addition
Dupree r 4 5 ' 4 6 ' obtained incorrect results concerning
stochastic heating. A more systematic discussion of
the problem has been given by Rudakov and Tysto-
vich t 8 !. We have already noted that the problem of
avoiding the pole ω = k · ν is fundamental and cannot
be solved here by the path used by Landau (because the
initial values of the stochastic quantities cannot be
given). We will discuss this question here on the basis
of the solutions found in ref. 8. We note that near the

resonance ω = k · ν it is necessary to take into account
nonlinear terms in the equation for the stochastic po-
tential.

Let's turn again to Eq. (2.5). It 's right hand side con-
tains nonlinear terms. This equation cannot be solved
in general form. Generally speaking, it is necessary
to take into account the terms of the entire expansion
of fst in <p| . However, it is necessary to make a
definite selection of the most important terms, using
the small parameter (1.2). In fact, although turbulent
collisions cannot be neglected under resonance condi-
tions, nevertheless veii « wjj, k · v. The entire problem
is similar to the theory of the natural width of spectral
lines in quantum electrodynamicst2 6 ]. Perturbation
theory cannot be used to describe this problem, but if
we take into account the fact that the width of a line is
much less than the distance between energy levels, we
can sum to the end the most important terms. In this
case the indicated width depends functionally on the
level of turbulence or, more accurately, the correla-
tion function | φ ^ \ 2 . Let us inquire into the nature of
the nonlinear terms contained in the right-hand side of
(2.5). The integrals over ki and k2 are best repre-
sented in the form of sums over the possible modes ki
and k2 if we place the entire system in a large cubical
box of dimensions L. In this sum we then encounter
those terms which are proportional to fg1, which oc-
curs in the left-hand side of the equation, and those
which contain other f̂  with ki * k (here it is neces-
sary to keep in mind that f^ is related to φ^). Terms
proportional to fj^ we will call diagonal, and the re-
maining terms nondiagonal. It is clear that the non-
diagonal terms play the role of an external inducing
force and cannot lead to the desired broadening of the
resonance, while the diagonal terms lead to broadening.
Among all of the diagonal terms it is necessary to re-

/
tain only the first term of the expansion in v In

eff
order to accomplish this mathematically, it is neces-
sary to rewrite Eq. (2.5), separating immediately the
diagonal terms:

= v»(P)/f J (k.^)
(3.1)

here vki ρ) is an operator acting on the momenta ρ of
the function fgt and describing the effective turbulent
collisions. As will be evident, it depends functionally
on the correlation function | φ ^ \ 2 . Actually, in the
right-hand side of (3.1) the diagonal terms should be
contracted (the first term combined with the diagonal
part of the second). If we are interested in the specific
form of yk(p) with accuracy to terms of first order
in veii/ω^, then the contraction in the right-hand side
should occur only with this accuracy. In Eq. (3,1) we
can already use the new perturbation theory, whose
initial approximation will be neglecting the nonlinear
terms of the right-hand side of (3.1), i.e., we can
write f 8 ]

Ik ^ I k —— I · a o\
ω —kv h'v f t(p) V dp I (d-*)

This expression, in contrast to Eq. (2.7), already has
no singularity at ω = k · v. However, nothing has yet
been achieved, since we do not know Dk(p). Before
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turning to the search for this quantity, it is convenient
to write (3.2) in a simpler form, introducing the in-
verse operator gk(p):

gk(ρ) (ω _kv-Hv;,(p))/'=-/?. (3.3)

By means of this operator we can rewri te Eq. (3.1) in
the form

-f =igk (p) v» (p) /?
j

In order to find i)k(p) we must require that in the
right-hand side of (3.4) the diagonal term is absent in
the first approximation. For this reason it is neces-
sary to substitute f?* from (3.4) into the last term of
the right-hand side of (3.4) and separate in it the
diagonal term in the first approximation in ueii/α%·
We obtain f 8 ]

ft (p) = - ie* -±- »_„, (ρ) (3.5)

This specific expression for the turbulent collision op-
erator contains gk-k^ which in turn is related to
i/k(p) in view of (3.3)1, i.e., (3.3) and (3.5) are a com-
plex system of integral-differential equations, but
which permit specific investigation and solution in a
number of cases which are important in applications,

b) Perturbation theory with inclusion of turbulent
collisions. If such a solution is found, the specific
form of the zero approximation (3.2) is known and a
systematic perturbation theory can be developed. Sub-
stituting (3.2) into the right-hand side of (2.4), we ob-
tain a "new" quasilinear equation. It has the form of
(2.8) with a changed diffusion coefficient

(3.6)Dtj = ie* j kjtji (p) |2 dk.

which differs from (2.9) only in the smearing of the
resonance u> = k · ν as the result of turbulent collisions
(associated, in essence, with the quasilinear interac-
tion itself). Then we can systematically find the next
terms of the expansion in this perturbation theory and
obtain the expansion and consequently also the correc-
tions to the diffusion coefficient (3.6). No divergences
or difficulties with the denominators arise here.

In exactly the same way we can also obtain an equa-
tion for the correlation function, which replaces (2.19):

- 2 J - 12 dkt dk21 Sk, hi. ft2 + Sh, „ (k-kt-k2),

(3.7)

where ?k differs from ek o f (2·12) in that instead of
the denominator 1/(ω - k · v)^it involves the expres-
sion gk(p). In the same way Sk k1 ;k2 differs from
Sk.k^kj given by (2.13), and 2k,ki,k2,k3

 f r o m

Sk,ki,k2,k3· Finally, ' e ^ differs from (2.20) in that it
involves £k,kx, which is obtained from (2.21) by re-
placement of the expressions Σ and S by Σ and S and
by discarding the second term in (2.21). It is in fact
already included in the zero approximation. Thus, the
resonances ω = k · ν turn out to be smeared in the en-
tire picture. Before turning to analysis of the results
of this approach, it is necessary to emphasize a num-
ber of factors.

First, this perturbation theory is systematic in con-
trast to the usual variety which simply leads to diverg-
ences or improper integrals whose values begin to de-
pend on the order of integration.

Second, as will be seen, it satisfies the necessary
requirement that the integral quantities can be expanded
in W/nT, i.e., the next orders of perturbation theory
are small in comparison with the preceding ones for
W/nT « 1 (actually the small parameter is (W/nT)1/3

and the result cannot be expanded in W/nT).
Third, we have not removed all divergences here,

as can be seen directly from the right-hand side of
(3.7). In actuality, for example, for ω » kvT, feii>
<T_k n a s the usual form 1 - (ωρε/ω2) and goes to zero
for ω = ω ρ θ . In fact this is already a resonance of the
waves, and its nonlinear saturation requires special
consideration (see Section 4).

Finally, the approach described does not go beyond
the bounds of weak turbulence, but is only a more
rigorous proof of it and, in particular, a basis for the
quasilinear approximation. We must consider that the
smearing of the resonance described by (3.6) is differ-
ent from that used in the quasilinear equations in their
initial form obtained at one time in early investigations
by averaging over space and time. Then, instead of
denominators of the type 1/(ω - k-v), there were ex-
pressions of the type

Tk[(co-kv)2 + y2

tr\ (3.8)

where yk is the linear increment. Actually, the linear
increment yk depends on the form of the regular func-
tion fr (and, in particular, in the simplest case it is
proportional to afr/8p), while neither gk(p)or j/k(p)
in general contain fr. In addition, for absorption
(yk < 0) the quantity (3.8) will be negative, while the
quasilinear diffusion coefficient is in reality always
positive. In connection with (3.8) we can also encounter
incorrect statements that the quasilinear equations are
applicable only for unstable modes. It will be shown
below that other effective collisions associated with the
interaction of modes lead to an expression of the type
(3.8) in the quasilinear equation; however, these do not
involve yk, but rather the effective frequency of the
corresponding nonlinear interactions. Thus, (3.8) can
be used in the quasilinear integral only if we approxi-
mate (3.8) by -π times a 6 function.

c) Turbulent collisions and irreversibility. Let us
turn now to one of the important questions: how the
problem of the pole ω = k · ν is actually solved in the
theory of plasma turbulence. For this purpose we need
to find the solution of the equation for g. It is suffic-
ient to look near resonance, assuming

ε — η/max (<ok, kvT) 1. (3.9)
where η = ω - k · ν. If we introduce instead of ω the
variable TJ, i.e., instead of gk(p) = ik,a>(p) the opera-
tor gk η(ρ), it is easy to see that in the first approxi-
mation in the small parameter (3.9) it turns out to be
diagonal in p, i.e., not an operator but a function. In
the first approximation in the parameter (3.9), Eq. (3.3)
takes the form

(kk,)- | φ , , | 2

 ? k _ k l , _ m (p) dkh
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where D is real, and the imaginary corrections to it
are of order (3.9) (for more detail see ref. 8). We
emphasize that the sign of D actually also determines
the sign of the effective turbulent collisions and thereby
the by-pass rule. So far this sign is still arbitrary.
We can find the formal solution of (3.10) for a given D
and substitute it into (3.11). This gives a functional
equation for D, which can be solved approximately. It
is convenient to carry out a Fourier transformation

ft,,, = (2;i)-* j f t . ^ d t . (3.11)

Then Eq. (3.10) is written in the form

(dgi, τ/3τ) + τ2 Z>ft>T = - 2πίδ (τ). (3.12)

We can solve the homogeneous equation (3.12) with the
boundary condition

gv,τ Ι — gk.x I τ-,-o = — 2πί. (3.13)

However, in solution of these equations it is necessary
also to apply the physical condition of finiteness of g.
The solution of the homogeneous equation (3.12) is

g* = g*-°«iK (3.14)

A discontinuity in g is possible only for τ = 0. Thus,
if D > 0, then for τ — -°° we conclude from (3.14) that
g o | T < o = 0 , and from (3.13) we find g 0 | T > 0 =-2jr i , i .e . ,

ft, n == - f • )/3] άτ. (3.15)

On the other hand, if D < 0, then g o | T > o = 0 and g o | T <o
= 2ττϊ, i.e.,

0

(3.16)

These two solutions are inconsistent. In other words,
the nonlinear equations permit either the first or the
second solution, but not a sum or combination of them.
This is a consequence of the fact that the superposition
principle is not satisfied for the nonlinear equations. In
order to show the inconsistency of the two solutions,
we will substitute one of them, (3.15), into (3.11) and
obtain an equation for D:

O(k, p) |

(3.17)

In the right-hand side of (3.17) there is an integral over
all ki; the function under the integral sign has a sharp
maximum near on = ki · v, while | tpk1[

2 is a smooth
function of ki and ωι· Therefore in the first approxi-
mation in the parameter (3.9) we can replace the func-
tion indicated which has a sharp maximum with a g
function in the expression under the integral of (3.17).
We obtain

D (k, p) « (e>/m4) π J (kk,)'31 <pAl |* 6 (ω, - k,v) dku (3.18)

which is also an approximate solution of the functional
equation (3.17). It is important that D > 0 in agreement
with the initial assumption which led to the solution
(3.15). If we then use the second solution (3.16), we
obtain an equation for D whose solution differs in sign
from (3.18) in agreement with (3.16). The two solutions
are inconsistent since D cannot be equal to the same

quantity with the opposite sign, provided that, of
course, D * 0, i.e., that there is turbulence.

Here there appears a unique combination of irrevers-
ibility and equal justification of the two directions of
time, It is easy to see that the two solutions for g are
asymmetric in τ, i.e., irreversible (τ, as can easily
be shown, has the meaning of time), and by the substi-
tution t — -t are transformed into each other. In fact,
for example, the diffusion coefficient (3.6) differs only
in the sign, and replacement of t by —t in the quasi-
linear equation leads the two solutions to the same
form. It is necessary to choose one of them, since they
are inconsistent, and then to take into account that the
positive time direction is not yet determined. This
direction is defined as that for which entropy increases.
Therefore, if the first solution is chosen, then the
quantity t mentioned above is the time, and if the
second is chosen, then -t is the time. Thus, the two
solutions lead to an identical result (both, incidentally,
lead also to a systematic change of entropy).

If we take into account that in the quasilinear diffu-
sion coefficient Im gk(p) is a function with a sharp
maximum, then in the first approximation in the
parameter (3.9) we obtain the ordinary quasilinear dif-
fusion coefficient

Du =-- ne* f k,kj\ <pk | s δ (ω — kv) dk.

However, this approximation is possible only because
g occurs under the sign of an integral whose value is
insensitive to smearing of the resonance. Exactly as in
the first approximation in (3.9), the imaginary part of
ek describes the ordinary damping of the fluctuations,
since g can be replaced approximately by a δ function.
In this way the Landau damping problem is solved in
the theory of turbulence. It is important, however, that
the nature of the approximation here (and particularly
"eff /wk) is Quite different and the damping is irreversi-
ble. In order to represent the order of veii/wk., it is
necessary to give an estimate for uea•

d) Evaluation of the turbulent-collision frequencies.
To estimate î ff we will take into account that, accord-
ing to (3.51), g is determined by the integral of two
functions, of which the first, ei*?T, begins to oscillate
rapidly and, consequently, the integrand approaches
zero for τ > Τι = 1/η = ΐ/(ω - kv), and the second

function e cuts off the integrand for τ > τ2

= (3/D)1/3. If τι « T2, then g « l/(a> - kv); if on the
other hand τ 2 « τι, then

gat-i \ e-w«)*dTi»
Ό

The last equation is written as a definition of ven for
| ω - kv | « i/eff, which can be obtained if g is written
in the form l/(u> - k • ν + ii/eff)· Thus, in order of
magnitude

v e ff

Assuming that in the spectrum of | φ^.ι\
2 there is

some characteristic k0 at which the integral (3.18) is
concentrated, and that δ(ωι - kx-v) has order l/k0VT,
we obtain an estimate for D1 / 3 for k ~ k0*).

*Purely for the sake of simplicity we use here m = m e ; similar effects
arise also for ions.
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v e ff « (Upe (W/nT)1/3 (kovjaipe)1/3 (3.19)

We emphasize that this value of ueii does not have an
explicit relation to the linear yk·

e) Effect of turbulent collisions on nonlinear pro-
cesses. Although, as we have noted, the first approxi-
mations with accuracy yeff /o>k agree with the usual
approximations, the existence of yeff substantially af-
fects the next nonlinear corrections to them. The case
of ion-acoustic turbulence is an important example in
this respect. In the zero approximation in the presence
of electron drift relative to the ions, the ordinary
buildup increment of ion-acoustic fluctuations yk fol-
lows from £k· 1° the next approximation all nonlinear
terms of (3.7) contribute. This gives a certain 5yk
which depends on W. It turns out that those nonlineari-
ties are most important which are contained in ek> i.e.,
those which are corrections for the fact that ^eff is
finite.

In Fig. 6 we have shown 5yk/yk a s a function of
W/nT, as obtained in ref. 8 for ion-acoustic fluctua-
tions. It follows from the figure that 5yk/yk <K 1 if
only W/nT « 1. Recently the question of the role of
nonlinear interactions of ion-acoustic fluctuations with
electrons has attracted much attention^491. The state-
ment was made that this interaction can determine the
anomalous resistance of a plasma. Crude estimates
without inclusion of the broadening of resonances give
the dashed straight line in Fig. 6. This shows that
5yk/yk ~ 1 for W/nT ~ m e / m i . In reality at sub-
stantially smaller W/nT the broadening of resonances
sharply reduces the effect, which nowhere can reach
5yk/yk~ 1, if W/nT « 1, and therefore the nonlinear
interaction of ion-acoustic fluctuations with electrons
cannot be responsible for the slowing down of electrons
and the appearance of the anomalous resistance of a
plasma.

f) Turbulent collisions and stochastic heating. A
somewhat different situation occurs under conditions
when the resonance u>k = k -v is impossible, as occurs
in Langmuir turbulence. Then it is possible to expand
g in v. However, ν involves gk-ki, which already can
be resonant. It is important, however, that now we
know how to treat such g. The results of the expansions
are identical with those which were obtained in the
preceding section if the imaginary part of gk-kx is
approximated by —ηδ (ω - u>i - (k - k jv) . This point

clarifies the physical meaning and justifies the concept
of stochastic heating. It should be noted that the ap-
proach used by Dupreer*51 to describe the smearing of
the resonance ω = kv gives for the one-dimensional
quasilinear equation a result identical to (3.6) and
(3.13); however, u does not contain gk-kx

 a n c · f° r this
reason all processes of induced scattering and stoch-
astic heating are lost.

We note, finally, that in "e^ an imaginary part ap-
pears and, consequently, the approximate use of (2.16)
is justified in the integral balance equations. The
balance equations obtained from (2.19) and (3.7) agree
in these approximations with each other and with the
equations which are obtained by the method of elemen-
tary excitations.

4. TURBULENT BROADENING OF RESONANCES OF
NONLINEAR DECAY INTERACTIONS, AND COR-
RELATION FUNCTIONS OF A TURBULENT PLASMA

a) Effective turbulent collisions due to interaction
of waves. Turbulent collisions due to interaction of
waves lead to an ambiguity in the relation between the
frequency and the wave number of a turbulent plasmon.

It has already been noted that not all singularities
have been removed in Eq. (3.7), and particularly, e l^
can go to zero. In reality the problem reduces to in-
clusion of turbulent collisions, however, not in the
Green's function of the particles ΐ / (ω - k · ν) but in
the Green's function of the plasmon l/ik· The diverg-
ence of l/^k arises from the illegality of dividing by
e'jj in an expression of the type (2.14) if £k is close to
zero. Smearing of the resonance ω = k*v changes only
S into S and e into e", but the operation of division by
e^ remains illegal. The situation in this case is ex-
tremely similar to that which was described for the
interaction of particles and waves. The point is simply
that for e'k = 0 the discarding of the next nonlinear
terms becomes inadmissible. A perfected perturbation
theory which removes this difficulty was developed
first in ref. 11 without inclusion of broadening of parti-
cle-wave resonances (i.e., the resonance ω =k-v) and,
in addition, on the assumption that in terms containing
integrals of 1/ek the turbulent smearing of the reso-
nance is unimportant, since we can use the approxima-
tion (2.16). This approximation is sufficient, for ex-
ample, for discussion of the correlation functions of
Langmuir turbulence, but, as analysis shows, does not
have the necessary accuracy for ion-acoustic turbu-
lence. A more accurate theory has been developed in
ref. 10, but without inclusion of the broadening of the
resonance ω = k · v. We will set forth here the general
case, following most closely the reasoning which has
already been used in the preceding section.

Let us separate in an equation of the type (2.11) the
term diagonal in φ^τ in the left-hand side, designating

ldk2, (4.1)

(Me)1
 3L I WiT

β}/ ffl.

FIG. 6. Nonlinear interaction of ion-accoustic fluctuations with
electrons, as a function of the energy W incorporated in turbulent ion-
acoustic fluctuations.

where Σ^ ^ is the unknown quantity which must be

found. As will be seen, it is a generalization of the
quantity Zk,k2 introduced above. Then, with inclusion
of broadening of the resonance ω = k · ν instead of
(2.11) we have
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= I S>, »,, k2 (ψΐ,ψΙΙ - «p£q>S» δ (ft - Λ, - ft2) dft, f
' - Φ * <

φ?,)} δ (k - ft4 - k2 - ft

>2> -
(4.2)

2 6 ( k 2 + k3). ThenHere we have used

we will require that even in the first approximation in
W/nT, the diagonal term disappear in the right-hand
side. For this purpose we will multiply Eq. (4.2) by
φ^}, and obtain an equation for the correlation function

For calculation of (wtXpt <pt ) we will use

Φ? = (ε~* + ε *V j Sh, „,, ks (φ£φ£_<φ;}φ£» 6(k~k,-k2) dktdk2

and require that terms diagonal in | <pk|2 in the right-
hand side of the equation obtained be absent in the first
approximation in | φ\ζ\2. Hence we obtain a specific
expression for Σ^ k :

^ ^h-M, k, -M + 5H-I.,. -Hi, ft> ( 4 . 3 )
ι ~ -̂ ft, fei. h, -hi ~

fc, ki. h, - f t ! (

Thus, Σ ί t , differs from ΣΥ ι,, only in the fact that
» Κ,ΚΙ Κ.,Κ.1 J ^

in the expression in square brackets instead of e^-^
we have eV-k, + *f? ,, . Thus, (4.1) and (4.3) together

^ XT

form a system of integral equations for c r . In a num-

ber of cases in view of the fact that (4.1) contains an

integral over all values of ki, the quantity ί/(2\ί-^ι

+ e^-k ) can be approximated by the expression
— ίπδ (β*_!,, +ε ?_,,,)« — ίπδ (ε *_),,), (4.4)

Ν
i.e., inclusion of e ^ is of little importance here. How-
ever, neglect of "e under the {-function sign is legal
only when the decay processes are well allowed. We
have in mind the following. In principle the situation is
possible when a decay process is almost allowed, i.e.,
it is sufficient, for example, to add in the conservation
of energy a small amount of energy (to add Δω « cok
to the frequency of one of the waves) in order that the
decay process change from forbidden to allowed. Such
a forbiddenness of a decay process we will call weak.
It is clear from this what we understand by the term
well allowed decay process (a case opposite to weakly
allowed). In a turbulent plasma all of the conservation
laws cannot be rigorous; in particular, decay processes
must be satisfied only with an accuracy to the effective
turbulent collisions. The quantity Δ ω ~ uefi has a
specific meaning and, as will be seen, is equal to the
average correlation width. Thus, we can specifically
determine what must be understood in a turbulent
plasma by the terms weakly forbidden decay and well
allowed decay. Specifically, a well allowed decay cor-
responds to Eq. (4.4), and for a weakly forbidden decay
ejj_jj does not go to zero, while efc-kj + e^-ki goes to
zero, i.e., Eq. (4.4) is untrue. It is already evident
from this that inclusion of ? in (4.3) is very important
just for weakly forbidden decays. Ion-acoustic fluctua-
tions1^01, as it turns out, are of this type. If we use
(4.3), then we can further trace the course of reason-
ing of ref. 11, construct an integral equation for

: in the approximation (1.2).

The equation for the correlation function takes the form

l^ft, ft,. », + *»,k,, i t , ! 2

The difference of this equation from (3.7) is that in the
right-hand side instead of e l ^ we have e_k + e.^,

while 7^ is defined by the system of integral equations

(4.3) and (4.1). Thus, the result obtained does not con-

tain divergences.

b) Structure of correlation functions of a turbulent
potential. The equation for the correlation functions
satisfies the necessary requirement of positiveness of
I <Pk | 2 -a result which it has not been possible to obtain
without contradiction in the models of turbulence in
incompressible liquids developed up to the present
time. If we take into account that the first factor under
the integral of (4.5) close to resonance is a slowly
varying function, we find that the structure of the cor-
relation function near resonance has the nature of a
Lorentz curve

| φ* |2 = const, [(ω —ω")2 + γ̂ )->. (4.6)

Far from resonance it has the previous form (2.18).
In Eq. (4.6) ω£: contains the nonlinear frequency

shifts, and yN describes the sum of the linear and
nonlinear increments. Equation (4.6) obviously indi-
cates that there is no unique correspondence between
ω and k in a turbulent plasma, and the measure of
this ambiguity is principally yN. Since e contains
i/eff (which, for example, is given by Eq. (3.19), it can
be shown that yjj is of the order of this veff. However,
this is not so for the following reasons. First, Ζ in-
volves both electronic and ionic components (as agreed,
the sum over the charges has been omitted for sim-
plicity). Second, the imaginary part of e, as has been
shown, gives a value of the order of the linear incre-
ment and to a good approximation does not depend on
W. This occurs, for example, for ion-acoustic fluctua-
tions. For Langmuir fluctuations, in view of their non-
resonance, it is necessary to carry out an expansion in
v, and its value far from resonance, combined with
other processes, gives the induced scattering and has
nothing in common with (3.19). Induced scattering is
also given by ions for ion-acoustic turbulence. Further-
more, the condition of stationary turbulence is that the
sum of the linear and nonlinear y ' s (i.e., yN's) goes
to zero. For example, for ion-acoustic fluctuations this
would mean compensation of the linear buildup in elec-
trons by induced scattering by ions. The spectrum for
ion-acoustic turbulence was obtained for the first time
in this way by Kadomtsev and Petviashvil i r l ' 5 0 ] . The
spectrum of Langmuir turbulence in a definite region
is also found from the requirement that γ^, which is
associated with induced scattering, go to z e r o [ 1 9 ] . Thus,
neither the effective frequency associated with the
Cerenkov resonance (3.19) nor ven of the order of the
induced scattering increment characterize the corre-
lation width (4.6). The fact is that all of these processes
represent interactions of waves and particles, while
(4.6) is determined by the interaction between the waves
themselves. Equation (4.5) actually describes a decay
process, which is evident also from the δ function.
Since each of the 1 ςίΊε 12 and | <?k2|

2 has a sharp maxi-
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mum near ω ^ and ω^ , respectively, the resonance
denominator l/(ek + e^) actually placed the third
frequency ω inside the decay resonance, i.e., ω = a'k·
Thus, Eq. (4.5) describes the decay resonance. More
accurately, the right hand side of (4.5) contains the
so-called spontaneous decays, while the induced decays
are contained in e N . The balance equation with inclu-
sion of decays cannot have the form 'e + e^ = 0 from
which it also follows that yjj = 0)> since induced decays
must be compensated by spontaneous decays. Thus,
yN must have the order of the characteristic time of
the decay interaction. In other words, each of the inter-
actions creates its own i>eff, and the correlation widths
of the waves are determined by the interaction of the
waves with each other.

c) Effect of turbulent correlations on nonlinear in-
teractions. How important all of this reasoning is, not
only for understanding the physical processes occurring
in a turbulent plasma but also for practical utilization
of the theory for interpretation of experiments, can be
seen in the example of ion-acoustic turbulence. At the
present time correlation measurements are carried
out in most experiments on plasma turbulence. For
ion-acoustic turbulence excited by an external quasi-
static field E, they have been measured in detail by
Hamberger and Jancarik [3a], who showed that the turbu-
lent electrical conductivity depends substantially on
the correlation time, which is only 4—10 times the
period of the fluctuations. The existence of such a large
correlation width indicates, consequently, the existence
of some kind of decay interaction. However, it would
appear to be forbidden for acoustic waves. On the other
hand, this forbiddenness is only weak and the existence
of strong correlations removes this forbiddenness,
while the decay arising determines the correlations.
These arguments were basic in the analysis of ion-
acoustic turbulence spectra undertaken by Tsytovich[Z01.

If we use the experimental value of the correlation
width Δω, decay processes already determine the
spectrum for all frequencies less than ~ωρϊ/2. The
spectrum was measured by Paul et al. [ 2 2 i from ωρί to
ΚΓ1 ωρί, and by Jancarik and Hambergerr21] to
10~2 ωρι and corresponds to \νω ~ ω"1 In Λ (ω). Thus,
almost the entire spectrum falls in the region for which
inclusion of correlations in the nonlinear interactions
substantially affects the nature of the interaction itself.
The spectrum predicted in refs. 10 and 50 agrees with
the observed spectrum. The effectiveness of the inter-
action r l 0 ] turns out to be 8T e/Ti times larger than the
induced scattering^501 by ions. It turns out that this
difference in times, in attempts to interpret measure-
ments [ 2 2 ] of the spectrum of ion-acoustic fluctuations
in the front of shock waves, is very important and, in
particular, if the spectrum were formed by induced
scattering, it would not be possible for it to be estab-
lished under the conditions of ref. 22, whereas in the
case of formation of the spectrum with inclusion of the
decay interaction the time of passage of the shock wave
front in the plasma is sufficient for establishment of
the spectrum. There are also other indications favor-
ing the decay mechanism. Thus, in induced scattering
a nonlinear stabilization of the instability leads to out-
flow of energy from the region of the unstable Ceren-
kov cone in all other directions with approximately the

same probability. This means that if stationary turbu-
lence is actually achieved and the spectrum is formed
by nonlinear interaction, and the results of refs. 21 and
22 seem to indicate this, then a significant fraction of
the turbulence energy must be present outside the
Cerenkov cone (roughly only v s/u times less than in-
side the cone). For the decay interaction, on the other
hand, the angles in the interaction process are approx-
imately constant and the energy only gradually diffuses
to the boundary of the Cerenkov cone with a diffusion
step Α θ ~ (Δω/ω)1/2. Measurements1221 have shown
that the turbulent energy is included inside an angular
cone whose size is quite close to the Cerenkov cone.
Finally, the value of the turbulent electrical conduc-
tivity, according to Tsytovichri0], is

σ = (ne2lme) τ*,
ι

t;s.192 [J sap(*)(l — i-2)~1/arfs]2

13

Ϊ
UU)« '̂ ψ (λ) άλ

Ο

σ = σ ο /£ 1 / 2 , σ 0 « lOo>pe ι

(v,/u)-l0*((Opt)-\

(4.7)

(4.8)

(4.9)

where u is the directed electron drift velocity, v s

is the velocity of sound, and p(s) and φ (χ) are func-
tions characterizing the angular and frequency distri-
butions of ion-acoustic fluctuations, the integrals of
which are of the order of or somewhat less than unity,
ω* = ωρΐ (Δω/ω)1/2. The value (4.7) corresponds to
that measured both directly and from the width of the
shock waves. In obtaining (4.8) it was assumed that the
spectrum of turbulence is determined by nonlinear
processes. However, for sufficiently small E, quasi-
linear processes, which have been discussed in ref. 51,
can be more important. Here, however,

σ = envJE. (4.10)

The numerical coefficient 102 in (4.9) substantially
reduces the field values for which the turbulent elec-
trical conductivity will be determined by quasilinear
effects:

Ε/(4πηΤγ/ι < Oflimjm, == (4.11)

In most experiments Ε > E c and u ~ (4—10)vg (ac-
cording to (4.9) u = v s (E/E c)

1 / 2 > v s), but if the factor
102 were absent, the inverse inequality would be valid
for many experiments. At the same time, it must be
clearly pointed out that these conclusions are obtained
under conditions in which the correlation effects rather
strongly affect the turbulent electrical conductivity.
We can attempt to follow how the value of the critical
field E c, which separates the quasilinear electrical
conductivity (4.10) and the nonlinear conductivity, will
change as the role of correlation effects decreases. In
the first place, we must remember that the nonlinear
interactions which determine the nonlinear electrical
conductivity, as Δω decreases, will be described over
a substantially larger frequency region by induced
scattering by ions, which was first discussed by
Kadomtsev and Petviashvilir50]. The turbulent electrical
conductivity value has been calculated for this case by
Sagdeev[52]. Actually, correlation effects strengthen
the nonlinear interactions only for ω < ωρί (Δω/ω)1/2,
and with reduction of Δω/ω this region snifts to lower
and lower frequencies. In the region ω > ωρί(Δω/ω)1/2

the correlation broadening is unimportant, the effec-
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tiveness of the nonlinear interaction falls off, and con-
sequently Wk increases.

In the second place, the effective frequency 1/τ*
which determines the turbulent electrical conductivity
is proportional to the integral

1/τ* ~ Γ Wkkdk. (4.12)

Thus, for small Δω/ω the main contribution to the
integral (4.12) will already come from the region
where induced scattering is effective. Then in com-
parison with (4.10) it is necessary to use Sagdeev's
formula [ 5 2 ]

τ* = (vju) (10!/(opi) Tt/Te. (4.13)

The numerical factor 102 in this formula, given by
Sagdeev^521, apparently can vary considerably, depend-
ing on the details of the angular distribution of the fluc-
tuations. If precisely this value of the numerical coef-
ficient is used in (4.13), the critical field E c is found
to be Teo;/TiAa> times larger than (4.11). An accurate
value of the critical ratio Δ ω/ ω at which the main
contribution to the integral (4.12) begins to come from
induced scattering can be obtained only as the result
of detailed numerical analysis of the nonlinear pro-
cesses near ω ~ ωρϊ· The spectrum found by Kadomt-
sev and Petviashvifi, as was emphasized by Sagdeev[59],
is valid only for ω « ωρΐ· In the region ω ~ ωρϊ the
transfer is integral and changes the frequencies of the
plasmons at once by an appreciable amount, so that it
is necessary to extrapolate the spectrum [ 5 0 ] to ω ~ copi·
A situation is also possible in which energy can be
transferred by one step of a nonlinear transformation
to the region where correlation effects are already
important (it must also be kept in mind that the maxi-
mum of the increment occurs at a frequency ωρί//2~
which is still appreciably less than ωρϊ). Then in the
region ω ~ ωρϊ a high energy density Wk does not
arise and the contribution of the region where induced
scattering is effective to the value of (4.12) will be
small. We can expect that if this integral transfer is
absent, then in the transition to the frequency region
ω > ωρϊ (Δω/ω)1 / 2 a sharp maximum should occur in
the spectrum, corresponding to an increase of Wk, if
only by T e / T j times, In just this case we can use
(4.13). In the experiments of refs. 21 and 22 no such
maximum was observed, which apparently indicates a
small role of induced scattering (which incidentally was
found in refs. 21 and 22 to be integral in the region from
wpi/^f2 to ωρί/2). It is evident also that the frequency
region in which the scattering by ions is integral de-
pends strongly on the ratio T e / T i , and therefore the
critical value Δω/ω for which it is necessary to trans-
fer from (4.8) to (4.13) also depends strongly on
Te/Tj. In addition it was shown by Tsytovich t l 0 ] that
in development of ion-acoustic turbulence the value of
Δω/ω increases with time, reaching rather high values.
It is evident that more detailed information on the
critical values Δω/ω and their dependence on T e / T i
can be obtained in the future only with detailed numeri-
cal solution of the nonlinear equations taking into ac-
count correlation effects. Thus, the correct inclusion
of turbulent broadening of resonances actually plays a
major role in the interpretation of existing experiments.

In most experiments on plasma turbulence, further-
more, correlation effects are measured directly, and
their detailed comparison with a theory which predicts
both the shape of the correlation curve (4.6) and the
value of the correlation broadening is one of the im-
portant problems.

d) Correlation broadenings and the linear electro-
magnetic properties of a turbulent plasma. The linear
electromagnetic properties of a plasma are usually
understood to mean its response to an external electro-
magnetic field [53]. We can expect that the response of
a turbulent plasma will be fundamentally different from
the response of a quiescent plasma for frequencies
ω « î eff· The low-frequency region presents special
interest, since the instabilities most dangerous for
plasma containment occur in this region. Their radical
change or disappearance under conditions of developed
high-frequency turbulence has important significance.
New modes of a turbulent plasma in the low-frequency
region were discussed for the first time in refs. 54 and
55 on the basis of a model description of turbulence by
means of effective Miller forces. Stabilization of drift
instabilities in a turbulent plasma has been discussed
by Krivoroutsky and others r 6 0 ] . Tsytovich [5e i has dis-
cussed a general method which permits calculation of
the dielectric permittivity tensor of a turbulent plasma.
It is based on consideration of perturbation of fr, is^,
and cps* on the part of a weak external field φ τ (see
Section 2) and a systematic expansion of all quantities
in <p r . [ 5 7 ] This method permits it to be established that
a number of new instabilities which arise in a turbulent
plasma are formally due to the fact that in the low-
frequency region 1/e^.k approaches infinity, since
eki-k— 0 for k — 0. As we have shown f58], the correct
inclusion of turbulent collisions removes this diverg-
ence, since the quantity involved is (ek -k + £ P i,)"1·

However, at the same time the instability is also
changed substantially.

In the region of longitudinal plasmon phase veloci-
ties vp » ν χ β (9mi/m e ), according to ref. 58, the
increments of the instabilities preserve the form found
by Vedenov and Rudakov^541, but here the turbulent en-
ergy W must all be concentrated in a very narrow in-
terval of phase velocity and a narrow interval of abso-
lute values, which is practically impossible for those
broad spectra which are established as the result of
nonlinear interactions (see Fig. 2). It is true that there
are also exceptions in this case, an example of which
is the turbulence dissipated in radiation at a frequency
2ωρεΓ421 under conditions in which the wave-number
region in which the plasmons are generated is close to
the wave-number region where they are absorbed, and
which are converted to electromagnetic radiation of
frequency 2ω ρ θ · In the region vp » v^g (9m e /nn),
where the principal turbulence energy is usually ac-
cumulated (see Fig. 2), according to ref. 58 the incre-
ments of the instabilities are substantially changed by
turbulent collisions. These questions, of course, re-
quire further and more detailed development, but the
examples given show that systematic inclusion of turbu-
lent collisions in derivation of the linear electromag-
netic properties of a turbulent plasma can substantially
affect the ideas as to the mechanisms of collisionless
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dissipation of the energy of Langmuir turbulence, which
is accumulated in the peak of the spectrum (see Fig. 2).

5. CONCLUSION

The analysis presented here shows that there now
exists a systematic picture of the physical processes
in a turbulent plasma, although there are of course a
number of specific questions which require further
calculations, for example, correlation widths for vari-
ous fluctuations in an external field, the structure of
turbulent spectra, the electromagnetic properties of a
turbulent plasma, and so forth. The value of the method
of elementary excitations is becoming steadily more
evident; on the one hand, this method is well justified
by direct calculations taking into account turbulent
collisions, and on the other hand, since it is very con-
venient and simple, it can serve to verify various re-
finements of the theory. Thus, a number of these re-
finements give corrections which are beyond the ac-
curacy of the method.of elementary excitations. Finally,
we have repeatedly emphasized in this article that the
concept of effective turbulent collisions, which is im-
portant for construction of the general theory, has
numerous applications and is important for comparison
of theoretical results with experimental observations.

The idea of effective turbulent collisions which we
have presented can perhaps help experimenters in a
convenient qualitative treatment of the processes in a
turbulent plasma, and can help theoreticians in making
a clear distinction between turbulent elementary excita-
tions and those which describe states close to statisti-
cal equilibrium.
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