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1. INTRODUCTION h(r) — 0 as r — «=. The function g(r) or h(r) descr ibes

a) Problem of the theory of the liquid state. The ^ j n t e r n a l , o r d e r i n th* s J s t e m s a n d i t s d e P ^ d e n c e on
theory of the liquid s tate of m a t t e r is traditionally con- the hermodynamic conditions
s idered as "insufficiently developed" and " lagg ing" f f c « t h e A c t i o n g(r; Τ η) is known, then we can find

relat ive to the theories of gases and solids. With t h e thermodynamic functions for monatomic and single-

respect to the equilibrium proper t ie s of s y s t e m s , this component sys tems with pai r and central interaction

traditional view should be regarded as obsolete a^d as b e t w e e n t h ? P " b c l e e f r o m t h e well-known exact ex-

not corresponding to the r e a l situation. The theory of ^ ^ J ^ j / f i . S ? ? P r e s s u r e ' e n e r g y d e n s i t y > a n d c o m '

c lass ica l liquids was intensively developed during the ^ r e ' ~
post-war years and made quite noticeable advances dur- p{T, n) = nkT — (2π«2/3) j ΓΦ'(r)g{n T, «)/·»*·, (1)
ing the last few y e a r s . If the main task of this s ta t i s t i - °
cal theory of m a t t e r is taken to be the prediction of the ,„ , .„ ,„,„,.. „ , ? * , . , „ , . , /O\
,. , . , . - . . . . . . , ε(Τ, η) = (ZnkT 2) + 2an2 Ι fl>(r)g(r; Τ, n)r2dr, (2)
thermodynamic behav ior of different s y s t e m s a s func- {

t ions of the c h a r a c t e r and deta i l s of the i n t e r m o l e c u l a r
interaction, then the contemporary accuracy of the so- kT (dnidp)T = l + 4πη f [g(r, T, n) — l]r2dr, (3)
lution of this problem for s imple liquids is hardly in- °
ferior to the accuracy with which we can, for example, where Φ ( Γ ) is the molecular potential and k is
calculate theoretically the equation of s tate of a solid or Boltzmann's constant. In addition, the F o u r i e r t r a n s -
of a moderately dense gas. Nor a r e there significant form of the function g(r) is directly connected with the
differences, at least when dealing with their equilibrium angular dependence of the intensity of the coherent scat-
p r o p e r t i e s , between the theories of sol ids, l iquids, and tering of x-rays or slow neutrons by the system'-2 '3-1.
gases in the more important physical problem of under- Thus, for simple liquids, the function g(r; T, n)
standing the molecular mechanism responsible for the descr ibes simultaneously their s t r u c t u r e and thermo-
observed macroscopic proper t ie s of mat ter . dynamic p r o p e r t i e s . Therefore the main task of the

The main task of calculating the partit ion function of theory of equilibrium propert ies of s imple liquids is
a system of many bodies is solved in the theory of the the calculation of the RDF from a specified intermole-
liquid state indirectly, by calculating the pa i r c o r r e l a - cular potential 4>(r) for all values of Τ and η from the
tion function of the system p a r t i c l e s , or the so-called region of existence of the liquid phase. The ent ire prob-
radial distribution function (RDF) g(r). The la t ter is so lem can be formulated in exactly the same manner for
defined that the expression dense gases .

The rad ia l distribution function is defined formally
dw (r) - g (r; , n) (inr drIV), i n № e f Q r m Q { & m u l t i p l e i n t e g r a l o f t h e t o t a l G i b b s d i s _

where V is the volume of the entire system, is equal to tribution function of all the system part ic les in coor-
the probability of observing the centers of two par t ic le s dinate space'-1 '2-1

spaced r apart with an uncertainty dr at a given tem- . .
pera ture Τ and a part ic le- number density η of the sys- ί (I ri - r21) = <y/Q»)) • • • ) e x P ( - UN (r,, . . . , rN)/kT] dr3... ώ>,
tem as a whole. The function g(r) is normalized here v v №
so that g(r) — 1 as r — °°. The aforementioned pai r _ r r . „ , ,
correlaUon function is defined as h(r) = g(r) - 1, so that Q»= \ ''" ) e ^ ^ U ^ ^ r»>
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where U N i s the total interaction energy of the system
part ic les

Urr(Ti, TN)=
l

(6)

It is assumed in (4) and (5) that ultimately the l imit will
be taken a s N - « and V —· » at η = N/V = const. A
s imi la r expression for the grand canonical ensemble is
given below (see Eq. (13)). The problem of determining
the function g(r; T, n) reduces therefore to the problem
of calculating or asymptotically est imating the integrals
(4) and (5) o r the s u m s (13). F o r gases , this problem
is solved by the Mayer group integral m e t h o d [ 4 ' 5 ^ (page
415 of the Russian translat ion), which leads to an ex-
pansion of the function g(r) in an infinite s e r i e s in in-
teger powers of the density η and accordingly to the
so-called virial s e r i e s for the thermodynamic func-
tions. For rea l i s t ic potentials <S>(r), only the first few
t e r m s of such s e r i e s a r e known, and the r e s u l t s a r e
applicable only to low-density gases . The only excep-
tion is the model problem of hard s p h e r e s , for which the
first seven t e r m s of the vir ial s e r i e s for the p r e s s u r e
a r e known'-8-'. For liquids and high-density gases, the
integrals of the type (2) and (5) can be direct ly es t ima-
ted by the Monte Car lo method (MC) using high-speed
computers '- 7 ' 8 ^. Interest ing r e s u l t s were obtained by
this method for the model hard-sphere system and for a
system of par t ic les interacting via a Lennard-Jones po-
tential.

There is no need for est imating the complicated
multiple integrals (4) and (5) in the molecular dynamics
method (MD), which also involves the use of high-speed
computers . A " m a t h e m a t i c a l e x p e r i m e n t " is performed
h e r e on a model system of par t ic les by calculating the
tra jector ies and velocities of all the par t ic les over a
long per iods of t ime, followed by the determination of
various averaged equilibrium and kinetic c h a r a c t e r i s t i c s
of the system'- 7 ' 9 ' 1 1 ^. T h e r e a r e well-known good r e -
sults for the hard-sphere system and for the system of
par t ic le s with Lennard-Jones interaction. Both com-
puter methods, the MC method and the MD method, can
yield in principle numerical re su l t s of very high accur-
acy, but various e r r o r s creep into the actual calcula-
tions, due mainly to the pract ica l need for confining
oneself to a smal l number of par t ic les in the principal
cell and to the finite duration of the t ra jector ies . None-
theless , the es t imates of the s tat i s t ica l proper t ies of
model liquid or dense-gas sys tems by these methods
must be regarded at p r e s e n t as the most accura te . A
certa in inconvenience in the analysis of the calculation
resul t s is that the lat ter a r e presented in the form of
tables or d iagrams, and there a r e no analytic expres-
s ions.

b) The method of integral equations. A special posi-
tion is occupied by another method of solving the main
problem of the theory of liquids, namely the s e a r c h for
approximate integral equations for the RDF g(r; T, n)
when the potential Φ ( Γ ) is specified. It is seen from
(4)—(9) that if the p a r a m e t e r s Τ and η a r e specified,
then the RDF is determined uniquely by the function
Φ ( Γ ) , viz., g(r) = G{T, η; Φ} , so that it is likely that
there exists an integral equation in closed form, per-
haps a very complicated one, re la t ing these two func-
tions. Searches for such an equation have been going on

since 1935, when Kirkwood and Yvon first proposed a
very simplified variant of an integral re lat ion between
g(r) and Φ ( Γ ) ' - 1 2 ' 1 3 - ' . By now, severa l such approximate
equations a r e known, with different degrees of accuracy.
The method of integral equations in the theory of liquids
is at tract ive because of two c i rcumstances : the possi-
bility of obtaining analytically representable re su l t s
concerning the s t ructure and thermodynamic proper t ies
of simple liquids, and the possibility of solving the in-
verse problem, that of reconstruct ing the form of the
intermolecular potential Φ ( Γ ) if the function g(r) is
known, say, from precis ion x-ray m e a s u r e m e n t s .

The f irst ser ious p r o g r e s s in the method of integral
equations was made when Kirkwood t- 1 4 ], Bogolyubov1-11',
and Born and Green1-15-1 proposed two var iants of a non-
l inear integral equation for the function g(r) using
Kirkwood's well-known superposition approximation

F3 (r,, ra, r,) = g (| r± - r2 |) g (| r - r 3 |) g (| r3 - it D

to close the infinite chain of integro-differential equa-
tions for the reduced distribution functions
F s ( r i , ..., r s ) , s = 1, 2, . . ., F 2 ( r 1 ; r 2 ) = g ( l r x - r 2 | ) . In
the Bogolyubov form, this equation, henceforth designa-
ted BBGKY, is

T+ft

|r-p|

where

(8)

An investigation of the solutions of this equation and of
their thermodynamic consequences have shown that it is
not accurate enough when it comes to numerical est i-
mates of the proper t ie s of r e a l s imple liquids, but p r o -
vides a c o r r e c t qualitative descr ipt ion 1 1 2 ' 1 6 ' 1 7 1 ' .

We shall not dwell on other at tempts to obtain more
accurate equations for the function g(r), and proceed
direct ly to the most important r e s u l t s . In 1958, P e r c u s
and Yevick, attempting to introduce collective coordin-
ates for the description of the dynamics of a liquid as a
many-body sys tem, proposed a new nonlinear integral
equation for the R D F [ 1 8 ] . Its derivation and justification
a r e based on intuitive physical considerations and in-
accurate approximations. If account is taken further-
m o r e of the extreme simplicity of the Percus-Yevick
equation (PY), it was surpr i s ing that its solution yielded
for model liquids data that compared favorably with
other known r e s u l t s . In addition, perfectly sat isfactory
agreement with the experimental data was obtained for
r e a l s imple liquids such as liquid argon. In a subse-
quent paper, Percus 1 - 1 ^ proposed a more ser ious
derivation of this equation, using a procedure in which
the functionals were expanded in functional s e r i e s . It
was demonstrated that it i s possible to obtain an ent i re
family of approximate l inear integral equations for the
function g(r), of the same type as the initial Ρ Υ equa-
tion, from which the best can be chosen. In par t icu lar ,
it became possible to obtain by this method, besides the
PY equation itself, a lso the Kirkwood- Bogolyubov equa-
tion (KB) (7)—(8) and the equation of hyper-netted

chains'-2 0"2 3-1, which was already known by that t ime (see
below). In addition, it turned out that the method pro-
posed in'-19-' paves the way for the construction of higher
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approximations and ref inements of the resul tant integral
equations for the function g(r), something miss ing from
the preceding theor ies .

The purely outward aspect of approximations of the
PY type can be explained and i l lustrated in a very s im-
ple manner. We introduce, following the c lass ical paper
of Ornstein and Zernike 1- 2 4^, together with the " c o m -
p l e t e " two-particle corre lat ion function h(r) = g(r) = 1,
also the so-called " d i r e c t " corre lat ion function C(r),
which is connected with h(r) by the relat ion

C (r) = h (r) - η j h (| r - ρ |) C (p) dp. (9)

R e g a r d l e s s of the in i t ia l ly proposed meaning of the func-
tion C(r), we sha l l t reat it a s an auxi l iary function, for
which e x p r e s s i o n (9) i s the definition. Then the required
integra l equation for g(r) could be obtained if we w e r e
able to find one m o r e connect ion between the functions
C(r) and g(r) . Al l the known l o w e r - o r d e r approxima-
t ions c o r r e s p o n d to a s s u m p t i o n s that there i s a s i m p l e
connect ion between the function C(r) and g(r ) . Thus, the
PY equation i s obtained under the assumpt ion

C (r) « g (r) (1 - e«W/*T), (10)

and the equation of the hyper-netted chains i s obtained
with the approximat ion

C (r) « g (r) - 1 - In g (τ) - (Φ (r)lkT). (11)

Both approximat ions sa t i s fy the g e n e r a l r e q u i r e m e n t s
with r e s p e c t to the asymptot ic behavior of the functions
g(r) and C(r) a s r - » . Substituting e x p r e s s i o n (10) or
(11) in the O r n s t e i n - Z e r n i k e (OZ) equation (9), we ob-
tain c l o s e d nonl inear integral equat ions for the function
g(r ) , the PY equation, and the equation of the super-
entwined cha ins , r e s p e c t i v e l y . The a c c u r a c y of the e m -
ployed approximat ion c a n be ver i f i ed and e s t a b l i s h e d
only after so lv ing the obtained integra l equation. In th is
approach, there i s obv ious ly no regu lar method for con-
struct ing approximat ions of the type (10) or (11). This
a r b i t r a r i n e s s i s part ia l ly e l iminated in P e r c u s ' method
of functional e x p a n s i o n s .

An important r o l e was p layed by the publ icat ion of a
paper by Stell 1- 2 5- 1 ' who has shown that al l the approxi-
mat ions of the d e s c r i b e d type can be obtained by s u m -
ming an infinite s e q u e n c e of d i a g r a m s d e s c r i b i n g the
c o m p l e t e s e t of al l the i n t e r a c t i o n s in the s y s t e m in a
graphic r e p r e s e n t a t i o n of the M a y e r group integra l
method. Ste l l a s s u m e s that al l the c l o s e d r e s u l t s that
can be obtained in the theory of l iquids by c o m p l e t e or
part ia l s u m m a t i o n of the M a y e r s e r i e s should be val id
for a liquid, from analyt ic-cont inuat ion c o n s i d e r a t i o n s ,
r e g a r d l e s s of the c o n v e r g e n c e radius of the init ial s e r -
i e s . Actual ly, the equation of the method of hyper-
net ted cha ins w a s indeed obtained f i r s t by a d iagram
method, e v e n p r i o r to the publ icat ion o f L 2 5 J , and w a s
named after the type of the s u m m e d d i a g r a m s . This
equation contains a l s o a s u m of a l a r g e r number of dia-
g r a m s than the P Y equation.

The topological method of part ia l s u m m a t i o n of dia-
g r a m s and the P e r c u s analyt ic method of functional
e x p a n s i o n s turned out to be equivalent. The method of
functional expans ions has the advantage that it a l lows
one to go to higher approximat ions for the integra l
equations of the init ial approximation, w h e r e a s in the

d iagram method there i s no r e l i a b l e method of s e l e c t i n g
the h igher-approximat ion d i a g r a m s . In addition, d i r e c t
s u m m a t i o n of a s e q u e n c e of h igher-approximat ion dia-
g r a m s enta i l s very g r e a t di f f icult ies and i s r a r e l y
r e a l i z a b l e . F ina l ly , we note that functional e x p a n s i o n s
make it p o s s i b l e to obtain e x a c t upper and lower bounds
for the thermodynamic quantit ies by e s t i m a t i n g the
res idua l t e r m of the expansion1-2 6-1.

The method of approximate integra l equations for the
RDF has r e c e n t l y b e c o m e v e r y wide ly used, and has l ed
to s igni f icant p r o g r e s s in the theory of equi l ibr ium
p r o p e r t i e s of s i m p l e l iquids. Many p a p e r s have been
publ ished and continue to be publ ished on this subject in
the foreign l i t e ra ture , especial ly on the Ρ Υ equation, i t s
solutions, ref inements, and applications. These equa-
tions a r e hardly touched upon in the Soviet physics
l i t e r a t u r e . In the next two chapters of this review we
p r e s e n t a cr i t ical exposition of the theory and resu l t s
of the integral-equation method in the theory of s imple
liquids and dense gases . We shall adhere to the formal-
ism of functional expansions and will not discuss dia-
gram methods. Principal attention will be payed to the
most popular and the s implest PY equation.

2. THE PERCUS-YEVICK EQUATION

a) Functional definition of the direct correlation
function. Before we proceed to derive and discuss ap-
proximate equations of the PY type, let us consider
certa in r igorous relat ions for the corre lat ion functions
of a c lass ica l system of par t ic les ; these relat ions will
be needed l a t e r on. We have in mind the connection be-
tween the correlat ion functions and the functional der-
ivatives of the parti t ion function with r e s p e c t to the ex-
ternal field. For a canonical ensemble of sys tems, these
connections have been known for a long time1-1 '2 7-1. It
will be m o r e convenient for us to adhere to the formal-
ism of the gr^nd canonical ensemble, and we shall fol-
low mainly the exposition of [ 2 8 ] . Our aim is to obtain a
functional determination of the already mentioned d i rect
corre lat ion function C(r) .

Let F (r i , . . . , r s ) , s = 1, 2, . . . , be a set of reduced
("par t ia l · ' ) distribution functions in coordinate space
for groups of s par t ic les in a many-part ic le system oc-
cupying a volume V. We normal ize the function F s by
the condition

V" j . . . ]>,(!·„ ...,T,)drt ... dr. = l.
V V

(12)

If the function F s is r e f e r r e d to a grand canonical en-

semble, then we get in place of express ions of the type

(4)-(5)

n'F.in, . . . , r s ) = 4- 2 [zW/(iV-s)!] \ ... f exp ( - U slkT) dts+i ... dr.Y,
" ,v=.s ί ν

where Ε is the grand partit ion function ^ '

Ξ = ^ (:"/#!) Γ . . . | exp ( - UN/kT) drt ... driV, (14)
S=0 V V

where η = N / V is the average part ic le-number density
and ζ is the activity connected with the chemical poten-
tial μ by the relat ion

ζ = (m/c772ji/ia)a/2 exp (μ/kT).
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In (12)—(14) it is implied through that the limit as V, Ν
— °o at η = const will ultimately be taken. In the ab-
sence of external forces, the energy UN(r1; . . . , r N ) is
defined as in Eq. (6), and owing to the homogeneity and
isotropy of the system we have for the lower-order
functions F s in the thermodynamic limit

F1(r,) = l, F2(ri, r2) = g (| r, - r2 |) etc. (15)

In the more general case, the system can be situated in
a specified external field ψ (τ). We then have for the
energy in place of (6)

)= 2 - Σ ι

If we s u b s t i t u t e h e r e the v a l u e of the s e c o n d i n t e g r a n d
f a c t o r f r o m (16), we n o t e t h a t t h e funct ion
5f/ )(r l)/6(nFi(r2 \ψ)) contains a term that is singular at
Γι = r 2 . We separate this t e r m , putting

(Μ^δψ (r,)/6 (ni\ (Γ2|ψ)) = C fc r2 | ψ) - [δ (r, - r2)/nF, (r2 | ψ)].

Taking this into account, Eq. (17) leads to an equation
for C(ri, Γ 2 |ψ)

'•\ (r, Ι ψ) fi (r2 Ι Ψ) C (r,, r2 | φ) =

= F2 (rL, r2 | φ) - Ft (rt | φ) F1 (r2 | φ) -nFl (r, | φ) (18)

(iv r3 | ψ) [f2 (r2, r3 | ψ) -F^iu | φ) F1 (r3 | ψ)] dr3.

a n d the s i m p l e p r o p e r t i e s (15) a r e no l o n g e r o b t a i n e d .
The functions F s now turn out to be functionals of φ (τ)
and have a lower spatial symmetry . To emphasize this
c i rcumstance and to be able to distinguish the functions
F s in an external field from the " u n p e r t u r b e d " func-
tions F s , we shall explicitly indicate the functional argu-
ment and write F g ( r i , . . . , Τ3\φ) and F s ( r i , ..., r s | 0 )
respect ively.

The grand part i t ion function Η now also turns out
to be a functional of φ(τ), Η = Α{Ψ} • Let the external
field undergo a smal l change by an amount 6^(r) . Then,
as follows from (14), we can find

—kTb In Ξ / 6ψ (r,) = nFx (rx | ψ).

Analogously, by varying this express ion once more with
r e s p e c t to the external field φ(τ) at another point r = Γ2,
taking into account the explicit express ion obtainable
from (13) for ΐΊ(τι\ψ), we get

(-kT)W In Ξ/δψ (r,) δψ (r2) = -kT5(nF, (τ, | ψ))/δφ (r2) ( 1 6 )
= «/•, (r, I ^ δ (r, - r2) + nHF2 (r,, r2 | ψ) - F, (r, | ψ) F1 (r2 | ψ)].

The right-hand side of this equation contains the com-
plete two-body correlat ion function in the presence of
an external field. In the same manner, by subsequent
functional differentiation with respect to the external
field, we can express any many-body corre lat ion func-
tion in t e r m s of the functional derivatives of In Η with
r e s p e c t to φ(τ) of the appropriate higher order . For
ordinary " u n p e r t u r b e d " corre lat ion functions we must
assume that the external field is only virtual and put
ψ(τ) = 0 after calculating the functional derivatives, for
example,

-kU In Ξ/δψ (r,) Ι φ==0 = nFl (r, | 0) etc.

If we re fer the reduced distribution functions F s to
the canonical ensemble, then the same resu l t s a re ob-
tained by functional differentiation of the quantity
In Ζ^{ψ} in place of 1ηΞ{ψ} with r e s p e c t to the ex-
ternal field, where Ζ^{ψ} is the canonical part i t ion
function of the system in the external field φ . In any
ensemble, the generating functional for the corre lat ion
functions is the quantity —A{i/i}/kT, where Α{ψ} is the
free energy (the thermodynamic potential) of the c o r r e -
sponding ensemble in the external field.

Let us explain now how to introduce the functional
definition of the " d i r e c t " OZ corre lat ion function C(r).
To this end, we consider the functional identity

(nt\ (r3
[6 (nF, (r3 | φ))/δψ (r2)] </r3 :-- 8 ( Γ ι - r2). (17)

Putting now φ = 0 and denoting C(ri, r2 |0) = C( | rx- r 2 | ) ,
we find, taking the properties (15) into account, that
Eq. (18) at φ = 0 coincides with (9). The function
C(ri, r 2 \φ) defined by the integral equation (18) can
therefore be regarded as a natural generalization of the
OZ correlation function C(r) to include the case when
an external field is present.

Thus, we have for the " d i r e c t " correlation function
C(r) the functional definition

(19)
- (Α^-'δφ (Γι)/δ (nF, (r2 [ψ)) | ψ _ 0 = «''δ (τχ - r2) - C ( | Γ ι - r 2 |).

T h i s i s a n a l o g o u s t o the r e s u l t (16) in the a b s e n c e of a
f ie ld:

-kT6 (nF, (Tl Ι φ))/δψ (r2) | ψ = „ = nS (rt - r2) + nJ [g (| Γ ι - r2 |) - 1].

We s e e t h e r e f o r e t h a t t h e funct ion C ( r ) s h o u l d m o r e
r e a d i l y be c a l l e d not the " d i r e c t " but t h e " i n v e r s e "
c o r r e l a t i o n funct ion.

b) The P e r c u s approximat ion. We c o n s i d e r a n a r b i -
t r a r y funct ion of two v a r i a b l e s f(u, v) wi th su f f ic ient ly
s i m p l e p r o p e r t i e s in the v i c i n i t y of t h e p o i n t (u = 1,
ν = 0), and construct with its aid the functional

Π {φ (Γ)} = / (F, (r Ι φ), φ (Γ)). (20)

At ψ = 0 we have Fi(r |0) = 1 and Π{0} = f( l , 0). If we
assume the external field to be weak, we can expand the
functional Π{ψ} into a functional Taylor s e r i e s in
powers of the deviation of the s ingle-part icle distribu-
tion function from the homogeneous distribution:

Π {φ} = Π {0} + j [δΠ φ {(r)}/&Fl (r' | ψ)]ψ = 0 ΙΛ (r' Ι Φ) - U dt1

+ (1/2) j j [62Π {φ}/δ/\ (r' Ι φ) δ/\ ( Γ " !ψ)1 * „ „

Χ [ίΊ (r' Ι Φ) - 11 [/Ί (Γ" Ι ψ) - 1! dr'dr" ( 2 1 )

If the convergence of this s e r i e s is good, which for a
specified ψ depends on the choice of the function f(u, v)
in (20), then we can confine ourselves approximately to
a smal l number of the t e r m s in the s e r i e s and obtain by
the same token for the functional n{i/)(r)} an approxi-
mate representat ion which is l inear, quadratic, etc. in
powers of the deviation of F i ( r | # ) from unity.

We confine ourselves for the t ime being to the l inear
approximation in the s e r i e s (21). From (20) we have

δΠ {φ (r)}/6f, (r' | φ ) I „,„„ = 6/ (F, (r |ψ), φ (Γ))/δ/Ί (r' [ φ) | ψ , , 0

= df/du I „„,, τ = 0 δ (r - Γ') + dfldv | „.,,, ο = 0 δψ tf/SF^r' | φ) |)|φ._. ,,.

Using (19), we get

6Π {ψ (r)}/6Fj (Γ' Ι ψ) Ι ψ = ο =
= (df/du - kT dfldv) u =i, „, ο δ (r — r') + nkT dfldv \ ,,,= 1, K==o C(| r — r'

w h e r e C ( r ) i s t h e " d i r e c t " c o r r e l a t i o n funct ion, and
s u b s t i t u t i o n in (21) l e a d s to a l i n e a r a p p r o x i m a t i o n in
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the form
/ (F1 (r | ψ), ψ (r)) = / (1, 0) + Idf/du - kT df/dv]u=i, „=(> IFj (r |ψ) - 1 ]

+ kT dfldv | u = i , ,,=o f C(\ r - r'|) [F1 (r' | ψ) - 1 ] * ' .
(22)

We sha l l c a l l such an approximat ion the P e r c u s approxi-

mat ion.

The m a i n idea of the P Y method i s that the e x t e r n a l

field ip(r) in (22) i s c h o s e n to be the m o l e c u l a r f ield

Φ ( | Γ - r o | ) of the " e x t r a " particle, which is of the same
type as the remaining particles of the system and is lo-
cated at the point Γο.1' For a canonical ensemble this
means a transition from a system of Ν particles at the
points Γι, ..., r^j at ψ = 0 to a system of Ν + 1 particles
at point r 0, Pi, . . · , r N at ψ(τ) = Φ ( | Γ - r o | ) , and analog-
ously for each term of the grand canonical ensemble.
Then

Uf, (r,, , . ., TN | Φ) = UN+1 (r 0, r,, . . ., iN),

and consequently

Fs (tv | Φ) = F.+l (r0

for all s = 1, 2, ... At s = 1 we obtain
= g(|r - Pol), and substitution in (22) yields

f(g (\T-I0 Ι), Φ ( | Γ - Γ Ο | ) ) =

= / (1, 0) + (df/du — kT df/dv) | u = 1 , „=„ I? (| r - r0 |) - 1]

+ kT dfldv | u = 1 , „=„ j C (| r - r' |) [g (| r' - r0 |) - 1] dr'.

It i s a s s u m e d here imp l ic i t l y that the perturbat ion due

to the introduction of the " e x t r a " p a r t i c l e into the s y s -

tem can be regarded as s m a l l for c o r r e l a t i o n functions

of al l ranks . Compar ing (23) with (9) we obtain an e s -

t imate for the " d i r e c t " c o r r e l a t i o n function in the

P e r c u s approximat ion

kTdfldv
V=OC (r)

= df/du , [g (r) - 1.1 - / ι Φ

( 2 4 )

+ / (1, 0),

where we have put ro = 0. Actually, we obtain here an
entire class of approximate estimates that depend on
the choice of the functions f(u, v). Subsequent substitu-
tion of C(r) from (24) into the exact equation (9) leads to
a class of approximate closed nonlinear integral equa-
tions for RDF g(r), namely equations of the PY type.

The approximation (24) ensures, for any choice of
the function f(u, ν), the correct asymptotic behavior of
the function C(r) a s r - » . In this case we have *(r)
— 0 and g(r) — 1, and independently of the manner in
which the limit g(r) — 1 is taken and the function f(u, v)
is chosen, we obtain from (24)

(r -» oo), (25)C (r) » - Φ {r)lkT

which i s the e x a c t resu l t 1 1 3 " 3 .

The c h o i c e of the functions f(u, v) in (24) can be l imi-

ted by requir ing a good d e s c r i p t i o n of the p r o p e r t i e s of

not too dense a g a s . It i s known that the f i r s t t e r m of

the e x a c t expans ions of the functions g(r) and C(r) in

p o w e r s of the dens i ty are'-1 '2 '4-1

g (r) = e-*Ml*T 11 + η j χ (r - r') χ (r) dt' + . . .], (26)

C (r) = χ (r) [1 + » j X (r - Ο Χ (Ο * ' + · • ·1. (27)

''The idea of the potential field of the "extra" particle as an external
perturbation for the system of particles was first introduced and used in
I29] for the study of the functions Fs.

where x(r) is defined by

χ (r) = e-*(r)/*r _ ! .

Substitution of the s e r i e s (26) and (27) in (24) under

the assumpt ion that the function f(u, v) d o e s not depend

explicitly on η leads, in zeroth order in n, to the condi-
tion

/ (1 + t (r), Φ (r))- / (1, 0) = {df/du - kT df/dv)u=1, »=a (r) (28)

and in first order in η to the condition

{df/du | u_1+x(r), ,-ΦΟ) - df/du | u = l , «=„) [1 + χ (r)|
(29)

= -kT dfldv | u = 1 , Ι = ο χ (r).

Sat is fact ion of the f irst condit ion (28) g u a r a n t e e s the

c o r r e c t value of the s e c o n d v i r ia l coef f ic ient for the

g a s p r e s s u r e and c o r r e c t contr ibut ions of order n2 for

al l the thermodynamic functions. Analogously, s a t i s f a c -

tion of the condit ion (29) guarantees a c o r r e c t third

v i r ia l coef f ic ient for the p r e s s u r e and c o r r e c t contr i-

butions of o r d e r n3 to a l l the thermodynamic functions

of the g a s . It i s p o s s i b l e to continue in this manner the

l i s t of r e q u i r e m e n t s on the function f(u, v) and obtain

continuously improv ing r e s u l t s for the function g(r) and

for the thermodynamic functions expanded in p o w e r s of

the dens i ty . However , if we a r e i n t e r e s t e d in descr ib ing

the p r o p e r t i e s of a l iquid and not of a m o d e r a t e l y d e n s e

g a s , such an approach i s not the best . It i s quite p o s s i -

ble and p e r m i s s i b l e to u s e approximat ions that provide

good r e s u l t s for a liquid or a s t r o n g l y c o m p r e s s e d g a s

but do not lead to e x a c t va lues of, s a y , the fourth o r

fifth v i r ia l coef f ic ient. A l ike ly e s t i m a t e of the total

s u m of a l l the t e r m s of the v i r ia l s e r i e s i s m o r e im-

portant than a c o r r e c t d e s c r i p t i o n of a s m a l l number of

the init ial t e r m s of the s e r i e s . Th i s does not perta in,

however, to the very f i r s t t e r m s of the s e r i e s , which

m u s t be e s t i m a t e d accurate ly to be able to extrapolate

the results of the theory to the case η — 0. The condi-
tions (28) and (29) must therefore be preserved.

It is difficult to indicate other general requirements
imposed a priori on the function f(u, v) in (24) and ex-
pressible in terms connected with the function f(u, v)
itself. The degree of suitability of different assump-
tions concerning the function f(u, v) must therefore be
assessed from results of the calculations of the func-
tion g(r) and of the thermodynamic properties of the
system. By now, two relatively simple approximations
have been thoroughly studied: the initial Percus ap-
proximation, corresponding to the choice of the function
f(u, v) in the form

/ (u, v) = uev/kT , (30)

and the approximation of the hyper-netted chains
(HNC), corresponding to the choice

f (u, v) = In u + (ulkT). (31)

It can be verified that both forms of f(u, v) given by (30)
and (31) satisfy the conditions (28) and (29).

The form of the functions C(r), which follows from
equation (24) in the approximations (30) and (31), was
given in Eqs. (10) and (11) above. Together with Eq. (9),
this leads to the integral PY equation for g(r)

(Γ) [g (r - r') - 1] g (τ') [1 - ] dr'(32)

and to the equation of the hyper-netted chains
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g (ή + [Φ (r)ikT\ -
(33)

- η \ \g (r - r') - l\{g (r') - 1 - In g (r') - [Φ (r')lkT]} <-

O b v i o u s l y , the f i r s t of t h e m i s p a r t i c u l a r l y s i m p l e ,
e v e n s i m p l e r t h a n the K B e q u a t i o n s (7) and (8) . It i s i n -
t e r e s t i n g that t h e l a t t e r c a n a l s o be o b t a i n e d f r o m a gen-
e r a l a p p r o x i m a t i o n s c h e m e of the P e r c u s t y p e , if one
chooses in (21) a certa in functional Π{ψ} and accord-
ingly a certa in function f(u, v) equal t o [ 2 8 : i

f (u, v) = —uVi,·,

and if one modifies very slightly the subsequent calcula-
tions.

Equations (32) and (33) as well as their corol lar ies
have been well investigated. It turns out that in the reg-
ion of the liquid state proper, the PY equation (32) is
not inferior in the quality of the resu l t s to the seemingly
m o r e accurate (33). The r e s u l t s of the corresponding
calculations a r e given and discussed in Chap. 3 of the
review.

A general shortcoming of all the s imple approxima-
tions for the function f(u, v) follows from their insuffi-
cient accuracy and is the inconsistency in the r e s u l t of
calculations of the thermodynamic c h a r a c t e r i s t i c s of
the system from Eqs . (1)—(3). The general requirement
that Eqs . (1) and (3) be mutually consistent is expressed
in t e r m s of h igher-order distribution functions, and
therefore cannot be expressed as a requirement im-
posed on the function f(u, v). The quality of the resu l t s
can be improved in p a r t even for very simple functions
f(u, v), if the expansion (21) is not confined to the l inear
approximation. Allowance for the next higher t e r m s of
the expansion in the PY equations and in the HNC equa-
tions leads to better r e s u l t s , but the equations them-
selves become very complicated. The correct ion t e r m s
in both equations include a three-body distribution func-
tion, and the integral equation for g(r) cannot be solved
in this approximation without making use of approxima-
tions for F3(ri, Γ2, Ή ) . In case there a r e likewise no
unambiguous prescr ip t ions , and it was proposed to use
the method of functional expansion also to approximate
F3(ri, r 2 , r 3 ) in the correct ion terms'- 2 8- 1. In the so-
called PY-2 equation, one expands the functional

(r,, r2 | ψ) -1 H> ψ (34)

If, as before, ^(r) is regarded as the field of the p a r t i -
cle added to the system and two t e r m s of the expansion
a r e retained, one can obtain an express ion for the
three-body distribution function in t e r m s of the RDF.
In the derivation of equations ΡΥ-Π and HNC-II one ex-
pands the functional

F2('i, r2 ΙΨ)/Λ("·ι Ι Ψ) Λ 0-2 It) ·

A n a l o g o u s l y , i n the d e r i v a t i o n of e q u a t i o n S E N - I I , the
e x p a n d e d funct iona l i s t h e l o g a r i t h m of the funct ion (34).
F i n a l l y , m e n t i o n s h o u l d be m a d e of a p a p e r [ 3 i : l in w h i c h
t h e h i g h e r a p p r o x i m a t i o n s w e r e a l s o c o n s i d e r e d , but on
the b a s i s of d i a g r a m e x p a n s i o n s . It i s p o s s i b l e to o b t a i n
in this manner the equations ΡΥ-ΙΓ and HNC-ΙΓ, which
differ somewhat from equations ΡΥ-Π and HNC-II, and
also the next higher approximations in density, which
lead to the equations PY-III and HNC-ΙΠ.

The described method of expansion in functional
s e r i e s makes it possible to obtain higher approxima-
tions to the equations of the PY type and can be used to

o b t a i n e q u a t i o n s f o r t h e p a i r d i s t r i b u t i o n f u n c t i o n s of

s y s t e m s s i t u a t e d i n e x t e r n a l f i e l d s ( e l e c t r i c , g r a v i t a -

t i o n a l , e t c . ) [ 3 2 ; l , a n d a l s o i n t h e c a s e w h e n t h e i n t e r -

p a r t i c l e i n t e r a c t i o n i s n o n - c e n t r a l 1 - 3 3 - 1 . I n t h e p r e s e n c e

o f a n e x t e r n a l f i e l d , t h e p r o b l e m of i n t e g r a t i n g t h e P Y

e q u a t i o n s b e c o m e s m o r e c o m p l i c a t e d , f o r t h e h o m o g e n -

e i t y o f t h e s i n g l e - p a r t i c l e d i s t r i b u t i o n i s t h e n v i o l a t e d .

I n t h i s c a s e i t i s n e c e s s a r y t o h a v e o n e m o r e r e l a t i o n ,

o t h e r t h a n t h e P Y e q u a t i o n , b e t w e e n t h e s i n g l e - p a r t i c l e

a n d t w o - p a r t i c l e d i s t r i b u t i o n f u n c t i o n s . S u c h a n e q u a -

t i o n c a n b e t h e f i r s t e q u a t i o n o f t h e B o g o l y u b o v c h a i n

o f e q u a t i o n s , a n d t h e l a t t e r t o g e t h e r w i t h t h e P Y e q u a -

t i o n c o m p r i s e s a c l o s e d s y s t e m f o r t h e d e t e r m i n a t i o n

o f F x ( r i ) a n d F z ( r i , r 2 ) .

c ) A n a l y t i c s o l u t i o n o f t h e P e r c u s - Y e v i c k e q u a t i o n

f o r a s y s t e m o f h a r d s p h e r e s . E v e n t h o u g h n u m e r i c a l

c a l c u l a t i o n s b a s e d o n t h e P Y e q u a t i o n a r e q u i t e n u m e r -

o u s a n d e x t e n s i v e , a n d w e r e m a d e f o r a l m o s t a l l d e n s i -

t i e s s t a r t i n g w i t h r a r e f i e d g a s e s a n d e n d i n g w i t h s t a t e s

c l o s e t o t h e t r i p l e p o i n t , t h e a n a l y t i c p r o p e r t i e s of t h i s

e q u a t i o n h a v e b e e n v e r y l i t t l e s t u d i e d . O n l y m o s t r e -

c e n t l y h a s i t b e c o m e p o s s i b l e t o s h o w t h a t t h e P Y e q u a -

t i o n , u n d e r d e f i n i t e b u t v e r y g e n e r a l c o n d i t i o n s i m p o s e d

o n t h e i n t e r p a r t i c l e p o t e n t i a l , h a s a s o l u t i o n a n a l y t i c i n

the density near η = 0; this solution is unique for den-
sity values not exceeding a certain maximum. The so-
lution r e m a i n s analytic and unique also for the HNC
equation. An analytic solution in explicit form was ob-
tained, on the basis of the PY e q u a t i o n 1 1 3 5 ) 3 6 ] 2 ) , only for
the case of a model system consisting of hard s p h e r e s .
A hard-sphere system is a convenient model for the
study of the behavior of dense gases and liquids, and
recent ly in teres t in this model has increased because
of the successful application of perturbation theory to
class ical l i q u i d s [ 3 8 > 3 9 ] . Back in 1954, Zwanzig [ 4 o : l pro-
posed to consider the at tract ion forces in liquids as
perturbat ions to a h a r d - c o r e potential and developed on
this basis a perturbation theory for c lass ical liquids.
The theory remained unused for a long t ime, however,
because of the lack of a sufficiently good zeroth ap-
proximation. Now, following the work by Barker and
Henderson 3 8 ' 3 9 - 1 , it has become obvious that the hard-
sphere system is a very good zeroth approximation for
a r e a l liquid. Therefore the analytic PC solution for a
hard-sphere system is not merely of pure academic
interes t , but is of great applied significance, since it
provides an exact zeroth approximation for a rea l
liquid. We present h e r e the solution obtained i n [ 3 5 ' 3 6 : l

for the PY equation.

We put

τ (r) =-- (r).

Substituting in (32) the hard-sphere potential for Φ ( Γ )
and introducing bipolar coordinates, we obtain after in-
tegrating with respect to the angle variable

τη (χ) = τ (χ) η < χ < η + 1 (η = Ο, 1, 2, (35)

2 ) There is one more known exact analytic solution of the PY equa-
tion for a hard-core potential with square well, under the condition that
one considers the limit of infinitesimally narrow and infinitesimally
deep well (hard sphere with surface adhesion) [3 7]. This solution is based
in final analysis, however, on a solution of the hard-sphere problem, and
will not be considered here.
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where x = r/D is the dimensionless length (D is the
diameter of the hard sphere) and H(t) is the Heaviside
function. It can be verified directly from (35) that the
fourth and higher derivatives of τ(χ) are discontinuous
at χ = 1, while the second and higher derivatives are
discontinuous at χ = 2. These discontinuities give rise
in turn to discontinuities of the higher-order deriva-
tives at χ = 3, 4, etc. It is therefore natural to seek a
piecewise-analytic solution of (35) with derivatives
that are discontinuous at χ = 1, 2, 3, ... We define
the functions τη(χ) by the equations

f sx(s)ds) x-2nnD 3 f t(s)[ f Η (t - i) τ (t) dt'j ds,
ο ο > ,

[

Taking the Laplace transform of (35) and using the
definition (36), we obtain

(37)

1
- f τ0(

where η = πϋ3η/6 is the dimensionless density. On the
basis of (37) we can establish a set of sufficient condi-
tions imposed on the function +0(x), such that τ(χ) is a
piecewise-analytic function. To this end we transform
(37) by successive integrations by part into

(38)

where

T0(s)<fa]-2№

β= Σ [τί"(1)/λ'+11, γ=12ηλ-ι 2 Κ»
1 0 10

6 = 1 — 24ηλ"1 2 [τ<2ί>(0)/λ2'+1],
1=0

(— 1)'

(39)

(the superscr ip t of To indicates the o r d e r of the deriva-
tive). If we expand the right-hand side of (38) in powers
of e and equate the corresponding coefficients in the
left and r ight hand s ides of (38), we can find the l imita-
tions imposed on the derivatives of the function TO(X) at
the points χ = 0 and χ = 1. This procedure leads to very
cumbersome formulas, and we shall not write out here
the corresponding re la t ions . Instead, we can use the
fact that if a + ββ~λ is a factor of y e ~ 2 * + 6e λ + e,
then al l these l imitations can be shown to be automatic-
ally satisfied. The condition for division without a r e -
mainder is

α (δ — αγβ"1) = εβ.

Substituting h e r e formulas (39) and equating l ike p o w e r s

of λ 1 , we obtain
1

< " (0) -= 0, < " (0) = 1 + 24η j sto (s) ds, τ'," (0) = - 12ηΚ«· (Ι)]2, . . .

These equations determine uniquely the function το(χ)
and lead to the resu l t

τ0 (x) = ax + bx2 + ex", (40)

α = (2η + 1)2/(η - I) 1, fc = - 3η (2+η)2/2 (η - I)4,

c = η (2η + 1)2/2 (η - Ι) 4 .

Knowing the function το(χ) we can obtain the equation of
state. Substitution of (40) in (1) and (3) leads respec-
tively to the equations

= (1 + 2η + 3η2)/(1 - η)2,

- η)3

(41)

(42)

(the pole of the pressure at η = 1 corresponds to a
physically unattainable state, since η < 1 even for the
closest packing).

It follows from the obtained equations of state that
the pressure predicted by the PY theory is higher than
the pressure of an ideal gas (it is higher by one order
of magnitude for a dense system at η ~ 0.5). In a liq-
uid, however, the pressure is known to be much less
than in a gas at the same temperature. Therefore the
model system of hard spheres accounts poorly for the
"liquid" pressures in the Ρ Υ theory. It can also be
seen that the two equations of state are equal to each
other to order τ?2 inclusive. The difference between
them becomes negligibly small in comparison with the
principal term at

Figure 1 shows plots of the equation of state for a
hard-sphere system in accordance with the PY equation,
and for comparison the results of calculations by the
BBGKY (Bogolyubov- Barker- Green- Kirkwood- Yvon)
equation, the HNC equation, and the MD equation (cen-
tral solid curve) ί1-41-1, p. 85). It can be seen that the
BBGKY theory gives the worst result, whereas the best
agreement with the computer experiment is obtained
with the PY equation in conjunction with the compressi-
bility equation. It is interesting that the curves calcula-
ted from Eqs. (41) and (42) are on opposite sides of the
liquid branch obtained in the computer experiment.
Certain workers therefore prefer to use not the virial
equation (VE) or the compressibility equation (CE) as
the equation of state of the hard spheres, but a certain
combination of the two. For example, fair agreement
with the MD results is obtained by the simple arithmetic
mean of these equations . On the other hand, if the
equation of state is written in the form

pl(nkT) = (1 + η + η 2 - η»)/(1 - η)8

(which differs from the arithmetic mean in that η3 in
the numerator is proceeded by 1 instead of 1.5), then
this equation is in better agreement with the computer
calculations for hard spheres than the Pade approxima-
tion of Ree and Hoover 1^.

From the known function ro(x) it is easy to determine
the direct correlation function in the Percus approxima-
tion. From relation (10) we obtain for a system of hard
spheres, with allowance for the definition of the func-
tion T(X),

C(x) =
— (a + bx + cx3),

0,
(43)

where

The direct correlation function is "short-range," as is
proposed in any theory using C(x). Although the direct
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2(VE)//

/KCE)
// KVE)

/ 2(CE)

o,e

FIG. 1. Equations of state for a system of hard spheres in accord-
ance with PY (1), HCN (2), and BBGKY (3), obtained using the virial
equation and the compressibility equation.

corre lat ion function has no immediate physical meaning,
knowledge of this function makes it possible to deter-
mine the most important character i s t ic of the c o r r e l a -
tion s t r u c t u r e of the sys tem, namely i ts s t r u c t u r e fac-
tor . By definition, the s t r u c t u r e factor of S(k) is given
by

S (k) = 1 + η \ [g (r) - 1] e~ik'dT.

If we t a k e t h e F o u r i e r t r a n s f o r m of (10), w e c a n e x p r e s s
t h e F o u r i e r t r a n s f o r m of t h e R D F i n t e r m s of t h e
F o u r i e r t r a n s f o r m of the d i r e c t c o r r e l a t i o n funct ion,
o b t a i n i n g for t h e h a r d - s p h e r e s y s t e m

S (kD) = [1 - nC (kD)]-1, (44)

C (kD) = —4nD3 \ s2 [sin (skD)/skD] (a + 6s + cs3) ds. (45)

w h e r e

Al though the d i r e c t c o r r e l a t i o n funct ion for r e a l l i q u i d s
d o e s not t e r m i n a t e a s a b r u p t l y a s (43) (cf. (25)), the u s e
of the s o l u t i o n for h a r d s p h e r e s a s a n a p p r o x i m a t i o n i n
the c a l c u l a t i o n of the s t r u c t u r e f a c t o r l e a d s to s a t i s f a c -
t o r y a g r e e m e n t wi th t h e e x p e r i m e n t a l d a t a . Ashcroft '- 4 4 - '
u s e d t h e s o l u t i o n (44)—(45) to c a l c u l a t e the s t r u c t u r e
f a c t o r s of n o b l e g a s e s , u s i n g t h e s p h e r e d i a m e t e r D a s
t h e p a r a m e t e r .

F i g u r e 2a s h o w s a t y p i c a l p l o t of S(k) for A r and t h e
c u r v e s o b t a i n e d f r o m the e x p e r i m e n t s of A i s e n s t e i n a n d
G i n g r i c h [ 4 5 : l , c o r r e s p o n d i n g to the t e m p e r a t u r e s
84.4 ( 1 - 2 ) and 144 .1 °K ( 3 - 4 ) a n d d e n s i t i e s 1.407 and
0.87 g / c m 3 , r e s p e c t i v e l y . Good a g r e e m e n t a t both d e n -
s i t i e s i s o b t a i n e d wi th D = 3.44 A. T h e d a t a of G i n g r i c h
a n d T o m p s o n , t a k e n n e a r t h e t r i p l e p o i n t , a r e a l s o w e l l
d e s c r i b e d n e a r the p r i n c i p a l p e a k (a t D = 3.46 A) .

T h e R D F for a s y s t e m of h a r d s p h e r e s c a n be o b -
t a i n e d by s u b s t i t u t i n g TO(X) i n (37) . By o b t a i n i n g t h e
Laplace transform of the function τ(χ) in this manner,
we obtain the distribution function itself by taking the
inverse t rans form. The distribution function has a very
complicated analytic form, and we confine ourselves
h e r e only to a plot of g(r) (Fig. 2b) based on the data of
of47'™1, re ferr ing the r e a d e r to 1 1* 5 '* 7" 4 9 1 1 for detai ls .

The analytic expression obtained from the PY equa-
tion for the RDF is usually assumed in pract ical calcu-

2.0

J
4 -~^r

/ /'
f I/ /'

y J
^- γ''

2

ι?/

ι 1

to Zff 10 „ 40
ft, A'1

FIG. 2. a) Dependence of structure factor S on k for Ar (solid
curves-from experiment on x-ray diffraction, dashed—from PY equa-
tion) for hard spheres with D = 3.44A t 4 4 ] ; b) RDF for a system of
hard spheres in accordance with the PY equation at densities nD3 = 0.3
(1), 0.7(2), and 1.1 (3).

lations of the proper t ie s of a system of hard spheres to
be exact, in spite of the approximate character of the
PY equation. If we go beyond the framework of the PY
approximation, then we can obtain improved values of
the RDF by introducing a phenomenological correct ion
t e r m in the analytic solution of the PY equation. It is
usually chosen such that the compressibi l i ty and vir ia l
equations become self-consistent'-5 0-'.

3. RESULTS OF NUMERICAL CALCULATIONS BY
THE INTEGRAL-EQUATION METHOD

a) Calculations of the RDF and of the thermodynamic
characteristics. The solution of the integral equations
for the RDF depends strongly on the form of the inter-
part ic le interaction potential. Since at the present t ime
we do not know the exact form of the potential for liq-
uids, it becomes necessary to use model potentials in
the solution of the integral equations. To est imate the
c o r r e c t n e s s of the resu l t s it is necessary to know the
accuracy of the corresponding integral equations. The
methods used to verify the c o r r e c t n e s s of the integral
equations for the R D F can be broken up into two groups:

1) Calculations based on s imple potential functions,
wherein the obtained equations of state (virial coeffi-
cients) a r e compared with the exact theoretical values
or, in the case of m o r e complicated potentials, with the
data of the MC or the MD methods.

2) More rea l i s t ic potentials (for example, of the
Lennard- Jones type) a r e used and the resu l t s a r e veri-
fied by comparison with relevant experimental data.
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Table I
vc

numbei

4th

5th

6th

Calculation
method

Exact
PY
PY-2
Exact
PY
PY-2
ΡΥ-1Γ

Exact
PY
PY-2
PY-II'
PY-III

Rods

1
1
1

1
1
1
1

1
1
1
1
1

Squares

3,667
3.778
3.667

3.7222
4.2361
3.639
3.7222

3.02500
4.42000
3.020
3.11204
3.02500

Cubes

11.333
12.289
11.333

3.1597
12.4303

1.701
3.2431

- 1 8 . 8 7 9 6
9.2067

—21,203
—13.5939
—18.8777

Spheres

0.2869
0 2969
0.2869

0.1097
0.121
0.107
0.1098

0.0386
0.0449

Table Π
vc

number
4th

5th

6th

Calculation
method

Exact
HNC
HNC-2

Exact
HNC
HNC-2
HNC-II
Exact
HNC
HNC-II
HNC-III

Rod

1
0.9167
1

1
0.800
1.0833
1

1
0.70278
1
1

Squares

3.667
2.944
3.667

3.7222
1.8042
4.039
3.6656

3.02500
0.96500
2.94468
3,00926

Cubes

11.333
6.630

11.333

3.1597
-6.9394

5.198
2.0301

-18.8796
—2.2133

—16.9473
—19*0401

Spheres

0.2869
0.2092
0.2869

0.1097
0.049
0.122
0.1065

0.0386
0.0281

Table ΠΙ

η·

0.354
0.573
0.668

Pade approxi-
mation

2.24
3.99
5.25

PY-II
andVE

2.24
4.02
5.22

PYandVE

2.22
3.81
4.89

PY and CE

2 25
4.05
5.36

HNC
:andVE

2.32
4.39
5.94

HNC
andCE

2.19
3.65
4.59

T a b l e I V

»·

0.354
0.573
0,6:;8

Pade approxi-
mation

4.22
10.50
16.35

PY-II
andVE

4.27
10,1
15.7

PYandVE

4.03
9.41

13.56

PYandCE

4.26
10.66
16.18

HNC and VE

4.54
12.51
18.54

HNC
andCE

3.96
8.60

12.00

T h e f i r s t g r o u p o f m e t h o d s h a s t h e a d v a n t a g e t h a t

t h e e q u a t i o n s c a n b e r i g o r o u s l y v e r i f i e d ( a l t h o u g h t h e

r e s u l t m a y n o t d e s c r i b e t h e b e h a v i o r o f . r e a l l i q u i d s ) .

I n t h e s e c o n d g r o u p , a n y c o n c l u s i o n s c o n c e r n i n g t h e a p -

p l i c a b i l i t y o f t h e d i s c u s s e d e q u a t i o n s b e c o m e i n d e f i n i t e

t o a c e r t a i n d e g r e e , o w i n g t o t h e i n a c c u r a c y o f t h e p o -

t e n t i a l f u n c t i o n u s e d i n t h e c a l c u l a t i o n s . I t i s t h e r e f o r e

p r e f e r a b l e t o u s e m e t h o d s o f t h e f i r s t g r o u p , a l l t h e

m o r e s i n c e t h e m o s t r e c e n t d e v e l o p m e n t s o f c o m p u t e r

t e c h n o l o g y m a k e i t p o s s i b l e t o p e r f o r m c o m p u t e r e x -

p e r i m e n t s w i t h s u f f i c i e n t l y c o m p l i c a t e d f o r m s o f t h e

i n t e r p a r t i c l e p o t e n t i a l . B y n o w , m a n y c o m p u t e r c a l c u l a -

t i o n s w e r e m a d e t o o b t a i n t h e e q u a t i o n s o f s t a t e a n d

R D F o f d i f f e r e n t s y s t e m s : o n e - , t w o - , a n d t h r e e -

d i m e n s i o n a l s p h e r e s , p a r t i c l e s w i t h L e n n a r d - J o n e s

i n t e r a c t i o n , e t c . A p a r t f r o m t h e s t a t i s t i c a l e r r o r s i n -

h e r e n t i n c a l c u l a t i o n s w i t h a r e l a t i v e l y s m a l l n u m b e r o f

p a r t i c l e s a n d a f i n i t e c a l c u l a t i o n t i m e , c o m p u t e r e x -

p e r i m e n t s y i e l d e x a c t r e s u l t s f o r a s p e c i f i e d p o t e n t i a l .

T h e p e r t u r b a t i o n s i n t r o d u c e d i n r e a l s y s t e m s b y m a n y -

p a r t i c l e f o r c e s a n d b y i n e x a c t k n o w l e d g e o f t h e f o r m o f

t h e p o t e n t i a l d o n o t a p p e a r i n c o m p u t e r c a l c u l a t i o n s .

T h e r e f o r e d a t a o b t a i n e d w i t h a c o m p u t e r e x p e r i m e n t

c a n s e r v e a s a c r i t e r i o n f o r t h e v a l i d i t y o f a n y t h e o r y

u s e d t o c a l c u l a t e t h e r m o d y n a m i c c h a r a c t e r i s t i c s o r

R D F . -

L e t u s e x a m i n e t h e r e s u l t s o f n u m e r i c a l i n t e g r a t i o n

f o r t h e s i m p l e s t f o r m s o f t h e i n t e r p a r t i c l e p o t e n t i a l .

V e r l e t 1 ' 2 8 · ' u s e d t h e P Y a n d H N C e q u a t i o n s f o r m o d e l

o n e - , t w o - , a n d t h r e e - d i m e n s i o n a l g a s e s o f h a r d r o d s ,

s q u a r e s , a n d c u b e s . S i x v i r i a l c o e f f i c i e n t s ( V C ) w e r e

c a l c u l a t e d f r o m t h e P Y a n d P Y - 2 e q u a t i o n s a n d f i v e

c o e f f i c i e n t s i n t h e c a s e o f t h e H N C a n d H N C - 2 e q u a t i o n s .

T h e s e r e s u l t s c a n b e s u p p l e m e n t e d w i t h c a l c u l a t i o n s o f

a f i f t h V C b y m e a n s o f e q u a t i o n s P Y - I I ' a n d H N C - I I ' ,

a n d o f a s i x t h V C b y e q u a t i o n s P Y - I I I a n d H N C - I I I 1 - 3 1 - 1 .

T h e r e s u l t s of 1 - 2 8 - 1 a n d [ 3 1 ] a n d o f a n a l o g o u s c a l c u l a t i o n s

f o r a s y s e t m o f h a r d s p h e r e s ' - 5 1 " 5 3 - 1 a r e c o m p a r e d w i t h

t h e e x a c t r e s u l t s i n T a b l e I ( o n t h e b a s i s o f t h e P Y

e q u a t i o n s ) a n d T a b l e I I ( o n t h e b a s i s o f t h e S E N e q u a -

t i o n ) .

As seen from the tables, the Ρ Υ equation gives the
correct values of the fourth, fifth, and sixth VC for
gases of hard rods. This is due to the fact that the Ρ Υ
equation is exact for this case1-25-1. In the remaining
cases, there is no such agreement, and the discrepancy
with the exact values increases with increasing number
of the VC. However, even in the next approximation, on
the basis of equations PY-2 and HNC-2, four virial co-
efficients turn out to be exact. The use of the HNC-2
equation improves somewhat the agreement between the
calculations of the fifth VC with the exact ones, but one
can see that the Ρ Υ approximation gives better results.
In the PY-2 approximation, the sixth VC differs from
the exact one for a system of hard squares only in the
fourth decimal place, and is somewhat less accurate
for hard cubes. The best agreement between the theory
and the exact values is obtained in the ΡΥ-ΠΙ theory:
the sixth VC for both hard cubes and hard squares prac-
tically coincide with the exact values.

It is interesting to compare the other thermodynamic
characteristics of the simplest model systems with
those calculated by the PY equation. For the system of
hard spheres there are reliable data from three sour-
ces: M D [ S 1 ] , MC-method calculations [ 5 5 "" ] , and the
seven- term virial expansion with the Pade approxima-
tion1-6-'. These three methods lead to identical results
in the liquid-state region, and can be regarded as accur-
ate. Table III compares the values of the compressibil-
ity factors p/nkT, obtained using the VE (1) on the basis
of the PY-2 equation, with the exact values obtained
from an analytic solution of the PY equations (41) and
(42) and from the HNC equation1-58] with numerical cal-
culations1-59"62^. A similar comparison is given in
Table IV1-58-1 for the reciprocal compressibility
(kT)"1(8p/8n)T.

As seen from these tables, the PY-2 equation agrees
satisfactorily with the exact values and is much better
than the Ρ Υ equation and the HNC at high densities,
while the PY equation is better than the HNC.

Figure 3 shows plots of the RDF for a system of
hard spheres. The PY equation leads to the largest
deviation of the RDF from the exact value, and the
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FIG. 3. RDF for a system of hard
spheres at nD3 = 0.068. The dashed
and solid curves were calculated from
the PY and PY-II equations, and the
circles are the result of MC calcula-
tions ["] .

r/S

P Y - I I e q u a t i o n y i e l d s a c u r v e t h a t a l m o s t c o i n c i d e s

wi th t h e e x a c t o n e .

It i s s e e n f r o m t h e p r e s e n t e d r e s u l t s of t h e n u m e r -

i c a l i n t e g r a t i o n of t h e P Y e q u a t i o n and HNC t h a t the u s e

of t h e v i r i a l e q u a t i o n (1) o r the c o m p r e s s i b i l i t y e q u a t i o n

(3) to c a l c u l a t e the t h e r m o d y n a m i c c h a r a c t e r i s t i c s l e a d s

to d i f f e r e n t v a l u e s , with d i f f e r e n c e s t h a t a r e s o m e t i m e s

q u i t e a p p r e c i a b l e . M a n y a u t h o r s h a v e t h e r e f o r e p r o -

p o s e d " s e l f - c o n s i s t e n t " t h e o r i e s by i n t r o d u c i n g i n t o t h e

P Y e q u a t i o n o r t h e HNC a p h e n o m e n o l o g i c a l p a r a m e t e r

c h o s e n to r e c o n c i l e t h e v i r i a l c o e f f i c i e n t s c a l c u l a t e d in

a c c o r d a n c e wi th t h e VE o r t h e C E : 6 3 " 7 0 ] . Al l t h e s e

t h e o r i e s a r e b a s e d i n one way o r a n o t h e r on r e p l a c i n g

t h e P Y e x p r e s s i o n (10) for C ( r ) by o t h e r e x p r e s s i o n s

with i n d e t e r m i n a t e p a r a m e t e r s . F o r e x a m p l e ,

Rowlinson 1 - 6 5 - 1 s t a r t e d wi th the e x p r e s s i o n

C (r) = g (r) (1 - μ \g (r) _ 1 _ ln (g (r) (46)

It is obvious that this yields the P e r c u s approxima-
tion at μ = 0 and the HNC equation at μ = 1. If μ is as-
sumed to be a function of the density and the tempera-
ture, it is possible to obtain agreement between the VC
calculated by the VE and the CE.

A diagram analysis c a r r i e d out by Morita1-70-1 has
shown why it is reasonable to choose the s t ructure of
the self-consistent approximations in the form (46). If
we analyze the s t ructure of the d iagrams summed in
the PYand HNC approximations, it turns out that for
each diagram Γ ι taken into account in the HNC theory
but neglected in the PY theory it is possible to find
severa l d iagrams Γ2 among those discarded in the HNC
approximation, such that the d iagrams Γ2 part ia l ly can-
cel the contribution of the diagrams Γ χ . However, since
the cancellation is nevertheless incomplete, the dia-
g r a m s Γι can be included in the calculation but with a
cer ta in weight. The p a r a m e t e r in (46) does indeed play
the role of such a weighting factor.

We proceed now to calculations with the more r e a l i s -
tic Lennard-Jones (LJ) potential

Φ (r) = 4ε [(σ/r)12 - (σ/r)·].

F i g u r e 4 s h o w s the i s o t h e r m s T * = 2.74 ( the t e m -

p e r a t u r e i s e x p r e s s e d in u n i t s of e/k) o b t a i n e d on the

b a s i s of d i f f e r e n t t h e o r i e s of R D F a n d f r o m two p o s s i b l e

e q u a t i o n s of s t a t e (VE a n d C E ) . A s s e e n f r o m t h e d i a -

g r a m s , a t s u c h r e l a t i v e l y h igh t e m p e r a t u r e s t h e P Y

e q u a t i o n g i v e s good a g r e e m e n t wi th the e x a c t r e s u l t s .

L e t u s e x a m i n e now the c r i t i c a l r e g i o n . T a b l e V l i s t s

ff.4 aa

FIG. 4. Equation of state by the PY theory with LJ potential (iso-
therm T* = 2.74) using the VE (a) and the CE (b). The upper solid
curves were calculated by the MD method [ 7 1 ] , the lower ones by the
BBKGY theory, and the dash-dot and dashed curves were calculated by
the HNC and PY theories, respectively.

t h e c r i t i c a l c o n s t a n t s (in d i m e n s i o n l e s s u n i t s ) c a l c u l a t e d

on the b a s i s of d i f f e r e n t i n t e g r a l e q u a t i o n s with L J p o -

tent ia l 1 - 7 1 - 1 . An a n a l y s i s of t h e s e d a t a s h o w s t h a t h e r e ,

too, the Ρ Υ equation is better than the HNC or BBGKY
equation. In this temperature region, the BBGKY equa-
tion gives very poor cr i t ica l constants; although the Ρ Υ
and HNC theories a r e inaccurate, the discrepancy is
relatively smal l , on the order of 10%.

Let us examine, finally, the region of low tempera-
tures . In this region, both the PY equation and the SEN
equation give much worse results '- 4 8 ' 7 2 - 1 . The thermo-
dynamic proper t ie s of a system with LJ potential, calcu-
lated by the PY equation, a r e compared in Table VI with
the MD data (T* and n* a r e the dimensionless tempera-
ture and part ic le-number density, and Ej is the internal
e n e r g y ) : 4 7 ] . It follows from this table that the PY equa-
tion gives incorrec t values of the p r e s s u r e in the liquid
phase, r e g a r d l e s s of whether the VE o r the CE is used.
Both values of the p r e s s u r e differ from the exact ones
by m o r e than 100%. It is interest ing to note, however,
that the exact values lie again between those calculated
by the PY method, and in those cases when p c o r t l p is not
negative, the s imple ar i thmetic mean deviates from the
exact value by only 10%.

The p r e s s u r e is very sensitive to even smal l e r r o r s
in the RDF. In this respect , the internal energy is a
m o r e " f a v o r a b l e " function. We defer the discussion of
the fact to Sec. C.

Let us examine the resu l t s of the RDF calculation
for sys tems with LJ potentials at different tempera-
tures . Broyles and co-workers'-7 3-' investigated the
high-temperature i sotherm T* = 2.74 at different densi-
ties up to n* = 10/9, on the basis of the BBGKY, PY,
and HNC theor ies . The best agreement with the RDF by
the MC method is obtained from the PY equation. The
BBGKY equation leads to the worse r e s u l t s , especially
at high densit ies (Fig. 5).

At low t e m p e r a t u r e s , as seen from Fig. 5b, the RDF
calculated from the PY equation differs insignificantly
from the exact one. The first RDF peak obtained by the
PY method is somewhat broader and higher than that
obtained by the MD method, and the maxima and minima
a r e shifted somewhat towards lower distances. On the
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Table V Table VI
Calculation

method

BBGKY
BBGKY
HNC
HNC
PY
PY
PY-II
PH-II
MD
Experimental for

Ar

T*
CI

1.45+0.03
1.58+0.02
1.25+0.02
1.39+0.02
1.25+0.02
1.32+0.02
1.36+0.04
1.33+0.03
1.32-1.36

1.26

n*
cr

0.40+0.05
0.40+0.03
0.26+0.03
0.28+0.03
0.29-0.03
0.28+0.03
0.35+0.03
0.33+0.04
0,32-0.36

0.316

p* In* kT·*cr a ci

0.44+0.04
0.48+0.03
0.35+0.03
0.38+0.04
0.30+0.02
0.36+0.02
0.31+0.03
0.34+0.03
0.30—0.36

0.297

Equation
of state

VE
GE
VE
CE
VE
CE
VE
CE

—

whole, however, the agreement is quite satisfactory.
Thus the data of the PY theory below the critical

point should be used with great caution when the pres-
sure is calculated from the RDF, whereas the energy is
obtained from the RDF with sufficient accuracy.

So far we have considered the results of numerical
integration of the equations for the RDF in comparison
with the exact data. It is of interest to investigate the
applicability of the PY and HNC theories to real sys-
tems, primarily noble gases. A detailed investigation
of this question was carried out by Throop and
Bearman1-713. They calculated with the aid of the PY
equation the thermodynamic functions and the RDF for
the temperatures and densities near the coexistence
curve. The comparison was made with the experimental
data on Xe and Ar'-75-' and with analogous calculations
by the HNC equations i l f > 1. Near the coexistence curve,
for the isotherm T* = 1.5 up to n* = 0.3, the pressures
calculated by the HNC theory with the VE are closer to
the experimental values of the pressure for Xe and Ar
than those obtained by the PY theory, but the difference
between the two theories is extremely small (less than
0.5%). For larger densities, η* ^ 0.3, the PY theory
is better. At n* = 0.6 the pressure according to PY is
29% higher than the experimental pressure for Ar and
49% higher according to the HNC theory. In calculations
with the VE, the qualitative conclusions remain the
same as before, but at densities n* > 0.3 the agree-
ment between the theoretical and experimental values
for Xe is much less satisfactory than for Ar, namely, at
n* = 0.6 the HNC and PY pressures exceed the experi-
mental values by 100 and 75%, respectively. Both the
difference between the results of the PY and HNC
theories and the difference between these theories and
experiment increase with increasing density (Fig. 6a).
As seen from the figure, the intrinsic inconsistency of
the PY theory at this temperature is much less than in
the HNC theory, and the inconsistencies in both theories
increase with increasing density. As to the internal
energy, it is practically the same in both theories, and
the curves practically coincide. This is valid also with
respect to the entropy. The deviation of these thermo-
dynamic quantities from experiment increases with
density and is of the order of fractions of 1%.

We now compare the results of the calculations for
different temperatures. It turns out that for Ar at all
the temperatures considered in1-74-1 (T* = 1.4, 1.89, and
3.57) the experimental equation of state lies between
p c o r n pand pvjj.), and with increasing temperature the
agreement between the results with the VE and CE im-
proves. At n* = 0.6, the difference between P c o m D and
p v i r is 48% at T* = 1.4, 18% at T* = 1.89, and 4% at
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FIG. 5. The RDF as a function of the distance: a) for a density n* =

10/9 and a temperature T* = 2.74 on the basis of the equations of PY
(1), HNC (2), BBGKY (3) with LJ potential (thick curve-by the MC
method) [73], b) calculated from the PY equation (dark circles; light
circles-MD calculations, T* = 0.88, n* = 0.85) [48].

T* = 3.57. For much higher temperatures, the virial
and compressibility isotherms almost coincide, differ-
ing by 0.5% at n* = 0.6.

In the comparison of the theoretical calculations with
the experimental results, attention was called to the
following circumstance. The agreement with experiment
is very sensitive to the choice of the parameters of the
LJ potential. For example, the value of p/nkT obtained
at T* = 1.3, n* = 0.6, and e/k = 119.3°K and σ = 3.43 A
differs by 11% from the value obtained when the param-
eters e/k = 119.8° Κ and σ = 0.3.405 A are used. There-
fore the seeming satisfactory agreement between theory
and experiment for Ar and the less satisfactory agree-
ment with the data on Xe may be due to a certain leeway
in the choice of the parameters, or else to the fact that
the LJ potential may not be applicable to Xe.

We present also the results of calculations by
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FIG. 6. a) Equation of state (isotherm T* = 1.4) for a system with
LJ potential on the basis of the PY and HNC equations (dark circles-
experimental points for Ar, light-for Xe: 1-HNC, 2-PY) [ 7 4 ] ; b) the
RDF obtained from the PY equation with LJ potential (solid curves—
PY equation, circles—experimental results [77] for Ar: 1—T* = 1.361,
n* = 0.167; 2-T* = 1.319, n* = 0.319; 3-T* = 1.194, n* = 0.541 and
4-T* = 1.277, n* = 0.541).

W a t t s [ π ] with an LJ potent ia l . F igure 6b s h o w s p lots

of the R D F for four s t a t e s that differ in dens i ty and

t e m p e r a t u r e , c o m p a r e d with the e x p e r i m e n t a l r e s u l t s

for Ar (e/k = 119.8ΟΚ, σ = 3.405 A). An analysis of the
plots shows that the agreement between theory and ex-
periment is satisfactory. It is interesting that it is
better at high densities.

The p*/kT* data in Table VII show that the LJ poten-
tial accounts satisfactorily for the thermodynamic
properties of argon in the PY approximation in a suffi-
ciently wide range of temperatures and densities when
the VE is used C 7 7 ] .

b) Determination of the interparticle potential. So
far, we have assumed that the potential is given and we
have assessed the accuracy and validity of the corre-
sponding integral equation by solving integral equa-
tions for the RDF and comparing the results with rele-
vant data. There is a possibility, however, of posing
the inverse problem, namely, to reconstruct the form
of the interparticle potential from the known RDF.
Mikolaj and Pings [ 7 8 > 7 9 : i pointed out that besides yield-
ing the potential, the realization of such a program
makes it possible to verify by direct experiment the
equations for the RDF. If we solve the PY and HNC
equations relative to the potential Φ, we obtain

Φ Ρ Υ (r) = kT ln{[£ (r; T,n)-C (r; T, n)]lg (r; T, «)},

ΦΗΝΟ (r) = kT [g (r; Τ, ή) — i — C (r; T, n) - In g (r; T, n)l.

If the PY and HNC equations a r e c o r r e c t , then the ob-

tained potent ia l s should not depend o n the dens i ty and

temperature w h e n the v a l u e s of g(r) and C(r) a r e s u b -

stituted in the right-hand side. They turn out, however,
to depend on the thermodynamic state of the sys-
t e m [ 7 8 > 7 9 ] . Mikolaj and Pings investigated the scatter-
ing of x-rays by argon near the critical point. Using
these experiments, they reconstructed with the inter-
particle potential the aid of the PY equation and noted
that Φργ(Γ) depends on the density (Fig. 7a). The figure
shows plots of the potential energy, obtained from the
PY equation at different densities for the -110° C iso-
therm of liquid argon. The depth of the potential well
was found to be -120°C at a density 0.280 g/cm3 and
-90°C at 0.780 g/cm3 (the critical density of argon is
0.536 g/cm3).

The quantitative aspect of these data should be
treated with a certain caution, since it is well known
that the accuracy of experiment on x-ray scattering is
low and can lead to appreciable errors in the determina-
tion of the structure factor (and consequently also
Φ(Γ)) 1 - 8 0 - 1 . The correctness of the qualitative picture of
the potential, however, is not subject to any doubt. It
can be assumed that the change of the depth of the po-
tential well is due to the inaccuracy of the PY equation
at the investigated densities. The validity of this as-
sumption can be easily verified, since we have at our
disposal exact data on the RDF and on the structure
factor, calculated by the MD method for a Lennard-
Jones liquid. If we regard this structure factor as ex-
perimental and reconstruct Φ(Γ) on its basis using the
PY equation, then the potential obtained in this manner
differs only insignificantly from the initial LJ potential
in the temperature interval of interest. Thus, for T*
= 1.33 and n* = 0.4, the depth of the well of the calcula-
ted potential is only 1% lower than the depth of the well
of the LJ potential in the region of the minimum. To be
sure, at large distances the calculated potential is
deeper than the initial one. However, in any case the
error does not exceed 4%. Therefore the decrease of
the depth of the potential well with increasing density
cannot be attributed in this density interval to the in-
accuracy of the PY equation. To interpret such experi-
ments it is apparently necessary to assume that the
observed dependence of potential on the density is due
to the increasing role of multiparticle interactions with
increasing density of the liquid. From this point of view,
the LJ potential should be regarded as a certain effec-
tive potential that takes correct account of all the inter-
actions at not too high densities, and becomes unsatis-
factory at high densities.

In concluding this section, we present plots of a po-
tential obtained from the RDF (determined by the MD
method) using the PY equation at different temperatures
and densities (Fig. 7b). The LJ potential that should be
obtained if the PY equation were exact is shown by the
dashed curve. We see that at densities above critical
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FIG. 7. Potential energy curves for Ar, obtained from the PY equa-
tion: a) for different densities at Τ = 110°C (circles-experimental points
for an LJ potential with parameters a = 3.405A, e/k = 119.8 °K; ρ =
0.780 (1), 0.536 (2) and 0.280 g/cm3 (3) [79]), b) with RDF calculated
by the MD method ["] (1-T* = 1.328, n* = 0.5426, 2-T* = 1.05, n* =
0.75 and 3-T* = 1.127, n* = 0.85).
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FIG. 8. Equation of state of Lennard-Jones liquid according to
PY: a) T* = 1.38 isotherm (light and dark circles-results of exact
computer calculations, crosses-experimental results [85]; 1-PY, 2-
PY-2, 3-PY(2)); b) T* = 0.72 isotherm (dark and light circles-re-
sults of exact computer calculations, circles with dashes-experimen-
tal points [8S]: 1-PY, 2-PY(2)).

the PY equation d o e s not r e s u l t in a c o r r e c t de termina-
tion of the two-part ic le in teract ion.

c) The prob lem of s e l f - c o n s i s t e n c y of the l iquid
p r e s s u r e . F r o m the foregoing r e v i e w of the n u m e r i c a l
so lut ions of the PY equation and equations re la ted to it
it i s s e e n that the quality of the obtained r e s u l t s can be
regarded as good or s a t i s f a c t o r y for e s t i m a t e s of the
RDF, the energy, and the entropy, but unsat i s fac tory for
e s t i m a t e s of the p r e s s u r e and c o m p r e s s i b i l i t y in the
liquid s t a t e proper . The main r e a s o n i s the i n c o n s i s -
t e n c y of the two e x p r e s s i o n s for the p r e s s u r e (or c o m -
p r e s s i b i l i t y ) defined by E q s . (1) and (3) when the ap-
p r o x i m a t e function g(r) i s used. T h i s defect i s inherent
in al l the known approximate l iqu id-state t h e o r i e s based
on the study of the R D F . T h e r e i s a known analyt ic con-
dit ion for the s e l f - c o n s i s t e n c y of the pressure '- 8 1 ' 8 2 - 1 :

' (r) g (r) dr + (iC-12) (r, p) - g (ρ)] ρΦ' (ρ) dr

\ [g(r) — l]dr.

It contains explicitly the three-particle distribution
function and cannot be used directly in the PY or HNC
scheme. It can be used in principle, however, to con-
struct correct theories in the higher approximations,
analogous to PY-2 and PY-II.

Considerable progress in the calculation of the equa-
tion of state of a simple liquid was attained recently in
another way. We have already noted that the internal
energy calculated by the PY equation with LJ potential
differs from the exact value by approximately 2.5% at
low temperatures, and that this error decreases with
increasing temperature (see Table VI). Such good
agreement between the results of calculation and the
exact values suggests the use of the energy equation (2)
to obtain the equation of state. To this end it suffices to
use the well-known thermodynamic relation between the
energy and the free energy F:

E = -

If we integrate this equation with respect to the tem-
perature, we can express the free energy in terms of
the RDF with the aid of (2). Differentiating furthermore
F with respect to n, we obtain the pressure as a func--

tional of g(r) , i .e . , the required equation of s t a t e . P r a c -
t i c a l r e a l i z a t i o n of th i s p r o g r a m has indeed d e m o n s t r a -
ted the advantage of the energy equation (2) o v e r E q s .
(1) and (3) . Thus, the v a l u e s of the fourth and fifth VC
calcu lated in th is manner i n [ 8 3 ] us ing an LJ potential
a r e much better than those obtained by using the VE or
C E ; they a r e a l m o s t as a c c u r a t e as in the PY-II theory
(but the la t ter requ ire much m o r e labor ious n u m e r i c a l
ca lcu la t ions ) . This quest ion was invest igated in g r e a t e r
detai l by Barker, Henderson, and WattsC 8 4 ' 8 5 3. T h e y
ca lcu la ted the thermodynamic p r o p e r t i e s of a s y s t e m
with LD potential on the b a s i s of the e n e r g y equation (2)
and found that, in a wide range of t e m p e r a t u r e s and
d e n s i t i e s , the PY equation p r e d i c t s v e r y wel l the
thermodynamic c h a r a c t e r i s t i c s of the s y s t e m , n a m e l y
the energy, the spec i f i c heat, the equation of s t a t e , the
entropy, and the l iquid-vapor c o e x i s t e n c e c u r v e s . By
way of i l lustrat ion, we p r e s e n t the equation of s ta te of a
Lennard-Jones liquid at two t e m p e r a t u r e s (Fig . 8). It
can be e a s i l y concluded that ca lcu lat ion by Eq. (2)
great ly i m p r o v e s the a g r e e m e n t between the theoret ica l
and e x p e r i m e n t a l r e s u l t s .

The r e a s o n why the PY equation in conjunction with
the e n e r g y equation (2) l e a d s to s u c h good r e s u l t s ( in
c o m p a r i s o n with the VE or CE) b e c o m e s m o r e under-
standable if one turns to the a l r e a d y ment ioned Barker-
H e n d e r s o n perturbat ion theory. In this theory, the inter-
p a r t i c l e potential of an arb i trary s y s t e m i s broken up
into a s u m of two t e r m s , one of which i s in a cer ta in
s e n s e s m a l l e r than the other and i s regarded as a per-
turbation. The free e n e r g y of the s y s t e m (and with it
a l s o a l l the thermodynamic functions) i s expanded in
p o w e r s of the " p e r t u r b i n g " potential, and the unper-
turbed t e r m s c h o s e n to be the hard-sphere potential . If
s u c h an expans ion i s c a r r i e d out for the R D F , then it
turns out1-8 3 3 that the n-th order t e r m in g(r) l eads to
n-th order t e r m s in the thermodynamic p r o p e r t i e s , if
one u s e s the VE or the C E . However , when the e n e r g y
equation i s used, the n-th order t e r m in g(r) c a u s e s the
thermodynamic quantit ies to be ca lcu lated m o r e a c c u r -
ate ly, accurate to t e r m s of order (n + 1) i n c l u s i v e .
Thus, us ing as the zeroth approximat ion in the R D F i t s
approximate value obtained from an analytic so lut ion of
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the PY equation for hard s p h e r e s , we obtain with the
aid of the VE or the CE the thermodynamic c h a r a c t e r -
is t ics likewise in the zeroth approximation, whereas
the use of the energy equation leads to the contributions
to the thermodynamic quantities accurate to first o rder .
The resul tant difference for the thermodynamic quanti-
ties may turn out to be appreciable, since the zeroth
and f i r s t-order t e r m s in this theory a r e of the same
o r d e r of magnitude, whereas the higher-order c o r r e c -
tions a r e s m a l l 1 1 3 8 ' 3 9 3 .

c) Phase transitions in the Percus-Yevick theory.
An important role in the est imate of the suitability of
the PY theory is played by the question of the accuracy
with which this theory descr ibes phase transi t ions in
which a liquid phase par t ic ipates . The theory is called
upon to descr ibe the stability l imit of the liquid relat ive
to crystal l ization, to predic t the existence of the c r i t i -
cal point with acceptable es t imates of the cr i t ical
p a r a m e t e r s , and an approximate description of the
liquid-gas transit ion at t e m p e r a t u r e s below cr i t ica l .

In the method of integral equations one deals only
with a homogeneous phase, gas or liquid, as implied
already in the initial equations when the conditions Fi(r)
= 1 and F 2 ( r , r ' ) = g ( | r - r ' | ) a r e assumed. Therefore
the l iquid-crystal transit ion cannot be discussed here
without introducing additional information on the c rys-
talline phase. It is possible, however, to formulate the
problem of the stability l imit of the liquid with respect
to crystal l ization. This question was investigated in
the superposition approximation and described in detail
in1-2-'. The problem was not investigated for the PY and
HNC equations and for rea l i s t ic interaction potentials .
We shall stop to discuss only the hard-sphere model in
accordance with the PY equation. F r o m numerical
calculations by the MC and MD methods it is known
that compress ion produces in an equilibrium system of
hard spheres a f i r s t-order phase transit ion of the dense
gas-crys ta l type near ? j c r = 0.641-57-1. For a theoret ical
es t imate of η€ΐ it is necessary to turn to the asymp-
totic form of the function h(r) as r - » » ' · 2 · 1 . Putting in
(35) h(r) = φ(τ)/τ, we obtain a homogeneous equation for
φ(τ)

ro(s)ds

with s o l u t i o n s in the form

φ (χ) ~ e~v cos φχ -f γ).

The stability l imit of the homogeneous phase c o r r e -
sponds to a value η = η€Τ such that the smal les t
α; = α(η) vani shes^ 2 ] . A computer numerical analysis
of the problem leads to a value ( a / D ) m i n ~ 10 3 for
T) ~ 0.64, but zero is never reached at any value of r\.
This is apparently sufficient for a phase transit ion
(i.e., for the ordered phase to be more stable than the
homogeneous phase), but insufficient for the appearance
of an exact stability l imit. The smal lness of ( » / D ) m i n

suggests that even a slight refinement of the PY equa-
tion, for example in the spir i t of PY-2 or PY-II, would
lead to a value ( a / D ) m i n = 0 in the s a m e vicinity of vQr

« 0.64, in accord with the " e x p e r i m e n t a l " value
from1-5 7 1 1. We note that the solution of a s imi la r prob-
lem in the superposit ion approximation leads to a value

Table VIH
Η

Tc*r

n*
cr

3

1

0.

.5σ

275

268

5

1

0

.ϋσ

305

270

6.0σ

1.315

0.278

η = 0 . 5 , which differs considerably from the value

i n [ 5 7 ^ .
The existence of solutions of the PY equation for

hard spheres at η > η is discussed in1-8 6 '8 7-1. Such
formal solutions actually do exist, but no definite phys-
ical meaning can be ascr ibed to them.

The liquid-vapor phase transit ion cal ls for the exis-
tence of attract ion between the par t ic le s . The s implest
model of this kind is the model of hard spheres with
surface adhesion of the par t ic le s , which admits of an
analytic solution of the PY equation. An analysis of this
problem does indeed lead to the existence of a cr i t ical
point and a liquid-gas f i r s t-order phase transit ion
below the cr i t ical temperature 1- 3 7- 1 . The p r e s s u r e iso-
therms above and below the cr i t ica l point and the phase-
transit ion line turn out to be qualitatively the same as
for rea l sy s tems, if the VE is used as the equation of
s tate .

For more rea l i s t ic potentials, numerical integration
of the PY equation leads to analogous r e s u l t s [ 7 7 > 8 8 ' 8 9 ^ .
Using an LJ potential cut off at a certain distance R, it
was observed that when the behavior of the direct c o r r e -
lation function C ( r ) | Q is investigated as a function of
the density n, then the Ρ Υ equation has one physically
meaningful solution above a certa in temperature T c r .
At the t e m p e r a t u r e s Τ < T c r there exists a density
region for which the PY has no solutions, but outside
this region a solution exists again. If we draw the iso-
t h e r m s in the different temperature regions (Fig. 9),
they turn out to be qualitatively s imi lar to the i sotherms
of rea l mat ter , and the i sothermal compressibi l i ty be-
comes infinite on the isotherm corresponding to T c r .
This fact can be natural ly interpreted in the sense that
the thermodynamic s ta tes for which the PY equation has

qee -

FIG. 9. Equation of state of a Lennard-Jones liquid on the basis of
the PY equation in conjunction with the VE. Circles—experimental
values for Ar at T* = 1.3; the dashed curve outlines the region where
the PY equation has no solutions: R = 3.5σ, Τ* = 1.2(1), 1.263 (2),
1.275(3), and 1.3(4) [ 8 8 ] .
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no solutions correspond to the two-phase region, and
T c r has the meaning of the critical temperature. If the
isotherms are calculated with the aid of the VE, then
the compressibility does not become infinite on the
critical isotherm.

Figure 9 shows also the experimental points along
the isotherm T* = 1.34 Ar. Even in the region of the
critical density, the experimental and calculated values
agree within 2%. It should be noted, however, that the
thermodynamic properties calculated from the PY equa-
tion turn out to depend on the value of R at which the LJ
potential is cut off. At R = 3.5 σ, the equation of state
obtained from the VE agrees very well with the data on
Ar. If R is increased to 5σ or 6σ, then the agreement
becomes poor, and the critical temperature rises. The
critical density is not strongly altered in this case (see
Table VI, which shows the values of the critical con-
stants for systems with LJ potentials cut off at a dis-
tance R C 8 8 ] .

The numerical solution of the HNC equation with the
same cut-off LJ potential also reveals the presence of
a phase transition. The behavior of the thermodynamic
functions predicted by the HNC, however, differs
strongly from the corresponding experimental data'-89-1.
In particular, the compressibility of the liquid does not
become infinite at the critical point.

There is therefore no doubt that the PY equation and
the equations related to it are suitable for the approxi-
mate description of phase transitions in which a liquid
phase participates and of critical phenomena. Nonethe-
less, by virtue of the approximate character of the
theory, we cannot count here on exact descriptions of
real systems. This is most clearly seen with the calcu-
lation of the specific heat c v with the aid of PY (from
the energy equation) as an example^85-1. A significant
feature of the calculations is the observation of a maxi-
mum of the specific heat in the critical region. The
plots of the specific heat against the density at fixed
temperature, being monotonic far from the critical
state, become nonmonotonic when T* = 1.3 is approached
and have clearly pronounced maxima. It is stated in'-85-1

that it can be shown analytically that the specific heat
as a function of the temperature has at a density equal
to the critical value a singularity of the type

We note that in the model of spheres with surface
adhesion the specific heat has a similar singularity.
Therefore such a dependence of c v on Τ near the criti-
cal point is apparently inherent in the PY theory and
does not depend on the form of the interparticle-inter-
action potential. The obtained dependence is qualitatively
quite satisfactory and the observed singularities can be
regarded as a success of the Ρ Υ theory. However, such
a strong singularity does not agree with the modern ex-
perimental and theoretical data on the behavior of real
matter in the immediate vicinity of the critical point.
The PY theory cannot describe fine details of the be-
havior of thermodynamic functions near the critical
point. For a more accurate description of the critical
phenomena in the method of integral equations it is
necessary to change over to still unknown equations of
a more complicated type.
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