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1. INTRODUCTION

a) Problem of the theory of the liquid state. The
theory of the liquid state of matter is traditionally con-
sidered as ‘‘insufficiently developed’’ and ‘‘lagging”’
relative to the theories of gases and solids. With
respect to the equilibrium properties of systems, this
traditional view should be regarded as obsolete and as
not corresponding to the real situation. The theory of
classical liquids was intensively developed during the
post-war years and made quite noticeable advances dur-
ing the last few years. If the main task of this statisti-
cal theory of matter is taken to be the prediction of the
thermodynamic behavior of different systems as func-
tions of the character and details of the intermolecular
interaction, then the contemporary accuracy of the so-
lution of this problem for simple liquids is hardly in-
ferior to the accuracy with which we can, for example,
calculate theoretically the equation of state of a solid or
of a moderately dense gas. Nor are there significant
differences, at least when dealing with their equilibrium
properties, between the theories of solids, liquids, and
gases in the more important physical problem of under-
standing the molecular mechanism responsible for the
observed macroscopic properties of matter.

The main task of calculating the partition function of
a system of many bodies is solved in the theory of the
liquid state indirectly, by calculating the pair correla-
tion function of the system particles, or the so-called
radial distribution function (RDF) g(r). The latter is so
defined that the expression

w (r) = g (r; T, n) (4artdr/V),

where V is the volume of the entire system, is equal to
the probability of observing the centers of two particles
spaced r apart with an uncertainty dr at a given tem-
perature T and a particle-number density n of the sys-
tem as a whole. The function g(r) is normalized here
so that g(r) — 1 as r — . The aforementioned pair
correlation function is defined as h(r) = g(r) — 1, so that
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h(r) — 0 as r — «. The function g(r) or h(r) describes
the internal order in the systems and its dependence on
the thermodynamic conditions.

If the function g(r; T, n) is known, then we can find
the thermodynamic functions for monatomic and single-
component systems with pair and central interaction
between the particles from the well-known exact ex-
pressions for the pressure, energy density, and com-
pressibilityt 3

p (T, n)=nkT —(2nn%/3) j r® (ryg(r; T, n)ridr,

(1)

e(T, n)=3nkT/2)42nn® \ ®(r)g(r; T, n)ridr,

(2)

§ St——ig o

kT (3n/0p)r =1 -+ 4an § le(r; T, n)—1]r2dr, (3)
where @(r) is the molecular potential and k is
Boltzmann’s constant. In addition, the Fourier trans-
form of the function g(r) is directly connected with the
angular dependence of the intensity of the coherent scat-
tering of x-rays or slow neutrons by the system-*"*
Thus, for simple liquids, the function g(r; T, n)
describes simultaneously their structure and thermo-
dynamic properties. Therefore the main task of the
theory of equilibrium properties of simple liquids is

the calculation of the RDF from a specified intermole-
cular potential &(r) for all values of T and n from the
region of existence of the liquid phase. The entire prob-
lem can be formulated in exactly the same manner for
dense gases.

The radial distribution function is defined formally
in the form of a multiple integral of the total Gibbs dis-
tribution functlon of all the system particles in coor-
dinate space

g(Ir—r)=(Qy) | ... {expl—Un(ry ..., t)/kT1drs ... dry,
v v (4)
:S Sexp[—UN(n, oo TaVRTYdr, . dry,  (B)

<

v
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where Uy is the total interaction energy of the system
particles

Un(ry, .-

o Ty) = 2

1<i<j=N

O(fr;—rs]). (6)

It is assumed in (4) and (5) that ultimately the limit will
be taken as N — « and V — = at n = N/V = const. A
similar expression for the grand canonical ensemble is
given below (see Eq. (13)). The problem of determining
the function g(r; T, n) reduces therefore to the problem
of calculating or asymptotically estimating the integrals
(4) and (5) or the sums (13). For gases, this problem

is solved by the Mayer group integral method %] (page
415 of the Russian translation), which leads to an ex-
pansion of the function g(r) in an infinite series in in-
teger powers of the density n and accordingly to the
so-called virial series for the thermodynamic func-
tions. For realistic potentials &(r), only the first few
terms of such series are known, and the results are
applicable only to low-density gases. The only excep-
tion is the model problem of hard spheres, for which the
first seven terms of the virial series for the pressure
are known'®J, For liquids and high-density gases, the
integrals of the type (2) and (5) can be directly estima-
ted by the Monte Carlo method (MC) using high-speed

computerst”®], Interesting results were obtained by
this method for the model hard-sphere system and for a
system of particles interacting via a Lennard-Jones po-
tential.

There is no need for estimating the complicated
multiple integrals (4) and (5) in the molecular dynamics
method (MD), which also involves the use of high-speed
computers. A ‘‘mathematical experiment’’ is performed
here on a model system of particles by calculating the
trajectories and velocities of all the particles over a
long periods of time, followed by the determination of
various averaged equilibrium and kinetic characteristics
of the systeml7* ], There are well-known good re-
sults for the hard-sphere system and for the system of
particles with Lennard-Jones interaction. Both com-
puter methods, the MC method and the MD method, can
yield in prineiple numerical results of very high accur-
acy, but various errors creep into the actual calcula-
tions, due mainly to the practical need for confining
oneself to a small number of particles in the principal
cell and to the finite duration of the trajectories. None-
theless, the estimates of the statistical properties of
model liquid or dense-gas systems by these methods
must be regarded at present as the most accurate. A
certain inconvenience in the analysis of the calculation
results is that the latter are presented in the form of
tables or diagrams, and there are no analytic expres-
sions.

b) The method of integral equations. A special posi-
tion is occupied by another method of solving the main
problem of the theory of liquids, namely the search for
approximate integral equations for the RDF g(r; T, n)
when the potential ®(r) is specified. It is seen from
(4)—(9) that if the parameters T and n are specified,
then the RDF is determined uniquely by the function
&(r), viz., g(r) = G{T, n; &}, so that it is likely that
there exists an integral equation in closed form, per-
haps a very complicated one, relating these two func-
tions. Searches for such an equation have been going on
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since 1935, when Kirkwood and Yvon first proposed a
very simplified variant of an integral relation between
g(r) and &(r){*>*], By now, several such approximate
equations are known, with different degrees of accuracy.
The method of integral equations in the theory of liquids
is attractive because of two circumstances: the possi-
bility of obtaining analytically representable resuilts
concerning the structure and thermodynamic properties
of simple liquids, and the possibility of solving the in-
verse problem, that of reconstructing the form of the
intermolecular potential &(r) if the function g(r) is
known, say, from precision x-ray measurements.

The first serious progress in the method of integral
equations was made when Kirkwoodl !, Bogolyubovt,
and Born and Greent** proposed two variants of a non-
linear integral equation for the function g(r) using
Kirkwood’s well-known superposition approximation

Fy(rp Iy, 1)) =g{inp—r Dg(lr—r3 Dg(lrs—1 )

to close the infinite chain of integro-differential equa-
tions for the reduced distribution functions
Fs(rl, veey rs), s=1, 2, aeuy Fz(rl, rz) = g(lrl— rzl). In
the Bogolyubov form, this equation, henceforth designa-
ted BBGKY, is
o 0
KT Ing (1) + 0 () + @) (g —11] | @ed]edo=0, (7)
0 Ir—pl

where
t

£(t)= S @' () g (2) da. (8)

o

An investigation of the solutions of this equation and of
their thermodynamic consequences have shown that it is
not accurate enough when it comes to numerical esti-
mates of the properties of real simple liquids, but pro-
vides a correct qualitative descriptionl?:1¢:*7],

We shall not dwell on other attempts to obtain more
accurate equations for the function g(r), and proceed
directly to the most important results. In 1958, Percus
and Yevick, attempting to introduce collective coordin-
ates for the description of the dynamics of a liquid as a
many-body system, proposed a new nonlinear integral
equation for the RDFL'®) . Its derivation and justification
are based on intuitive physical considerations and in-
accurate approximations. If account is taken further-
more of the extreme simplicity of the Percus-Yevick
equation (PY), it was surprising that its solution yielded
for model liquids data that compared favorably with
other known results. In addition, perfectly satisfactory
agreement with the experimental data was obtained for
real simple liquids such as liquid argon. In a subse-
quent paper, Percus!'® proposed a more serious
derivation of this equation, using a procedure in which
the functionals were expanded in functional series. It
was demonstrated that it is possible to obtain an entire
family of approximate linear integral equations for the
function g(r), of the same type as the initial PY equa-
tion, from which the best can be chosen. In particular,
it became possible to obtain by this method, besides the
PY equation itself, also the Kirkwood- Bogolyubov equa-
tion (KB) (7)—(8) and the equation of hyper-netted

[20-23]

chains , which was already known by that time (see
below). In addition, it turned out that the method pro-
posed int'®) paves the way for the construction of higher
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approximations and refinements of the resultant integral
equations for the function g(r), something missing from
the preceding theories.

The purely outward aspect of approximations of the
PY type can be explained and illustrated in a very sim-
ple manner. We introduce, following the classical paper
of Ornstein and Zernike**J, together with the ‘‘com-
plete’’ two-particle correlation function h(r) = g(r) = 1,
also the so-called ‘‘direct’’ correlation function C(r),
which is connected with h(r) by the relation

COy=h@—n{h(ir—pDCpdp

(9

Regardless of the initially proposed meaning of the func-
tion C(r), we shall treat it as an auxiliary function, for
which expression (9) is the definition. Then the required
integral equation for g(r) could be obtained if we were
able to find one more connection between the functions
C(r) and g(r). All the known lower-order approxima-
tions correspond to assumptions that there is a simple
connection between the function C(r) and g(r). Thus, the
PY equation is obtained under the assumption

C) =g () (1 — ™Ay, (10)

and the equation of the hyper-netted chains is obtained
with the approximation

CH=gr—1—1Ing{ — (D (VET). (11)

Both approximations satisfy the general requirements
with respect to the asymptotic behavior of the functions
g(r) and C(r) as r — . Substituting expression (10) or
(11) in the Ornstein- Zernike (OZ) equation (9), we ob-
tain closed nonlinear integral equations for the function
g(r), the PY equation, and the equation of the super-
entwined chains, respectively. The accuracy of the em-
ployed approximation can be verified and established
only after solving the obtained integral equation. In this
approach, there is obviously no regular method for con-
structing approximations of the type (10) or (11). This
arbitrariness is partially eliminated in Percus’ method
of functional expansions.

An important role was played by the publication of a
paper by Stell'?*)’ who has shown that all the approxi-
mations of the described type can be obtained by sum-
ming an infinite sequence of diagrams describing the
complete set of all the interactions in the system in a
graphic representation of the Mayer group integral
method. Stell assumes that all the closed results that
can be obtained in the theory of liquids by complete or
partial summation of the Mayer series should be valid
for a liquid, from analytic-continuation considerations,
regardless of the convergence radius of the initial ser-
ies. Actually, the equation of the method of hyper-
netted chains was indeed obtained first by a diagram
method, even prior to the publication of'**}, and was
named after the type of the summed diagrams. This
equation contains also a sum of a larger number of dia-
grams than the PY equation.

The topological method of partial summation of dia-
grams and the Percus analytic method of functional
expansions turned out to be equivalent. The method of
functional expansions has the advantage that it allows
one to go to higher approximations for the integral
equations of the initial approximation, whereas in the
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diagram method there is no reliable method of selecting
the higher-approximation diagrams. In addition, direct
summation of a sequence of higher-approximation dia-
grams entails very great difficulties and is rarely
realizable. Finally, we note that functional expansions
make it possible to obtain exact upper and lower bounds
for the thermodynamic quantities by estimating the
residual term of the expansiont?®3,

The method of approximate integral equations for the
RDF has recently become very widely used, and has led
to significant progress in the theory of equilibrium
properties of simple liquids. Many papers have been
published and continue to be published on this subject in
the foreign literature, especially on the PY equation, its
solutions, refinements, and applications. These equa-
tions are hardly touched upon in the Soviet physics
literature. In the next two chapters of this review we
present a critical exposition of the theory and results
of the integral-equation method in the theory of simple
liquids and dense gases. We shall adhere to the formal-
ism of functional expansions and will not discuss dia-
gram methods. Principal attention will be payed to the
most popular and the simplest PY equation.

2. THE PERCUS-YEVICK EQUATION

a) Functional definition of the direct correlation
function. Before we proceed to derive and discuss ap-
proximate equations of the PY type, let us consider
certain rigorous relations for the correlation functions
of a classical system of particles; these relations will
be needed later on. We have in mind the connection be-
tween the correlation functions and the functional der-
ivatives of the partition function with respect to the ex-
ternal field. For a canonical ensemble of systems, these
connections have been known for a long timel'?", It
will be more convenient for us to adhere to the formal-
ism of the grand canonical ensemble, and we shall fol-
low mainly the exposition ofl?®*), Our aim is to obtain a
functional determination of the already mentioned direct
correlation function C(r).

Let F§(r1, <.y Ig), 8=1,2, ..., be a set of reduced

i (“‘partial’’} distribution functions in coordinate space
for groups of s particles in a many-particle system oc-
cupying a volume V. We normalize the function Fg by
the condition

V"S ...SFx(n,...,rs)dr,...drszi. (12)
v v

If the function Fg is referred to a grand canonical en-

semble, then we get in place of expressions of the type

(4)—(5)

8

1
P (ry o, ==
N

[zN/(N—s)!]S Sexp(;UN/kT) drgey - .. dry,
s v v (13)

!

where [ is the grand partition function

=3
o 2:
BE=

N=0

(NN S Sexp(—UN/kT) dry ... dry, (14)
\'4 Y

where n = N/V is the average particle-number density
and z is the activity connected with the chemical poten-
tial pu by the relation

z = (mkT/2nh%)"" exp (uikT).
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In (12)—(14) it is implied through that the limit as V, N If we substitute here the value of the second integrand

— o at n = const will ultimately be taken. In the ab- factor from (16), we note that the function
sence of external forces, the energy Un(ry, ..., ry) is 5% (r1)/6 (nFy(r, [¥)) contains a term that is singular at
defined as in Eq. (6), and owing to the homogeneity and r; = r;. We separate this term, putting

isotropy of the system we have for the lower-order BT L _ : Y I8 (v — r)/nF 9
functions Fg in the thermodynamic limit ()10 1)/ (oFy (af)) = € (w1 — 18 (13 = waliefiy (e 101
Taking this into account, Eq. (17) leads to an equation
for C(ri, Tz |9)

: : ey [ 9) Fy (02 [4) C (v, T2 [9) =
In the more general case, the system can be situated in — Py (ry, Ty 1) — Fy (0 |9) Fy (00 19) —nF, (1, 19) (18)

a specified external field (r). We then have for the y S C (50 1o 1) 1Fy (Fa T 1) —Fyirs |9) Fy (rs | 9)] dro.

energy in place of (6)
Putting now 3y = 0 and denoting C(r,, r:|0) = C(|r; — 12/),

Fi) =1, Fy(r, 1) =g(|ry—r1, I ete. (15)

Up(ty, ..., ry)= 1(/i§_‘vd)(jri —-rj|)+1.2ww(r,-), we find, taking the properties (15) into account, that
s o Eq. (18) at = 0 coincides with (9). The function
and the simple properties (15) are no longer obtained. C(r1, r2 |¢) defined by the integral equation (18) can
The functions Fg now turn out to be functionals of ¥ (r) therefore be regarded as a natural generalization of the

and have a lower spatial symmetry. To emphasize this OZ correlation function C(r) to include the case when
circumstance and to be able to distinguish the functions an external field is present.

Fg in an external field from the ‘‘unperturbed’’ func- Thus, we have for the ‘‘direct’’ correlation function

tions Fg, we shall explicitly indicate the functional argu- C(r) the functional definition

ment and write Fg(ry, ..., Igl¢) and Fg(ry, ..., rgl0) (19)

respectively. — (RT) 8% ()8 (nFy (ry [9)) o =0 = r78 {1y — 13) — C {5 —1, ).
The grand partition function = now also turns out This is analogous to the result (16) in the absence of a

to be a functional of ¥(r), = = E{y}. Let the external field:

field undergo a small change by an amount §#(r). Then,

as follows from (14), we can find —kT8 (nFy (r, 1)/ (12) ly—o =78 (ry — 1) + 2 lg(Iry — 1, ) — 1)

We see therefore that the function C(r) should more

—kT8 In B/ 8% (r) = nFy (1 | ). : ' fanction f
readily be called not the ‘‘direct’’ but the ‘‘inverse
Analogously, by varying this expression once more with correlation function.

respect to the external field y(r) at another point r = rz, b) The Percus approximation. We consider an arbi-
taking into account the explicit expression obtainable trary function of two variables f(u, v) with sufficiently
from (13) for Fi(r:1]¢), we get simple properties in the vicinity of the point (u = 1,
(—kT)20% In B/8¢ (r) 6 (r,) = —kT8(nF, (r; | P))/6¢ (ry) (16) v = 0), and construct with its aid the functional

=nFy(ny [P 8 (5 — ry) 4 nfF, (ry, 1y [§) — Fy (ry () Fy (ra |91 TG ()} = f (Fy (r |§), ¢ (D) (20)
The right-hand side of this equation contains the com- At 9 = 0 we have Fy(r|0) = 1 and 1{0} = £(1, 0). If we
plete two-body correlation function in the presence of assume the external field to be weak, we can expand the
an external field. In the same manner, by subsequent functional IL{y ] into a functional Taylor series in
functional differentiation with respect to the external powers of the deviation of the single-particle distribu-
field, we can express any many-body correlation func- tion function from the homogeneous distribution:

tion in terms of the functional derivatives of In & with

respect to ¥(r) of the appropriate higher order. For vy =T {0} + 5 (SHL g {O))/OF, " [y o 1F, (07 1) — 4] dr

ordinary ‘‘unperturbed’’ correlation functions we must 4 (1/2) 55 (8211 {§}/8F, (' 1) 8F, (2 [9)] g0
assume that the external field is only virtual and put X UF, (¢ 1) — 11 [F, (" |§) — 1] de'dr” (21
Y(r) = 0 after calculating the functional derivatives, for

example, If the convergence of this series is good, which for a

specified ¥ depends on the choice of the function f(u, v)

— kT8 In E/8 = nF,(r, |0) etc. ; .
nERY () 1 yey = nFu(r 10) in (20), then we can confine ourselves approximately to

If we refer the reduced distribution functions Fg to a small number of the terms in the series and obtain by
the canonical ensemble, then the same results are ob- the same token for the functional M{y(r)} an approxi-
tained by functional differentiation of the quantity mate representation which is linear, quadratic, etc. in
In Zn{¢} in place of In={y} with respect to the ex- powers of the deviation of Fy(r|¢) from unity.
ternal field, where ZN{z/z} is the canonical partition We confine ourselves for the time being to the linear
function of the system in the external field . In any approximation in the series (21). From (20) we have

ensemble, the generating functional for the correlation
functions is the quantity —A{y}/kT, where A{y} is the
free energy (the thermodynamic potential) of the corre-

SIT { (1) }OF, (x [) | y=o = 6f (Fy (v [¥), ¥ (D)/BF, (' [§) lp—0
= Af/Ou | uet, v=0 8 (x — 1) - Of/00 | unt, w0 OP (O)/SF (0" [P} Dlg-.0-

sponding ensemble in the external field. Using (19), we get
Let us explain now how to introduce the functional I {p (DWOF, (t [9) |pmo =
definition of the ‘‘direct’’ OZ correlation function C(r). - (0f/9u — KT 0fI00) yer, 0=08 (¥ — t) - nkT 8f/d0 |uey, om0 C(Ix — 1)),

To this end, we consider the functional identity
) where C(r) is the ‘‘direct’’ correlation function, and
j IS (r)/8 (nFy (rs 1PN} I8 (nF) (rs | )8y (ry)] dry == & (1;— ry). (17T) substitution in (21) leads to a linear approximation in
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the form
FE @), 9 @) =F, 0) + [8f/8u — kT 8f/0vhu=i, =0 1Fy(r ) —1]
4 kT 8100 | umt, vmo S Clir— rPIF, (¢ 1) —1 d(ré'z

We shall call such an approximation the Percus approxi-
mation.

The main idea of the PY method is that the external
field p(r) in (22) is chosen to be the molecular field
&(|r — 1o|) of the ‘‘extra’” particle, which is of the same
type as the remaining particles of the system and is lo-
cated at the point ro.” For a canonical ensemble this
means a transition from a system of N particles at the
points ry, ..., ryy at § = 0 to a system of N + 1 particles
at point ro, Iy, ..., Ty at P(r) = ®(|r — rol), and analog-
ously for each term of the grand canonical ensemble.
Then

Uy(@y o0 In [ D) = Upyy (Tgy Tps - - 5 Tx)s
and consequently

F,(ry, ..
foralls=1,2,... At s =1 we obtain Fy(r|®)
= g(|r — ro|), and substitution in (22) yields

o T | D) = Fyepy (g, 1y, - ooy 1)

Fe(r—r Dy ®(r—rx)) = (23)

=f (4, 0) + (3f/0u — kT 8f/0v) fuey, v=0 lg (It — 19 ) — 1]
+ kT 000 Juey, oo S Cr—r DIg(r —r ) — 11 dr'.

It is assumed here implicitly that the perturbation due
to the introduction of the ‘‘extra’’ particle into the sys-
tem can be regarded as small for correlation functions
of all ranks. Comparing (23) with (9) we obtain an es-
timate for the ‘‘direct’’ correlation function in the
Percus approximation

kTOf/OU fumyy v=oC () (29)
=0fl0U |ymyy vmo 18 () — U —f (€ (), @ () +F(1,0),

where we have put ro = 0. Actually, we obtain here an
entire class of approximate estimates that depend on
the choice of the functions f(u, v). Subsequent substitu-
tion of C(r) from (24) into the exact equation (9) leads to
a class of approximate closed nonlinear integral equa-
tions for RDF g(r), namely equations of the PY type.

The approximation (24) ensures, for any choice of
the function f(u, v), the correct asymptotic behavior of
the function C(r) as r — «. In this case we have #(r)
— 0 and g(r) — 1, and independently of the manner in
which the limit g(r) — 1 is taken and the function f(u, v)
is chosen, we obtain from (24)

C(N~

which is the exact result[*°3,

The choice of the functions f(u, v) in (24) can be limi-
ted by requiring a good description of the properties of
not too dense a gas. It is known that the first term of
the exact expansions of the functions g(r) and C(r) in
powers of the density are-!/*»*)

g (r) = e ®MAT {1 4 n Sx(r—r’)x(r') dr' 4- ..., (26)
C(r):z(r)[i—{—nj LE—r)y @) dr +...],

DThe idea of the potential field of the “extra” particle as an external
perturbation for the system of particles was first introduced and used in
[} for the study of the functions Fg.

—® ()/KT (25)

(r — o0),

(27)
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where y(r) is defined by
¥ (r) = e~ ®MAT __ 1,
Substitution of the series (26) and (27) in (24) under
the assumption that the function f(u, v) does not depend

explicitly on n leads, in zeroth order in n, to the condi-
tion

FA A+ 20, ©EN—11, 0 = (3f/du — kT 0f/0v)uzy, w=oX (1) (28)
and in first order in n to the condition
(0191 | wmytatry, ved(r) — OF10U Jumyy 2mp) [ 4 % (TN (29)

== —kT 0fl0v Jy=y, vegX (1)-

Satisfaction of the first condition (28) guarantees the
correct value of the second virial coefficient for the
gas pressure and correct contributions of order n® for
all the thermodynamic functions. Analogously, satisfac-
tion of the condition (29) guarantees a correct third
virial coefficient for the pressure and correct contri-
butions of order n® to all the thermodynamic functions
of the gas. It is possible to continue in this manner the
list of requirements on the function f(u, v) and obtain
continuously improving results for the function g(r) and
for the thermodynamic functions expanded in powers of
the density. However, if we are interested in describing
the properties of a liquid and not of a moderately dense
gas, such an approach is not the best. It is quite possi-
ble and permissible to use approximations that provide
good results for a liquid or a strongly compressed gas
but do not lead to exact values of, say, the fourth or
fifth virial coefficient. A likely estimate of the total
sum of all the terms of the virial series is more im-
portant than a correct description of a small number of
the initial terms of the series. This does not pertain,
however, to the very first terms of the series, which
must be estimated accurately to be able to extrapolate
the results of the theory to the case n — 0. The condi-
tions (28) and (29) must therefore be preserved.

It is difficult to indicate other general requirements
imposed a priori on the function f(u, v) in (24) and ex-
pressible in terms connected with the function f(u, v)
itself. The degree of suitability of different assump-
tions concerning the function f(u, v) must therefore be
assessed from results of the calculations of the func-
tion g(r) and of the thermodynamic properties of the
system. By now, two relatively simple approximations
have been thoroughly studied: the initial Percus ap-
proximation, corresponding to the choice of the function
f(u, v) in the form

flw, v) = ue™", (30)
and the approximation of the hyper-netted chains
(HNC), corresponding to the choice

fu, v}y =Inu 4 (kD). (31)

It can be verified that both forms of f(u, v) given by (30)
and (31) satisfy the conditions (28) and (29).

The form of the functions C(r), which follows from
equation (24) in the approximations (30) and (31), was
given in Egs. (10) and (11) above. Together with Eq. (9),
this leads to the integral PY equation for g(r)

g (r) eP (AT =4 | nS lg(c—r)—1lg @) [ — e@IAT | g (32)

and to the equation of the hyper-netted chains
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- [ ()/ET] ==
g ﬁa ) (33)
-n \ lee—r)—tH{g (&) — 1 —1ng@) — [DE)YkTI}a

Obviously, the first of them is particularly simple,
even simpler than the KB equations (7) and (8). It is in-
teresting that the latter can also be obtained from a gen-
eral approximation scheme of the Percus type, if one
chooses in (21) a certain functional I{$} and accord-
ingly a certain function f(u, v) equal tol*"]

f(u, 1) = —u¥r,

and if one modifies very slightly the subsequent calcula-
tions.

Equations (32) and (33) as well as their corollaries
have been well investigated. It turns out that in the reg-
ion of the liquid state proper, the PY equation (32) is
not inferior in the quality of the results to the seemingly
more accurate {33). The results of the corresponding
calculations are given and discussed in Chap. 3 of the
review,

A general shortcoming of all the simple approxima-
tions for the function f(u, v) follows from their insuffi-
cient accuracy and is the inconsistency in the result of
calculations of the thermodynamic characteristics of
the system from Egs. (1)—(3). The general requirement
that Egs. (1) and (3) be mutually consistent is expressed
in terms of higher-order distribution functions, and
therefore cannot be expressed as a requirement im-
posed on the function f(u, v). The quality of the results
can be improved in part even for very simple functions
f(u, v), if the expansion (21) is not confined to the linear
approximation. Allowance for the next higher terms of
the expansion in the PY equations and in the HNC equa-
tions leads to better results, but the equations them-
selves become very complicated. The correction terms
in both equations include a three-body distribution func-
tion, and the integral equation for g(r) cannot be solved
in this approximation without making use of approxima-
tions for Fs(ry, I2, rs). In case there are likewise no
unambiguous prescriptions, and it was proposed to use
the method of functional expansion also to approximate
Fs(r1, Iz, Ts) in the correction terms?®*1. In the so-
called PY-2 equation, one expands the functional

Fo vy vy [9) exp{(A1)7 1§ (1)) + ¢ ()1} (34)

If, as before, y(r) is regarded as the field of the parti-
cle added to the system and two terms of the expansion
are retained, one can obtain an expression for the
three-body distribution function in terms of the RDF.
In the derivation of equations PY-II and HNC-II one ex-
pands the functional

Fo (v, o | O)VFy (g | §) £y (ry | ).

Analogously, in the derivation of equation SEN-II, the
expanded functional is the logarithm of the function (34).
Finally, mention should be made of a papert®!! in which
the higher approximations were also considered, but on
the basis of diagram expansions. It is possible to obtain
in this manner the equations PY-II' and HNC-II', which
differ somewhat from equations PY-II and HNC-II, and
also the next higher approximations in density, which
lead to the equations PY-III and HNC-III.

The described method of expansion in functional
series makes it possible to obtain higher approxima-
tions to the equations of the PY type and can be used to
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obtain equations for the pair distribution functions of
systems situated in external fields (electric, gravita-
tional, ete.)t*3, and also in the case when the inter-
particle interaction is non-central‘®3, In the presence
of an external field, the problem of integrating the PY
equations becomes more complicated, for the homogen-
eity of the single-particle distribution is then violated.
In this case it is necessary to have one more relation,
other than the PY equation, between the single-particle
and two-particle distribution functions. Such an equa-
tion can be the first equation of the Bogolyubov chain
of equations, and the latter together with the PY equa-
tion comprises a closed system for the determination
of F]_(rl) and Fz(rl, rz).

c) Analytic solution of the Percus-Yevick equation
for a system of hard spheres. Even though numerical
calculations based on the PY equation are quite numer-
ous and extensive, and were made for almost all densi-
ties starting with rarefied gases and ending with states
close to the triple point, the analytic properties of this
equation have been very little studied. Only most re-
cently has it become possible to show that the PY equa-
tion, under definite but very general conditions imposed
on the interparticle potential, has a solution analytic in
the density near n = 0; this solution is unique for den-
sity values not exceeding a certain maximum. The so-
lution remains analytic and unique also for the HNC
equation. An analytic solution in explicit form was ob-
tained, on the basis of the PY equation(3**%32)  only for
the case of a model system consisting of hard spheres.
A hard-sphere system is a convenient model for the
study of the behavior of dense gases and liguids, and
recently interest in this model has increased because
of the successful application of perturbation theory to
classical liquidst®*#%) . Back in 1954, Zwanzigt*"? pro-
posed to consider the attraction forces in liquids as
perturbations to a hard-core potential and developed on
this basis a perturbation theory for classical liquids.
The theory remained unused for a long time, however,
because of the lack of a sufficiently good zeroth ap-
proximation. Now, following the work by Barker and
Hendersonl3829) , it has become obvious that the hard-
sphere system is a very good zeroth approximation for
a real liquid. Therefore the analytic PC solution for a
hard-sphere system is not merely of pure academic
interest, but is of great applied significance, since it
provides an exact zeroth approximation for a real
liquid. We present here the solution obtained int%*"*¢}
for the PY equation.

We put

T (r) = re®VETg (1),

Substituting in (32) the hard-sphere potential for &(r)
and introducing bipolar coordinates, we obtain after in-
tegrating with respect to the angle variable

T, (@) =t} n<<e<<n+4+1

(n=0,1,2, . (35)

D There is one more known exact analytic solution of the PY equa-
tion for a hard-core potential with square well, under the condition that
one considers the limit of infinitesimally narrow and infinitesimally
deep well (hard sphere with surface adhesion) [37]. This solution is based
in final analysis, however, on a solution of the hard-sphere problem, and
will not be considered here.



598

where x = r/D is the dimensionless length (D is the
diameter of the hard sphere) and H(t) is the Heaviside
function. It can be verified directly from (35) that the
fourth and higher derivatives of 7(x) are discontinuous
at x = 1, while the second and higher derivatives are
discontinuous at x = 2. These discontinuities give rise
in turn to discontinuities of the higher-order deriva-
tives at x = 3, 4, etc. It is therefore natural to seek a
piecewise-analytic solution of (35) with derivatives
that are discontinuous at x = 1, 2, 3, ... We define
the functions 7,(x) by the equations

1 1 x+s
(@) = (1 + 4mnD? S st(s) ds) z—2anD® 5 )| 5 H(@—1)t()dt]ds,

0 0 Jx—s)

(36)
Taking the Laplace transform of (35) and using the
definition (36), we obtain
o n-tq 1
3 § Tn () e Mo ds = {x-2[1+24n Sto(s)sds] 37
n={ n 0 i

1

- i To(s) ehe ds} [1 1 24mt S‘ o (5) sh (As) ds]“ \

0
where 1 = 7D’n/6 is the dimensionless density. On the
basis of (37) we can establish 4 set of sufficient condi-
tions imposed on the function +¢(x), such that 7(x) is a
piecewise-analytic function. To this end we transform
(37) by successive integrations by part into
-2 ® (1)l —m, U1 [l (1) — D)

e lgo [ (1)/A 1+"§2e 1:20; AT [T () — T, ()] (38)
=e (ot Per)/(ye~2* 1 be~Mt-g),
where . w
az}f’[1 +24n§ $To (s)ds [ — ) [e) (0)/A),
=0

B= 3 (YA, y=12ma D (a0 (yatn,
=0 1=0 (39)

§=1— 24mp? Z [T§20 (0)/Azt],
=0

£ = 120071 3 [(— D) ad (1)/A17]
1=0

(the superscript of 7o indicates the order of the deriva-
tive). If we expand the right-hand side of (38) in powers
of € * and equate the corresponding coefficients in the
left and right hand sides of (38), we can find the limita-
tions imposed on the derivatives of the function 7¢(x) at
the points x = 0 and x = 1. This procedure leads to very
cumbersome formulas, and we shall not write out here
the corresponding relations. Instead, we can use the
fact that if & + Be » is a factor of ye 2X + 5e * + ¢,
then all these limitations can be shown to be automatic-
ally satisfied. The condition for division without a re-
mainder is

a (6 — ayft) = ep.
Substituting here formulas (39) and equating like powers
of A7, we obtain
- 1
w00, W O)=1-+2%n | swolds, T O)= 120 (D, ...
0
These equations determine uniquely the function 7¢(x)
and lead to the result
1, (z) = az 4- ba? - cz’, (40)

where
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a=(@n+ D¥m— 1, b=—3nC+WY2 M- 1
¢ =12+ 1)¥2 (n —

Kndwing the function 74(x) we can obtain the equation of
state. Substitution of (40) in (1) and (3) leads respec-
tively to the equations

(PRET) i = (1 + 20 4 3n®)/(1 — n)2, (41)

(p/nkT)comf 1+ -+ — 9P (42)
(the pole of the pressure at 7 = 1 corresponds to a
physically unattainable state, since 7 < 1 even for the
closest packing).

It follows from the obtained equations of state that
the pressure predicted by the PY theory is higher than
the pressure of an ideal gas (it is higher by one order
of magnitude for a dense system at n ~ 0.5). In a lig-
uid, however, the pressure is known to be much less
than in a gas at the same temperature. Therefore the
model system of hard spheres accounts poorly for the
“‘liquid’’ pressures in the PY theory. It can also be
seen that the two equations of state are equal to each
other to order n° inclusive. The difference between
them becomes negligibly small in comparison with the
principal term at

ML+ + 1.

Figure 1 shows plots of the equation of state for a
hard-sphere system in accordance with the PY equation,
and for comparison the results of calculations by the
BBGKY (Bogolyubov-Barker-Green- Kirkwood-Yvon)
equation, the HNC equation, and the MD equation (cen-
tral solid curve) ({*}3 p. 85). It can be seen that the
BBGKY theory gives the worst result, whereas the best
agreement with the computer experiment is obtained
with the PY equation in conjunction with the compressi-
bility equation. It is interesting that the curves calcula-
ted from Eqs. (41) and (42) are on opposite sides of the
liquid branch obtained in the computer experiment.
Certain workers therefore prefer to use not the virial
equation (VE) or the compressibility equation (CE) as
the equation of state of the hard spheres, but a certain
combination of the two. For example, fair agreement
with the MD results is obtained by the simple arithmetic
mean of these equations'**. On the other hand, if the
equation of state is written in the form*®

p/(rkT) = (1 +m + 1¢ — n®)/(1 —n)®

(which differs from the arithmetic mean in that 7° in
the numerator is proceeded by 1 instead of 1.5), then
this equation is in better agreement with the computer
calculations for hard spheres than the Pade approxima-
tion of Ree and Hoovert®J,

From the known function 7o(x) it is easy to determine
the direct correlation function in the Percus approxima-
tion. From relation (10) we obtain for a system of hard
spheres, with allowance for the definition of the func-
tion 7(x),

<A1,
z>1.

C(z)={ _(a+bg,+czs)’

The direct correlation function is ‘‘short-range,’”’ as is
proposed in any theory using C(x). Although the direct

(43)
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FIG. 1. Equations of state for a system of hard spheres in accord-
ance with PY (1), HCN (2), and BBGKY (3), obtained using the virial
equation and the compressibility equation.

correlation function has no immediate physical meaning,
knowledge of this function makes it possible to deter-
mine the most important characteristic of the correla-
tion structure of the system, namely its structure fac-
tor. By definition, the structure factor of S(k) is given
by

S =1+n{ lg@ — 1] evar

If we take the Fourier transform of (10), we can express
the Fourier transform of the RDF in terms of the
Fourier transform of the direct correlation function,
obtaining for the hard-sphere system

S (kD) = {1 — nC (kD)]7, (44)

where

4
C (kD)= —4nD? § s* [sin (skD)/skD) (a +bs+ cs%) ds.  (45)

Although the direct correlation function for real liquids
does not terminate as abruptly as (43) (cf. (25)), the use
of the solution for hard spheres as an approximation in
the calculation of the structure factor leads to satisfac-
tory agreement with the experimental data. Ashcroftt®*]
used the solution (44)—(45) to calculate the structure
factors of noble gases, using the sphere diameter D as
the parameter.

Figure 2a shows a typical plot of S(k) for Ar and the
curves obtained from the experiments of Aisenstein and
Gingrich! % corresponding to the temperatures
84.4 (1—2) and 144.1°K (3—4) and densities 1.407 and
0.87 g/em®, respectively. Good agreement at both den-
sities is obtained with D = 3.44 A. The data of Gingrich
and Tompson, taken near the triple point, are also well
described near the principal peak (at D = 3.46 A).

The RDF for a system of hard spheres can be ob-
tained by substituting 74(X) in (37). By obtaining the
Laplace transform of the function 7(x) in this manner,
we obtain the distribution function itself by taking the
inverse transform. The distribution function has a very
complicated analytic form, and we confine ourselves
here only to a plot of g(r) (Fig. 2b) based on the data of
ofl4"%8] " referring the reader tol***"*%) for details.

The analytic expression obtained from the PY equa-
tion for the RDF is usually assumed in practical calcu-
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FIG. 2. a) Dependence of structure factor S on k for Ar (solid
curves—from experiment on x-ray diffraction, dashed—from PY equa-
tion) for hard spheres with D = 3.44A {*];b) RDF for a system of
hard spheres in accordance with the PY equation at densities nD*® = 0.3
(1), 0.7 (2), and 1.1 (3).

lations of the properties of a system of hard spheres to
be exact, in spite of the approximate character of the
PY equation. If we go beyond the framework of the PY
approximation, then we can obtain improved values of
the RDF by introducing a phenomenological correction
term in the analytic solution of the PY equation. It is
usually chosen such that the compressibility and virial
equations become self- consistent*.

3. RESULTS OF NUMERICAL CALCULATIONS BY
THE INTEGRAL-EQUATION METHOD

a) Calculations of the RDF and of the thermodynamic
characteristics. The solution of the integral equations
for the RDF depends strongly on the form of the inter-
particle interaction potential. Since at the present time
we do not know the exact form of the potential for lig-
uids, it becomes necessary to use model potentials in
the solution of the integral equations. To estimate the
correctness of the results it is necessary to know the
accuracy of the corresponding integral equations. The
methods used to verify the correctness of the integral
equations for the RDF can be broken up into two groups:

1) Calculations based on simple potential functions,
wherein the obtained equations of state (virial coeffi-
cients) are compared with the exact theoretical values
or, in the case of more complicated potentials, with the
data of the MC or the MD methods.

2) More realistic potentials (for example, of the
Lennard-Jones type) are used and the results are veri-
fied by comparison with relevant experimental data.
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Table I The perturbations introduced in real systems by many-
rv%e Calculation particle forces and by inexact knowledge of the form of
number method Rods Squares Cubes Spheres . . .
the potential do not appear in computer calculations.
4th | Exact 1 3,667 11.333 | 0.2869 Therefore data obtained with a computer experiment
LLR : 3718 12258 | 9 20 can serve as a criterion for the validity of any theory
used to calculate thermodynamic characteristics or
Sth | Exact 1 3.7222 3.1597 | 0.1097
PY 1 42361 12.4303 | 0124 RDF. .
e H R PR AT Let us examine the results of numerical integration
6th | Exact . 502500 | _18.9796 | 00385 for thetzsgjtrlplest forms of the interparticle potential.
PY 1 4.42000 9.2067 | 0.0449 Verlet used the PY and HNC equations for model
PY-2 h Sl | TRW - one-, two-, and three-dimensional gases of hard rods,
PY-II 1 3.02500 | —18.8777 — squares, and cubes. Six virial coefficients (VC) were
calculated from the PY and PY-2 equations and five
coefficients in the case of the HNC and HNC-2 equations.
Table II These results can be supplemented with calculations of
ve | cacution | a fifth VC by means of equations PY-II’ and HNC -[I:ﬂ,]
number | method | Ro4 Squares Cubes Spheres and of a sixth VC_by equations PY-IITand HNC-III-**-.
— The results oft**3 and{®'J and of analogous calculations
ah | Rt Y oer | 3081 1nass | 0w for a sysetm of hard spheres®**J are compared with
HNC-2 1 3.667 11.333 0.2869 the exact results in Table I (on the basis of the PY
5th Exact 1 3.7222 34597 | 0.1097 equations) and Table II (on the basis of the SEN equa-
HNoa | oess | aome | s | o0im tion).
HNCI t 3.6656 2.0301 {  0.1065 As seen from the tables, the PY equation gives the
6th Exact 1 3.02500 —18.8796 |  0.0386 correct values of the fourth, fifth, and sixth VC for
Inea | 1T | O | SRty 0.0t gases of hard rods. This is due to the fact that the PY
HNCII 1 3.00926 ) -+19.0401 - equation is exact for this case'**). In the remaining
cases, there is no such agreement, and the discrepancy
with the exact values increases with increasing number
Table I of the VC. However, even in the next approximation, on
- ; | the basis of equations PY-2 and HNC-2, four virial co-
we |Padedpproxk) VE [PY and VEPY and CE andVE | andCE efficients turn out to be exact. The use of the HNC-2
equation improves somewhat the agreement between the
0.354 2.24 2.2 2.22 2.25 2.32 2.19 calculations of the fifth VC with the exact ones, but one
822,2 23‘; ég% 235 f—jgg 23‘2 iﬁg can see that the PY approximation gives better results.
In the PY-2 approximation, the sixth VC differs from
the exact one for a system of hard squares only in the
fourth decimal place, and is somewhat less accurate
Table IV for hard cubes. The best agreement between the theory
N g aNe | and the exact values is obtained in the PY-III theory:
" | abon | and v [PYend VE|PYand CE PNCMVET and CE the sixth VC for both hard cubes and hard squares prac-
. tically coincide with the exact values.
e R Nty il B A M - B 1t is interesting to compare the other thermodynamic
0.6:8 | 16.35 15.7 13.56 | 16.18 | 18.54 | 12.00 characteristics of the simplest model systems with
those calculated by the PY equation. For the system of

The first group of methods has the advantage that
the equations can be rigorously verified (although the
result may not describe the behavior of.real liquids).

In the second group, any conclusions concerning the ap-
plicability of the discussed equations become indefinite
to a certain degree, owing to the inaccuracy of the po-
tential function used in the calculations. It is therefore
preferable to use methods of the first group, all the
more since the most recent developments of computer
technology make it possible to perform computer ex-
periments with sufficiently complicated forms of the
interparticle potential. By now, many computer calcula-
tions were made to obtain the equations of state and
RDF of different systems: one-, two-, and three-
dimensional spheres, particles with Lennard-Jones
interaction, etc. Apart from the statistical errors in-
herent in calculations with a relatively small number of
particles and a finite calculation time, computer ex-
periments yield exact results for a specified potential.

hard spheres there are reliable data from three sour-
ces: MDL%] | MC-method calculations'®**"] | and the
Seven-term virial expansion with the Pade approxima-
tion(®), These three methods lead to identical results
in the liquid-state region, and can be regarded as accur-
ate. Table Il compares the values of the compressibil-
ity factors p/nkT, obtained using the VE (1) on the basis
of the PY-2 equation, with the exact values obtained
from an analytic solution of the PY equations (41) and
(42) and from the HNC equation®®*’ with numerical cal-
culations'**®%), A similar comparison is given in
Table IVE®®) for the reciprocal compressibility
(kT) ™ (p /on).

As seen from these tables, the PY-2 equation agrees
satisfactorily with the exact values and is much better
than the PY equation and the HNC at high densities,
while the PY equation is better than the HNC.

Figure 3 shows plots of the RDF for a system of
hard spheres. The PY equation leads to the largest
deviation of the RDF from the exact value, and the
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FIG. 3. RDF for a system of hard
spheres at nD?® = 0.068. The dashed
and solid curves were calculated from
the PY and PY-II equations, and the
circles are the result of MC calcula-
tions [#2].

1
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PY-II equation yields a curve that almost coincides
with the exact one.

1t is seen from the presented results of the numer-
ical integration of the PY equation and HNC that the use
of the virial equation (1) or the compressibility equation
(3) to calculate the thermodynamic characteristics leads
to different values, with differences that are sometimes
quite appreciable. Many authors have therefore pro-
posed ‘‘self-consistent’’ theories by introducing into the
PY equation or the HNC a phenomenological parameter
chosen to reconcile the virial coefficients calculated in
accordance with the VE or the CEL®*7 . All these
theories are based in one way or another on replacing
the PY expression (10) for C(r) by other expressions
with indeterminate parameters. For example,
Rowlinson'® started with the expression

00N =g (1) (1 — e0IT) 4 plg () — 14— In (g (1) SOAT)]. (46)

It is obvious that this yields the Percus approxima-
tion at u = 0 and the HNC equation at . =1, If u is as-
sumed to be a function of the density and the tempera-
ture, it is possible to obtain agreement between the VC
calculated by the VE and the CE.

A diagram analysis carried out by Moritat ™! has
shown why it is reasonable to choose the structure of
the self-consistent approximations in the form (46). If
we analyze the structure of the diagrams summed in
the PY and HNC approximations, it turns out that for
each diagram I'; taken into account in the HNC theory
but neglected in the PY theory it is possible to find
several diagrams I'; among those discarded in the HNC
approximation, such that the diagrams TI'; partially can-
cel the contribution of the diagrams I';. However, since
the cancellation is nevertheless incomplete, the dia-
grams T'; can be included in the calculation but with a
certain weight. The parameter in (46) does indeed play
the role of such a weighting factor.

We proceed now to calculations with the more realis-
tic Lennard-Jones (LJ) potential

O (r) = 4e [{o/r)*2 — (o/r)8).

Figure 4 shows the isotherms T* = 2.74 (the tem-
perature is expressed in units of ¢/k) obtained on the
basis of different theories of RDF and from two possible
equations of state (VE and CE). As seen from the dia-
grams, at such relatively high temperatures the PY
equation gives good agreement with the exact results.

Let us examine now the critical region. Table V lists
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FIG. 4. Equation of state by the PY theory with LJ potential (iso-
therm T* = 2.74) using the VE (a) and the CE (b). The upper solid
curves were calculated by the MD method [7!], the lower ones by the
BBKGY theory, and the dash-dot and dashed curves were calculated by
the HNC and PY theories, respectively.

the critical constants (in dimensionless units) calculated
on the basis of different integral equations with LJ po-
tential! 4. An analysis of these data shows that here,
too, the PY equation is better than the HNC or BBGKY
equation. In this temperature region, the BBGKY equa-
tion gives very poor critical constants; although the PY
and HNC theories are inaccurate, the discrepancy is
relatively small, on the order of 10%.

Let us examine, finally, the region of low tempera-
tures. In this region, both the PY equation and the SEN
equation give much worse resultst*®™), The thermo-
dynamic properties of a system with LJ potential, calcu-
lated by the PY equation, are compared in Table VI with
the MD data (T* and n* are the dimensionless tempera-
ture and particle-number density, and E; is tbe internal
energy)t*”l. It follows from this table that the PY equa-
tion gives incorrect values of the pressure in the liquid
phase, regardless of whether the VE or the CE is used.
Both values of the pressure differ from the exact ones
by more than 100%. It is interesting to note, however,
that the exact values lie again between those calculated
by the PY method, and in those cases when Pcomp is not
negative, the simple arithmetic mean deviates from the
exact value by only 109.

The pressure is very sensitive to even small errors
in the RDF. In this respect, the internal energy is a
more ‘‘favorable’’ function. We defer the discussion of
the fact to Sec. C.

Let us examine the results of the RDF calculation
for systems with LJ potentials at different tempera-
tures. Broyles and co-workerst ™’ investigated the
high-temperature isotherm T* = 2.74 at different densi-
ties up to n* = 10/9, on the basis of the BBGKY, PY,
and HNC theories. The best agreement with the RDF by
the MC method is obtained from the PY equation. The
BBGKY equation leads to the worse results, especially
at high densities (Fig. 5).

At low temperatures, as seen from Fig. 5b, the RDF
calculated from the PY equation differs insignificantly
from the exact one. The first RDF peak obtained by the
PY method is somewhat broader and higher than that
obtained by the MD method, and the maxima and minima
are shifted somewhat towards lower distances. On the
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Table V Table VI
Calculation ™ n* * In® KT* Equation « |pikT) (p/nkT) (p/nkT), E; /NRT
method o cr Porl P et of state T* | n comp MD vir MD PY

BEGKY 1.45£0.03 | 0.40-0.05 0.44:20.04 VE 0.719 | 0.85 | —0.60 0.36 2,82 —8.51 | —8.28
BBGKY 1.5830.02 | 0.4020.03 | 0.48+0.03 GE 0.796 | 0.85 | —0.10 0.69 297 | Z770 | —7.51
HNC 1.25:0.02 0.26:0.03 0.35-:0.03 VE 0,880 | 0.85 0.54 1.64 3.47 —6.75 | —6.61
HNC 1.39+0.02 0.28+-0.03 0.382-0.04 CE 1.198 | 0.85 1 2778 3752 505 | Z4l08
PY 1.250.02 0.29~0.03 0.300.02 VE
PY 1.3250.02 0.282-0.03 0.36%0.02 CE
PY-II 1.360.04 0.353:0.03 0.310.03 VE
PH-II 1.3320.03 0.333:0.04 0.342:0.03 CE
MD 1.32-1.36 0.32-0.36 0.30-0.36 =
Experimental for 1.26 0.316 0.297 — o) MC

Ar Tk

/o F

whole, however, the agreement is quite satisfactory.

Thus the data of the PY theory below the critical
point should be used with great caution when the pres-
sure is calculated from the RDF, whereas the energy is
obtained from the RDF with sufficient accuracy.

So far we have considered the results of numerical
integration of the equations for the RDF in comparison
with the exact data. It is of interest to investigate the
applicability of the PY and HNC theories to real sys-
tems, primarily noble gases. A detailed investigation
of this question was carried out by Throop and
Bearman'™]. They calculated with the aid of the PY
equation the thermodynamic functions and the RDF for
the temperatures and densities near the coexistence
curve, The comparison was made with the experimental
data on Xe and Art™J and with analogous calculations
by the HNC equationst ™}, Near the coexistence curve,
for the isotherm T* = 1.5 up to n* = 0.3, the pressures
calculated by the HNC theory with the VE are closer to
the experimental values of the pressure for Xe and Ar
than those obtained by the PY theory, but the difference
between the two theories is extremely small (less than
0.5%). For larger densities, n* 2 0.3, the PY theory
is better. At n* = 0.6 the pressure according to PY is
29% higher than the experimental pressure for Ar and
49% higher according to the HNC theory. In calculations
with the VE, the qualitative conclusions remain the
same as before, but at densities n* 2 0.3 the agree-
ment between the theoretical and experimental values
for Xe is much less satisfactory than for Ar, namely, at
n* = 0.6 the HNC and PY pressures exceed the experi-
mental values by 100 and 75%, respectively. Both the
difference between the results of the PY and HNC
theories and the difference between these theories and
experiment increase with increasing density (Fig. 6a).
As seen from the figure, the intrinsic inconsistency of
the PY theory at this temperature is much less than in
the HNC theory, and the inconsistencies in both theories
increase with increasing density. As to the internal
energy, it is practically the same in both theories, and
the curves practically coincide. This is valid also with
respect to the entropy. The deviation of these thermo-
dynamic quantities from experiment increases with
density and is of the order of fractions of 1%.

We now compare the results of the calculations for
different temperatures. It turns out that for Ar at all
the temperatures considered int™? (T* = 1.4, 1.89, and
3.57) the experimental equation of state lies between
pcompand Pyir), and with increasing temperature the
agreement between the results with the VE and CE im-
proves. At n* = 0.6, the difference between Peom and

Pyir 15 48% at T* = 1.4, 18% at T* = 1.89, and 4% at
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FIG. 5. The RDF as a function of the distance: a) for a density n* =
10/9 and a temperature T* = 2.74 on the basis of the equations of PY
(1), HNC (2), BBGKY (3) with LJ potential (thick curve—by the MC
method) {73], b) calculated from the PY equation (dark circles; light
circles—MD calculations, T* = 0.88, n* = 0.85) [%¢].

T* = 3.57. For much higher temperatures, the virial
and compressibility isotherms almost coincide, differ-
ing by 0.5% at n* = 0.6,

In the comparison of the theoretical calculations with
the experimental results, attention was called to the
following circumstance. The agreement with experiment
is very sensitive to the choice of the parameters of the
LJ potential. For example, the value of p/nkT obtained
at T* = 1.3, n* = 0.6, and ¢/k = 119.3°K and o = 3.43 &
differs by 119% from the value obtained when the param-
eters ¢/k = 119.8°K and ¢ = 0.3.405 & are used. There-
fore the seeming satisfactory agreement between theory
and experiment for Ar and the less satisfactory agree-
ment with the data on Xe may be due to a certain leeway
in the choice of the parameters, or else to the fact that
the LJ potential may not be applicable to Xe.

We present also the results of calculations by
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FIG. 6. a) Equation of state (isotherm T* = 1.4) for a system with
LJ potential on the basis of the PY and HNC equations (dark circles—
experimental points for Ar, light—for Xe: 1-HNC, 2—PY)[7*]; b) the
RDF obtained from the PY equation with LJ potential (solid curves—
PY equation, circles—experimental results [7] for Ar: 1-T* = 1.361,
n*=0.167;2—T*=1.319,n* = 0.319; 3—~T* = 1.194, n* = 0.541 and
4-T* = 1.277, n* = 0.541).

watts! ™7 with an LJ potential. Figure 6b shows plots
of the RDF for four states that differ in density and
temperature, compared with the experimental results
for Ar (¢/k = 119.8°K, o = 3.405 A). An analysis of the
plots shows that the agreement between theory and ex-
periment is satisfactory. It is interesting that it is
better at high densities.

The p*/kT* data in Table VII show that the LJ poten-
tial accounts satisfactorily for the thermodynamic
properties of argon in the PY approximation in a suffi-
ciently wide range of temperatures and densities when
the VE is used! ™,

b) Determination of the interparticle potential. So
far, we have assumed that the potential is given and we
have assessed the accuracy and validity of the corre-
sponding integral equation by solving integral equa-
tions for the RDF and comparing the results with rele-
vant data. There is a possibility, however, of posing
the inverse problem, namely, to reconstruct the form
of the interparticle potential from the known RDF.
Mikolaj and Pings' ™7 pointed out that besides yield-
ing the potential, the realization of such a program
makes it possible to verify by direct experiment the
equations for the RDF. If we solve the PY and HNC
equations relative to the potential &, we obtain

Dpy () = kT In{lg (r; T, n) — C (r; T, n)lig (r; T,n)),
Punc () =kTlg(ry Tyn) — 1 —C(; T,n) —Ing(r; T, n)l.
If the PY and HNC equations are correct, then the ob-

tained potentials should not depend on the density and
temperature when the values of g(r) and C(r) are sub-

stituted in the right-hand side. They turn out, however,
to depend on the thermodynamic state of the sys-

temt ™", Mikolaj and Pings investigated the scatter-
ing of x-rays by argon near the critical point. Using
these experiments, they reconstructed with the inter-
particle potential the aid of the PY equation and noted
that ®py(r) depends on the density (Fig. 7a). The figure
shows plots of the potential energy, obtained from the
PY equation at different densities for the —110°C iso-
therm of liquid argon. The depth of the potential well
was found to be —120°C at a density 0.280 g/cm® and
—90°C at 0.780 g/cm® (the critical density of argon is
0.536 g/cm®),

The quantitative aspect of these data should be
treated with a certain caution, since it is well known
that the accuracy of experiment on x-ray scattering is
low and can lead to appreciable errors in the determina-
tion of the structure factor (and consequently also
&(r))L?°J. The correctness of the qualitative picture of
the potential, however, is not subject to any doubt. It
can be assumed that the change of the depth of the po-
tential well is due to the inaccuracy of the PY equation
at the investigated densities. The validity of this as-
sumption can be easily verified, since we have at our
disposal exact data on the RDF and on the structure
factor, calculated by the MD method for a Lennard-
Jones liquid. If we regard this structure factor as ex-
perimental and reconstruct ®(r) on its basis using the
PY equation, then the potential obtained in this manner
differs only insignificantly from the initial LJ potential
in the temperature interval of interest. Thus, for T*
= 1.33 and n* = 0.4, the depth of the well of the calcula-
ted potential is only 1%, lower than the depth of the well
of the LJ potential in the region of the minimum. To be
sure, at large distances the calculated potential is
deeper than the initial one. However, in any case the
error does not exceed 4%. Therefore the decrease of
the depth of the potential well with increasing density
cannot be attributed in this density interval to the in-
accuracy of the PY equation. To interpret such experi-
ments it is apparently necessary to assume that the
observed dependence of potential on the density is due
to the increasing role of multiparticle interactions with
increasing density of the liquid. From this point of view,
the LJ potential should be regarded as a certain effec-
tive potential that takes correct account of all the inter-
actions at not too high densities, and becomes unsatis-
factory at high densities.

In concluding this section, we present plots of a po-
tential obtained from the RDF (determined by the MD
method) using the PY equation at different temperatures
and densities (Fig. 7b). The LdJ potential that should be
obtained if the PY equation were exact is shown by the
dashed curve. We see that at densities above critical

Table VI
T*=13 T*=1,4 T o=a 1,5 dE = 20
n* Experi- Theory Experi- | Theory | Experi- Theory Experi- | Theory
ment ment ment ment

0.10 0,070 0,071 0,075 0,075 0.078 0.079 0.089 0.09
0,20 0.097 0.098 0.113 0.114 0.125 0.127 0.167 0. 169
0.30 0,106 0.105 0.136 0.137 0.161 0.164 0, 250 0,254
0.40 0.115 0.118 0.164 0.170 0.207 0.215 0.362 0.369
0.50 0.153 0.172 0.233 0.249 0.303 0,317 0. 546 0,552
0.60 0.311 0.326 0.431 0.437 0.535 0.532 0.881 0,865
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FIG. 7. Potential energy curves for Ar, obtained from the PY equa-
tion: a) for different densities at T = 110°C (circles—experimental points
for an LJ potential with parameters g = 3.4054, ¢/k = 119.8 °K; p =
0.780 (1), 0.536 (2) and 0.280 g/cm? (3) [7°]), b) with RDF calculated
by the MD method [*] (1-T* = 1.328, n* = 0.5426, 2—T* = 1.05, n* =
0.75 and 3—T* = 1.127, n* = 0.85).

the PY equation does not result in a correct determina-
tion of the two-particle interaction.

¢) The problem of self-consistency of the liquid
pressure. From the foregoing review of the numerical
solutions of the PY equation and equations related to it
it is seen that the quality of the obtained results can be
regarded as good or satisfactory for estimates of the
RDF, the energy, and the entropy, but unsatisfactory for
estimates of the pressure and compressibility in the
liquid state proper. The main reason is the inconsis-
tency of the two expressions for the pressure (or com-
pressibility) defined by Eqgs. (1) and (3) when the ap-
proximate function g(r) is used. This defect is inherent
in all the known approximate liquid-state theories based
on the study of the RDF. There is a known analytic con-
dition for the self-consistency of the pressurel®/**];

n S rd’ (ry g (r) dr + (112/2)5. g[Fs (r: 0) — g (0)1 p@’ (p) dr dp
:3an5 S lg(r) —1]dr.

It contains explicitly the three-particle distribution
function and cannot be used directly in the PY or HNC
scheme. It can be used in principle, however, to con-
struct correct theories in the higher approximations,
analogous to PY-2 and PY-II.

Considerable progress in the calculation of the equa-
tion of state of a simple liquid was attained recently in
another way. We have already noted that the internal
energy calculated by the PY equation with LJ potential
differs from the exact value by approximately 2.5% at
low temperatures, and that this error decreases with
increasing temperature (see Table VI). Such good
agreement between the results of calculation and the
exact values suggests the use of the energy equation (2)
to obtain the equation of state. To this end it suffices to
use the well-known thermodynamic relation between the
energy and the free energy F:

E = —T*o(FIT)/0T.

If we integrate this equation with respect to the tem-
perature, we can express the free energy in terms of
the RDF with the aid of (2). Differentiating furthermore
F with respect to n, we obtain the pressure as a func-.

b

FIG. 8. Equation of state of Lennard-Jones liquid' according to
PY: a) T* = 1.38 isotherm (light and dark circles—results of exact
computer calculations, crosses—experimental results [35] ; | —PY, 2—
PY-2, 3—PY(2)); b) T* = 0.72 isotherm (dark and light circles—re-
sults of exact computer calculations, circles with dashes—experimen-
tal points [%5]: 1-PY, 2—PY (2)).

tional of g(r), i.e., the required equation of state. Prac-
tical realization of this program has indeed demonstra-
ted the advantage of the energy equation (2) over Egs.
(1) and (3). Thus, the values of the fourth and fifth VC
calculated in this manner in"**) using an LJ potential
are much better than those obtained by using the VE or
CE; they are almost as accurate as in the PY-II theory
(but the latter require much more laborious numerical
calculations). This question was investigated in greater
detail by Barker, Henderson, and Watts(®'%1, They
calculated the thermodynamic properties of a system
with LD potential on the basis of the energy equation (2)
and found that, in a wide range of temperatures and
densities, the PY equation predicts very well the
thermodynamic characteristics of the system, namely
the energy, the specific heat, the equation of state, the
entropy, and the liquid- vapor coexistence curves. By
way of illustration, we present the equation of state of a
Lennard-Jones liquid at two temperatures (Fig. 8). It
can be easily concluded that calculation by Eq. (2)
greatly improves the agreement between the theoretical
and experimental results.

The reason why the PY equation in conjunction with
the energy equation (2) leads to such good results (in
comparison with the VE or CE) becomes more under-
standable if one turns to the already mentioned Barker-
Henderson perturbation theory. In this theory, the inter-
particle potential of an arbitrary system is broken up
into a sum of two terms, one of which is in a certain
sense smaller than the other and is regarded as a per-
turbation. The free energy of the system (and with it
also all the thermodynamic functions) is expanded in
powers of the ‘‘perturbing’’ potential, and the unper-
turbed terms chosen to be the hard-sphere potential. If
such an expansion is carried out for the RDF, then it
turns out'®J that the n-th order term in g(r) leads to
n-th order terms in the thermodynamic properties, if
one uses the VE or the CE. However, when the energy
equation is used, the n-th order term in g(r) causes the
thermodynamic quantities to be calculated more accur-
ately, accurate to terms of order (n + 1) inclusive.
Thus, using as the zeroth approximation in the RDF its
approximate value obtained from an analytic solution of




METHOD OF INTEGRAL EQUATIONS IN STATISTICAL THEORY 605

the PY equation for hard spheres, we obtain with the
aid of the VE or the CE the thermodynamic character-
istics likewise in the zeroth approximation, whereas
the use of the energy equation leads to the contributions

to the thermodynamic quantities accurate to first order.

The resultant difference for the thermodynamic quanti-
ties may turn out to be appreciable, since the zeroth
and first-order terms in this theory are of the same
order of magnitude, whereas the higher-order correc-
tions are smalllt?®3%]

¢) Phase transitions in the Percus- Yevick theory.
An important role in the estimate of the suitability of
the PY theory is played by the question of the accuracy
with which this theory describes phase transitions in
which a liquid phase participates. The theory is called
upon to describe the stability limit of the liquid relative
to crystallization, to predict the existence of the criti-
cal point with acceptable estimates of the critical
parameters, and an approximate description of the
liquid-gas transition at temperatures below critical.

In the method of integral equations one deals only
with a homogeneous phase, gas or liquid, as implied
already in the initial equations when the conditions Fy(r)
=1 and Fo(r, r') = g(|r - r’|) are assumed. Therefore
the liquid-crystal transition cannot be discussed here
without introducing additional information on the crys-
talline phase. It is possible, however, to formulate the
problem of the stability 1imit of the liquid with respect
to crystallization. This question was investigated in
the superposition approximation and described in detail
in‘?}. The problem was not investigated for the PY and
HNC equations and for realistic interaction potentials.
We shall stop to discuss only the hard-sphere model in
accordance with the PY equation. From numerical
calculations by the MC and MD methods it is known
that compression produces in an equilibrium system of
hard spheres a first-order phase transition of the dense
gas-crystal type near 7. = 0.641°7). For a theoretical
estimate of 7., it is necessary to turn to the asymp-
totic form of the function h(r) as r — wt?] | Putting in
(35) h(r) = @(r)/r, we obtain a homogeneous equation for
o(r)

1 xts
(p(z)+12n5 To(s) ds S e(t)dt=0, z>1,
0 [x—s|

with solutions in the form

@ (z) ~ e % cos (Bz -+ 7).

The stability limit of the homogeneous phase corre-
sponds to a value 1 = Ner such that the smallest

@ = a(n) vanishest?!. A computer numerical analysis
of the problem leads to a value (a/D) 3, ~ 10 for

1 = 0.64, but zero is never reached at any value of 7.
This is apparently sufficient for a phase transition
(i.e., for the ordered phase to be more stable than the
homogeneous phase), but insufficient for the appearance
of an exact stability limit. The smallness of (¢/D)yin
suggests that even a slight refinement of the PY equa-
tion, for example in the spirit of PY-2 or PY-II, would
lead to a value (oz/D)min = 0 in the same vicinity of 7
~ 0.64, in accord with the ‘‘experimental’’ value
from{°”3. We note that the solution of a similar prob-
lem in the superposition approximation leads to a value

cr

Table VIO
R 3.9 5.00 6.00
™ 1.275 1.305

s 1.315'

- N P
oy 0.268 0.276 0.278|

Ner = 0.5, which differs considerably from the value
int®73,

The existence of solutions of the PY equation for
hard spheres at 7 > 7. is discussed int®:%71  Such
formal solutions actuaﬁy do exist, but no definite phys-
ical meaning can be ascribed to them.

The liquid-vapor phase transition calls for the exis-
tence of attraction between the particles. The simplest
model of this kind is the model of hard spheres with
surface adhesion of the particles, which admits of an
analytic solution of the PY equation. An analysis of this
problem does indeed lead to the existence of a critical
point and a liquid-gas first-order phase transition
below the critical temperature'*”. The pressure iso-
therms above and below the critical point and the phase-
transition line turn out to be qualitatively the same as
for real systems, if the VE is used as the equation of
state.

For more realistic potentials, numerical integration
of the PY equation leads to analogous results[ 79291,
Using an LJ potential cut off at a certain distance R, it
was observed that when the behavior of the direct corre-
lation function C(r)|._ is investigated as a function of
the density n, then the PY equation has one physically
meaningful solution above a certain temperature T .
At the temperatures T < T, there exists a density
region for which the PY has no solutions, but outside
this region a solution exists again. If we draw the iso-
therms in the different temperature regions (Fig. 9),
they turn out to be qualitatively similar to the isotherms
of real matter, and the isothermal compressibility be-
comes infinite on the isotherm corresponding to T, .
This fact can be naturally interpreted in the sense that
the thermodynamic states for which the PY equation has

05+

ned

FIG. 9. Equation of state of a Lennard-Jones liquid on the basis of
the PY equation in conjunction with the VE. Circles—experimental
values for Ar at T* = 1.3; the dashed curve outlines the region where
the PY equation has no solutions: R = 3.5¢, T* = 1.2 (1), 1.263 (2),
1.275 (3), and 1.3 (4) [®#].
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no solutions correspond to the two-phase region, and
T, has the meaning of the critical temperature. If the
isotherms are calculated with the aid of the VE, then
the compressibility does not become infinite on the
critical isotherm.

Figure 9 shows also the experimental points along
the isotherm T* = 1.34 Ar. Even in the region of the
critical density, the experimental and calculated values
agree within 2%,. It should be noted, however, that the
thermodynamic properties calculated from the PY equa-
tion turn out to depend on the value of R at which the LJ
potential is cut off. At R = 3.5 g, the equation of state
obtained from the VE agrees very well with the data on
Ar. If R is increased to 50 or 60, then the agreement
becomes poor, and the critical temperature rises. The
critical density is not strongly allered in this case (see
Table VI, which shows the values of the critical con-
stants for systems with LJ potentials cut off at a dis-
tance R-**,

The numerical solution of the HNC equation with the
same cut-off LJ potential also reveals the presence of
a phase transition. The behavior of the thermodynamic
functions predicted by the HNC, however, differs
strongly from the corresponding experimental data’®%
In particular, the compressibility of the liquid does not
become infinite at the critical point.

There is therefore no doubt that the PY equation and
the equations related to it are suitable for the approxi-
mate description of phase transitions in which a liquid
phase participates and of critical phenomena. Nonethe-
less, by virtue of the approximate character of the
theory, we cannot count here on exact descriptions of
real systems. This is most clearly seen with the calcu-
lation of the specific heat ¢, with the aid of PY (from
the energy equation) as an examplel®J. A significant
feature of the calculations is the observation of a maxi-
mum of the specific heat in the critical region. The
plots of the specific heat against the density at fixed
temperature, being monotonic far from the critical
state, become nonmonotonic when T* = 1.3 is approached
and have clearly pronounced maxima. It is stated inl®®’
that it can be shown analytically that the specific heat
as a function of the temperature has at a density equal
to the critical value a singularity of the type

e~ (T~ Ter) .

We note that in the model of spheres with surface
adhesion the specific heat has a similar singularity.
Therefore such a dependence of ¢, on T near the criti-
cal point is apparently inherent in the PY theory and
does not depend on the form of the interparticle-inter-
action potential. The obtained dependence is qualitatively
quite satisfactory and the observed singularities can be
regarded as a success of the PY theory. However, such
a strong singularity does not agree with the modern ex-
perimental and theoretical data on the behavior of real
matter in the immediate vicinity of the critical point.
The PY theory cannot describe fine details of the be-
havior of thermodynamic functions near the critical
point. For a more accurate description of the critical
phenomena in the method of integral equations it is
necessary to change over to still unknown equations of
a more complicated type.
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